


Technical White Paper

Introduction to Automated Neural Architecture
Construction Technology
Accelerate Deep Neural Network Inference on Any Hardware
While Preserving Accuracy

Executive Summary

Deep neural networks (DNNs) are transforming entire industries by providing
state-of-the-art performance to existing machine learning tasks, along with the
means to create new and exciting AI applications. The effective deployment and
operation of DNNs in commercial applications depends on high performance, in
terms of both accuracy and efficiency. Automated Neural Architecture Construction
(AutoNAC), made available by Deci AI, is a seamless procedure that provides a
substantial performance boost to existing deep-neural solutions. This acceleration
enables dramatic reductions in inference latency and cost-to-serve savings, and can
sometimes be accompanied by improvements in accuracy. AutoNAC optimizes deep
models to more effectively use their hardware platform, be it CPU, GPU, FPGA, or
special purpose ASIC accelerators. The AutoNAC accelerator is a data- and
hardware-dependent algorithmic solution that is complementary to other known
compression techniques such as pruning and quantization. The AutoNAC pipeline
takes as input a user-trained deep neural network, a dataset, and access to an
inference platform. It then redesigns the user’s neural network to derive an
optimized architecture whose latency is substantially lower, without compromising
accuracy. For example, we describe below an actual client case where 4.6X speedup
on a GPU was achieved, starting from a state-of-the-art architecture. In addition, we
overview our 2020 MLPerf submission with Intel where AutoNAC optimized latency
for Resnet 50 on a Xeon CPU by a 11.9x factor. These speedups can lead to the
immediate enablement of real-time applications, alongside considerable reductions
in operating costs for cloud deployments. AutoNAC is also useful for accelerating
models over edge-devices to achieve real-time responsiveness and improve energy
consumption.
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The New Electricity Requires Faster Wiring
Powering Effective Deep Learning for Everything from
Autonomous Cars to Smart Stores

Recent years have witnessed a technological revolution that is transforming entire
industries and fueling the creation of new ones. The forces driving this intense progress
are the deep neural networks and powerful computing that are providing new technology
for superior modeling and prediction. For example, deep learning models are enabling
unprecedented machine vision capabilities. Unavailable just a few years ago, these
capabilities are providing accurate perception
functionalities essential for many low-level visual
recognition tasks such as object classification,
detection and tracking, pixel-level semantic
segmentation, depth estimation, pose estimation,
and even the recognition of visual relationships in
images and videos. Exceptional performance in
these tasks has made possible powerful
applications such as autonomous driving, video
analytics, security control and monitoring, smart
home and city, automated shopping (e.g.,
Amazon Go), medical diagnostics, conversational
AI applications, and more. Humans are currently
performing many tedious and difficult tasks that
often require substantial expertise to be done
correctly; many of these same tasks are well on their way to being carried out by
machines equipped with deep artificial intelligence (AI). Stanford professor and Coursera
co-founder Andrew Ng pointed out that deep learning (DL) is the new electricity: “Just as
electricity transformed almost everything 100 years ago, today I actually have a hard time
thinking of an industry that I don’t think AI will transform in the next several years”.1

Today, there are thousands of technology ventures that have plans to rely on or are
already using this new electricity as a major ingredient in their solutions. The vast majority
of these companies are startups at various stages that are investing substantial resources
in building deep neural models. Creating and using these models is a complex process
that requires considerable expertise and involves the following general phases: model
design, training, quality testing, deployment, service and periodic fitting, and revisions.
When creating any commercial machine learning model, high prediction quality is a
must; this is typically correlated directly with customer satisfaction, sales, and
subsequently, profitability.

1 https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
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Deep Learning Relies on Costly Hardware, Training Sets, and
Expertise

The deployment of an accurate deep neural network can be costly and time
consuming—especially if the task at hand is non-standard, involves very large training
sets, or includes strict constraints on the model size (e.g., inference must be performed on
a small device with limited memory). Once the
model’s training is completed successfully, an
application is created and put into operation. This is
where performance speed and low latency become
essential. Suppose, for instance, you need to perform a
certain image-processing task on a stream of
customer images. Each of the images is fed to the DL
model, which generates the required response. The
model’s computation for each input instance, known
as the inference, takes time (latency) and consumes
energy. Latency and energy consumption are tightly
related and both depend heavily on the model’s
architectural complexity. That said, the impact of high latency can sometimes be more
critical than high operating costs. For example, in the case of imaging applications for
autonomous cars, if the latency isn’t low enough to allow real-time processing, it can
disqualify the entire application. Thus, generating an accurate prediction with a
sufficiently small latency is critical to successful deployment.

Both DL training and inference rely on customized hardware/software frameworks to
reach the necessary performance requirements. In today’s marketplace, graphical
processing units (GPUs) generally serve as the workhorse behind accelerated DL
computing, both for training and production. These GPUs can accelerate DL performance
by distributing the underlying computation over thousands of small computing cores. A
number of other DL hardware accelerators also exist or are currently being manufactured.
The most mature among these is Google’s tensor processing unit (TPU). The TPU is a
family of ASIC chips designed for neural network training and inference, and has been
available in the Google Cloud Platform (GCP) for several years. Among the emerging
accelerator manufacturers, we can find Intel (with their Goya, Habana, Movidius, and
Mobileye chips), AWS, Cerebras, Graphcore, Groq, Gyrfalcon, Horizon Robotics, Mythic,
Xilinx, Nvidia, and AMD.

There are several known “compression” approaches aimed at speeding up inference.
Among the more prominent compression techniques are weight pruning and
quantization. Using weight pruning, redundant network weights are nullified. With
quantization, or binarization, floating-point dynamic ranges of weights and activations
(e.g., 32-bit representations) are compressed to a discrete range of a few bits, or one bit in
binarization. These methods, which are discussed below, can substantially speed up
inference time, but often compromise the accuracy.
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The ideal accelerator should be capable of speeding up inference by cutting down
latency, without sacrificing accuracy. This article introduces a novel acceleration method,
called Automated Neural Architecture Construction (AutoNAC). AutoNAC is designed to
boost the performance of a given trained model. The acceleration uses a constrained
optimization process to construct a new model composed of a collection of smaller
related models, whose overall functionality closely approximates the given model. This
optimization process leverages information embedded in the original model to reduce
the latency, while preserving the accuracy of the original model.

The AutoNAC accelerator is a data-dependent and hardware-dependent algorithmic
solution that is complementary to other known techniques, such as graph compilation
and quantization. The AutoNAC pipeline takes as input a user-trained deep neural
network, a dataset, and access to an inference platform. It then redesigns the user’s
neural network to derive an optimized architecture whose latency is typically two to ten
times better—without compromising accuracy. These speedups can lead to the
immediate enablement of real-time applications, alongside considerable reductions in
operating costs for cloud deployments.
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A Growing Zoo of Deeper Architectures and
the Inference Barrier
Accuracy and Performance Tend to be Inversely Related

In 2011, the first utilization of massively parallel GPU acceleration was introduced to train
convolutional neural networks (Ciresan et al., 2011). Shortly thereafter, the famous AlexNet
(after being trained on a GPU) unveiled the enormous advantage of neural networks over
the conventional methods of that time, as demonstrated on the ImageNet classification
competition (Krizhevsky et al., 2012). These works were among the precursors to the deep
learning revolution. In the subsequent years, several neural architecture families were
identified as being most suitable for specific tasks. For example, convolutional neural
networks (CNNs) were discovered to excel in image processing tasks, and long short-term
memory (LSTM) networks (and later, transformers) were found best for sequential
problems including NLP. Within just a few short years, dozens of architecture variants
were introduced. For example, in the CNN family, hundreds of handcrafted architectural
designs were invented, introducing seminal ideas such as residual links, dense feature
connections, filter attention, and group convolutions. This rapid architectural evolution
also demonstrated that larger, deeper, and generally over-parameterized models prevail.

For example, consider Figure 1 in which we see top-1 ImageNet accuracy and the total
floating point operations per second (FLOPs) for a forward pass of many (already trained)
CNN architectures running on a TITAN-Xp GPU. The diagram compares the performance
of 44 architecture variants, among which are famous winners of the annual ImageNet
competition such as AlexNet, ResNet, and Inception. Interestingly, with the exception of a
few architectures such as the NASNets family, most of these architectures were
hand-crafted by deep architecture researchers. It is evident that the top performing
models tend to consume more operations. While AlexNet is the most efficient in terms of
FLOPs, it also achieves the worst accuracy. At the other extreme, we see NASNet-A-Large
with top accuracy performance and the worst efficiency for FLOPs. Similar diagrams can
be drawn for other image processing tasks, such as semantic segmentation, alongside
additional domains such as NLP and other sequential prediction tasks.
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Figure 1. ImageNet top-1 accuracy vs. inference computational complexity (FLOPs) of various architectures.
Source: Bianco et al. Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE. Reprinted
with permission.

More Complex Challenges Lead to Even Larger Models

When considering accuracy versus inference time, we see that the more accurate
architectures tend to incur higher inference latency (Figure
2). Importantly, we can observe that computational
complexity (total inference FLOPs) is not an accurate proxy
for latency. For example, SENet-154 is more efficient than
NASNet-A-Large in terms of FLOPs (Figure 1), but its latency
is substantially larger (Figure 2).

This natural evolution of hand-crafted architectures clearly
shows that larger and more complex models can be created
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to achieve better accuracy. In the meantime, more complex challenges are being posed
that require yet larger models. For example, when considering tasks involving both text
and images, or when considering finer resolution tasks such as the recognition of visual
relationships and semantic image understanding, we can expect that substantially larger
models will be required to achieve adequate performance. And, of course, the gigantic
OpenAI’s GPT-3 model, with its 175 billion parameters stands out as a precursor to even
larger models that will be required by the industry in just a few years.

Figure 2. ImageNet Top-1 accuracy vs. throughput (images per second) of various architectures. Source: Bianco
et al. Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE. Reprinted with
permission.

The excessively large (and accurate) models are critical for academic research, and for
extending and showcasing the potential power of deep models. But, when considering
model deployment for commercial purposes, these large models, with their expensive
inference latency, pose a conceptual or economical barrier that must be overcome.
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The Deep Inference Stack
Hardware and Software Working Together

Effectively computing a forward pass on a trained neural network relies on the operation
of both hardware and software components that must work in concert. The software
components represent abstraction levels of computation and optimization; these
abstractions range from primitive hardware operations to high-level neural computation
operations such as convolution and pooling, ending with data-dependent model
restructuring. The diagram in Figure 3 illustrates this stack of hardware and software
components. While we emphasize the role of the top level containing model optimization
and adaptation methods, to achieve top inference performance it is essential to
harmonize between all levels, and we now review the components of this “inference
stack” , starting from the bottom layer, to provide the context in which these methods
coexist.

Figure 3. The deep learning inference stack.
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Bottom of the Stack: Hardware Devices and Low Level Libraries

At the base of the pyramid, we have hardware devices performing the computation itself.
The commercial hardware devices currently available include several types of CPUs, GPUs,
FPGAs, and a few specialized ASIC accelerators such as Google’s TPU. At the next level we
find three software components: low-level libraries that can operate the hardware
devices, computation graph compilers, and deep learning frameworks. The low-level
libraries (e.g., cuDNN and MKL-DNN) are typically optimized for specific hardware devices;
they provide highly-tuned implementations for standard neural layers such as
convolution, pooling, and activation. On top of these libraries there are graph compilers,
such as TVM, Tensor-RT, XLA, and Glow. The purpose of graph compilers is to optimize the
processing of a forward, or backward pass over the computation graph. The compilers
perform optimizations at several levels.

Fusion is a common higher-level manipulation to overcome the naive and extremely
inefficient approach that iterates over the graph nodes and executes them one by one. In
vertical fusion, several consecutive neural layers are collapsed to a single node. For
example, convolution, biasing, and activation nodes can be collapsed to a single node,
which uses one library kernel to implement the three operations efficiently. In horizontal
fusion, multiple nodes that have identical operations are collapsed to a single node, which
feeds their (identical) output to some other nodes.

Lower-level compiler optimizations strive to prevent cache misses, which can decelerate
the computation by orders of magnitude. This objective can be achieved by performing
explicit scheduling through the memory hierarchy, rather than relying on the oblivious
functionality of the cache hierarchy. To perform well, compilers must also account for the
hyperparameters in the neural layers, such as padding, strides, and tensor dimensions,
and adjust the computation for specific hardware devices.

On top of the graph compilers, there are the frontends or deep learning frameworks such
as Tensorflow, Pytorch, MXNet, and Caffe. These frameworks serve deep learning
engineers, offering them high-level programming libraries within modern programming
languages like Python. The libraries provide an abstract interface that allows engineers to
easily construct, train, and validate deep models.

The Next Level: Algorithmic Inference Removes Redundancies
(But Also Accuracy)

The inference components described so far essentially perform data-independent
optimizations, except for the frontends, which serve as programming interfaces. The next
levels of the inference stack include acceleration methods for algorithmic inference. In
contrast to methods in the lower levels, these perform data-dependent optimizations. The
first of the upper levels contains known compression techniques, which typically rely on
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pruning and quantization (described in the next section). Because they are
data-dependent, these compression optimizers can remove network redundancies by
further adapting neural models to specific tasks. However, as discussed below,
compression-based methods tend to reduce the
accuracy of large models. At the uppermost
level, we have inference optimizers, such as the
Deci AI AutoNAC (described below). The
optimizers at this level completely restructure
given neural models by relying on
complementary data-dependent statistical
principles that don’t compromise accuracy.

While the structure and types of components in
the inference stack are likely to endure, the
specific components themselves are rapidly
evolving. For example, a number of new ASIC
inference accelerators have already been
released (e.g., Intel’s Goya) but aren’t yet widely
commercially available for consumers. It is likely that in just a few short years we’ll be
seeing a wide variety of ASIC inference accelerators available for both data centers and
edge devices. Moreover, sub-levels and even complete levels of the inference software
stack will likely be merged. For example, the Tensor RT graph compiler already contains
full post-training quantization.

Aiming for Accuracy Increases Deep Net Bloat

The rapid development of deep neural models has been generating a growing industrial
appetite to solve even more complex prediction tasks with higher accuracy. At the same
time, we are seeing continuous growth in the size and computational complexity of deep
net architectures (including FLOPs and latency). It is often much easier for deep learning
engineers to achieve better accuracy with larger overparameterized neural models. These
sizable models make it simpler to automatically create better features and
representations. This deep learning reality stands in sharp contrast to the conventional
wisdom in classical machine learning, where larger models are always worse beyond the
sweet spot of the generalization-complexity tradeoff curve.
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Excessively Large Neural Models Cost Too Much

In reality, however, it is often prohibitively expensive and even impossible to deploy
excessively large neural models. They consume enormous amounts of energy and incur
excessive latency at inference time. We need methods that can reduce the size of large
neural networks, thus shrinking their latency and energy parameters, while preserving
high-accuracy performance.

Several known techniques are aimed at reducing network size or creating smaller
networks from scratch. Pruning and quantization are the main network reduction or
“compression” techniques. Neural architecture search (NAS) is the primary technique for
creating improved architectures. The following sections briefly summarize these methods.

Weight Pruning: Great for Simple Networks, Challenged for Deeper Ones

The idea behind weight pruning is quite straightforward. Given a model, one prunes the
weights that are relatively less important. A simple heuristic to achieve this is to zero the
small magnitude weights, retrain the pruned model (fine-tuning), and repeat these two
steps over several iterations. This technique can compress the weights of certain networks
such as AlexNet by an order of magnitude, without forfeiting accuracy (Han et al., 2015).
Other more sophisticated techniques overcome the need for fine-tuning, such as the
Alternating Direction Method of Multipliers (Zhang et al. ,2018) and end-to-end pruning,
which uses a specialized global sparse momentum stochastic gradient descent (SGD)
optimization technique (Ding et al., 2019).

Weight pruning techniques can dramatically compress shallow and simple networks such
as LeNet-5 and AlexNet, without forfeiting accuracy. But, when applied to deeper, more
contemporary architectures, they have trouble preserving accuracy. More importantly,
weight pruning is equivalent to removing connections between neurons; this makes the
weight tensors sparser in an irregular manner, but not necessarily amenable to faster
computation. For example (and contrary to various marketing claims), when considering
GPUs and CPUs, it is nearly impossible with present techniques to speedup matrix
multiplication (which is the main computational routine required to perform inference)
beyond a certain negligible factor, based on sporadic weight sparsification. In short, little
or no latency speedup can be expected from weight pruning without the support of
dedicated hardware that can exploit irregular sparse tensor manipulations. At present,
such hardware devices are not commercially available.

Filter Pruning: Remove Unimportant Filters

This inability to exploit irregular tensor sparsity motivated the idea of filter pruning (or
network slimming) in the context of convolutional networks (CNNs): instead of removing
sporadic connections from the network, remove unimportant filters from convolutional
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layers to slim down the network with minimal performance drop. In this sense, filter
pruning is quite similar to the classical problem of feature subset selection, whose
combinatorial nature circumvents optimal solutions. The main difference is that CNN
filters are trained, as opposed to feature vectors, which are typically fixed; this fact can be
exploited to collapse them. Simple filter pruning methods rank the filter importance
using some criterion, prune the less essential ones, and then fine-tune. The filtering
criteria can include channel contribution variance, information derived from the next
layer, and sparsity inducing Lasso-regression to minimize layer reconstruction error, to
name just a few. As opposed to importance-based channel pruning, more advanced
techniques use a specialized stochastic gradient descent (SGD) that encourages channel
merging, and are based on reinforcement learning or meta-learning (Liu et al., 2019).

Quantization: More Efficient Operations and Memory Access

In network quantization (Hubara et al., 2017), the objective is to substitute floating point
weights and/or activations with low precision compact representations. Quantization can
lead to substantially smaller networks and allows for more efficient computation, both in
terms of tensor arithmetic operations and memory access. The extreme case of
quantization is known as binarization (Courbariaux et al. 2016, Rastegari wt al. 2016), where
both weights and activations are constrained to be binary numbers. The challenge in
constructing a quantized network is that the low bitwidth weights and activations result
in information loss; this loss distorts the network representation and circumvents the
ordinary differentiation required for training.

Conventional quantization methods use the same number of bits for all layers. However,
different layers can have different optimal redundancy profiles, which can potentially be
exploited (Wang et al., 2019). Several contemporary hardware inference accelerators
already allow for mixed precision quantization for inference, whereby different bit widths
can be defined and applied to each layer individually. For example, the Apple A12 Bionic
chip supports some mixed precision, and Nvidia’s Ampere technology for GPUs supports
1,2,4,8, and 16-bit bit-width operations, which can be applied per layer. Most future
acceleration hardware units are expected to enable such mixed precision.

hello@deci.ai 13

mailto:hello@deci.ai
http://www.deci.ai
https://www.linkedin.com/company/deciai/
https://twitter.com/deci_ai


Neural Architecture Search (NAS): Outstanding Results, Challenging to
Implement

NAS is a technique to automate neural architecture
engineering and is currently one of the hottest
topics in deep learning research. The general idea is
straightforward: from a space of allowable
architectures, select the best architecture. The
selection algorithm relies on a search strategy,
which in turn depends on an objective evaluation
scheme. Efficiently implementing NAS is extremely
challenging, but we’re seeing some outstanding
results even with brute force implementations. For
example, NAS has been used to engineer some of
the best performing low-complexity (FLOPS)
architectures to-date, such as EfficientNet (Tan and
Le 2019). That said, these impressive achievements
were achieved by employing huge computational resources in the order of tens of
thousands of GPU hours.

The NAS search space determines what type of architecture can be discovered by the NAS
algorithm. This space is defined by specifying the overall structure (skeleton) of the
network, the type of units or blocks that define the layers, as well as the allowable
connectivity between layers. Search strategies that have been considered include
neuro-evolutionary methods (Elsken et al., 2019), Bayesian approaches (Mendoza et al.,
2016), and reinforcement learning (Zoph and Le, 2016). Interestingly, some recent evidence
suggests that evolutionary techniques perform just as well as reinforcement learning
(Real et al., 2019). Moreover, the evolutionary methods tend to have better “anytime
performance” and settle on smaller models. While earlier NAS techniques were based on
discrete search spaces, a continuous formulation of the architecture search space has
introduced differentiable search methods, which opened the way for gradient-based
optimization (Liu et al., 2019).

During a NAS search, many architectures must be evaluated for their validation set
performance. Training each architecture from scratch on the entire training set typically
leads to computational demands in the order of thousands of GPU days. Many ideas have
been considered to reduce evaluation time, such as: low-fidelity performance estimation
(early exit after a few epochs, training over a subset of the data, downscaled models or
data), weight inheritance, weight sharing, learning-curve extrapolation, and network
morphism (Jin et al., 2019). One of the popular approaches is single-shot training, where
the search space consists of sub-architectures belonging to a single super-architecture
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whose trained weights are shared among all sub-models (Xie et al., 2019). Different
single-shot NAS methods differ in how the single-shot model is trained. ENAS (Pham et
al., 2018) is a prominent example of a single-shot algorithm that achieves a 1000X speedup
of the search relative to previous techniques. One of the prominent results in this venue is
the “once for all” technique (Cai et al., 2019).

In short, by relying on huge computational resources, NAS techniques have already
outperformed manually designed architectures on standard tasks such as image
classification. However, for the most part, faster NAS techniques have only shown
promising results over the smaller benchmark datasets (e.g., Cifar-10, MNIST, or reduced
versions of ImageNet). Presently, improving NAS efficiency is a prerequisite for making it
commercially available to users who don’t have Google-scale computational resources.
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Introducing AutoNAC - Automated Neural
Architecture Construction
Boost Deep Learning Model Performance Without Sacrificing
Accuracy

AutoNAC is a data- and hardware-dependent architecture optimization algorithm.
Applying AutoNAC is a seamless process in which the user provides a trained model,
training and test datasets, and access to the hardware platform over which the model
should be deployed. AutoNAC then automatically computes a new low-latency (high
throughput, or low power consumption) model that preserves the accuracy of the original
model.

The AutoNAC objective is to derive an optimal architecture that solves the following𝑎*

constrained optimization problem:

𝑎* =  𝑎𝑟𝑔𝑚𝑖𝑛
𝑎∈𝐴 

𝐿𝑎𝑡
𝐻

(𝑎, 𝐷)  

subject to ,𝐴𝑐𝑐(𝑎, 𝐷)≥𝐴𝑐𝑐(𝑎
0
, 𝐷)

where is an optimal solution, is the original baseline model provided by the user, is𝑎* 𝑎
0

𝐴

the architecture search space (constructed automatically), is the user dataset,𝐷 𝐿𝑎𝑡
𝐻

(𝑎, 𝐷)

is the mean inference latency of model over dataset computed over hardware𝑎 𝐷
platform and is the accuracy of model over dataset (or any required𝐻, 𝐴𝑐𝑐(𝑎, 𝐷) 𝑎 𝐷
performance measure). The AutoNAC optimization process is depicted in Figure 5. Unlike
standard NAS techniques, AutoNAC starts the search procedure from a relatively good
initial point by heavily utilizing the baseline model including several of its already trained
layers. AutoNAC is applied on a discrete space of architectures that is set in accordance
with the allowable neural operations that are supported in the target hardware. The
(proprietary) search algorithm itself relies on prediction models to determine effective
optimization steps. This algorithm results in very fast convergence times that are often
lower than known NAS techniques by orders of magnitude. In addition, one of the main
advantages of AutoNAC is its ability to consider all levels of the inference stack and
optimize the baseline architecture while preserving accuracy and taking into
consideration the target hardware, the (hardware-dependent) compilation, and
quantization.
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Figure 5. The AutoNAC engine redesigns DL models to squeeze the most out of the hardware and leverage the
hidden structures of the data.

AutoNAC: Client Case Study
Making Real-Time Deep Learning on GPU in the Cloud Possible

AutoNAC is already being used to benefit clients in commercial settings. In this section,
we highlight the case of a well-established video technology provider. One of their
products includes streaming video footage that is processed through a deep
learning-based pipeline with near real-time latency. The inference of this pipeline is
executed on large commercial clouds on the Nvidia K-80 GPU machine, which was
selected as best value for money by the client.

The client was experiencing unsatisfactory latency/throughput
in one of the deep learning models in their pipeline, which
was developed using the TensorFlow framework. The model is
a feature extraction CNN model whose architecture is
proprietary.

The client’s highly-experienced data science team tried several
methods to solve this problem, but quickly concluded that
none would achieve the combination of lower latency and
high accuracy at their cost-to-serve target.

The alternatives they considered, along with the results, include:

● Reducing input video resolution - reduced the model’s accuracy because less
information was available.
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● Pruning and quantization - compromised the model’s accuracy.
● Increase hardware spec - didn’t meet their cost-to-serve target due to the high

price of more powerful hardware.
● Moving from cloud inference to on-prem inference - didn’t solve the inherent

computation latency/throughput, which was still unacceptable.
● Changing the model to a state-of-the-art architecture - although very time

consuming, switching to a state-of-the-art (SoTA) architecture did improve the
model’s accuracy but still fell short of the latency/throughput target because the
architecture was not optimized for their hardware and their specific problem.The
client used Deci’s Automated Neural Architecture Construction (AutoNAC) engine
to get the job done. Because AutoNAC is complementary to other optimization
efforts, the data science team selected the SoTA-based model, which was the best
model they reached, as a candidate for AutoNAC.

The entire optimization process was done automatically, with no human intervention. The
client could choose to carry out the process on-prem or in their virtual private cloud, thus
avoiding any data security or privacy issues. At the end of the optimization process, the
new AutoNAC model was plugged seamlessly into their CI/CD process.

After using Deci’s AutoNAC, the client was able to use the model for real-time inference in
production. The outcome was a new AutoNAC model that had improved the
latency/throughput by 4.6 times (Figure 6), without sacrificing the original model’s
accuracy. Moreover, the newer model’s jump in efficiency unlocked cost-saving
opportunities such as switching to a cheaper GPU and even a simple CPU machine.

Figure 6. Client case where 4.6X speedup was achieved, while preserving model’s accuracy, starting from a
state-of-the-art architecture.

hello@deci.ai 18

mailto:hello@deci.ai
http://www.deci.ai
https://www.linkedin.com/company/deciai/
https://twitter.com/deci_ai


Deci+Intel’s MLPerf submission for CPUs - 12x Speedup
Can Deep Learning inference on CPUs be competitive with GPUs?

Established by AI leaders from academia, industry, and research labs, MLPerf is a
non-profit organization that provides fair and standardized benchmarks for measuring
the training and inference performance of machine learning hardware and software.

Relying on AutoNAC, Deci submitted in collaboration with Intel several deep learning
models to the Open division of the MLPerf v0.7 inference benchmark (Sept. 2020). This
submission, which benefited from both Intel’s OpenVINO compiler and Deci’s AutoNAC,
aimed to cut the inference latency and boost throughput of the ResNet-50 architecture
on three CPU types.

In accordance with MLPerf rules, the goal was to maximally reduce the latency, or
increase the throughput, while staying within 1% of ResNet-50. Table 1 and 2 display the
results for latency and throughput scenarios on the three CPUs tested. As shown, the
optimized models (which preserve accuracy within 1%) improve latency between 5.16x and
11.8x when compared to vanilla ResNet-50.

Latency (ms)

Hardware ResNet-50
OpenVINO  32-bit

ResNet-50
OpenVINO 8-bit

Deci
Deci’s Boost

1.4GHz

8th-generation Intel

quad core i5 MacBook

Pro 2019

83 83 7 11.8x

1 Intel Cascade Lake

Core
76 21 6.45 3.3 - 11.8x

8 Intel Cascade Lake

Cores
11 5.5 2.13 2.6 - 5.16x

Table 1. Results for latency scenario. Three hardware types were tested. ResNet-50 vanilla is ResNet-50 compiled
with OpenVINO to 32-bit. The “ResNet-50 OpenVINO 8-bit” columns show the same hardware with compilation
to 8-bit, and the columns labeled “Deci” show the AutoNAC-optimized  mode with 8-bit compilation.
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Throughput (FPS)

Hardware ResNet-50
OpenVINO  32-bit

ResNet-50
OpenVINO 8-bit

Deci Deci’s Boost

1.4GHz

8th-generation Intel

quad core i5 MacBook

Pro 2019

30 30 207 6.9x

1 Intel Cascade Lake

Core
14 50 154 3.1 - 11x

8 Intel Cascade Lake

Cores
110 410 1092 2.7 - 9.9x

Table 2. Results for throughput scenario. Three hardware types were tested. ResNet-50 vanilla is ResNet-50
compiled with OpenVINO to 32-bit. The “ResNet-50 OpenVINO 8-bit” columns show the same hardware with
compilation to 8-bit, and the columns labeled “Deci” show the AutoNAC-optimized mode with 8-bit
compilation.

In addition, MLPerf results allow us to compare the Deci performance to other
submissions. To compare apples to apples, we normalized each submission with the
number of cores it used. Using the throughput results of Tables 2 Figure 7 depicts Deci’s
results compared to several other submissions. This draws a very optimistic picture, with
our throughput per core 3x higher than other submissions.

Figure 7. Client case where 4.6X speedup was achieved, while preserving model’s accuracy, starting from a
state-of-the-art architecture.
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Conclusion: Overcoming the Latency/
Throughput Challenge in Deep Learning
Several challenges must be overcome to successfully deploy deep learning models and
operate them at scale. Beyond the obvious accuracy performance requirements, these
models must be efficient enough to reduce operating costs or allow for real-time
latency/throughput. Despite the continual improvement of inference compute power, the
efficiency barriers are expected to increase as models become more accurate and more
sophisticated. These new models will be required to tackle the burgeoning needs for
solving more demanding applications. Moreover, the increasing need for complex
architectures that can handle multi-modal data signals will inevitably yield larger and
computationally-heavier neural models. The relative advantage of deep learning
operations will thus remain critically dependent on the efficiency of their solutions. To
remain competitive, businesses will ultimately need to rely on deep networks that can
employ unique and expensive deep modeling expertise. The AutoNAC optimizer, offered
by Deci AI, is an effective and affordable solution that can enable real-time application on
any hardware and dramatically improve the infrastructure costs of deep learning
commercial operations. The AutoNAC engine relies on solid machine learning principles
and in-depth knowledge of deep nets. Under the hood, AutoNAC contains the distilled
knowledge and technical wisdom of many research years, which seamlessly allows it to
optimize most neural models. AutoNAC is a power multiplier and will improve a model’s
efficiency even after it has been optimized using conventional methods such as pruning
and quantization techniques—even if the model is already executing on the fastest
inference hardware platforms.
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About Deci
Deci, which means “tenth” (decimus in Latin), is ushering in a new AI paradigm by using AI to build
and operate AI models. Deci’s deep learning platform enables data scientists to transform their AI
models into production-grade solutions on any hardware, crafting the next generation of AI for
enterprises across the board. Deci’s proprietary AutoNAC (Automated Neural Architecture
Construction) technology autonomously redesigns an enterprise’s deep learning models to
squeeze the maximum utilization out of its hardware. Founded in 2019 and based in Tel Aviv, Deci’s
team of deep learning experts are dedicated to eliminating production-related bottlenecks across
the AI lifecycle to allow developers and engineers the time to do what they do best - create
innovative AI solutions for our world’s complex problems.

For more information visit us at www.deci.ai

hello@deci.ai 23

http://www.deci.ai
mailto:hello@deci.ai
http://www.deci.ai
https://www.linkedin.com/company/deciai/
https://twitter.com/deci_ai

