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Abstract— Analog computing with crossbars of memristors is a 
promising approach to build compact energy-efficient vector-by-
matrix multiplier (VMM), a key block in many data-intensive 
algorithms. However, device non-linearity, process variations, 
interconnect parasitics, noise, and memory state drift limit the 
computing precision of such systems. In this paper, we investigate 
the impact of such non-idealities in analog current-mode memristive 
VMMs through simulations and experiments on the most 
prospective passive crossbars. We show that there is an optimal 
tuning voltage to minimize the computation error. Furthermore, 
error balancing and bootstrapping are introduced as two techniques 
for improving the precision. It is also shown that when size of N×N 
crossbar is scaled up, the optimum interconnect wire conductance 
should increase quadratically with N to preserve the computing 
precision when using naive error balancing approach, and that the 
differential scheme is imperative for temperature insensitive 
operation and also to reduce the IR-drop effect.  

Index Terms— ReRAM, Analog Computing, Computing 
Precision, Vector-by-Matrix Multiplier, Artificial Neural Network  
 

I. INTRODUCTION 

he emergence of new promising nonvolatile memory 
technologies [1] has renewed interest in analog and 

mixed-signal computing, especially for VMM, which is 
broadly used in data-intensive algorithms. This work is 
focused on hardware implementations based on resistive 
switching devices (also known as ReRAM or 
memristors). By coupling experimental work on crossbars 
of metal-oxide memristors (Fig. 1a) with circuit-level 
simulations, this paper investigates the impact of device 
and circuit imperfections (such as device nonlinearity and 
variations, line resistance), and crossbar topology on the 
computing precision of analog VMM circuits and 
provides insights into their possible improvements. To 
make our analytical study more general, we target two 
applications of VMM circuits: an analog mutli-layer 
perceptron implementation and 2D convolution for edge 
detection filtering. Furthermore, due to the so-far limited 

write endurance of memristors, we assume infrequent 
conductance tuning, which makes the write operation and 
memory selector issues of a less concern.  

Several works in the literature addressed similar topics, 
but with a focus on devices with selectors [2-4], write 
operation [5], or programming error due to variations [6]. 
Nonlinear input mapping is proposed in [7] to compensate 
device nonlinearity. However, variations and interconnect 
parasitics are neglected in that study. Only linear devices 
and the impact of IR drop are considered in [8]. Passive 
crossbar circuits are explored in [9] using a simplified 
model focusing only on nonlinearity and IR drop. 
Similarly, Ref. [23] proposes a  conversion algorithm to 
minimize the error due to device non-idealities and IR 
drop. Finally, some works explored the impact of non-
idealities in the context of specific applications, such as 
for neuromorphic computing  [10, 11], which is typically 
much more resilient to precision errors, or digital memory 
[12]. 

II. MODELING METHODOLOGY 

We model N×N crossbar circuits with passively 
integrated TiO2-x memristors (Fig. 1), based on the 
technology developed by our group [13, 15, 16, 19]. Our 
general focus is on circuit and device parameters, e.g. 
values of N, wire conductance gwire, and memristor 
currents, specific to our technology. However, the 
considered TiO2-x devices have rather typical I-V 
characteristics of many metal-oxide memristors and since 
we also extend our analysis to larger gwire values, 
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Fig. 1. (a) Experimental I-V curve of a TiO2 memristor. Inset shows 
scanning electron microscopy image of a 20×20 passive crossbar 
circuit. (b) Single-quadrant and (c) differential N×N crossbar circuit 
with memristive crosspoint devices.  
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representative of more advanced fabrication processes 
(e.g., with larger aspect ratio crossbar electrodes made of 
higher conductance metals, compared to those used in our 
circuits) we believe that the results of this paper are quite 
general.  

Simulation results are obtained from SPICE using an 
in-house phenomenological compact model of TiO2 
memristors [14,25]. As opposed to previous work, this 
compact model is developed based on an extensive 
statistical study and captures the device imperfections 
needed for a comprehensive analysis of memristive 

circuits and systems. The studied non-idealities include 
nonlinearities in static I-V characteristics, device-to-
device variations, noise, and temperature dependency 
(e.g., see Fig. 2). 

We consider conventional memristor-based VMM 
topology in which data are encoded in voltage amplitude 
of signals. Compared to time-based encoding, the 
voltage-mode approach is fully compatible with the most 
prospective passive (“0T1R”) technology and is 
potentially more promising, in terms of throughput and 
energy efficiency, particularly in medium precision 
regimes – see, e.g., our previous works on system level 
analysis [21-22].  

We study both single-quadrant (Fig. 1b) and 
differential (Fig. 1c) topologies and take into account 
parasitic wire resistance of a memristive crossbar circuits. 
For each crossbar size N, we randomly generated 512 
input voltage vectors, with vector elements uniformly 
distributed in the range [0, Umax] - see Table I for the 
definition of all parameters used in this study. In addition, 
512 crossbar circuits are randomly generated, each with 
unique device-to-device (d2d) variations and crosspoint 
conductances (at 0.1 V), uniformly distributed in the 
range [Gmin, Gmax]. The crosspoint conductances were 
obtained indirectly by first generating dimensionless 
weights and then converting them according to the VMM 
topology (Table I). The VMM errors were then calculated 
for all combinations of input vectors and crossbar circuits, 
with a total of 256k configurations for each N. Most of the 
results are reported in terms |ε|99.9%, which is 99.9% 
percentile of output current errors |ε| for each studied 
crossbar size N, where |ε| is the absolute difference 
between ideal and the actual output current, normalized to 
its maximum value. 

III. COMPUTING PRECISION ANALYSIS 

A. Parasitics, device nonlinearity, and process variations 

In our first study, we consider gwire = 0.4 S, which 
corresponds to the measured line conductance in   20×20 
crossbar circuits [15,16] (but smaller compared to other 
recent works [2]). Fig. 3 shows histograms of the 
simulated output currents for each output of a 16×16 
VMM circuit, for different topologies, biasing strategies, 
and temperatures. The single-quadrant architecture 
severely suffers from the voltage drop on interconnect 
parasitics. Biasing the word lines from both sides can help 
to mitigate the shift and the spread of the errors with 
respect to the output index (Fig. 3a, b) at the temperature 
(25 °C) used during programming. (A more general and 
powerful biasing approach is further discussed in Section 
IV.) Nevertheless, it does not reduce the sensitivity to the 

 

Fig. 2. Example of (a, c) experimentally measured, and (b, d) fitted 
models of static I-V characteristics for 50 devices, studied at two 
ambient temperatures. The developed model accurately predicts 
device currents within range of non-disturbing voltages, based on 
the single current measurement at 0.1 V. 

 

Table I. Notations (top) and related equations (bottom).  

 
 

N Linear dimensions of crossbar array 

B 
Number of connections used for bootstrapping per crossbar 

line  

Umax 
Largest (non-disturbing) voltage applied to the crossbar circuit 

inputs during operation 

kUmax Voltage at which device conductance is tuned 

gwire  Crossbar line (full-pitch- long segment) conductance (Fig. 1b) 

𝐺௜௝ Crosspoint device conductance (Fig. 1b) 

𝐺୫୧୬, 𝐺୫ୟ୶ Minimum, maximum value of 𝐺௜௝ 

𝐼(௡) n-th element of the output current vector 

𝐼୧ୢୣୟ୪
(௡)  Ideal value for 𝐼(௡), i.e. for linear devices and gwire→∞ 

|𝐼|୫ୟ୶ Maximum absolute current value 

ε Relative (computing) current error – see below 

|ε|99.9% 99.9% percentile of |ε|, also referred as worst-case error 

𝑊௜௝ Weight value, assumed in [0, 1] and [-1, 1] ranges for single-
quadrant and differential topologies, respectively 

Single-
quadrant 

𝐺௜௝ =  𝐺୫୧୬ + 𝑊௜௝(𝐺୫ୟ୶ − 𝐺୫୧୬) 

ε = (𝐼(௡) −  𝐼୧ୢୣୟ୪
(௡)

) / |𝐼|୫ୟ୶ 

Differential 

𝐺௜௝ =  𝐺௜௝
ା − 𝐺௜௝

ି 

𝐺௜௝
± = 𝐺୫୧୬ + ൫1 ± 𝑊௜௝൯ × (𝐺୫ୟ୶ −  𝐺୫୧୬)/2 

ε = (𝐼(௡) −  𝐼୧ୢୣୟ୪
(௡)

) / (2 |𝐼|୫ୟ୶) 
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temperature (Fig. 3c, d). The differential scheme (Fig. 3e-
i), however, centers and narrows down the distribution of 
output errors around zero. This is because the effective 
conductance of the device is (almost) a monotonic 
function of temperature. Hence, the temperature related 
terms cancel out in the differential topology. Combined 
with two-sided voltage biasing, this topology is 
particularly appealing to keep the error as low as possible. 
Despite conservative choice of gwire, |ε|99.9% is still below 
1.5% and 0.75%, for 85 ˚C and 25 ˚C, respectively (Fig. 
3f, i).  

For a more practical case of larger crossbar circuits, the 
finite gwire can cause significant voltage drops, reducing 
the effective voltage drop on the crosspoint device (Fig. 
4a). At smaller gwire, the |ε|99.9% is roughly inversely 
proportional to the square of gwire, which is consistent with 

the worst-case error due to the IR drops on the crossbar 
lines. At larger gwire, |ε|99.9% is leveling, independent of the 
voltage and the conductance ranges (Fig. 4b). In fact, 
|ε|99.9% slightly increases before plateauing, due to 
excessive currents injected by nonlinear devices at higher 
biases, which compensates the current deficiency created 
by IR drops on the crossbar lines. In addition, intrinsic 
device characteristics, e.g., the higher temperature 
sensitivity in lower conductance ranges also have a 
significant impact on the error.  

Furthermore, the error plateau is lower for smaller N 
(Fig. 4b inset). Assuming gwire > 1 S similar to [2], Fig. 4b 

 

Fig. 3. Simulated results for output current error ε for (a-d) single-
quadrant and (e-i) differential topologies implementing 16×16 
VMM. Output #0 (#0 and #15) is the closest to where the input 
voltages are applied to for single-quadrant (differential) topology. 
Panels (a, c, e, g) are for single-sided voltage biasing, while (b, d, f, 
i) are for double-sided ones. Top and bottom panels are for 25 ˚C 
and 85 ˚C, respectively. For all cases, Gmin = 10 µS, Gmax = 100 µS, 
and Umax = 0.16 V. 
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Fig. 4. (a) Heatmap of normalized (by Umax) average voltages across 
crosspoint devices in a 64×64 crossbar circuit with gwire = 0.4 S and 

double-sided voltage biasing, simulated at room temperature (25 
˚C), for two different values of Umax and ranges of device 
conductances. (b) Simulated worst-case error as a function of gwire 

for differential 32×32 circuit. Inset shows the results for 64×64 
differential crossbar circuit simulated at room temperature. (c) 
Extrapolated wire conductance gwire, which is required to ensure the 
1% worst-case error. 
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results predict |ε|99.9% < 1% at 25 ˚C, even for large, >1K-
cell crossbar circuit. Unsurprisingly, gwire should be 
increased quadratically with N to ensure error below 1% 
(Fig. 4c). Also, the differential topology is naturally more 
immune to IR-drop because its impact on the currents 
through both devices is compensated by a differential 
pair. 

For relatively small crossbar circuits with smaller 
voltage drops, device nonlinearity becomes the main 
precision-limiting factor, while for larger crossbar 
circuits, the dominant factor is interconnect parasitics 
(Fig. 5). On the other hand, device-to-device variations do 
not have much impact on the error, at least for the 
considered applications. This is because write-verify 
tuning algorithm allows to accurately program the device 
conductance at read voltage despite variations in I-V 
characteristics. Furthermore, the impact of device-to-
device variations reduce even further for large crossbars 
due to averaging. 

B. Noise, state drift, and peripheral circuit considerations 

In a current-mode VMM circuit, the total noise in the 
differential output currents (e.g., I± in Fig. 1c) is equal to 
the sum of the noises of the corresponding crosspoint 
memristors, which share the same output crossbar line. 
Current fluctuations through different devices are 
independent and the signal-to-noise ratio (SNR) of the 
output current, assuming maximum current output range, 
is proportional to √N. For high-speed operation, e.g. >200 
MHz, the noise spectrum is predominately white, and 
neglecting the input-referred current noise of the 
peripherals (which is often well below that of crossbar 
[17]), SNR > 35 dB for 16×16 crossbar circuit, which is 
equivalent to >5 bits of precision, >50 dB (> 8 bit) for N 
= 64, and increases further with N. 

For most applications, it is imperative that crosspoint 
devices retain their conductance state over a long period 
of time. Otherwise, frequent retuning would be required, 
and/or the loss of accuracy due to the memory state drift 
should be considered. Accelerated retention 
measurements at 85 °C over 15h for in-house 325 
crossbar-integrated TiO2 devices showed < 0.8% average 
change in conductance, with < 2.7% standard deviation 
(Fig. 6). Such conductance drift can be safely neglected, 
by performing infrequent retuning, e.g., every 6 months.  

We should also note that the design of precise 
peripheral circuits is rather straightforward. For example, 
a buffered transimpedance amplifier can be utilized to 
supply the current for the crossbar array, while 
maintaining the impedance matching conditions on the 
crossbar lines. Such amplifiers can be designed with near 
ideal transfer characteristics, and hence won’t degrade 

computing accuracy. Its area and energy overhead, 
especially for crossbar circuits with high conductance 
crosspoint devices, could be a concern. However, the 
peripheral overhead can be greatly reduced by taking 
advantage of tunability of analog-grade memory cells, 
e.g. to compensate offsets due to process variations in the 
sensing and driving circuitry, as suggested in [18]. 

IV. TECHNIQUES FOR IMPROVING PRECISION 

The computing error due to nonlinearity in the static I-
V characteristics can be reduced by optimizing procedure 
of mapping weights to the memory states of crosspoint 
devices. In case of ideal, linear devices, the slope of I-V 
curve, i.e. the memory state, is typically assessed by 
measuring device current at the highest operating voltage 
(Umax), when using write-verify tuning algorithm [13]. For 
the devices with nonlinear I-V curves, such approach 
leads to negligible error at Umax voltage input, but the error 
might be significant at voltages below Umax due to smaller 
effective conductance. To reduce such error, the 
crosspoint devices can be tuned at smaller voltages kUmax, 
where 0 < k ≤ 1, i.e. by setting device’s effective 
conductance at I(kUmax)/(kUmax) to the desired value at the 
tuning algorithm. In this case, the error would be the 
smallest at kUmax and is more balanced between the larger 
and smaller ranges of the input voltages (Fig. 7a inset).  

For the in-house devices, G = 100 µS, and the 
distribution of the inputs assumed in the modeling 

 
 

 
Fig. 5. Impact of I-V static nonlinearity and d2d variations on the 
worst-case error, for differential topology. 

 
Fig. 6. Experimental results for memory state retention, showing 
change in device conductance, measured at 0.1 V, after baking for 
15 h at 85˚C. 
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(Section II), the computing error is minimized by using k 
≈ sqrt(2)/2 ≈ 0.71  (Fig. 7a). Fig. 7b shows a comparison 
of VMM output currents from crossbar circuits with ideal 
(linear) devices, and those with nonlinear devices for two 
cases of k. As expected from Fig. 7a results, the currents 

are higher for k = 0.5 due to larger error integral at higher 
input voltages. The distribution of currents for the case of 
nonlinear devices is almost perfectly matching the ideal 
one when using optimal k. This is because individual 
current errors of single devices (i.e., those in computed 
product terms) are canceling each other out when device 
currents are added up on the crossbar lines.    

The error balancing technique works well when voltage 
drops on the crossbar lines are not significant. However, 
the error can be even larger otherwise compared to 
suboptimal balancing approach, e.g., for 32×32 circuit 
with gwire = 0.4 S (Fig. 8). This is because IR drops across 
crossbar lines compensate higher currents for the 
suboptimal balancing (i.e., right shift of the currents in the 
histogram in Fig. 7b). One solution to deal with large IR 
drops is to compute optimal values of k based on the 
particular device location in the crossbar, e.g. by 
combining the balancing technique with the one described 
in Ref. 23.  

An orthogonal solution is to employ a bootstrapping 
technique, e.g., similar to the one used in NOR flash 
memory circuits. In a bootstrapped design, all crossbar 
lines are backed up with spare lines, which, e.g., can be 
routed in the lower metal layers for back-end-integrated 
crossbar circuits. Each spare line is connected to the 
original crossbar line in B > 1 locations (denoted as “B×-
bootstrapping”), which are equally distributed along the 
length of the line. For example, B = 2 implies that the 
original and spare lines are connected at the edges of the 
crossbar, i.e., corresponds to the already mentioned 
double-sided architecture. For 3×- bootstrapping, there 
are three connections - one in the middle and two at ends 
of the line, etc.  

Bootstrapping technique significantly improves the 
computing precision (Fig. 8a), while comes at the 
typically acceptable cost of utilizing additional metal 
layers below and/or above crossbar array. For passive 
memristor technology, bootstrapping also requires 
increasing crossbar dimensions from N to N+B-2 to 
accommodate connections inside the crossbar array, 
though such overhead is minor for the most practical cases 
N >>B.  

V. APPLICATION DEMONSTRATIONS 

The proposed techniques for improving precision are 
further verified by modeling two representative 
applications of mixed-signal current-mode VMM circuits. 
The first studied application is an edge detection with 5×5 
Laplacian of Gaussian filter, in which convolution of an 
image with a specific filter is computed to extract high 
frequency information or image edges (Fig. 9). The image 

 

 
Fig. 7. (a) Ratio between positive and negative error integrals, 
calculated from the measured I-V characteristics of TiO2 devices 
which were tuned to have I(kUmax)/(kUmax) = 100 µS at 27˚C, as a 
function of used k value. Inset shows schematically definition of 
positive (red) and negative (blues) current error integrals for single 
devices. (b) Simulated output currents in a 32×32 single-quadrant 
architecture with nonlinear crosspoint devices, when tuned at k = 0.5 
(black line) and k = 0.71 (red line), and ideal linear devices (grey-
filled area).  
 

 
Fig. 8. Worst-case error for (a) 32×32 crossbar circuit and (b) as a 
function of crossbar linear size, when using various techniques for 
improving precision and two assumptions of wire conductance.  
Wire resistance of the spare lines is neglected in the analysis of the 
bootstrapped circuits.   
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convolution operation was modeled assuming differential 
architecture with 25 inputs and 1 output for the specific 
image (Fig. 9a) using a hybrid approach. In particular, 50 
devices in a 20×20 crossbar circuit were tuned to the 
desired values corresponding to the kernel weights (Fig. 
9b), at the voltages specific to the used k, and their static 
I-V characteristics collected. The data were then fitted 
using approach discussed in [25] and used for simulating 
dot-product currents. 8 different implementations, with 
different k, B, and gwire are studied (Fig. 9e inset), 
including ideal case scenario, i.e. with gwire = ∞ and linear 
I-V characteristics. Fig. 9c shows an example of filtered 
image assuming scenario D, i.e., using measured I-V 
characteristics, k = 0.5, B = 2, and gwire = 0.4 S.  

The results show that due to smaller parasitics, the 
crosspoint device nonlinearity is a major source of 
computing error, see, e.g., scenario A vs. B (Fig. 9d, e). 
This is why balancing technique is the most useful for this 
application. Indeed, among the considered nonlinear 
device scenarios B, D, F, G, H, the error is smaller for 
scenarios F, G, H. On the other hand, bootstrapping does 
not help and can actually increase error (e.g. E cf. B, and 
F cf. H). This is due to already mentioned compensation 
of IR drops across crossbar. Even k = 0.71 is apparently 
not optimal (and hence H has smaller error than F) for this 
particular application because of different distributions of 
conductances and inputs as compared those used in Figs. 
7 and 8.  

The second studied application is neuromoprhic 
inference of MNIST benchmark images using 784-64-10 
multilayer perceptron classifier with rectified linear 
activation (Fig. 10). The first layer is modeled by 
assuming that 24 64×64 and 2 17×64 crossbar circuits are 
connected in two 785×64 virtual crossbars to realize 
differential architecture, while the second layer is 
modeled with two 65×10 crossbar circuits. (The 
additional inputs is due to the bias.) The other 
hyperparameters and ex-situ training approach (with 60k 
/ 20k training / test images) are similar to [20].  

The inference is simulated using memristor compact 
model which accounts for d2d variations in I-V 
characteristics [25], and also assuming that input voltages 
for physical crossbar circuits are applied individually (i.e. 
that N ≤ 64). The computing error in the first MLP layer 
(error in the output currents), and the corresponding 
classification errors are shown in Fig. 10c and d, 
respectively, for several scenarios (Fig. 10e). The results 
show that, unlike for previously studied application, the 
impact of IR drops on the performance is more severe 
compared to device nonlinearity (test 2 cf. tests 1 and 3). 
This is due to smaller devices’ conductances (i.e. large 
number of small weights as shown in Fig. 10b) as well as 

larger crossbar circuits. Both VMM error and the 
classification accuracy improves by increasing the 
crossbar line conductance (tests 4, 6, 7, 8, 9) and/or 
number of bootstrapping connections (tests 6, 10, 11). 
Similar to previous application, a small non-zero wire 
resistance could be beneficial for compensating current 
overshoot (test 3 cf. test 9). The results also show that the 
error is the largest for the single sided architecture (test 4) 
for which only half of the crossbar circuits were employed 
in modeling, while a combination of more optimal 
balancing and aggressive boostrapping leads to the 
classification performance of 2.09%. This number is close 
to the best-case 2%, obtained by simulating the same 

 
 

 
Fig. 9. Modeling of edge detection algorithm using 5×5 Laplacian 
of Gaussian filter assuming differential implementation based on 
two 25×1 memristive crossbar circuits and taking into account 
device’s I-V nonlinearity and d2d variations: (a) Original image, (b) 
effective conductance of a differential pair used to implement a 5×5 
filter. X and Y are filter dimensions. (c) simulation results for the 
computed image assuming 2×bootstrapping and gwire = 0.4 S. (d) 
The worst-case error and (e) output current histograms for several 
considered scenarios. The details for each studied scenario are 
provided in the inset of panel e. T  =  25˚C, Umax = 0.16 V.   
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MLP network in a software using high precision 
arithmetics – see, e.g. test 13 cf. test 1.  

VI. SUMMARY 

We have developed a framework for circuit-level 
simulations of memristive crossbar circuits and utilized 
comprehensive device models as well as experimentally 
measured data for metal-oxide memristors to investigate 
the impact of various imperfections on the computing 
precision of analog memristor-based VMM circuits.  
Using statistical numerical simulations, we quantified the 
impact of interconnect parasitics and analyzed different 
topologies on the precision under range of temperatures. 
Finally, error balancing and bootstrapping techniques 
were proposed to mitigate device and circuit 
imperfections, which are further verified by modeling two 
representative applications. 
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Fig. 10. Modeling of image classification inference with multilayer 
perceptron network: (a) Studied network. (b) Histogram of VMM 
weights for classification of MNIST benchmark images, obtained 
using ex-situ training method. (c) Simulated error in the output 
currents of the 1st layer VMM circuits and (d) corresponding 
misclassification errors for several studied scenarios (tests). The 
details for each studied scenario are provided in the inset of panel d. 
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