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ABSTRACT Neural network circuits and architectures are currently under active research for applications
to artificial intelligence andmachine learning. Their physical performancemetrics (area, time, and energy) are
estimated. Various types of neural networks (artificial, cellular, spiking, and oscillator) are implemented with
multiple CMOS and beyond-CMOS (spintronic, ferroelectric, and resistive memory) devices. A consistent
and transparent methodology is proposed and used to benchmark this comprehensive set of options across
several application cases. Promising architecture/device combinations are identified.

INDEX TERMS Benchmarking, beyond-CMOS, CNN, neural network, neuromorphic, power, spiking,
spintronic, throughput.

I. INTRODUCTION

THE unprecedented progress of traditional Boolean com-
puting over the last five decades has been propelled by

the scaling of the transistor according to Moore’s law [1].
Recently, a large share of computing is being consumed by
applications related to artificial intelligence (AI) andmachine
learning (ML). For these, Boolean computing is less efficient.
This has spurred research in neural computing that covers a
wide field of research, from neural network algorithms that
can be programmed on traditional Boolean hardware, such
as CPUs or GPUs, to neural network circuits implemented
in specialized hardware—application-specific engines. The
former approach currently handles the majority of user needs
from the data center to the edge. The latter approach resulted
in both development and research thrusts in, e.g., digital
neural accelerators, such as [2] (see a review [3]) and neu-
romorphic (biologically inspired) chips, such as [4]. The
operation of neuromorphic chips can span a range of circuit
implementations from mostly digital to mostly analog (see
reviews [5] and [6]).

In the last few years, AI/ML achieved prominent successes,
especially related to deep neural networks (DNNs) [7] and
convolutional neural networks (CoNNs). ML has enabled a
revolutionary improvement in the accuracy of image, pattern,
and facial recognition, including the treatment of ‘‘big data’’
online. More demand for neural computing is emerging in
robotic control, autonomous vehicles, drones, and so on.

One of the main concerns on the minds of developers of
AI computing systems is the same as for traditional com-
puting: the power consumption in the chips. The history of
traditional computing shows that the commercial success of
computing devices and architectures is predicated largely on

their physical performance—areal density, speed of opera-
tion, and consumed energy, as benchmarked in [8] and [9].
These ultimately translate into processing throughput and
consumed power of the chips that are of utmost importance
to the user. A fair comparison between the published neural
network implementations is difficult due to the difference in
the process technology generation, the network architectures,
and computing workloads.

The main purpose of this article is to establish a method-
ology for comparing various neural network hardware
approaches and to understand the trends revealed through
its development. In doing that, we strive to adhere to the
following principles.

1) General: Wide scope of technologies, devices, and
circuits;

2) Transparent: Simple analytics more important than
precise simulations;

3) Uniform: Consistent inputs and assumptions across
multiple types of hardware;

4) Reproducible: All models used are described, and the
code is available [10] to the reader for verification.

Let us differentiate this work from the existing body of liter-
ature. We do not aim to give a literature review and refer the
reader to the excellent review articles in the neuromorphic
hardware field [11]–[13], which do not attempt to quantita-
tively compare prior works, as we do in this article. Often-
times, benchmarking refers to comparing various algorithms
for an application mainly based on their accuracy and with
little reference to hardware implementation, e.g., [14]. In con-
trast, we compare different types of hardware implementing
the same algorithm and focusing on its energy consumption
and performance. The discussion of neural networks in the
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articles published is just focused at the architecture level.
For example, the accuracy of recognition is studied in its
dependence on the number of network elements, topology,
and details of the algorithm. We are cognizant of the impor-
tance of the accuracy of inferencing, and indeed, prior studies
discovered that this accuracy can be degraded compared to
the algorithm-limited ‘‘maximum accuracy’’ due to device
nonidealities [15]. However, for this article, we focus on
the effect of the different types of devices and their neural
circuits. For that purpose, we make an optimistic assumption
that the devices are not degrading their characteristics (and
accuracy) with the operation, as exemplified by [16]. This
assumption is appropriate for our benchmarking that targets
the idealized, paradigm limiting cases. Some research articles
report experimentally measured performance and energy for
several implementations of CoNN [17], [18] by running them
on a GPU or a particular DNN implemented on a variety
of neural hardware (top–down) [19]. In contrast, we pro-
vide a theoretical prediction approach for benchmarking
(bottom–up). A rigorous simulation framework, NeuroSim,
is used to benchmark the neural network circuit architec-
ture in a cross-connect topology based on a set of mem-
ory cells serving as synapses [20]. The Eyeriss simulation
tool focuses on accelerators for DNN [21]. The CrossSim
simulator has similar capabilities [22]. Benchmarking for a
variety of device technologies, including exploratory beyond-
CMOS ones, has been done in an approach similar to ours,
but for only one type of neural network, i.e., cellular neural
networks (CeNNs) [23]. Estimates of time and energy of
operation for certain types of digital and analog devices have
been done previously [24]–[27]. Compared to these prior
works, we cover a wider scope of devices and network archi-
tectures, using less detailed, but adequate, circuit models.

Another purpose of this article is to explore the impact of
exploratory devices on the performance and energy efficiency
of operation for neural networks. For example, neural circuits
based on the spintronic type of beyond-CMOS devices have
been proposed [28], [29]. In this article, we aim to expand
the list of beyond-CMOS devices applied to neural networks.
Also, we consider both digital and analog neural networks
in an attempt to understand whether there is an advantage
in the speed and energy of neural computing implemented
with the latter. We also consider several types of neural
network microarchitectures and analyze their relative advan-
tages. Finally, we consider several cases of neural networks
running their application ‘‘workloads’’ and demonstrate that
the qualitative conclusions made about various neural net-
work hardware remain valid when performing neural com-
puting with these ‘‘real use’’ cases.

II. FUNDAMENTALS AND CONCEPTS
OF NEUROMORPHIC COMPUTING
Operation in the majority of neural network architectures
relies on a neural gate, often called the perceptron [3]. The
elements at the input, synapses, receive vectors of input sig-
nals xi and multiply them by vectors of weights wi. Neurons
perform the summation of these products and apply a nonlin-
ear threshold (or ‘‘activation’’) function

f (x) = g

(
n∑
i

wixi + b

)
. (1)

Despite its apparent simplicity, the neural gate in some forms
underlies most of the neuromorphic hardware and algorithms.
DNNs consist of cascaded multiple layers of neural gates.
CoNNs are an example of algorithms applying DNN to image
processing. For the benchmarking analysis of this article,
we only consider the DNNworkloads of inference (i.e., deter-
mining a distance of input vectors from memorized ones in
multidimensional space). The inference is crucial for recog-
nition, i.e., classifying objects in the input data.

Learning (or training) is the process of modifying parame-
ters of the neural network for better recognition. It consists
of performing numerous inferences on the input data and
then adjusting the weights in the neural network. Methods
of learning can be, for example: 1) supervised learning—
optimization of weights through, e.g., backpropagation algo-
rithm [7] or 2) unsupervised learning—change of weights
according to synapse activity caused by input patterns,
e.g., using the spike-timing-dependent plasticity (STDP)
algorithm [28].

We decided to limit the scope of this article to inferencing.
We realize the importance of learning and that it requires
much more computing effort. Also, inference and learning
present different market segments and have different usage
models; learning is mostly practiced by providers of data
center services and inference mostly client users. As such,
it is possible to consider inference and learning separately.
Benchmarking of learning (such as in [20]) will be explored
in a future publication.

III. TYPES OF NEUROMORPHIC DEVICES
Synapses and neurons can be implemented by a vari-
ety of devices [27]: digital CMOS and analog CMOS or
tunnel FET (TFET) devices; ferroelectric FET (FEFET)
devices; and spintronic devices [28] of five types:
in-plane and perpendicular spin–transfer torque (STT)
switches with perpendicular magnetic anisotropy, spin–
orbit torque (SOT) switches, domain-wall (DW) motion
devices, and magnetoelectric (ME) switched devices.
Resistive memory elements include oxide RRAM, float-
ing gate resistors (flash), phase-change memory, general
spintronic and higher-resistance spin-orbit torque resis-
tors [implemented as magnetic tunnel junctions (MTJs)],
and ferroelectric resistors (FTJ), see Figs. 1–3. To deter-
mine the area, delay, and energy of devices and cir-
cuits, we rely on our benchmarking methodology [8], [9]
that was developed for digital circuits. The benchmarks are
calculated consistently for multiple devices scaled to the pro-
cess node size [8], F = 15 nm. We first determine the values
for an ‘‘intrinsic device’’ (a transistor or a nanomagnet [30])
and then for simple circuits [9]. For digital technologies,
we assume that the synapses are comprised of 8-bit registers.
For analog technologies, we will assume that the synapses are
accurately set to 64 levels. Understanding that these two are
not equivalent in terms of precision, we choose to keep the
typical value of 8 for digital precision. We also assume that
the accuracy in analog networks is not limited by the number
of levels. We take the best case by ignoring nonidealities of
the synapse device characteristics. Realistic cases in which
device characteristics affect the accuracy are considered, e.g.,
in [31].
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FIGURE 1. Neurons implemented with CMOS and beyond-CMOS
devices.

FIGURE 2. Synapses implemented with CMOS and
beyond-CMOS devices.

FIGURE 3. Schemes of oscillators used as synapses.

IV. TYPES OF NEURAL NETWORKS
We classify neural networks into four types according to the
nature of signals used.

1) Artificial neural networks (ANNs) where the outputs
switch in response to inputs in a mostly monotonic
fashion.

2) CeNNs differ from ANN by their rectangular grid
geometry and high connectivity. Here, they are treated
in agreement with [23] based on the methodology
in [9].

3) Spiking neural networks (SNNs) receive trains of
spikes at inputs. Synapses route spikes toward neurons,
and neurons fire output spikes depending on their input
spike timing.

4) Oscillator neural networks (ONNs) can approximate
convolutions by the analog output resulting from the
synchronization of oscillators.

Neural networks can be created with various combinations
of neurons and synapses [30, Table 2]. To describe these,
the first letter of the label (A, C, S, and O) designates the type
of the neural network, the second letter designates the type
of the neuron, the third letter designates the type of the
synapse, and the last letter designates whether the network
is digital or analog. In neural networks, the synapse and neu-
ron circuits require tens of transistors. Alternatively, single-
spintronic devices are capable of implementing synapses and
neurons [28]. We will use the same synapses across the ANN,
CeNN, and SNN classes though neurons will be different.

V. TREATMENT OF INTERCONNECTS
The benchmarks for neural network elements, neural gates,
and larger DNNs are built up hierarchically, from benchmarks
for a synapse and a neuron obtained in Section IV. We refer
to it as ‘‘bottom–up benchmarking.’’

The functional chip comprises a number of neural cores
with multiple neurons in each and multiple synapses feeding
signals into each core. The total number of synapses per chip
is thus

sch = cchncorsneu. (2)

All notations are defined in Table 1. Empirical factors are
introduced to account for layout overhead: spacing between
circuits for interconnects, routing circuits, intermediate reg-
isters, encoders/decoders, and so on. To obtain the corrected
area, the estimated area is multiplied by the additional layout
overhead factors (see Table 1). For a certain workload, only
a share of synapses ra may be active. The area of the chip is
then

ach = Mchcch(Mcorncor (Mneuaneu + sneuMsynasyn)). (3)

The operating energy of an interconnect is mainly determined
by the interconnect capacitance per unit length. The energy to
charge an interconnect is

Eic = ciclV 2 (4)

where the length of an interconnect from a circuit block to the
next block is calculated as

l =
√
acirc. (5)

The area of the relevant circuit block for synapses acirc,syn =
asynscor is set by the requirement to deliver the synapse output
within the area of the core, and for neurons acirc,neu = ach, it is
set by the requirement to deliver, i.e., interconnect, the output
signal of a neuron to any part of the chip.

VI. CHIP-LEVEL BENCHMARKS
The operation of the chip involves signals coming from input
neurons, processed in synapses, and then firing of output
neurons. A synaptic operation (synaptic event) is understood
in nonspiking networks as an operation of multiplication of
an input signal by weight, i.e., ‘‘multiply-and-accumulate’’
(MAC). However, in spiking networks, a synaptic event is
mostly understood as ‘‘a spike event is a synaptic operation
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TABLE 1. List of notation used in this article. TABLE 1. (Continued) List of notation used in this article.

evoked when one action potential is transmitted through one
synapse’’ according to [32]. There may be multiple spikes
required to fire a neuron, i.e., multiple synaptic operations
correspond to one MAC. Therefore, the firing rate is con-
ventionally defined differently for spiking, SNN (to keep it
consistent with definitions in [4]), and nonspiking, ANN,
CeNN, and ONN, networks

ffire = 1/τsyn (nonspiking) (6)
ffire = 1/(rasneuτsyn) (spiking). (7)

The time step in a chip corresponds to the operation of one
stage of a neural network. It consists of the time for enough
synaptic inputs to arrive at the neuron to make it fire plus the
delay in the neuron itself

τstep = 1/ffire + τneu. (8)

Total energy per synaptic event contributed by a synapse and
a share of neuron energy is

Esyntot = Esyn + Eneu/(rasneu). (9)

Publications normally quote the throughput of synaptic oper-
ations per second (SOPS) (not to be confused with a through-
put of inferences, as given in the following)

Tsyn = ffirerasch. (10)

The dissipated power and the energy per time step are

Pch = TsynEsyntot Ech = Pchτch. (11)
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FIGURE 4. Map of layers in the CoNN, LeNet [33].

To compare the benchmarks between actual chips and
bottom–up estimates for various neural networks, we calcu-
late the performance of the latter for a nominal chip with
parameters given in [30].

VII. NEUROMORPHIC WORKLOADS AND HARDWARE
We have considered examples of neuromorphic workloads,
including CoNN, such as LeNet [33], [34] (see Fig. 4),
AlexNet [35], a single-stage convolution of a 5 × 5 pixel
fragment with 24 filters, a single-stage associative memory
of pixel patterns [23], a DNN for recognition of handwritten
digits from theMNIST handwritten-digit image database [34]
implemented as a multilayer perceptron (MLP) with 784 ×
256× 128× 10 fully connected neurons in layers, and aDNN
for speech recognition from [19]—a four-layer MLP with
390 × 256 × 256 × 29 neurons. While all of these networks
belong to the class of nonrecurrent DNN, these are examples
of ubiquitous applications required by users. However, these
workloads may not be favorable to SNNs. For example, they
do not utilize temporal information carried by spikes. The
reader should be warned that results may change if we con-
sider workloads more favorable to SNNs. Now, we determine
the benchmarks for a part of the chip necessary to perform a
specific computing workload (we will use the subscript CW).
More specifically, in our case, the computing workload is an
inference. Its hardware implementation is determined by the
logic structure of a neural network, which can be thought of
as an algorithm. Each feature map in a stage is produced by
convolution with one of the kernels; this process is mapped
to a neural core. The number of neurons and synapses in each
core is determined by the connectivity of the neural network.
Each core will have a number of input neurons and a number
of output neurons. Often overlooked input neurons are shown
in the array schemes, e.g., in [4]. Each output neuron collects
inputs from the number of active synapses per neuron. For
example, the LeNet NN shown in [30] can be implemented
by an application-specific design comprising a set of neural
cores, Fig. 5. A general-purpose neural chip is composed of
cores of a fixed size with some of the input and output neurons
remaining unused.

The total number of synapses in the DNN can be very
large. It is much larger than the number of trainable weights
(which can be, e.g., filters for the feature maps in CoNN).
In this benchmark, we adopt an approach of multiple copies
of weights written into the memory of synapses and placing
them close to neurons. This requires a larger number of
memory cells and the corresponding chip area dedicated to
them. However, it can be affordable in the case of dense
analog memory. During training, this requires more time
and energy for updating the weights. The alternative—using
only the necessary memory to hold trainable parameters—
has the major downside of the need to route connections

FIGURE 5. Block diagram of an implementation of the CoNN,
LeNet. ‘‘AND’’ symbols designate input neurons and triangles
designate output neurons; their number of instantiations is
indicated. Numbers in orange squares designate the number of
synapses per neuron in the respective core; ‘‘full’’ means a fully
connected core. Numbers in blue squares next to buses
connecting cores designate the fan-out for output neurons.

with numerous neurons and the time and energy to fetch the
weight values.

Focusing on the structure of a core, we envision that dif-
ferent topologies can be chosen for interconnecting input
and output neurons by synapses. The most straightforward
one is the cross connect [30]. It is best for fully connected
layers (such as those in the bottom part of Fig. 5) and allows
for a general pattern of connections. However, it will leave
many unused synapses in case of a sparsely connected NN.
Since the processing of information is happening in or on the
periphery of the memory array, containing the weights, such
a scheme, can also be classified as ‘‘compute-in-memory’’
or ‘‘inference-in-memory.’’ The convolution topology [30]
is specifically designed for connections in convolution lay-
ers (such as those in the top part of Fig. 5). This scheme
utilizes the property of CoNN—sparse connectivity between
neurons. It also closely resembles cellular NN (CeNN) con-
nectivity. In this topology, the output neurons are placed
close to the connected input ones. They mimic the posi-
tions of pixels in the image and the resulting feature map.
The convolution topology is efficient since it contains only
active and no unused synapses. However, it is not general—
additional synapses need to be designed for less sparse
connectivity.

The means by which long interconnects can be routed is
shown in Fig. 6. For the cross-connect topology, the routing
is trivial since both input and output neurons are at the edge
of the core. Even for the convolution topology, the input and
output wires can enter in a regular array of wires and still be
routed to neurons. The pitch of interconnect wires is assumed
to be p = 8F . Then, the interconnect-wire-limited area of a
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FIGURE 6. Intercore interconnects and neurons for the
convolution topology of a neural network. Pitch p is marked.

core is

awire = ninnoutp2. (12)

The speed of a neural gate is determined by its fan-in, i.e.,
the number of synaptic operations connected to one output
neuron that can be performed in parallel. We will assume the
fan-in of digital CMOS to be 2 and all analog devices to be 32.
The fan-in for spiking NN is assumed unlimited regardless
of a device. We will apply this limitation to the bottom–up
benchmarks and consider that it is satisfied for the top–down
benchmarks. In the case when the devices forming neurons
have a limited fan-in fi, they need to be cascaded [30]. The
number of levels of cascading is (rounded to the next higher
integer)

lcas = ceil(logfi sneu). (13)

Then, the number of neurons to form a fan-in in a neural
gate is

ncas = (f lcasi − 1)/(fi − 1) (14)

so that the number of neurons per core is

ncor = ncasnout + nin. (15)

In the cross-connect case, the area of a core (performing a
stage of a NN) is (provided that nin is larger than sneu)

acor = Mcor
(
Mneuaneuncor +Msynasynnoutnin

)
(16)

In the convolution case

acor = Mcor (Mneuaneuncor +Msynasynnoutsneu). (17)

We then take the larger of this estimate and the interconnect
wire limit awire to constitute the area of a core ast for the
given stage of CoNN. The time and energy for a stage of the
computing workload are

τst = lcasτsyn + τneu (18)
Est = rasneunoutEsyn + noutEneu. (19)

If the fan-in of the devices is small, which makes its cas-
cading impractical, the synaptic operations can be performed

sequentially. We will be using this method for neural acceler-
ators. In this case, the above-mentioned fan-in factors are set
to 1, and instead, the time estimate changes to

τst = sneuτsyn + τneu. (20)

In a multistage network, such as in Fig. 5, each stage is using
one core. Therefore, the above-mentioned benchmarks need
to be multiplied by the number of feature maps in each stage
and then summed over all stages to obtain benchmarks for a
computing workload

aCW =
∑
st

ast fst τCW =
∑
st

τst ECW =
∑
st

Est fst . (21)

In the case where the implementation of CoNN is constrained
by area, all the cores in Fig. 5 can be replaced by a single core,
and all the stage operations can be performed in a sequential
(‘time multiplexed’) manner. Here, we neglect the energy and
delay of storing the intermediate results. Then, in this case,
the estimates need to change to

aCW = max
st

(ast ) τCW =
∑
st

τst fst . (22)

This is the case, for example, for all networks using a digital
multiplier in a synapse (labeled ‘‘MAC’’). This treatment is
used for all top–down estimates of implemented chips. Then,
the power in a computing workload and the throughput of
inferences (not to be confused with the synaptic throughput)
in units of inferences per second (IPS) per unit area are

PCW = ECW /τCW (23)
TI = 1/(aCW τCW ). (24)

VIII. PROTOTYPE NEUROMORPHIC CHIPS
We will compare the above-mentioned benchmarks with
those for prototype chips fabricated and measured by several
groups of researchers. In this section, we consider mostly
spiking neuromorphic chips [5], [6], [33]. To them, we apply
‘‘top–down benchmarking,’’ i.e., calculate the neuron and
synapse values from the total number of synapses, the total
area, and the known synaptic throughput. A number of such
chips have been previously benchmarked [37]. One should
keep in mind the difference between the ‘‘bottom–up’’ and
‘‘top–down’’ benchmarks. The former is for idealized circuits
and does not include multiple auxiliary circuits necessary
for the operation of a chip. The latter is complete real-life
chips and contain all the circuit overheads that are hard to
quantify. However, wewill, sometimes, put these two types of
benchmarks side by side for sanity checks and to extract some
insights, given the above-mentioned caveats. We assume that
5% of the chip area is occupied by neurons and the rest by
synapses. The area per neuron and the area per synapse are
thus

aneu≈0.05ach/(cchncor ), asyn≈0.95ach/(cchncorsneu). (25)

Publications mostly quote the energy per synaptic event.
We approximate the energy per neuron as

Eneu = Esynrasneu. (26)

The synaptic throughput, power, and energy per time step are
calculated as in Section VI. The input parameters from cited
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publications are collated in [30]. In some cases, the input
parameters are not available, so they are calculated from
the consistency of quoted synaptic throughput with that cal-
culated from equations in Section VI. Then, we use these
inputs to obtain the benchmarks for a synapse and a neuron
and calculate benchmarks for various computing workloads
described in Section VII.

IX. DIGITAL NEURAL ACCELERATORS
There is another type of neural chip being fabricated, which is
commonly called neural accelerators [3]. They are based on
traditional digital chips and, in this sense, are different from
other neuromorphic hardware. Unlike CPU and GPU chips
that implement neural network algorithms in software, neural
accelerators have dedicated hardware engines to implement
neural networks. They are highly optimized for vector-matrix
multiplications, which is the core operation in neural algo-
rithms. In this sense, they present a good comparison for
digital CMOS neural networks. The input data for them are
collected in [30].

Our treatment of them is similar to that in Section VI but
adjusted for the nonspiking type. In this case, the clock fre-
quency determines the time step. Performance of these chips
is often quoted in MAC/s. A MAC counts as two floating-
point operations (FLOP)—multiplication and addition—
although different delay and energy are required between the
two of them. A significant share of the area of these chips
is occupied by the cache, control circuits, and so on. For the
chip estimate, we assume that 10% of the neural accelerator
area is occupied by neurons and synapses. We use the inputs
collected in [30], obtain the benchmarks for a synapse and
a neuron, and then calculate the benchmarks for various
computing workloads described in Section VII.

X. RESULTS FOR PHYSICAL PERFORMANCE
The most informative view with the benchmarks was pro-
vided by the comparison of operation delay and energy.
Such energy-delay plots are provided both for synapses (see
Fig. 7) and for neurons (see Fig. 8). In many subsequent
energy-delay benchmarks, the following technology options
are found to be located in close proximity to each other: the
group of xCFd, xCOd, xCJd, and xCHd and the group of
xCFa, xCOa, xCGa, and xCPa. In other words, these are NNs
with digital CMOS neurons (for the first group) or analog
CMOS neurons (for the second group) that have very similar
designs within each group. The difference within each group
is the type of resistive memory comprising a set of binary
bits (for the first group) or the analog resistive elements (for
the second group). The analysis shows that different kinds of
resistive memory produce noticeable but minor differences.
In the following plots, for clarity, we will be suppressing the
labels, leaving just one label for each group overall. Also, in
some plots, we will group results based on synapses doing the
MAC operation regardless of the NN type.

One observes that among the four NN types, their neurons
have similar ranges of energy. However, on the average,
the delay when ordered from fastest to slowest is as follows:
ANN, ONN, CeNN, and SNN. Within each type of NN,
the networks with both ME neurons and synapses (xEEa)
show the lowest energy. This is in line with benchmarks
for the Boolean computing [9]. The networks with both

FIGURE 7. Energy versus delay for a synapse in ANN (magenta
dots), CeNN (green dots), SNN (gold dots), and ONN (blue dots).
Labels for architectures are in [30].

FIGURE 8. Energy versus delay for a neuron in ANN (magenta
dots), CeNN (green dots), SNN (gold dots), and ONN (blue dots).
Labels for architectures are in [30].

ferroelectric neurons and synapses (FEFET) show the fastest
speed. This is a result of the combination of relatively fast
switching of a transistor and the assumption that only a single
ferroelectric transistor is capable of performing the neuron
function. The NNs based on a multiplier and an adder in each
synapse (MAC) prove to be the slowest and the most energy
consuming due to a large number of switching transistors
in each such element. In general, NNs with analog neurons
are faster and more energy efficient than similar NNs with
digital neurons. This is due to the fact that the neural function
is performed in parallel in analog NNs rather than synapse-
sequential in digital NNs.

The separation of the four NN types is not so clear for
synapses. The overall ranges of energy are similar between
the types. However, on the average, the NN delay ordered
from fastest to slowest is as follows: ANN, SNN, CeNN,
and ONN. The difference from the relationship in neurons
is due to the fact that the synapses are similar between ANN
and SNN, and the difference arises from the operation on the
core level. Other trends for synapses are similar to those for
neurons.

The relative relation between energy and delay for a whole
computing workload (LeNet in this case, see Fig. 9) closely
resembles that for neurons. On the average, ANNs are faster
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FIGURE 9. Energy versus delay for one inference in a circuit
implementing the LeNet CoNN: ANN (magenta dots), CeNN
(green dots), SNN (gold dots), and ONN (blue dots). Labels for
architectures are in [30]: bottom–up benchmarks.

FIGURE 10. Energy versus delay for one inference for CMOS
circuit implementations of the LeNet CoNN with various neural
accelerators (yellow dots) and neuromorphic spiking chips (red
dots): top–down benchmarks. Data from [30, Tables 3 and 5] are
used.

than ONNs by about a half an order of magnitude, faster than
CoNN by an order of magnitude, and faster than SNN by two
orders of magnitude. ME devices are more energy efficient
than analog neurons by about an order of magnitude. They are
more energy efficient than digital neurons by about another
order of magnitude. The redeeming quality of SNNs is built-
in learning via spike-dependent timing plasticity (SDTP) [4].

Now, we include top–down benchmarks for experimen-
tally demonstrated integrated neuromorphic chips and neural
accelerators (see Fig. 10). We notice that the neural acceler-
ators are within an order of magnitude of agreement with the
bottom–up benchmarks of their similar technology (ACMd)
implementation: ∼1 µs and ∼100 nJ. Neuromorphic spiking
chips, in general, prove to be slower than neural accelerators.
The difference depends on whether they are designed to run
at biologically feasible firing rates (few tens of Hertz, e.g.,
ROLLS) or at an accelerated rate (tens of kilohertz, e.g.,
HICANN). These are still slower than the clock rates of

FIGURE 11. Energy versus delay for one inference in various
workloads implemented with digital neurons and SRAM
synapses.

FIGURE 12. Dissipated power density versus inference operation
throughput per unit area in a circuit implementing the LeNet
CoNN. Labels for architectures are in [30].

hundreds of megahertz that are used in neural accelerators.
Neuromorphic SNN chips have a lower power of operation
than neural accelerators. However, their speed (determined by
the firing rate) is much slower than that of neural accelerators
(determined by the clock rate). As a result, the energy per
inference (proportional to the product of the operation delay
and power) proves to be higher in neuromorphic chips.

Energy and delay for various workloads (but the same
hardware) are shown in Fig. 11. The numerical values are
determined by the size of the overall network, mostly the
number of MACs in it [30]. The relation between energy and
delay between the various types of hardware looks similar
from workload to workload.

XI. THROUGHPUT AND DISSIPATED POWER
Circuit performance can be represented as computing
throughput plotted versus dissipated power (see Fig. 12).
One notices that spintronic networks have a higher per unit
area throughput due to the small size of their implementation
of neurons and synapses. However, this higher throughput
results in very high dissipated power. If we apply a cap on
allowed power dissipation (see Fig. 13), some architectures
with leading throughput values (e.g., AFFa and ACFa) are
scaled back proportionally. In this case, only low-energy
spintronic options maintain high throughput (e.g., ATTa).
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FIGURE 13. Dissipated power density versus inference operation
throughput per unit area in a circuit implementing the LeNet
CoNN. Power is capped to 100 W/cm2 and throughput is scaled
proportionally.

XII. CONCLUSION
In summary, the developed methodology described in this
article enables quantifying the effect of devices and NN types
on the performance, power, and area of NNs. ANN and
ONN show a higher speed of operation at comparable energy
versus CeNN and SNN. This translates into a larger inference
throughput, especially under the limitation of power dissipa-
tion. The trend is confirmed by a comparison of actual fab-
ricated functional neuromorphic chips (which are SNN) and
neural accelerator chips (which are ANN based). Within each
NN type, the ones based on multipliers and adders (MAC)
prove to be less efficient, while ones based on analog neurons
and synapses prove to be more efficient in both speed and
energy of operation. Among those, ferroelectric devices show
higher speed and spintronic devices (especially based on ME
switching) show lower energy of operation. It is important
to stress that the conclusions relate to inference and do not
cover learning. Also, they relate to one type of NN topology
and one class of computing workloads. SNNs are especially
amenable to unsupervised learning, and this advantage is not
comprehended in the present benchmarks.
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