
SPINDLE: SPINtronic Deep Learning Engine for
Large-scale Neuromorphic Computing ∗

Shankar Ganesh Ramasubramanian, Rangharajan Venkatesan, Mrigank Sharad,
Kaushik Roy and Anand Raghunathan

School of Electrical and Computer Engineering, Purdue University
West Lafayette, IN, USA

{sramasub,rvenkate,msharad,kaushik,raghunathan}@purdue.edu

ABSTRACT
Deep Learning Networks (DLNs) are bio-inspired large-scale
neural networks that are widely used in emerging vision, an-
alytics, and search applications. The high computation and
storage requirements of DLNs have led to the exploration
of various avenues for their efficient realization. Concur-
rently, the ability of emerging post-CMOS devices to effi-
ciently mimic neurons and synapses has led to great interest
in their use for neuromorphic computing.

We describe spindle, a programmable processor for deep
learning based on spintronic devices. spindle exploits the
unique ability of spintronic devices to realize highly dense
and energy-efficient neurons and memory, which form the
fundamental building blocks of DLNs. spindle consists of
a three-tier hierarchy of processing elements to capture the
nested parallelism present in DLNs, and a two-level mem-
ory hierarchy to facilitate data reuse. It can be programmed
to execute DLNs with widely varying topologies for different
applications. spindle employs techniques to limit the over-
heads of spin-to-charge conversion, and utilizes output and
weight quantization to enhance the efficiency of spin-neurons.
We evaluate spindle using a device-to-architecture modeling
framework and a set of widely used DLN applications (hand-
writing recognition, face detection, and object recognition).
Our results indicate that spindle achieves 14.4X reduction
in energy consumption and 20.4X reduction in EDP over the
CMOS baseline under iso-area conditions.

Categories and Subject Descriptors
C.1.3 [PROCESSOR ARCHITECTURES]: Other Ar-
chitecture Styles (Neural Nets)

Keywords
Spintronics; Emerging Devices; Nanoelectronics; Post-CMOS;
Neural Networks; Neuromorphic Computing

1. INTRODUCTION
Neuromorphic algorithms, which mimic the functionality

of the human brain, are used for a wide class of applications
involving classification, recognition, search, and inference.
While the roots of neuromorphic algorithms lie in simple arti-
ficial neural networks, contemporary networks have grown to
be much larger in scale and complexity. In this work, we focus
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on deep learning networks (DLNs) [1–3], an important class
of large-scale neural networks that have shown state-of-the-
art results on a range of problems in text, image, and video
analysis. DLNs are currently used in real-world applications
such as Google+ image search, Apple Siri voice recognition,
house number recognition for Google Maps, etc. [4,5]. In or-
der to achieve high accuracy and robustness to variations in
inputs, DLNs utilize several layers with each layer consisting
of a large number of neurons and varying interconnectivity
patterns. For example, a DLN that recently won the Im-
agenet visual recognition challenge contains around 650,000
neurons and 60 million synapses, and requires compute power
in the order of 2-4 GOPS per classification. The complexity
of DLNs, together with the growth in the sizes of data sets
that they process, places high computational demands on the
platforms that execute them. Several research efforts have
been devoted to realizing efficient implementations of DLNs
using multi-core processors, graphics processing units, and
hardware accelerators [6–8]. All these approaches are limited
by one common fundamental bottleneck - in effect, they em-
ulate neuromorphic systems using primitives (instructions,
digital arithmetic units, and Boolean gates) that are inher-
ently mismatched with the constructs that they are used to
realize (neurons and synapses).

A concurrent trend that has catalyzed the field of neuro-
morphic computing is the emergence of post-CMOS devices.
Although a clear replacement for Silicon and CMOS is yet to
be found, many emerging devices have unique characteristics
and strengths that are different from CMOS. Among them,
spintronics, which uses electron spin rather than charge to
represent and process information, has attracted great inter-
est. Spintronic memories promise high density, non-volatility,
and near-zero leakage, leading to extensive research, industry
prototypes, and early commercial offerings in recent years [9].
Recently, it has been demonstrated that spintronic devices
can also be used to directly mimic the computations per-
formed in neurons and synapses while operating at very low
voltages [10, 11], leading to greatly reduced area and power
over digital and analog CMOS implementations. These ad-
vances raise the prospect of realizing large-scale neuromor-
phic systems such as DLNs in an energy-efficient manner
using spintronics. However, several challenges need to be
addressed to realize this vision.

First, a direct mapping of a DLN into a network of spin-
tronic neurons and synapses, as envisioned by previous work,
leads to a large, inefficient design, especially for DLNs of high
complexity (e.g., ∼106 neurons and ∼108 synapses). Second,
for broader utility, it is desirable to have a programmable
platform that can implement a wide range of networks of
varying complexity and topology, as required by different ap-
plications. Third, the low spin diffusion length in most ma-
terials mandates the use of charge-based interconnects, im-
posing overheads for spin⇐⇒charge conversion. Finally, the
energy consumed by spin-neurons increases drastically with
the precision at which their weights are stored and their out-
puts are computed. Therefore, careful architectural design is
required in order to preserve the intrinsic efficiency of spin-
tronic devices for large-scale neuromorphic computing.
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In this work, we propose SPINtronic Deep Learning Engine
(spindle), an energy-efficient programmable architecture for
Deep Learning Networks (DLNs). We consider various key
characteristics of DLNs and spintronic devices in the design
of spindle. Notably, DLNs exhibit multiple levels of nested
parallelism and are comprised of a few recurring computation
patterns. At the lowest level, they contain fine-grained data-
parallel computations such as convolution and sub-sampling.
These computations are in turn organized into layers, with
task parallelism within each layer and producer-consumer
parallelism across layers. DLNs exhibit significant data reuse
across computations, and exploiting this reuse is critical to
reducing off-chip memory accesses, as well as limiting the
on-chip storage requirements. Considering these character-
istics, we propose a hierarchical three-tiered architecture for
spindle, consisting of Spin Neuromorphic Arrays (SNAs),
Spin Neuromorphic Cores (SNCs) and SNC Clusters. spin-
dle uses a two-level memory hierarchy, consisting of on-chip
distributed scratchpad memories that are local to SNCs, and
shared off-chip memory. We propose various techniques to
enhance the efficiency of spindle, including intra- and inter-
layer data reuse, and neuron output and weight quantiza-
tion. We evaluate spindle using a hierarchical modeling
framework, starting with physics-based device simulation,
and constructing circuit and architectural macro-models of
spin-based neurons and memories. We compare spindle to a
well-optimized CMOS baseline using three popular DLN ap-
plications - handwriting recognition, face detection, and ob-
ject recognition. Our analysis shows that spindle achieves
14.4X reduction in energy and 20.4X reduction in energy-
delay product under iso-area, establishing the potential of
spintronic devices for large-scale neuromorphic computing.

The rest of the paper is organized as follows. Section 2 pro-
vides the necessary background on DLNs. Section 3 presents
the design of spin-based neurons and memory, which form the
building blocks of spindle. Section 4 describes the spindle
architecture and the techniques used to improve its energy
efficiency. Section 5 details the experimental setup includ-
ing our device-to-architecture modeling framework. Section
6 presents results comparing spindle with a CMOS baseline.
Section 7 provides an overview of prior efforts on hardware
for neuromorphic computing, and Section 8 concludes the
paper.

2. DEEP LEARNING NETWORKS
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Figure 1: Structure of a DLN

DLNs (Fig. 1) are feed-forward neural networks in which
the neurons are organized into well-defined layers. Each layer
is composed of multiple features that can be generated in
parallel from features of the previous layer using one of two
kinds of operations: (i) Convolution-and-Thresholding and
(ii) Subsampling-and-Thresholding.
Convolution-and-Thresholding (C-T): A C-T operation
takes i features from the input layer (i ≤ N where N is the
number of features in the input layer), and produces one fea-
ture in the output layer. First, a kernel (matrix of weights)
is convolved with each input feature (convolution involves

computing dot-product of the kernel with regions of the in-
put feature in a sliding window fashion), and the results are
summed up to produce an intermediate output. A bias value
is then added and a thresholding operation, also known as
an activation function (typically tanh or sigmoid) is applied
to produce a feature of the output layer. This process is re-
peated M times, where M is the number of features in the
output layer.
Subsampling-and-Thresholding (S-T): Subsampling takes
one input feature and produces one output feature in which
each value of an output feature is produced by first com-
puting the average of the neighboring values over a sliding
window, adding a bias, and then performing a thresholding
operation.

The connectivity between layers falls into two categories:
(i) partially connected layers where each feature is connected
to a subset of features from the previous layer (ii) fully con-
nected layers where each feature is connected to all features
in the previous layer. Note that DLNs contain three levels
of parallelism - producer-consumer parallelism across layers,
task parallelism within a layer, and fine-grained data paral-
lelism within each C-T or S-T operation. Furthermore there
exists significant data reuse across and within these opera-
tions.

The computational complexity of a DLN is determined by
the number of layers, the number and sizes of network in-
puts and features in each layer, connectivity between layers,
and kernel sizes. For example, CIFAR, an image classifica-
tion DLN, takes an input of size 3x32x32, and has 685 fea-
tures spread across 6 layers, requiring 3.77 million multiply-
accumulate computations per classification. DLNs are also
memory-intensive. For example, CIFAR requires memory
accesses amounting to 7.5 MB per input.

3. SPINDLE BUILDING BLOCKS
The fundamental building blocks of spindle are spintronic

neurons and memory. In this section, we provide a brief
description of their structure and operation.

3.1 Spin-Neurons
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Figure 2: Array of spin-neurons

Fig. 2 shows an array of M spin-neurons that take N in-
puts each. The spin-neuron array consists of (i) Deep Triode
Current Source Digital-to-Analog Converters (DTCS-DACs)
that convert the N digital inputs (IN1 . . . INN ) into analog
currents, (ii) a resistive crossbar array (N x M) that is used
to perform weighted summation of the neuron inputs, and
(iii) enhanced Successive Approximation Register Analog-to-
Digital Converters (SAR-ADCs) that evaluate the activation
function and produce the M digital outputs. Although the
proposed design utilizes transistors and memristive elements,
the spintronic comparator unit in the SAR-ADC is key to the
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energy-efficiency of the entire neuron since it enables opera-
tion at very low voltages (∼10s of mV).
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Figure 3: Enhanced spin-based SAR-ADC
The enhanced spin-based SAR-ADC is described in greater

detail in Figure 3. The input current (IC) is received from
one of the columns of the resistive crossbar array. The SAR-
ADC consists of a successive approximation register (SAR),
a lookup table that stores the inverse of the desired neuron
activation function, a DTCS-DAC, a spin-based comparator
that is based on a lateral spin valve [12], and control logic.
The SAR-ADC successively computes the quantized digital
neuron output over i cycles where i is the desired precision.
In each cycle, it generates a bias current (Ibias) using an in-
verse activation function lookup based on the current SAR
value, compares Ibias against the input current IC , and up-
dates one bit of the SAR with the output of the compara-
tor. The spin-based comparator consists of two fixed mag-
nets (M1 and M2) of opposite spin-polarizations and a free
magnet (M3) that are all connected to a metallic channel.
The free magnet M3 is combined with a fixed magnet (M4)
and a tunneling barrier to form a magnetic tunnel junction
(MTJ). The comparison is performed by passing Ibias and IC
through magnets M1 and M2, respectively, resulting in the
injection of spin currents of opposing polarity into the chan-
nel (CL). This spin-current injection results in the switching
of M3 (the free layer of the MTJ) along a direction given by
the greater of Ic or Ibias. The output of the comparison is
determined by sensing the resistance of the MTJ, much like
the read operation in STT-MRAM. Since the magnets and
the channels are metallic, the comparator can be operated at
very low voltages of the order of 10s of millivolts.

The resistive crossbar array stores weights in the memris-
tors that are located at its cross-points. A memristor storing
a k-bit weight needs to support 2k resistance levels. The
memristors can be programmed to different resistance values
using current pulses. The number of current pulses required
to program the memristor depends on the number of resis-
tance levels. Hence, the programming energy varies exponen-
tially with the precision of weights stored in the memristor.
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Figure 4: Staircase approximations of tanh()
The enhanced SAR-ADC described in Figure 3 can be used

to perform a multi-bit staircase approximation of various ac-
tivation functions. An example of successive approximation
for tanh() is shown in Fig. 4 for different bit-precisions. The
1-bit approximation leads to the step function and as we in-
crease the number of bits the staircase approximation more
closely approximates the actual function. However, in order
to get a n-bit approximation, we need to repeat the SAR-
ADC computation ‘n’ times with an exponentially increasing
bias current. This increases the energy and latency for high
precision computations.

The cross-bar based spin-neuron performs a 120-input weighted
summation ∼117X and ∼60X more energy efficiently as com-
pared to state-of-the-art digital and analog CMOS (45 nm)
implementations, respectively [10, 11]. The energy efficiency
of the spin-neuron derives from two primary sources: (i)
very low voltages compared to analog and digital CMOS im-
plementations, and (ii) much lower circuit complexity (de-
vice count) compared to digital implementations that uti-
lize adders and multipliers. Finally, we believe that the pro-
posed design should be feasible from an integration perspec-
tive, since both spintronic and memristive devices have been
shown to be compatible with current CMOS fabrication pro-
cesses.

3.2 Spin Memory
Spintronic memories achieve high density and very low

leakage, but require higher write energy compared to CMOS
memories. In this work, we utilize a memory bit-cell based on
Domain Wall Memory (DWM) [13] that preserves the den-
sity and leakage benefits of spintronic memories while sig-
nificantly reducing the high write energy requirements. The
schematic of the utilized bit-cell, which we call 1bitDWM,
is shown in Fig. 5. It consists of a ferromagnetic wire, a
magnetic tunneling junction (MTJ) and 2 access transistors.

RWL T1 
WWL 

T2 

BL 

SL 

MTJ 

Figure 5: Schematic of spin
memory bit-cell [13]

The ferromagnetic wire
consists of 3 domains
– two fixed and one
free. When the mag-
netic orientation of the
free domain is parallel
(anti-parallel) to the
fixed layer of the MTJ,
it offers low (high) re-
sistance, representing
the ‘0’ (‘1’) state. The read operation is performed by sens-
ing this difference in resistance, similar to conventional STT-
MRAM. However, the write operation uses a completely dif-
ferent mechanism based on the phenomenon of domain wall
motion. The magnetization of the fixed domains in the left
and right ends of the nanowire can be propagated to the
free domain by applying a current along the nanowire [13].
The shift-based write mechanism is far more efficient than
the MTJ-based writes used in STT-MRAM. The area of the
1bitDWM bit-cell is comparable to a 1T-1R STT-MRAM
bit-cell, despite the former using two access transistors, due
to the smaller transistor sizes required for 1bitDWM as a
result of the lower write current requirement. In summary,
1bitDWM outperforms both SRAM and STT-MRAM [13];
therefore, we use it to design on-chip memories in spindle.

4. SPINDLE ARCHITECTURE
In this section we describe the spindle architecture, which

composes spin-neurons and memories to provide a programmable
platform for the execution of DLNs.

The spindle architecture, shown in Figure 6, employs a
three-level hierarchy to match the nested parallelism present
in DLNs. Spin Neuron Arrays (SNAs) constitute the low-
est level of the hierarchy, and combine the spin-neurons de-
scribed in Section 3.2 with peripheral circuitry to realize
convolution-and-thresholding or subsampling-and-thresholding
operations. SNCs, which represent the second level of the hi-
erarchy, are composed of multiple SNAs, local scratchpad
memory, and a dispatch unit. They are typically used to
perform a collection of operations that share input features
(hence, fostering data re-use from the scratchpad). SNC
Clusters form the next level of the hierarchy and consist of
multiple SNCs connected by a local bus, and further exploit
intra-layer parallelism. spindle is a collection of SNC clus-
ters connected to a Global Control Unit through a common
global bus. Inter-layer parallelism is exploited at the top level
of the spindle hierarchy.

When the degree of parallelism in the DLN exceeds that
supported by spindle, the DLN can be decomposed into par-
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titions that are executed in a serial manner, with interme-
diate results stored in the memory hierarchy. This allows
spindle to execute a wide range of DLNs and makes the
architecture scalable and programmable.

The components of spindle are described in greater detail
in the following subsections.
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Figure 6: spindle architecture

4.1 Spin Neuron Arrays
An SNA performs the smallest unit of computation, namely

a convolution or subsampling followed by thresholding. It is
fed with the required input features in a streaming manner
and produces an output feature. As shown in Figure 6, each
SNA consists of a set of spin-neurons (Fig. 2), an input se-
lector unit and a memristor programming circuit.

The dispatch unit within each SNC streams the input fea-
tures required by all SNAs. The input selector unit in each
SNA selects the subset of inputs that SNA uses, and feeds this
data to the spin-neurons. The spin-neurons accept the inputs
offered by the input selector unit, and perform weighted sum-
mations with the kernel (weight matrix) stored in the mem-
ristors. Each spin-neuron (column of the crossbar) produces
one element of the output feature. The complete output
feature is obtained over multiple cycles. The memristor pro-
gramming circuit consists of row and column drivers. The
drivers select a memristor located at a particular row and
column (analogous to the decode circuits in RAM), and drive
the appropriate current to program the memristor.

A key property of the SNA design is that all the neurons
in the array share the same inputs and execute in parallel.
This results in substantially lower control overheads, since
these overheads are amortized across all spin-neurons. In
addition, the computations that produce adjacent elements
in an output feature share a large fraction of their inputs,
and the crossbar structure is naturally suited for exploiting
this fine-grained data reuse. However, each column requires
only a subset of the inputs, and the memristor weights for
the unused inputs are set to 0. Thus, increasing the data
reuse by increasing the number of columns results in a larger
fraction of the memristors being programmed to 0, leading to
lower energy efficiency. We determine the number of columns
in each SNA of spindle by balancing the benefits of data
reuse against the overheads of programming zero weights to
memristors.

4.2 Spin Neuromorphic Cores
SNCs consist of a group of SNAs, local scratchpad memory,

and a dispatch unit. Each SNC executes a set of convolution

or sub-sampling operations from within a layer, while exploit-
ing any available input feature re-use across these operations.

The scratchpad memory forms the highest level of the
memory hierarchy and stores the input features used by the
SNAs in the SNC as well as the output features that they gen-
erate. As described in Section 3.2, we utilize 1bitDWM for
designing the scratchpad memory in spindle. The dispatch
unit performs three key functions. First, it reads all the input
features stored in scratchpad memory and broadcasts them
to all SNAs. The input selector in each SNA is programmed
to select a subset of input features based on the connectiv-
ity of the layer being evaluated. This enables all SNAs in
an SNC to perform their respective convolution or subsam-
pling computations in a parallel lock-step fashion. This de-
sign choice amortizes control overheads across the SNAs, and
enables data reuse across SNAs so that the read traffic to the
scratchpad is minimized. Second, the dispatch unit controls
the memristor programming circuitry, and supplies weights
from the scratchpad memory to each SNA. Finally, the dis-
patch unit manages communication with the Global Control
Unit (GCU).

As described in Section 3.1, the output precision and the
number of memristor levels strongly influence the energy ex-
pended by SNAs. Therefore, each SNC has suitable tuning
knobs to control the output precision by varying the number
of successive approximations in the SAR-ADC, and the pre-
cision of memristor programming. Fig. 4.2(a) shows the in-
crease in energy required to program a memristor at increas-
ing levels of precision, and Fig. 4.2(b) compares the energy
consumption of a spin-neuron to a digital CMOS neuron for
various values of output precision. The figures show that it
is highly desirable to operate spin-neurons at the lowest pos-
sible precision in order to achieve higher energy efficiency.
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However, excessively re-
ducing the precision of weights
and outputs can lead to a
reduction in output quality
for the network. There-
fore, it is necessary to de-
termine the lowest weight
and neuron output precisions
that lead to acceptable out-
put quality. For example,
Fig. 8 shows the impact of
weight and output quantiza-
tion on the classification ac-
curacy loss for the object de-
tection benchmark (CIFAR). For this benchmark, we choose
a weight precision of 7 bits and output precision of 4 bits,
since they result in negligible impact on the output accuracy.

4.3 SNC Cluster and Global Control Unit
The SNC Cluster consists of a group of SNCs that are con-

nected through a high bandwidth and low-latency local bus.
SNC clusters also exploit intra-layer parallelism by generat-
ing different features of the same layer in parallel. The hier-
archical bus architecture, if combined with a locality-aware
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mapping of the network to spindle, has a potential to reduce
traffic on the high-energy global bus and off-chip memory
accesses. The Global Control Unit (GCU) orchestrates the
overall execution of the DLN by triggering the execution of
parts of the network on each SNC cluster, and the transfer of
data between SNC Clusters, and to/from off-chip memory.

5. EXPERIMENTAL METHODOLOGY
In this section, we provide a description of the experimental

methodology used to evaluate spindle.

5.1 Modeling Framework
spindle varies from a traditional CMOS architecture in

that it is composed of disparate technologies namely spin-
neurons, spin memory and CMOS. We model each of these
technologies across multiple levels of abstraction using the
framework shown in Fig. 10.
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Figure 10: Modeling framework

At the device level, we model spin devices using a physics-
based modeling framework [11] that incorporates the effects
of variations in order to extract key energy and timing param-
eters. We model the dynamics of current-induced magnetic
switching including the variations caused by thermal noise
using Stochastic Landau-Lifshitz-Gilbert equation (LLG), while
the transport of spin-current across magnetic devices is mod-
eled using diffusive spin-transport. Parameter variations amount-
ing to 3σ of 15% were considered in critical magnet param-
eters like saturation magnetization and damping coefficient,
and also in the DTCS transistor threshold voltage. We note
that the use of hard-axis switching significantly reduces the
dependence of switching current on magnet parameters, as
a small amount of positive or negative current (greater than
thermal noise) can ensure correct switching operation.

At the circuit level, the spintronic devices are abstracted
using behaviorally equivalent SPICE models [14]. Similarly,
a circuit model for memristors is obtained using the Ag-Si
memristor device parameters from [15]. We combine the
SPICE models of spin devices, memristors and CMOS tran-

sistors to form a circuit model for spin-neurons. We use this
circuit model to characterize SNAs.

In order to model spin memories, we evaluate the bit-cells
using SPICE models and use a variant of CACTI [16] called
DWM-CACTI [13,17] to evaluate memory array characteris-
tics. We use CACTI [16] to model the CMOS memories in
the baseline design. The energy and timing for the control
logic in spindle as well as the entire CMOS baseline are ob-
tained by synthesizing RTL implementations using Synopsys
Design Compiler to the 45nm NangateOpenCell FreePDK
library.

The DLN networks for various benchmarks are built and
trained on the Torch framework [18]. We train the applica-
tion using the training input set and evaluate the application
level accuracy using an independent testing input set. We
then quantize the weights and activation function to a lower
precision and retrain the application until quality bounds (<
1.5% loss in accuracy compared to the original network) are
met. The quantized DLNs are executed on the spindle ar-
chitectural simulator to obtain their execution traces. These
traces are analyzed with the appropriate energy and perfor-
mance models for the components of spindle to compute the
application level energy and Energy-Delay-Product (EDP).

5.2 DLN Benchmarks
To evaluate the benefits of spindle, we use 3 representative

DLN benchmarks: (i) handwriting recognition on the MNIST
database [1], (ii) face detection, and (iii) object classification
on the CIFAR-10 dataset [19]. Relevant details of these three
benchmarks are given in Table 1.

Table 1: Benchmark characteristics
Benchmark #Layers #Features #MACs Data Transfers

(million) (KB)
MNIST 6 165 0.3 1456
CIFAR 6 685 3.77 7540
Face

Detection 4 83 0.14 176

6. EXPERIMENTAL RESULTS
In this section we first present a summary of the results

demonstrating the benefits of the spindle architecture com-
pared to the CMOS baseline. We then perform a design
space exploration to study the sensitivity of these benefits to
various architectural parameters.

6.1 Result Summary
We evaluate the benefits provided by spindle against the

CMOS baseline described in Section 5.1 under iso-area condi-
tions. Note that, for the same number of processing elements,
spindle achieves considerable area improvements over the
CMOS baseline. In order to perform an iso-area comparison,
we consider two different designs: (i) spindle-ScaleUp, in
which we reinvest the area benefits by increasing the number
of SNC Clusters, and (ii) spindle-DSE, in which we per-
form a design space exploration to determine the best con-
figuration of spindle that uses the same area as the CMOS
baseline.

The energy benefits for each of our benchmarks are shown
in Fig. 9. Our results show that spindle-ScaleUp can achieve
12.6X lower energy and 15.5X lower EDP compared to the
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CMOS baseline. This demonstrates that the spindle archi-
tecture largely preserves the intrinsic benefits of spintronic
neurons and memory. spindle-DSE further improves the
benefits and achieves 14.4X energy and 20.4X EDP improve-
ments, underscoring the value of architectural design space
exploration.

6.2 Design Space Exploration
In this section, we study the impact of varying the architec-

tural parameters of spindle on its energy and performance.
Impact of local memory per SNC: Varying the local
memory per SNC results in an initial sharp decrease in overall
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Figure 11: Effect of varying
the local memory (MNIST)

system energy fol-
lowed by a gradual
increase as shown in
Fig. 11. Ini-
tially, the increase
in local memory en-
ables us to exploit
the data reuse in-
herent in DLNs, re-
sulting in fewer off-
chip memory trans-
actions, and leading
to significant energy
savings. Further, this also reduces the idle time of the SNAs
resulting in improved performance. However, once all of the
input features fit in the local memory, any further increase
only results in costlier reads and writes to local memory, and
higher leakage energy without reducing the execution time.
This results in the gradual increase in total energy.
Impact of SNAs per SNC: Increasing the number of SNAs
per SNC exploits greater inter-feature parallelism resulting in
more
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Figure 12: Effect of varying
the SNAs/SNC (Face detec-
tion)

output features being
computed in parallel in
each SNC. However, it
can also potentially re-
sult in memory starva-
tion, leading to longer
execution times, since
each new SNA may
require additional fea-
tures as inputs. Thus,
an increase in the num-
ber of SNAs/SNC re-
sults in faster execution
time up to a point, beyond which the system slows down as
shown in Fig. 12.

In summary, our results show that it is possible to achieve
order-of-magnitude improvements in energy efficiency for large-
scale neuromorphic computing with spintronic devices. The
spindle architecture balances efficiency and flexibility, by
preserving the intrinsic benefits of spin devices to a large ex-
tent, while allowing for programmability across networks of
varying sizes and topologies.

7. RELATED WORK
There have been several efforts to realize neuromorphic

algorithms using custom accelerators [7,8] and graphics pro-
cessors [6]. In addition, there have been efforts to more faith-
fully mimic biological neurons in CMOS circuits to achieve
greater computational capability and efficiency [20, 21]. The
analog nature of biological neurons has also prompted efforts
to realize neuromorphic algorithms using CMOS analog cir-
cuits [22]. Despite these efforts, the size and power consump-
tion of CMOS implementations remains a major challenge.

In recent years there have been efforts to use emerging
technologies such as PCRAM [23], memristors [24], and spin-
tronics [10] to realize neurons and synapses. Preliminary
investigations of these technologies at the device level have
shown that they are highly promising for realizing the fun-

damental building blocks of neuromorphic computing. In
particular, PCRAM and memristors enable dense, crossbar
memory designs that can store the weights compactly. Spin-
based devices can match the basic computation patterns in
neuromorphic algorithms while enabling very low-voltage op-
eration [10].

While the above efforts have shown that emerging devices
are promising for neuromorphic computing, they are primar-
ily at the device level and form the motivation for our work,
which focuses on the design of a large-scale, programmable
hardware architecture based on these building blocks.

8. CONCLUSION
Spintronic devices have emerged as a promising technology

that can realize the building blocks of neuromorphic comput-
ing platforms. To investigate their potential for large-scale
neuromorphic systems, we propose spindle, a programmable
spintronic processor for deep learning networks. The design
of spindle was driven by considering application and device
characteristics, and aimed to balance the objectives of en-
ergy efficiency and programmability. Our evaluations using a
device-to-architecture modeling framework demonstrate over
an order-of-magnitude energy benefits over a CMOS baseline.
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