Parallel Ultra Low Power Embedded System

Jodo Pedro Alves Vieira
joaopvieira@tecnico.ulisboa.pt
Instituto Superior Técnico, Lisboa, Portugal

Abstract— The future of portable electronics’ market will be
built around Internet of Things (IoT), where everyday objects
will be connected to the internet and possibly controlled by
other devices. In fact, examples of these devices have already
started to take part on our daily activities and are expected to
experience a tremendous growth in a near future, such as health
monitors, light bulbs, thermostats, fitness wristbands, etc. Most
of these devices rely on battery-powered wireless transceivers
combined with sensors, where it is essential to sustain energy-
efficient execution by developing devices’ architectures capable of
delivering both low power and real-time computing performance.
Within the scope of IoT applications, this Thesis aims to boost the
energy-efficiency of a state-of-the-art ultra-low-power processor,
namely PULPino. This challenge was tackled by modularly
attaching hardware accelerators to it. They connect to PULPino
through a low-power and plug-n-play custom AXI-lite interface.
It has the objective of encouraging the development of new
accelerators by the growing PULPino’s open-source community.
To test the viability of this approach, two kinds of accelera-
tors were individually attached. A first cryptographic SHA-3
accelerator, implementing a commonly used hash algorithm, that
could improve IoT applications’ security. And second, an FFT
accelerator, having a widely used algorithm in Digital Signal
Processing (DSP) applications. Both accelerators were tested on
PULPino, for their speedup and energy-efficiency capabilities.
Achieving savings up to 99% and 66% of energy, speedups of
185 and 3 times on SHA-3 and FFT respectively. In comparison
to a non-hardware accelerated version of the algorithms executed
on PULPino RISCY core configuration.

I. INTRODUCTION

In order to satisfy the growing demands of current consumer
electronics market, it is estimated there will be around 50
Billion of Internet connected devices (’things”) by 2020. A
big part of IoT lies on battery-powered wireless transceivers
combined with sensors (also known as motes). Such devices
demand ultra-low-power circuits and are usually controlled by
a Microcontroller (MCU) responsible for sensor interaction
and light-weight processing. In IoT topology, besides the basic
motes basically gather data, there are also the end nodes that
can be configured as gateways for the motes, which allows
gathering data from the motes and eventually pre-processing it
before sending to the cloud. One solution for end nodes is pre-
sented in this Thesis, i.e. PULP in Section II-A, which is able
to satisfy both computing and energy-efficiency requirements
of IoT applications, by taking advantage of parallel computing.
Based on PULP solution, its further simplification into a more
basic unit (PULPino) that fits the motes’ requirements will be
the main goal of this Thesis, in order to provide an adequate
substitute for the MCU.

IoT nodes might be optimized in many different ways achieve
enhanced energy-efficiency and performance. One solution
goes by attaching hardware accelerators to the IoT node.

Under the scope of this Thesis, were chosen well known
types of applications in which IoT node might benefits from.
Such as, Digital Signal Processing (DSP) and cryptography.
DSP applications include a wide variety of kernels which are
recursively executed, and might require considerable compu-
tational power. Cryptography on IoT systems is a recently
hot topic. Due to the reduced computational capabilities and
low-power characteristics of such systems, having the required
security might be very challenging. To achieve it, not only is
needed a reduction of computational overhead of cryptography
algorithms. But also, a reduction of its associated extra energy
consumption.

To tackle such challenges and move a step further to these
objectives, were developed hardware accelerators, one for
each application (DSP and cryptography), based on a modular
approach and a common interface with the processor. Encour-
aging the open-source community to develop and share their
own custom IPs. Continuing a path to open-source hardware,
as the release of the further presented PULPino was intended
for.

Chapter 2 (Background) provides an overview of PULP
and PULPino features/related work. Also addressed emerging
interconnect networks and relevant applications of hardware
accelerators.

Chapter 3 (Hardware/Software Co-Design) explains the
hardware/software architecture, developed with the purpose
of attaching the hardware accelerators into PULPino’s main
interconnect bus.

Chapter 4 (Implementation and Experimental Work)
describes how to set up an working environment, as how to
use the developed AXI-lite interface.

Chapter 5 (Analysis and Experimental Results) contains
an analysis of the obtained experimental results.

II. BACKGROUND

In this chapter will be presented the state-of-the-art and
related work done with PULP, a novel cluster platform in-
tended to be released as open source hardware in 2018. Since
PULPino represents a small part of PULP (one core), which
has been already released and is a main focus of this Thesis.
Since the attached hardware accelerators interface through
an interconnect bus, state-of-the-art interconnect networks are
addressed. Also an overview on the state-of-the-art implemen-
tations of hardware accelerators is presented.

A. State-of-the-Art: PULP - Parallel Ultra Low Power Plat-
form

PULP development team aims to develop an open source
scalable hardware and software platform with the objec-

tive to break the pJ/op barrier within power envelopes of
a few mW [1]. PULP’s architecture is tuned for efficient
near-threshold operation, overcoming the power constraints
of battery-powered applications, which are restricted to a
power envelop of a few mW [2]. A PULP cluster embeds
a configurable number of RISC-V based cores with a shared
instruction cache and scratchpad memory. PULP achieves an
energy efficiency of 193MOps/mW [3]-[5]. The performance
of its 28nm FDSOI implementation can be adjusted up to
2GOPS by scaling the voltage from 0.32V to 1.15V with the
cores operating at S00MHz [3]-[5].

The PULP cluster is perfectly suited for IoT endpoint devices
due to its efficiency and low power consumption while still
keeping high computational power [6]. Only one core from
PULP, named PULPino is available at the moment under open
hardware license, it can be intended for IoT remote nodes that
do not require as much computational power as an endpoint
device. PULP has been subject of several scientific works,
briefly presented next, targeting different application areas and
architecture extensions, although solely on PULPino there are
no scientific work, up to now.

Computer Vision Applications

PULP has been used in a set of applications regarding
energy-efficient computer vision by taking advantage of its
parallel computing and support for OpenMP [7]. In [8] it is
shown that a computationally demanding vision kernel based
on Convolutional Neural Networks (CNN) can be quickly
and efficiently switched from a low power, low frame-rate
operating point to a high frame-rate one when a detection is
performed. Scaling PULP’s performance from 1x to 354x,
reaching 211 GOPS/W.

Extensions and HW Acceleration

Hardware extensions were also explored in order to bring
new energy-efficient solutions, e.g., in the case of a shared
Logarithmic Number Systems (LNU) unit implemented in [9],
which was as an energy-efficient alternative to a conventional
Floating Point Unit (FPU) . This LNU, optimized for ultra-
low-power operations on PULP multi-core system, is effi-
ciently shared by all the cores. For typical nonlinear processing
tasks, this design can be up to 4.2x more energy-efficient than
a private-FPU design.

Heterogeneous Programmable Accelerator

PULP was used also as a heterogeneous accelerator for
speeding-up computation-intensive algorithms. In [10], a het-
erogeneous architecture was developed by coupling a Cortex-
M series MCU with PULP, supports offloading of parallel
computational kernels from the MCU to PULP by taking
advantage of the OpenMP programming model, supported by
PULP.

B. PULPino

PULPino is a small single core system based on PULP,
as previously mentioned in Section II-A. As such, PULPino
being the main focus of this Thesis, represents a first
step towards the release full of PULP as an open-source
platform.Its open-source release was in February 2016 under
the solderpad hardware license, including complete RTL
sources, all IPs, RISCY core based on RISC-V, environment
for RTL simulation and the complete FPGA build flow.
PULPino features an IPC close to one, full support for the
base integer instruction set (RV32I), compressed instructions
(RV32C) and partial support for the multiplication instruction
set extension (RV32M). Non-standard extensions have been
implemented featuring hardware loops, post-incrementing
load and store instructions, ALU and MAC operations.
Dot-product and sum-of-dot-products instructions on 8b and
16b data types allow to perform up to 4 multiplications and
accumulations in one cycle, consuming the same power as a
32b MAC operation. A low power mode is available, being
able to wake up in case of an event or interrupt arrival.
Once in low power mode, only the event unit is active and
everything else is clock gated, consuming minimal power due
to leakage.

Pipeline Architecture

The organization of the pipeline is illustrated in Figure
1, which consist in a four stages: instruction fetch (IF),
instruction decode (ID), execute (EX) and write-back(WB).
It was possible to extend the ALU with fixed-point arithmetic
and enhanced multipliers that support dotp operations (while
still keeping the same timing), since the critical path is mainly
determined by the memory interface. The cluster can achieve
frequencies of 350-400MHz, being able to reach higher fre-
quencies than the commercially available MCUs that usually
operate in the range of 200MHz [6].

BC

U
hwloop | |
control o4

A E

X nif
S

TCDM - Log. Interconnect

Debug Interface||Instruction Cache|

Fig. 1. Simplified block diagram of the RISC-V four stage pipeline [6].

Additional PULPino’s Core Configurations

Despite the initial release of PULPino dating February
2016, which is based on the previously presented RISCY
architecture, additional core configurations were release in
August 2017. Featuring three newly available cores:

e RISCY + FPU: the same previously presented RISCY
core enhanced with a single precision Floating Point Unit

(FPU), compliant with IEEE-754 standard for floating-
point arithmetic.

e Zero-riscy: An area-efficient 2-level pipelined core, im-
plementing RISC-V RV32-ICM instruction set as RISCY
core.

e Micro-riscy: An even smaller core than the previous
ones, implementing RV32-EC instruction set. Having
only 16 general purpose registers and no hardware mul-
tiplication support.

C. Interconnect Networks

Computer based systems have a need to connect its indi-
vidual components together and allow them to communicate
with each other like a community. These networks rely on
communication standards to establish rules of how the data
will be converted and transfered among several components.
Network-on-chip (NoCs) are used for interconnecting micro-
architecture functional units within chips. Recent standards,
purpose an improvement on interconnectivity between accel-
erators as other system components(e.g. CCIX, Gen-Z and
OpenCAPI) [11]. These three new standards, were announced
in 2016 being developed towards the goal of optimizing and
easing the connection between accelerators and processors in
a tightly-coupled manner. These will be explained in more
detail up front.

Cache Coherent Interconnect for Accelerators (CCIX)

CCIX was founded with the purpose of enabling a new class
of interconnect, based on emerging acceleration applications.
It allows processors based on different ISAs to peer processing
to multiple acceleration devices. It uses a tightly coupled in-
terface between processor, accelerators and memory, together
with hardware cache coherence across the links [12].

GEN-Z

GEN-Z defines itself as a high-performance, low latency,
memory-semantic fabric enabling communication throughout
every device in the system. Creating an ecosystem in which a
wide variety of high performance solutions can communicate
together, by unifying communication paths and simplifying
software through load and store memory-semantics. [13]

Open Coherent Accelerator Processor Interface (OpenCAPI)

OpenCAPI is an Open Interface Protocol that allows any
processor to attach to coherent user-level accelerators, 1/O
devices and advanced memories (accessible via read/write or
DMA semantics). The semantics used to communicate with the
multiple components are agnostics to processor architecture.
The main key attributes are high-bandwidth, low latency, based
on virtual addresses implemented on the host processor to
simplify the attached devices [12].

III. HARDWARE ACCELERATION

An hardware accelerator is a specialized unit designed to
perform a very specific task or set of tasks, achieving higher
performance and energy efficiency than a general purpose
CPU unit in such specific application. While a co-processor
executes instructions dispatched by the CPU, an accelerator
is a device attached to the bus, controlled by registers. [14].
Accelerators are good for real-time applications, I/O process-
ing, data streaming, specific ”complex” functions (DCT, FFT,
etc) or specific “complex” algorithms such as neural networks.
Designing such systems in hand-written RTL implementations
is highly tedious, time-consuming and consequently costly.A
possible and attainable solution is presented in this Thesis, by
defining an light-weight interface based on axi-lite standard,
between the processor and accelerator. Allowing the reuse of
accelerators hardware designs in any system that supports the
AXI specification. Allowing the reuse accelerators in different
scenarios. The speedup an accelerator might provide is based
on the equation of accelerator’s total execution time:

Tacc =tin + tcomp + touh

In which t;, and t,,; represent the time it takes to transfer
the input and output data respectively into and out of the
accelerator and {..y,,;, for the accelerator’s computing time.
Cryptographic and Digital Signal Processing (DSP) functions
are highly suitable for hardware acceleration, due to its fre-
quent use, requiring a considerable number of operations per
input, are generally inefficiently when computed in general
purpose CPUs. Thus, improving its performance and overall
energy consumption. For instance, an SHA-3 specialized hard-
ware accelerators was proposed in [15]. The accelerator im-
plemented as a co-processor compliant with ROOC interface,
is based on an parametrized implementation using automated
tools and integrated with a Rocket RISC-V processor. Besides
security, Digital Signal Processing (DSP) is as well a huge
subject on which most of nowadays computing intensive appli-
cations are based on.Some of these applications are currently
used in novel IoT or ultra-low-power systems, as targeted
in [8], [16], [17], [7] and [18] regarding computer vision as
presented in Section II-A. Today’s main FPGA manufacturers
already provide full featured DSP cores, for FFT take for
instance [19] [20] from Xilinx and Intel, respectively. More
optimized solutions and claiming to beat such proprietary core
implementations arrived. SPIRAL a novel hardware generation
framework and system for linear transforms is introduced in
[21]. It will automatically generate an algorithm, mapping
it to a datapath and finally results an synthesizable RTL
verilog description file, which is ready for FPGA or ASIC
implementation.

IV. HARDWARE/SOFTWARE CO-DESIGN
A. AXI Protocol

The AXI protocol enables the main system components
on PULPino to be memory mapped. Creating the possibility
to access those components through the core with simple
load/store instructions.

AMBA AXI4 is an open standard specified by ARM. Facilitat-
ing connection and management of functional blocks in SoC
designs. It is now de facto standard for embedded processors
due to its free royalties and well documented specifications. It
encourages modular systems to be reused across different sys-
tems and applications. While maintaining an high performance
and low power communication. AXI4 has several subsets,
namely AXI-full, AXI-lite and AXI-Stream.AXI-full targets
high performance, high clock frequency systems designs.The
protocol operates in a master-slave paradigm, meaning that
each end of the connection obligately has to be either a master
or a slave. It uses 5 different channels: read address; read
data; write address; write data and write response.AXI-lite is
a lighter implementation of AXI-full protocol. Uses the same
5 channels. Each transfer is limited to a data width of 32
or 64bits. Is suited for simple implementations that do not
have severe bandwidth requirements.Supports from 4 to 512
individual addressable slave registers. Each of them may be
written to or read from. With its simpler implementation comes
a smaller footprint, advantageous in ultra low-power systems
in which every saving matter. Despite its reduced performance,
its possible to bridge back to AXI-full. Allowing a interaction
between both protocol specifications, even creating with ease a
bridge among low and high throughput systems. AXI-Stream
makes use of one data channel in which the data only flows
in one way: from master to slave. Designed to applications
that require high bandwidth data transfers and low latency.
Having only a data channel and unlimited burst of data,
does not require addresses to proceed with the transactions.
AXI-full is used in the current PULPino’s design to connect
together components. Other components, like instruction and
data memories, core and peripherals make use of AXI-full
indirectly, through an AXI interconnect. AXI-lite, being a
much simpler and lightweight protocol, in this Thesis design
it is intended to handle communications between core and
accelerator, not only for data transaction, but also for control
purposes.

B. AXI Interconnect

On an overview, Pulpino integrates multiple components,
resorting to an interconnect network. As depicted in Fig.2,
it uses a main interconnect AXI block and a bridge to
Advanced Peripheral Bus (APB) to connect simple peripherals.
Both featuring a 32bit wide data channels. Pulpino has its
components connected through an AXI interconnect block
allowing, all them to be mapped in a memory space. Providing
a homogeneous view of the system. A memory map has been
defined, in which all the components have user-configurable
address spaces.If an accelerator needs to be added, a new set of
addresses (start and end) is configured at the AXI interconnect
configuration sources. The interconnect block provides a way
of multiple masters and slaves to be connected to several
blocks at once.

C. Overall System Architecture

This section addresses the proposed overall system archi-
tecture, based on PULPino. In order to improve PULPino’s

Adv.
Slave Debug Unit

- f ? J
GPIO UART rc SPI SPI JTAG

Fig. 2. PULPino’s SoC block diagram [22].

energy efficiency, hardware acceleration was provided in an
loosely-coupled manner. The goal is to develop a generic

AXI4 Interconnect

Bridge

Peripherals

Fig. 3. PULPino with attached accelerators block diagram.

plug and play interface for the accelerators to be easily
attached to the core (Section IV-D), without having to adapt
its interface each time a different one needs o be added.
The processor is able to interact with the accelerator by
simple load/store instructions. Through which the processor-
accelerator synchronization mechanisms are implemented, fur-
ther detailed on Section IV-E. The accelerators are connected
interfacing with the processor through an AXI connection. The
accelerator interfaces with an AXI-lite to AXI-full converter,
as shown in Fig. 3. The AXI-full interface of the converter is
connected to PULPino’s AXI interconnect block, that handles
the communications coming from the processor.

D. Hardware interface

The hardware interface between accelerator and the remain-
ing system is intended to be loosely-coupled. The accelerator
block only requires an AXI-lite port as interface, see Fig. 3.
This block behaves like a wrapper that integrates the kernel
and has all the required hardware to handle the interface
between it and the AXI-lite slave registers. The AXI-Lite
interface that connects to the accelerator has the following

configuration: 2 bits address width; 32 bits data width; Read-
/Write modes enabled. After the accelerator is connected to the
AXI interconnect block, it is memory mapped and addressable
by the processor. Each accelerator to be plugged in, has to
have an independent memory region configured in the AXI
interconnect block and its own protocol converter, as depicted
in Fig. 3. Both the converter and accelerator are instantiated
in core_region.sv top module. To connect the accelerator to
the converter, a new AXI4 slave bus was instantiated.The AXI
slave port of the converter is connected to the AXI interconnect
block’s master AXI port. On the other hand, accelerator’s AXI-
lite slave port connects to the AXI-lite master port of the
converter.

E. Software Interface

The processor interacts with the accelerator through load/-
store instructions, addressing the memory region predefined
to it. In essence the processor needs to send the data to
be processed and afterwards fetch the computed results. To
synchronize accelerator-processor was defined communication
protocol, based on read/writes using the AXI-lite slave regis-
ters, described on Table I. To reset the accelerator, a write to

TABLE I
AXI-LITE SLAVE REGISTER WRITE/READ MAP FUNCTIONALITIES.

Register | Write Read
slv_regD | Reset Done
slv_regl Input Data N.A.
slv_reg2 Last Data N.A.
slv_reg3 | Optional Result

its first address with the value 0x01010101.Afterwards, data
can be streamed into address 1. The last data value should
be sent to address 20nce the computation is done, the value
Oxdeadbeef can be read from address 0, meaning the output
values are available to be fetched in address 3. An optional
functionality for slv_reg3 was added to fill some extra need
that some accelerators might have.

V. HARDWARE ACCELERATORS

The hardware accelerators were chosen upon the first cri-
teria of being open source.The kernels used were not inner
modified, upon its requirements was developed the required
hardware to accommodate them within the accelerator block.
On the following subsections are presented two accelerators.
Due to different kernel’s requirements, different hardware
designs were needed for both.

SHA-3

An SHA-3 accelerator aims to provide a faster computation
of the hash function with a reduced energy cost, for the
addressed low-power processor. The input message might take
any size, that the output length n will remain the sameThe
current implementation has the highest security level of 512
bit among all SHA-3 variants.

The kernel was developed by Homer Hsing, available in
OpenCores website is under the Apache license (version 2)

[23]. Capable of computing an 512 bit hash result in 29
clock cycles, is based on a padding module followed by a
permutation module. The kernel presents input/output ports
shown in Table II.

To start computing a hash value, the core must be reseted by
holding the reset signal synchronously high during one clock
cycle. This procedure must be repeated at every new hash
value computation,

TABLE 11
TABLE OF SHA-3 KERNEL’S INPUT/OUTPUT PORTS.

Port \ Width Direction Description

clk 1 In Clock

reset 1 In Synchronous positive asserted reset
in 32 In Input data

byte_num 2 In Number of bytes of in

in_ready 1 In Input is valid or not

is_last 1 In Current input is last or not
buffer_full | 1 Out Buffer is full or not

out 512 Out Hash result

out_ready 1 Out Result is ready or not

To comply with the kernel requirements, was developed the
following data path is depicted in Fig. 4. The design aims

in_ready
2

—/>{ byte_num

2 ————lin

—>{ clk

—> reset s12
. out Hash Key
—> is_last

valid_o
FIFO buffer_full —

oy B
SHA-3 Input

out_ready >

SHA-3 Kernel

Fig. 4. SHA-3 accelerator data path.

for efficiency and reduced hardware usage, using only one
FIFO (32 words of 32bit) and the required control signals.
The input data from the processor is feed into the kernel as
soon as it arrives (every 11 clock cycles). The FIFO acts as a
buffer in the event of the kernel’s buffer achieves full capacity
and asserts the buffer_full signal. When the last input data is
sent by the processor, FIFO might have exceeding data due
to previous buffer_full events. Such data is streamed into the
kernel on every clock cycle after the last input data. Which is
sent to the slv_reg2 AXI-lite register, asserting the is_last and
selecting the previously received byfe_num value. As before
explained, the byte_num signal has to follow certain rules,
based on the length of the last message block. The user is
responsible for this handling, by sending a last dummy input
data with the value zero after the last value message block, into
the slv_reg2 register. When the out_ready signal is asserted,
the 512bit hash key is made available at the output port, being
iteratively fetched by the processor on blocks of 32bit. This
output is redirected to the slv_reg3 register, since it is limited
to a 32bit word, an auxiliary counter is used to iterate through
the 512bit result.

FFT

Fast Fourier Transform (FFT) is widely used in DSP and in
many other field of applications as a fast and more efficient

algorithm to compute the Discrete Fourier Transform (DFT).
The kernel chosen for this accelerator is based on an open
source licence, as the previous one. Only its integration within
a wrapper, was developed from scratch. Interfacing with the
processor through an AXI-lite interface. All the additional
hardware was dimensioned with the goal of reducing the used
hardware. Its main goal is to adapt between both data input
bandwidths. In this case, the AXI-Lite interface is the one to
introduce limitations.

The chosen FFT kernel was developed by SPIRAL - Soft-

TABLE III
SPIRAL FFT KERNEL ONLINE CONFIGURATION PARAMETERS [24].

Parameter Value Range Description
Problem specification
transform size 256 4-32768 number of samples
direction forward forward/inverse DFT
data type fixed point fixed/floating point
32 4-32 bits fixed point precision
unscaled scaled/unsaled mode

Parameters controlling implementation

architecture iterative iterative/fully streaming
radix 2 2, 4,16 size of DFT block
streaming width 2 2-256 complex words per cycle

natural in/out
no limit
[25]

data ordering
BRAM budget
Permutation method

natural/digit-reversed
maximum BRAMs
[25] or [26]

ware/Hardware Generation for DSP Algorithms [21]. SPIRAL
provides an online tool [24] for hardware generation. Table
III, specifies the parameters chosen for the used kernel. It was
chosen a kernel with 256 number of samples n, for the forward
DFT defined as:

y=DFT,x,

DFTn = [eizﬂjkl/n}k,l:O,...,n—l

where y is the n point output vector, and = the n point input
vector. The data type chosen was “fixed point”, due to the
lack of floating point operations support by the processor. The
current AXI-Lite configuration is set to 32 bit messages, the
fixed point precision was set to 32 bit together in unscaled
arithmetic mode. The architecture can be both “iterative”
or “fully streaming”, since the developed wrapper for the
Thesis supports both. “Iterative” consists on a single stage
architecture, requiring less hardware. Consequently is slower
than the “fully streaming” version in which the data stream
would flow in and out the system continuously.
The FFT kernel given the previous configurations was
wrapped, using the following data path depicted in Fig. 5 .

It is ready to handle different FFT kernel’s configuration
with minor adjustments on the input accelerator’s input pa-
rameters, which are the following:

o FFT_INOUT_NR: kernel’s number of inputs/outputs.

o DATA_WIDTH_FIFO: The data width of FIFO.

o DATA_DEPTH_FIFO: Data depth of FIFO.

VI. IMPLEMENTATION AND EXPERIMENTAL WORK

As stated before, PULPino is an open-source project, there-
fore all the basic material was retrieved from the project’s

sel_input_reg

| Im(0) | Re(0) |
sel_out_fifo
FIFO SPIRAL
FFT
| I l l Kernel
sel_out_reg

w Output Data

Fig. 5. FFT accelerator’s data path.

GitHub page [27]. Knowing that this was its first release, and
not a mature project, its expected to have incompatibilities
and unsolved issues/bugs. This was one of the main setbacks
found. Having to deal with a release that was not well
documented from a technical point of view (only a basic
user manual and a datasheet are available). Due to the recent
release (dating 2016), there is still a very small active open
source community working with this platform. Difficulting the
resolution of the many of prompt issues.

A. Target Device

Pulpino is mainly targeted for RTL simulation and ASICs,
although there is also a FPGA version supported on ZedBoard.
being the development board chosen. The FPGA version is not
optimal in terms of performance and efficiency, since it was
used mainly for emulation instead of standalone platform. Zed-
Board carries a Xilinx Zyng-7000 Family All Programmable
System on Chip (SoC) XC7020-CLG484-1.

The main components are: Programmable Logic (PL) and
Processing System (PS). The PL is derived from Xilinx 7
series FPGA technology: Artix-7 for the present XC7020
device. The integrated PL block is available for the user
to program its own custom designed hardware.The PS itself
features an Application Processing Unit composed by two
ARM cortex A9 hard-cores.Available to the PS through central
interconnect block, are I/O peripherals inner composed of SPI,
CAN, UARTs, I12C, USB and Ethernet interface.

B. Adding a New Accelerator

The accelerator is instantiated in the core_region.sv file,
wherein all the core related hardware blocks are as well
(debug, data and instruction memories, protocol converters,
memory multiplexers and RISC-V core). In the same core
region, the accelerator, holding an AXI-lite slave interface is
connected to the master interface of the AXI-full to AXI-
lite converter. To do so, on the same file, should be added
in the AXI interconnect instantiation, the address region for
the AXI-lite converter. The memory map should be consulted

in order to allocate it to an available address region. The
new accelerator inputs all the AXI-lite signals, having all the
necessary logic handle them.

VII. EXPERIMENTAL RESULTS
A. Software vs Hardware

To measure the speedup that an hardware accelerator pro-
vides against software-only one, where set test benches to
verify the performance and energy efficiency of both imple-
mentations. Herein this section are presented the software-only
algorithms (which do not require an accelerator), and the ones
that interact with the accelerators, used to compute SHA-3 and
FFT. The software-only algorithms were adjusted to perform in
the most similar way to the accelerators implementation of the
kernel. Both accelerators were synthesized and implemented
with the same tools and optimization strategy.

B. SHA-3

The algorithm used to implement SHA-3 was based on [28]
implementation. It was configured to resemble the accelerator
functioning. The base input test message used was: “The quick
brown fox jumps over the lazy dog ”. Having a size of 44
bytes, is a commonly used test message on different kinds of
hash and encryption algorithms.

A set of tests were performed with different sized messages,
always with the same message as before, but replicated up to
10 times. After running the tests to evaluate the amount of
clock cycles required for both implementations, with a single
40MHz clock (maximum frequency on FPGA), is possible to
verify the speedup in Figure 6.

Being possible to verify a speedup up to 185 times on a 440

SHA-3 HW Acceleration

44 88 132 176 220 264 308 352 3% 440
Message Size (Bytes)

Fig. 6. SHA-3 computation speedup using hardware accelerator. Multiple
message sizes were tested.

bytes length message, in comparison to the non accelerated
version. With the speedup tending to increase along side with
the input message length.

C. FFT

A well known algorithm (Cooley-Turkey) was used to
test the performance of the FFT on software-only, which

implementation was based on [29]. Unfortunately, the hard-
ware developed presented in Section V, implementing the
FFT accelerator, is only fully functional in simulation. Al-
though, the hardware was properly mapped after synthesis
and implementation. Making it possible to estimate the power
consumption. Both speedup and power results are still valid
and comparable with the SHA-3 accelerator, relying on the
same tools, optimization settings and platform. A data set of
256 complex samples were defined as input. Having a total of
2K bytes of input and output data.

Multiple setups were tested by changing the kernel’s con-
figurations. To test the FFT accelerator, was developed an
algorithm which allows the core to interface with it.

With the algorithms and by changing the kernel’s parameters
(architecture and radix, Table III). The architecture may vary
between iterative and streaming version. The radix configura-
tions were the ones presented in Figure 7. In which is shown
the speedup achieved. The software-only FFT algorithm per-
forms on a total of 38126 clock cycles, on which were based
the speedup calculations. The speedup can be interpreted as the
ratio between the amount of clock cycles required to conclude
computation, with and without hardware acceleration. The
stream version speedup overcomes the iterative one, although
it is achieved with extra hardware cost. Not so significant

3,25
3,2
3,15

3,1
3,05
3
2,95
2,9
2,85
2,8
2,75

radix 2 radix 4 radix 16

Speedup (SW/HW)

M iterative mstream

Fig. 7. FFT computation speedup using hardware accelerator. On multiple
radix implemented in iterative or stream mode.

speedup results were achieved with FFT, when compared to
SHA-3 previous analysis. This is in part due to the increased
amount of compressed instructions used in FFT algorithm,
in comparison with the SHA-3 one. The FFT software only
algorithm translates into 87% compressed instructions. On the
other hand the SHA-3 software-only algorithm has only 26%
of compressed instructions. RISC-V compressed instruction
claim to increase, not only performance, but also energy-
efficiency and reduce the code size [30].

D. Power Efficiency

For an energy efficient hardware acceleration, the power
savings achieved by entering faster in sleep mode, need
to overcome the extra static energy cost accelerators bring
over. Due to the required development platform (ZedBoard)
restrictions, is not possible to measure real power consumption

on the FPGA fabric alone. Only to estimate it by using the
available tools, explained further ahead. To overcome this
issue, would be needed a development board, that could power
the FPGA chip with an external power supply. Additionally,
would also be needed real time control of the FPGA’s package
temperature, due to its influence in power consumption mea-
surements [31]. Having such hardware restrictions, the setup
used to measure the system’s power consumption was Xilinx
Vivado working together with Modelsim as simulation tool.

E. SHA-3

SHA-3 accelerator energy efficiency was tested by per-
forming multiple encryptions, with different message sizes.
They were performed in a PULPino implementation with and
without hardware accelerator. Not having any additional hard-
ware when testing the software-only, in order to obtain most
accurate power measurements. On Figure 8, are depicted the

8000 180

~

5]

S
-
@
=}

H
]
)

W
@D
2
o
Energy Ratio (SW/HW

44 88 132 176 220 264 308 352 39% 4

Encrypted Message Size (bytes)
I S\ e—SEyings e Linear (Savings)

120

[}
3
S

100

B
5]
IS

80

60

40

Computation Energy (W)

20

40

HWxFactor

Fig. 8. Pulpino with SHA-3 accelerator computation energy with and without
hardware acceleration. Combined with achieved energy ratio (SW/HW) at
SMHz

power measurement results obtained. In which are shown the
computation power consumption, corresponding to the total
amount of energy required to perform the message encryption.
Notice that the total amount of energy required by Pulpino,
with SHA-3 accelerator, is multiplied by a factor of 10, in
order to be perceptible in the graph. Both were calculated
accordingly with the following equation 1:

ComputationEnergy = x ClkCycles * Power (1)

1
Freq
In which Freq corresponds to Pulpino’s main operation fre-
quency, ClkCycles to the amount of clock cycles required
by the processor to conclude the computation and Power
defines the on-chip power consumption estimated by Vivado.
This power result is composed by two main parcels, dynamic
and static power. The dynamic power is originated from the
logic switching activity. The static power translates the power
consumed by the FPGA logic when no signals are toggling.
Regarding PULPino with SHA-3 accelerator, the dynamic and
static values of on-chip power consumption are 189mW and
123mW, respectively. On the stock version of PULPino, the
dynamic and static values are lower, 47mW and 121mW,
respectively. This is due to not having the additional hardware

that the accelerator bring on. Although, is possible to notice,
that the additional static power is very small. Adding only
2mW, which translates into a 1.7% increase on static power
On the right vertical axis of Figure 8, is represented the energy

99,27%
99,29%
99,35%
99,39%

&
S
o
B

99,30%

99,10%

98,90%

98,70%

Energy Saved(%)

98,50%
98,30%
98,10%

Frequency (MHz)
Msg Size (bytes)

Fig. 9. Pulpino with SHA-3 accelerator energy saved. At 40MHz, 20MHz
and SMHz of main clock frequency with different encrypted message sizes.

ratio, depicted as the black full line on the graph. Which
corresponds to the amount of times the energy required to
compute was reduced, by using the accelerator. At SMHz, it
is reduced up to 160 times when the message length is 440
bytes. As the tendency line of the energy ratio indicates, higher
energy-efficiency can be achieved, as the message length
increases. The same pattern is common among all remaining
frequencies results. Although, the maximum achieved energy
ratio varies. At 20MHz a maximum energy ratio of 114 times,
was achieved. At 40MHz, it can only go up to 100 times. All
of this values correspond to an input message of 440 bytes
length.

On Figure 9 is shown how much energy, in percentage, is saved
in comparison with the stock version of PULPino, without
hardware acceleration. Energy savings go up to 99.39% on at
5MHz with a message size of 440 bytes. On lower frequencies
the energy savings are higher, has stated. The operation
frequency, tends to have less impact on the energy saved, for
longer message sizes. Meaning, that “long” messages can be
computed faster, by increasing the main clock frequency, with
less impact on energy savings.

E FFT

On the pulpino with FFT accelerator, the same input was
tested on multiple configurations of the FFT accelerator’s
architecture. On Figure 10 is shown the total on-chip power
consumption in mW, divided in two parts: dynamic and static
power. Each column of the graph represents a new hardware
configuration to compute the same input data. As might be
interpreted from the graph on Figure 10, the accelerated
version consumes always more on-chip power than the sw-
only version. This is explained by the additional hardware
required by the accelerator. Also following the same logical
thinking, stream architectures, as more resource hungry than
the iterative ones, have a higher overall on-chip power con-
sumption. Consequently, achieving superior speedups than the
iterative architecture, as shown in Section VII-C. The use of a
FFT accelerator translates into a maximum increase of SmW

450
400
350

300

250

200

1

l I
0

iterative

8 38

On-Chip Power Consumption (mwW)
wu
(=]

stream iterative stream

SW-only(W) radix 2 radix 4

M static(mW) B dynamic(mw)

Fig. 10. Pulpino with FFT accelerator, dynamic and static on-chip power
consumption at 40MHz.

iterative

127

126

125

124

123

122

Static Power (mwW/)

121

12

o

1

=
=]

118

stream iterative stream

SW-only radix 2 radix 4

Fig. 11. Pulpino with FFT accelerator, static on-chip power consumption at
40MHz.

of static power, which corresponds to 4% of the total on-chip
static power of PULPino without accelerators.

Energysaved (%) M Comput. Time (s)

40 20 5 40 20 5 40 20 5 40 20 5

iterative

70,00%

w
=)
S

60,00%

™~
0
S

Jhy
S
8
B
~
8
Time (ms)

40,00% i
1,50

on

30,00%

Energy Saved (%)

H
)
8
Computat|

20,00%

=)
T
S

10,00%

0,00% 0,00

stream iterative stream

radix 2 radix 4

Frequency (MHz)

Fig. 12.
40MHz.

Pulpino with FFT accelerator, static on-chip power consumption at

Figure 12 presents the power saved in percentage by us-
ing the fft accelerator, when computing an FFT algorithm.
Achieving a maximum saving of 66 % when using a radix
2 iterative architecture. The “optimal” mode of operation
is achieved when the computation time is minimum and
the energy savings are maximum. Thus, if a simple ratio
between both of these results is calculated for every column

of the graphs, is possible to point out which one would be
it. Therefore, M = 1.75 when using radix 2
. K omputationTime . 5

iterative at 40MHz, presents itself as the highest ratio among
all. This might not be the best configuration for all embedded
applications. Each one has its own energy restrictions and

computation time requirements.

180 2,5
160 .
210 3 E
—
=
B0 120 §
= 15 =
w100 2
g T
2 80 <
® - — S S S ——1_ 8
3 60 E
o f=
E =
S 0,5
20
0 0
iterative stream iterative stream
SW-only radix 2 radix 4

Fig. 13. Pulpino with FFT accelerator, computation energy vs energy ratio
(SW/HW) at 40MHz.

On Figure 13, is portrayed a graphs that combines compu-
tation energy and energy ratio, which were calculated from
the same results used on the previous graphs, using the same
data input at 40MHz of main clock frequency. The compu-
tation energy figures also confirm that the FFT accelerator’s
architecture which saves more power is the radix 2 iterative.
This can be stated by analyzing the energy ratio line. Which
corresponds to the ratio between the energy consumption
(on the sames graph) of both software-only and hardware
accelerated versions.

VIII. CONCLUSIONS AND FUTURE WORK

In conclusion, the initial goal of boosting the energy
efficiency of PULPino for applications on embedded IoT
devices, operating within restricted power envelopes, was
successfully accomplished. The improvements were achieved
by attaching two different hardware accelerators, namely
a cryptographic SHA-3 accelerator and a digital signal
processing FFT accelerator.

In order to successfully attach and deal with the heterogeneity
between accelerator and processor, a custom low-power AXI-
lite based interface was developed. Having the advantage
of providing an simple and plug-n-play manner for the
current and future accelerators to interface with the processor.
Encouraging the development of new attachable accelerators
by the open source community, since PULPino was
release under an open source license. Consequently, saving
development time due to reutilization of hardware designs.
Paving the way for more modular embedded systems, in
which is possible to add the most suitable accelerator for a
certain kind of final application.

Under the scope of this Thesis, the two attached accelerators
were tested on its speedup and energy efficiency. Achieving

a speedup of 185 times on the SHA-3 algorithm and 3 times
on the FFT one. Being possible to achieve higher values
of speedup as the input data increases, as shown by the
presented tendency lines. As stated, the the cryptographic
algorithm presents itself as the most suitable for acceleration
in comparison to the FFT one. This can be explained by the
low percentage of compressed instructions that the SHA-3
non accelerated algorithm translates into. Having only 26%
of compressed instruction against 87% on the FFT non
accelerated algorithm. RISC-V compressed instructions claim
to reduce code-size, while enhancing energy-efficiency and
performance [30].

Regarding energy savings, the SHA-3 and FFT accelerators
can save up to 99.39% and 66% of energy, respectively. For
the FFT accelerator, an “optimal” point of operation was
proposed, setting it with a radix 2 iterative configuration at the
maximum attainable frequency of 40MHz. In which among
the several tested configurations, the best ratio was obtained
between energy savings and the amount of time required to
compute the FFT algorithm. Other modes of operation might
be best suited, depending on the energy requirements of the
target application.

Regarding future work, there are always room for improve-
ments on the current AXI-lite interface, which connects the
accelerator to the main AXI interconnect bus. Apart from
AXI-lite, there are other kind of buses that could improve
data communication between the accelerator and the AXI
interconnect bus. Such as, AXI Stream, that has advantages
on data streaming, but lacks individual control registers. On
the previous situations, the processor is the one to fetch the
required data from the memories into the accelerator, over the
AXI bus. Although, higher data interchange could be achieved
by featuring the accelerator with an Direct Memory Access
(DMA) functionality. Allowing a direct access to such data
directly from the memory. Another possible improvements for
future work, is to enable the control signals received from
the accelerator, to trigger the intrinsic PULPino interruptions.
Meaning that the processor would not have to operate in
pooling mode, having to continuously read the state of variable
to be monitored, checking if it has changed. With interrupts,
when the external signal is received, a flag is triggered and
a proper interrupt service routine executed. As PULPino
already provides such feature on its peripherals, a similar
implementation could be developed for the new attachable
accelerators.

REFERENCES

[1] PULP - An Open Parallel Ultra-Low-Power Processing-Platform, 2016.

[2] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, P. Flatresse, and L. Benini. Pulp: A parallel ultra-low-
power platform for next generation iot applications. In HOTCHIPS,
2015.

[3] Davide Rossi, Antonio Pullini, Igor Loi, Michael Gautschi, Frank K.
Giirkaynak, Andrea Bartolini, Philippe Flatresse, and Luca Benini. A
60 gops/w, -1.8 v to 0.9 v body bias ulp cluster in 28 nm utbb fd-soi
technology. Solid-State Electronics, 117:170-184, 2015.

[4] Davide Rossi, Antonio Pullini, Igor Loi, Michael Gautschi, Frank K.
Giirkaynak, Jeremy Constantin, Andrea Bartolini, Ivan Miro-Panades,
Edith Beigne, Fabien Clermidy, Fady Abouzeid, Philippe Flatresse, and

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]
[23]
[24]
[25]

[26]

[27]
[28]
[29]
[30]

[31]

Luca Benini. 193 mops/mw @ 162 mops, 0.32v to 1.15v voltage range
multi-core accelerator for energy efficient parallel and sequential digital
processing. Cool Chips XIX, pages 1-3, 2016.

Antonio Pullini, Francesco Conti, Davide Rossi, Igor Loi, Michael
Gautschi, and Luca Benini. A heterogeneous multi-core system-on-chip
for energy efficient brain inspired vision. ISCAS, pages 2—4, 2016.

M. Gautschi, P. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. Gurkaynak, and L. Benini. A near-threshold risc-v core
with dsp extensions for scalable iot endpoint devices. IEEE Transactions
on VLSI Systems, 2016.

D. Rossi, I. Loi, F. Conti, G. Tagliavini, A. Pullini, and A. Marongiu.
Energy efficient parallel computing on the pulp platform with support
for openmp. In 2014 IEEE 28th Convention of Electrical Electronics
Engineers in Israel (IEEEI), pages 1-5, Dec 2014.

Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca
Benini. Energy-efficient vision on the PULP platform for ultra-low
power parallel computing. In Proceedings of the 2014 IEEE Workshop
on Signal Processing Systems, Piscataway, NJ, 2014. IEEE.

M. Gautschi, M. Schaffner, F. K. Giirkaynak, and L. Benini. 4.6 a 65nm
cmos 6.4-t0-29.2pj/flop@0.8v shared logarithmic floating point unit for
acceleration of nonlinear function kernels in a tightly coupled processor
cluster. In 2016 IEEE International Solid-State Circuits Conference
(ISSCC), pages 8283, Jan 2016.

F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini. Enabling
the heterogeneous accelerator model on ultra-low power microcontroller
platforms. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), pages 1201-1206, March 2016.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantita-
tive Approach. The Morgan Kaufmann Series in Computer Architecture
and Design. Elsevier Science, San Francisco, CA, USA, 5th edition,
2011.

Brad Benton. Ccix, gen-z, opencapi: Overview & comparison. In
OPENFABRICS ALLIANCE, 2017.

Gen-Z-Consortium. Gen-Z Overview, 2016.

Y.S. Shao and D. Brooks. Research Infrastructures for Hardware
Accelerators. Synthesis Lectures on Computer Architecture. Morgan
& Claypool Publishers, 2015.

Colin Schmidt and Adam Izraelevitz. A fast parameterized sha3
accelerator. Technical Report UCB/EECS-2015-204, EECS Department,
University of California, Berkeley, Oct 2015.

Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca
Benini. Pulp: A ultra-low power parallel accelerator for energy-efficient
and flexible embedded vision. Journal of Signal Processing Systems,
84(3):339-354, 2016.

M. Rusci, D. Rossi, M. Lecca, M. Gottardi, L. Benini, and E. Farella.
Energy-efficient design of an always-on smart visual trigger. In 2016
IEEE International Smart Cities Conference (ISC2), pages 1-6, Sept
2016.

F. Conti, D. Palossi, R. Andri, M. Magno, and L. Benini. Accelerated
visual context classification on a low-power smartwatch. [EEE Trans-
actions on Human-Machine Systems, 47(1):19-30, Feb 2017.

Xilinx. Fast Fourier Transform v9.0 - LogiCORE IP Product Guide,
2015.

Intel. FFT IP Core - User Guide, 2017.

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Piischel.
Computer generation of hardware for linear digital signal processing
transforms. ACM Transactions on Design Automation of Electronic
Systems, 17(2), 2012.

Andreas Traber and Michael Gautschi. PULPino: Datasheet, 2016.
Homer Hsing. SHA3 Core Specification, 2013.

DFT/FFT IP Core Generator, 2017.

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Piischel.
Hardware implementation of the discrete Fourier transform with non-
power-of-two problem size. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2010.

Markus Piischel, Peter A. Milder, and James C. Hoe. Permuting
streaming data using rams. Journal of the ACM, 56(2):10:1-10:34, 2009.
PULPino’s Github online repository, 2016.

A baseline Keccak implementation, 2011.

A Simple and Efficient FFT Implementation in C++, 2017.

Andrew Waterman. Improving energy efficiency and reducing code size
with risc-v compressed. Master’s thesis, EECS Department, University
of California, Berkeley, May 2011.

Rui Policarpo Duarte and Christos-Savvas Bouganis. Arc 2014 over-
clocking kit designs on fpgas under process, voltage, and temperature
variation. ACM Trans. Reconfigurable Technol. Syst., 9(1):7:1-7:17,
November 2015.

