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1. Fundamentals and Concepts of Neuromorphic Computing 

 

 

Figure 1. Scheme of a neural gate, perceptron. 

 

2. Types of Neuromorphic Devices 

Digital CMOS.  

The first kind of digital NN is based on SRAM synapses that only provide a weight, while the 

multiplication and summation (MAC) operations are performed consecutively in the neuron [1]. 

The circuit considered here follows that in [2]: a synapse consists of n-bits of a SRAM register 

and state element; a neuron consists of two n-bit registers, an n-bit adder, n NAND gates, n 

inverters, and three n-state elements. Therefore area of the synapse and the neuron are the sums 

of the areas of the above constituent circuits. The delay and energy are mostly expended in the 

neuron, but some of the contributions are proportional to the number of synapses. Therefore such 

contributions are inserted to the equations for synapses below. 
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Table 1. PARAMETERS FOR DEVICES COMPRISING SYNAPSES AND NEURONS. 

   

 

regbsyn ana =   (1) 

13 4syn reg se nan inv bn     = + + + +   (2) 

( )13 4syn b reg se nan invE n E E E E E= + + + +   (3) 

( )12neu b reg inv nan sea n a a a a a= + + + +   (4) 

12 3neu reg se nan inv bn     = + + + +  (5) 

( )12 3neu b reg se nan invE n E E E E E= + + + +   (6) 

The performance estimate and parameters (Error! Reference source not found.) for a sense 

amplifier follow [3]. It is used as a part of a reading circuit for SRAM memories. The quantities 

per bit below are added to the corresponding neuron estimates. The transconductance and load 

capacitance of  
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( )1 /sa inv n p iso n dta a w w w w w= + + +   (7) 

( ) /msa mdt p n dtg g w w w= +   (8) 

( )lsa tran p nC c w w= +   (9) 

( ) 1log / /sa cc sa lsa msa bV V c g n = +   (10) 

2

sa lsa ccE C V=   (11) 

where the second term in the delay corresponds to the time to enable the sense amp and is 

proportional to the clock time.  

The performance estimate and parameters (Error! Reference source not found.) for a voltage 

sense amplifier follow [3]. It is used as a part of a reading circuit for digital resistive memories. 

The quantities per bit below are added to the corresponding neuron estimates. It comprises 3 of 

n-type and 3 of p-type minimum width transistors. 

16vsa inva a=
   (12) 

the pre-charge resistance, the sense input capacitance, and the bit line capacitance  

pch ondtR R=
   (13) 

2si tran dtC c w=
   (14) 

li neu ic icC s c l=
   (15) 

( ) ( ) 12.3 / / / 2vsa pch si vsa si li rvsa on rvsa off bR C V C C V R V R n = + + − +
   (16) 

2

vsa si ccE C V=    (17) 

 

Digital MAC. 

Another kind of digital NN contains a multiplier and an adder in every synapse, so that the MAC 

operation is performed in the synapse [39]. The role of neurons is summation of partial results 

and application of the activation function. 
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( )1syn b add sea n a a= + +   (18) 

syn add se  = +   (19) 

( )1 / 2syn b add seE n E E= + +   (20) 

2neu add se b rama a a n a= + +   (21) 

2neu add se ram   = + +  (22) 

2neu add se b ramE E E n E= + +   (23) 

The factor bn  in energy and delay would correspond to simple ripple carry adders and 

multipliers based on them. More efficient designs based adders and multipliers (e.g. carry-save 

adders) are accounted by an additional factor of 1/2. 

 

Analog CMOS.  

We assume a cell similar to that in [4], where a neuron consists of an opamp, a current source, 

and a threshold function circuit; a synapse consist of 2 operational transconductance amplifiers 

(OTA), see also [5]. Transistors of various width are used, Error! Reference source not found.. 

The effective capacitance of the cell is dominated by the capacitance of the two OTAs  

outtranf wcC 4=   (24) 

The subthreshold swing of a transistor is  

( )10log /

sat

on off

V
SS

i i
=  

The bias current is approximated as the geometric average of the on- and off-states: 

b on off inI i i w=   (25) 

The transconductance of an OTA is 

ln10b out
mOTA

up

I w
g

SS w
=   (26) 

The output conductance of two OTAs is determined by 

max2 /m mOTAG g w=   (27) 

The effective resistance of the cell (with a factor of 2x for the nonlinearity of OTA and 2x to 

ensure output stability). 
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mf GR /4=   (28) 

Then the opamp driving current is  

/opamp cc fI V R=   (29) 

and the OTA current is 














+=

up

outsum
bOTA

w

w

w

w
II 1

2
2

max

  (30) 

Thus benchmarks for the synapse and the neuron are 

42 ( ) /syn inv in in in idta a w w w w= + +   (31) 

ffsyn CR4.8=   (32) 

syn cc OTAP V I=   (33) 

synsynsyn PE =   (34) 

43 ( ) /syn inv in in in idta a w w w w= + +   (35) 

synneu  =   (36) 

( )neu cc opamp OTAP V I I= +   (37) 

neuneuneu PE =   (38) 

where the area of standard cells in circuit is approximated as fan-out-4 inverters.  

The performance estimate and parameters (Error! Reference source not found.) for an analog 

read circuit follow [3]. It is used as a part of a reading circuit for analog valued resistive 

memories. The quantities per analog cell below are added to the corresponding neuron estimates. 

It comprises several circuits equal in area to 32 standard inverter cells. 

132adr inva a=    (39) 

the column voltage is 

col row rvsaV V V= −    (40) 

12adr repu bn  = +    (41) 

225 /adr col ondtP V R=    (42) 

adr adr adrE P =    (43) 

Analog spintronic and ferroelectric devices.  
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Both synapses and neurons consist of just one intrinsic device. Spintronic synapses and neurons 

have been proposed in [6], as well as ones based on magnetic tunnel junctions [7] or 

magnetoelectric switching [8]; see overview [9]. We assume the supply voltage to be 0.1V for all 

spintronic devices. Ferroelectric synapses were explored in [10,11]. 

These analog neurons and synapses have greater size, delay, and energy proportionally to the 

number of analog levels:  

syn l deva n a=   (44) 

syn dev =   (45) 

syn devE E=   (46) 

neu l deva n a=   (47) 

/ 4neu l devn =   (48) 

neu l devE n E=   (49) 

Resistive memories.   We will use this term synonymously with ‘memristor’. Resistive elements 

are used here as analog memory with multiple levels of resistance in a single cell. Various types 

of resistive elements, such as oxide memristors [12,13], floating gate transistors (“flash”) 

[14,15], spintronic devices [16,17], have been proposed for neural networks. 

In inference, the weights are not modified, therefore the characteristics of switching resistive 

memories are not relevant, but only their on and off resistances are. We assume characteristic on- 

and off-resistances in various resistive memory cells, Error! Reference source not found.. The 

parameters contributed from the memory cell per se are 

/on cc onI V R=   (50) 

/off cc offI V R=   (51) 

syn deva a=   (52) 

The intrinsic capacitance of the synapse is of the order of that in a minimum interconnect, and 

the delay of synapses is determined by the upper bound of synapse resistance set at  

eff on lR R n=   (53) 

so 

2.3syn eff icR C =   (54) 

syn on cc synE I V =   (55) 

Another contribution comes from interconnects in the core and is described in Section 4. 
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3. Types of Neural Networks 

 

Figure 2. Schemes of the four types of neural networks considered in this paper. 

Table 2. LABELS FOR DEVICES/ARCHITECTURE COMBINATIONS 

Neuron Synapse A, C, S + … ONN 

Digital CMOS Digital CMOS 6T SRAM CSd  

Digital CMOS Digital CMOS MAC CMd  

Digital CMOS Oxide memristor digital COd  

Digital TFET Digital TFET MAC TMd  

Digital CMOS FEFET digital CFd  

Digital CMOS Spin-transfer torque digital CJd OSTT 

Digital CMOS Spin-orbit digital CHd OSOT 

Analog CMOS Analog CMOS CCa OCr 

Analog TFET Analog TFET TTa OTr 

Analog CMOS Ferroelectric FET CFa OPz 

Analog CMOS Oxide memristor COa OOx 

Analog CMOS Floating gate CGa  

Analog CMOS PCM CPa  

Ferroelectric FET Ferroelectric FET FFa  

Domain wall Domain wall WWa  

Spin-orbit torque Spin-orbit analog HHa  

Magnetoelectric Magnetoelectric EEa OME 
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ANN.  

This is the default case, we directly use the estimates for the synapses and neurons obtained in 

the previous section. 

CeNN.  

We follow the treatment of cellular neural networks in [4]. Application of CeNN to CoNN was 

considered in [18]. Due to both feedback and feedforward connections in a CeNN and due to 

more connections than just nearest neighbors, the number of synapses is doubled. Also it takes a 

longer time for CoNN networks to settle to the steady state due to a larger number of connections 

[4]. This delay depends on the input patterns; we take estimated average values. Therefore 

annsynsyncnnsyn aMa ,=   (56) 

annsynsyncnnstepcnnsyn MM , =   (57) 

annsynsyncnnstepcnnsyn EMME ,=   (58) 

annneuneu aa ,=   (59) 

annneustepcnnneu M , =   (60) 

annneustepcnnneu EME ,=   (61) 

Neural network parameters related to Hebbian learning are based on the synaptic weight 

information: the maximum weight value obtained from the training weights, and the average 

summation of the weights per cellular cell [4]. 

 a) 
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b) 

Figure 3. Approximate wave forms in a spiking neural network. a) The spike separation is longer 

than the spike duration; b) Multiple synapse spikes are required for a neuron to fire [37]. 

SNN.  

We introduce a factors (Error! Reference source not found.) relating the spike duration to the 

device delay and relating the time spacing between spikes to the spike duration, Figure 3. 

With these factors the estimates for SNN become 

,syn syn ann spi spaN N =   (62) 

,syn syn ann spiE E N=   (63) 

,neu neu ann spi spa fireN N N =   (64) 

,neu neu ann spi fireE E N N=     (rate coded) (65) 

,neu neu ann spiE E N=            (temporal coded) (66) 

 

   

Figure 4. Two types of spiking NN: rate coded and temporal coded. 

Note that it takes a different number of spikes arriving at a neuron from synapses to make it fire 

for the cases of rate coding or temporal coding of the signal, Figure 4. We also account for the 

spiking activity, i.e., the probability of a synapse producing a spike in a given spiking interval. 

We incorporate an empirical trend that the spiking activity decreases in the later stages where 

spike activity in an SNN decreases by 1/a stager n=  with stage number in a DNN or CoNN [19]. 
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ONN.  

For the oscillator neural networks (ONN) we consider the frequency-shift keying (FSK) 

approach [20]. The way convolution operations are implemented in ONN follows the approach 

[21] of coupling oscillators to a common node, ‘averager’, and identifying the envelope of the 

signal there as the measure of the convolution. In this approach, an oscillator plays the role of a 

synapse and the averager with the envelope detector – the role of a neuron. 

The area of oscillators is typically larger because they contain multiple instances of simple gates, 

e.g. several inverters in the CMOS ring oscillator. The area of the averager and the peak detector 

is bound to be even larger. 

,10syn syn anna a=   (67) 

,30neu neu anna a=   (68) 

The frequency of transistor-based ring oscillators is determined by the product of the number of 

inverters (chosen here to be 5) and an average delay in an inverter. The period of oscillation in 

this case is equal to 10 stage delays. The average power is proportional to that of a logic device.   

40.1/osc invf =          (for transistor oscillators) (69) 

intint /3 EPosc =  (for transistor oscillators) (70) 

The frequency of spintronic oscillators empirically proves to be several times faster than the 

inverse switching time of a nanomagnet. By the comparison of typical values from 

micromagnetic simulations or experimental reports, we arrive at the following proportionality 

constants: 

,6 /osc neu annf =        (for spintronic oscillators) (71) 

, ,6 /osc neu ann neu annP E =     (for spintronic oscillators) (72) 

,1/osc neu annf =         (for piezo oscillators) (73) 

, ,3 /osc neu ann neu annP E =     (for piezo oscillators) (74) 

The operation of the ONN synapse is limited by the synchronization time of the oscillators which 

takes several periods of oscillationsError! Reference source not found.. Thus the ONN 

benchmarks are 

oscsynchsyn fN /=   (75) 

synoscsyn PE =   (76) 

synneu  =   (77) 

synneu EE =   (78) 
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4. Treatment of interconnects 

 

Figure 5. Energy per bit vs. distance in TrueNorth [22]. 

A geometry calculation with a low-k interlayer dielectric results in mFcic /10 10−=  for 20nm 

wire width. We use this value for shorter interconnects shorter than 0.1mm. Energy and 

capacitance vs. distance for an actual NN chip, TrueNorth [22], is shown in Figure 5. With 

voltage of 1V, the energy of a spike is 8pJ for 15mm of interconnect length, which implies that

mFcic /105 10−= . This energy dissipation in the interconnect incorporates routers, drivers, and 

repeaters. Therefore the energy to transmit a bit over an interconnect in neural networks is less 

efficient by the factor of 5 than the energy of the ideal case, i.e., just charging the interconnect 

capacitance. This empirical factor of 5 is incorporated into estimates for interconnect longer than 

0.1mm.  

The delay in a core-wide interconnect is dominated by the RC-delay in wires connecting 

synapses and neurons: 

( )0.38 /cic ic ic eff ic ic load icR C R C R C l l = + + .  (79) 

The delay of charging a global, chip-wide interconnect 

ic ic
gic

neu neu

c lV E

I I V
 = = .  (80) 

The delay and energy of a core-wide interconnect are added to those of a synapse. The energy 

and delay of a chip-wide interconnect are added to those of a neuron. 
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5. Neuromorphic computing workloads vs. hardware 

 

Figure 6. Cross-connect topology for the neural network. Input (‘In’) and output (‘Out’) neurons 

are shown in yellow. Active synapses are shown in orange, and unused synapses in white. 

   

Figure 7. Convolution topology for the neural network. Input (‘In’) and output (‘Out’) neurons 

are shown in yellow. Active synapses are shown in orange. 
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Figure 8. Synapses connecting to the output neuron via cascaded neurons in case of a limited 

fan-in. 

 

6. Prototype neuromorphic chips 

 

Table 3. PARAMETERS FOR NEUROMORPHIC CHIPS 

Chip 

Name 

Main 

Affiliation 

Year # 

core

s 

Neuro

ns per 

core 

Synaps

es per 

neuron 

Area, 

mm2 

Powe

r, 

mW 

Syn 

Throug

hput, 

MSOP

S 

Energ

y syn 

event, 

pJ 

Syn fire 

rate, s-1 

Acti

vity 

Pro

ces

s, 

nm 

Volt

age, 

V 

Referen

ces 

Notation   
chc  

corn  
neus  

cha  
chP  

synT  spiE  
synf  ar     

HICANN Heidelberg 2010 1 512 224 50 1150* 11,500 100 100k 1 180 1.8 [23] 

HICANN-X Heidelberg 2018 1 512 256 32 2100* 2600 800 20k 1 65 1.2 [24]  

SyNAPSE HRL 2013 1 576 128 42 130 15 8700 203* 1 90 1.4 [25] 

SpiNNaker Manchester 2013 16 1024 1024 102 1000 64 16k* 10 0.4* 130 1.2 [26][27] 

SpiNNaker

2 

Manchester 2017 64 2048 1024 ? 110 250 440 10 0.2* 28 1.0 [28] 

True 

North 

IBM 2014 4096 256 256 430 72 3000 26 20 0.5 28 0.78 [22][29] 

Neurogrid Stanford 2014 1 65536 1024 168 59* 62.5 941 10 0.09* 180 1.8 [30] 

IFAT UCSD 2014 32 2048 1024 16 1.57 73 22 10 0.11* 90 1.2 [31] 

ROLLS ETH 2015 1 256 512 51.4 4 4 1000* 30 1 180 1.8 [32][33] 

DYNAP-

SEL 

ETH 2016 4 256 64 43.8 ? ? 50 30 ? 28 1.0 [34] 

Loihi Intel 2018 128 1024 128 60 450 30,000 15* 1800* 1 14 0.75 [35][36] 

SBNN Intel 2018 64 64 256 1.72 209 25,200 8.3 50k 0.5* 10 0.53 [37] 

* derived value 

We compared our performance estimates with experimentally measured [38] for the speech 

recognition workload on the Loihi and Mydiad2 (Movidius) chips. This table is comparing our 

estimates with experimental results obtained in particular chips. Our estimates relate to the 

minimal circuit needed to perform the computing in a certain neural network. We have no 

visibility into how the algorithm was compiled to utilize circuits of a particular chip or what the 

overheads of such implementations were. The purpose of the comparison was to see the general 

trends for delay and energy. We note that the theoretical estimates are much more optimistic than 
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experimental. The reasons for the discrepancy could be the circuit overhead required in an actual 

chip such as stand-by power, need to fetch the data, slower clock frequency, etc.  

 

Table 4. COMPARISON OF BENCHMARKS WITH MEASURED PERFORMANCE 

 Loihi [38]   Loihi this work  Movidius [38] Movidius this work 

Speed, inference/s 89.8 55k 300 167k 

Energy, J/inference 770 6 1500 5.5 

 

7. Digital Neural Accelerators 

 

Table 5. PARAMETERS FOR DIGITAL NEURAL ACCELERATORS 

Chip Name Main 

Affiliati

on 

Year # 

cores 

Neur

ons 

per 

core 

Synaps

es per 

neuron 

Memory 

Bytes 

Area, 

mm2 

Power, 

W 

Perfor

mance, 

GMAC/

s 

Synapse 

energy, 

pJ 

Clock 

frequenc

y, MHz 

Proce

ss, 

nm 

Referen

ces 

Notation   
chc  

corn  
neus  

chm  
cha  

chP  
synT  

synE  clf    

Diannao CAofS 2014 1 16 16 2k 3.02 0.485 452 1.1* 980 65 [39] 

Dadiannao CAofS 2014 16 16 16 32M 67.73 15.97 5585 2.9* 606 28 [40] 

Pudiannao CAofS 2015 1 16 16 32k 3.51 0.596 1056 0.56* 1000 65 [41] 

Shidiannao CAofS 2015 1 16 16 36k 4.86 0.32 194 1.7* 1000 65 [42] 

Eyeriss MIT 2016 1 1 168 192k 12.25 0.278 33.6 8.3* 200 65 [43] 

EIE Stanford 2016 1 64 8 10.3M 40.8 0.579 51.2 11.3* 800 45 [44]  

Origami ETH 2016 1 4 49 43k 3.09 0.654 98 6.7* 500 65 [45][46] 

Envision Leuven 2017 1 16 16 128k 1.87 0.044 51 0.86* 200 28 [47] 

TPU Google 2017 1 256 256 28M 300 40 11400 3.5* 700 28 [48] 

Tesla Nvidia 2017 80 32 32 6M 815 300 14900 20* 1300 12 [49] 

DPU Wave 2018 16384 1 1 24M 400 200 3900 51* 6700 16 [49] 

Q4MobilEye Intel 2018 1 32 32 1M ? 3 1078 2.8* 1000 28 [49] 

Parker Nvidia 2016 1 256 256 4M ? 5 375 13.3* 3000 16 [49] 

S32V234 NXP 2017 1 64 64 4M ? 5 512 9.8* 1000 28 [49] 

Myriad 2 Intel 2017 12 4 16 2M 27 1.5 58 26* 800 28 [50] 

* derived value; ** ‘CAofS’ designates the Chinese Academy of Sciences. 
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8.  Supplementary Plots 

Remaining benchmarking plots are collected here in order to keep the main text concise. 

 

Figure 9. Delay vs. area for synapses. 



16 

 

 

Figure 10. Delay vs. area for synapses. 
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Figure 11. Delay vs. area for neurons. 
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Figure 12. Delay vs. area for neurons. 
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Figure 13. Energy vs. delay for synapses. 
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Figure 14. Energy vs. delay for neurons. 
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Figure 15. Delay vs. area for LeNet CoNN. 
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Figure 16. Delay vs. area for LeNet CoNN. 
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Figure 17. Dissipated power density vs. inference operation throughput per unit area in a circuit 

implementing the LeNet convolutional neural network, includes benchmarks for prototype 

neuromorphic chips and neural accelerators. 
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Figure 18. Power vs. synaptic throughput for LeNet. 
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Figure 19. Delay vs. area for the speech recognition. 



26 

 

 

Figure 20. Energy vs. delay for the speech recognition. 
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Figure 21. Power density vs. inference throughput for the speech recognition. 
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Figure 22. Energy vs. MAC in digital neurons and SRAM synapses for various workloads. 
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Figure 23. Energy vs. delay in Loihi for various workloads. 
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Figure 24. Energy vs. MAC in Loihi for various workloads. 
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Table 6. Performance benchmarks for the combinations of devices and network types. 
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