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ABSTRACT

Historically, memory technologies have been evaluated based on their storage density, cost, and latencies. Beyond these metrics, the need to
enable smarter and intelligent computing platforms at a low area and energy cost has brought forth interesting avenues for exploiting non-
volatile memory (NVM) technologies. In this paper, we focus on non-volatile memory technologies and their applications to bio-inspired
neuromorphic computing, enabling spike-based machine intelligence. Spiking neural networks (SNNs) based on discrete neuronal “action
potentials” are not only bio-fidel but also an attractive candidate to achieve energy-efficiency, as compared to state-of-the-art continuous-
valued neural networks. NVMs offer promise for implementing both area- and energy-efficient SNN compute fabrics at almost all levels of
hierarchy including devices, circuits, architecture, and algorithms. The intrinsic device physics of NVMs can be leveraged to emulate dynam-
ics of individual neurons and synapses. These devices can be connected in a dense crossbar-like circuit, enabling in-memory, highly parallel
dot-product computations required for neural networks. Architecturally, such crossbars can be connected in a distributed manner, bringing
in additional system-level parallelism, a radical departure from the conventional von-Neumann architecture. Finally, cross-layer optimization
across underlying NVM based hardware and learning algorithms can be exploited for resilience in learning and mitigating hardware inaccu-
racies. The manuscript starts by introducing both neuromorphic computing requirements and non-volatile memory technologies.
Subsequently, we not only provide a review of key works but also carefully scrutinize the challenges and opportunities with respect to various
NVM technologies at different levels of abstraction from devices-to-circuit-to-architecture and co-design of hardware and algorithm.
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I. INTRODUCTION

The human brain remains a vast mystery and continues to baffle
researchers from various fields alike. It has intrigued neuroscientists by
its underlying neural circuits and topology of brain networks that
result in vastly diverse cognitive and decision-making functionalities
as a whole. Equivalently, computer engineers have been fascinated by
the energy-efficiency of the biological brain in comparison to the state-
of-the-art silicon computing solutions. For example, the Bluegene
supercomputer1 consumed mega-watts of power2 for simulating the
activity of cat’s brain.3 This is in contrast to�20 W of power account-
ing for much more complex tasks including cognition, control, move-
ment, and decision making, being rendered simultaneously by the
brain. The massive connectivity of the brain fueling its cognitive abili-
ties and the unprecedented energy-efficiency makes it by far the most
remarkable known intelligent system. It is, therefore, not surprising
that in the quest to achieve “brain-like cognitive abilities with brain-
like energy-efficiency,” researchers have tried building Neuromorphic
Systems closely inspired by the biological brain (refer Fig. 1). Worth
noting is the fact that neuromorphic computing not only aims at
attaining the energy-efficiency of the brain but also encompasses
attempts to mimic its rich functional principles such as cognition,

efficient spike-based information passing, robustness, and adaptability.
Interestingly, both the brain’s cognitive ability and its energy-
efficiency stem from basic computation and storage primitives called
neurons and synapses, respectively.

Networks comprising artificial neurons and synapses have, there-
fore, been historically explored for solving various intelligent problems.
Over the years, neural networks have evolved significantly and are
usually categorized based on the characteristic neural transfer function
as first, second, and third generation networks.4 As shown in Fig. 2,
the first generation neurons, called as perceptrons,4 had a step function
response to the neuronal inputs. The step perceptrons, however, were
not scalable to deeper layers and were extended to Multi-Layer
Perceptrons (MLPs) using non-linear functional units.5 This is alluded
to as the second generation neurons based on a continuous neuronal
output with non-linear characteristic functions such as sigmoid5 and
ReLU (Rectified Linear Unit).6 Deep Learning Networks (DLNs) as we
know it today are based on such second generation neural networks.
The present revolution in artificial intelligence is being currently fueled
by such DLNs using global learning algorithms based on the gradient
descent rule.7 Deep learning has been used for myriad of applications
including classification, recognition, prediction, cognition, and deci-
sion making with unprecedented success.8 However, a major require-
ment to achieve the vision of intelligence everywhere is to enable
energy-efficient computing much beyond the existing Deep learning
solutions. Toward that end, it is expected that networks of spiking neu-
rons hold promise for building an energy-efficient alternative to tradi-
tional DLNs. Spiking neural networks (SNNs)—the third generation
of neural networks—are based on the bio-plausible neural behavior
and communicate through discrete spikes as opposed to the continu-
ous valued signal of DLNs. Note that for this paper, we refer the sec-
ond generation networks as DLNs and the third generation spiking
networks as SNNs.

FIG. 1. Neuromorphic computing as a brain-inspired paradigm to achieve cognitive ability and energy-efficiency of the biological brain. “Hardware” and “Algorithms” form the
two key aspects for neuromorphic systems. As shown in the right hand side, a generic neuromorphic chip consists of several “Neuro-Cores” interconnected through the
address event representation (AER) based network-on-chip (NOC). Neuro-Cores consist of arrays of synapses and neurons at the periphery. Non-volatile technologies
including PCM, RRAM, MRAM, and FG devices have been used to mimic neurons and synapses at various levels of bio-fidelity.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 021308 (2020); doi: 10.1063/1.5113536 7, 021308-2

Published under license by AIP Publishing

https://scitation.org/journal/are


FIG. 2. Three generations of neural networks. First generation (Gen-I) of networks used step transfer functions and were not scalable, and second generation (Gen-II) uses transfer functions
such as Rectified Linear Unit (ReLU) that has fueled today’s deep learning networks. The third generation (Gen-III) uses spiking neurons resembling the neural activity of their biological coun-
terparts. The three components of an SNN are (1) neurons, (2) synapses, and (3) learning. (1) Neurons: three broad classes of spiking neurons that researchers attempt to mimic using NVMs
are Leaky-Integrate-Fire (LIF), Integrate-Fire (IF), and Stochastic Neurons. (2) Synapses: the key attributes needed for a particular device to function as a synapse are its ability to map synaptic
efficacy (wherein a synaptic weight modulates the strength of the neuronal signal) and that they can perform multiplication and dot-product operations. (3) Learning: as shown in the figure,
learning can be achieved either through supervised or unsupervised algorithms. From an NVM perspective, various NVM technologies are being used to mimic neuronal and synaptic function-
alities with appropriate learning capabilities. At an architectural level, arrays of such NVMs are connected through the network-on-chip to enable seamless integration of a large neural network.
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From the energy-efficiency perspective, SNNs have two key
advantages. First, the fact that neurons exchange information through
discrete spikes is explicitly utilized in hardware systems to enable
energy-efficient event-driven computations. By event-driveness, it is
implied that only those units in the hardware system are active, which
have received a spike, and all other units remain idle reducing the
energy expenditure. Second, such an event-driven scheme also enables
Address Event Representation (AER).9 AER is an asynchronous com-
munication scheme, wherein the sender transmits its address on the
system bus and the receiver regenerates the spikes based on the
addresses it receives through the system bus. Thereby, instead of trans-
mitting and receiving the actual data, event addresses are exchanged
between the sender and the receiver, leading to energy-efficient trans-
fer of information.

In addition to emulation of neuro-synaptic dynamics and use of
event-driven hardware, two notable developments, namely, (1) the
emergence of various non-volatile technologies and (2) the focus on
learning algorithms for networks of spiking neurons, have accelerated
the efforts in driving neural network hardware closer toward achieving
both energy-efficiency and improved cognitive abilities. Non-volatile
technologies have facilitated area- and energy-efficient implementa-
tions of neuromorphic systems. As we will see in Sec. III of the manu-
script, these devices are of particular interest since they are governed
by intrinsic physics that can be mapped directly to certain aspects of
biological neurons and synapses. This implies that instead of using
multiple transistors to imitate neuronal and synaptic behavior, in
many cases, a single non-volatile device can be used as a neuron or a
synapse with various degrees of bio-fidelity. In addition, a major bene-
factor for non-volatile memory (NVM) technologies is that they can
be arranged in dense crossbars of synaptic arrays with neurons at the
periphery. This is of immense importance since the co-locations of
compute (neuronal primitives) and storage (synaptic primitives) are
inherent characteristics that make the biological brain so effective.
Note that this closely intertwined fabric of compute and storage is con-
spicuously different from state-of-the-art computing systems that rely
on the well-known von-Neumann model with segregated compute
and storage units. Additionally, learning algorithms for networks of
spiking neurons has recently attracted considerable research focus. For
this paper, we would define neuromorphic computing as SNN based
neural networks, associated learning algorithms, and their hardware
implementations.

In this paper, we focus on non-volatile technologies and their
applications to neuromorphic computing. With reference to Fig. 2, we
start in Sec. II by first describing the generic neural and synaptic
behavioral characteristics that are in general emulated through non-
volatile devices. Subsequently, in Sec. III, we describe learning strate-
gies for SNNs and associated topologies. With the knowledge of basic
neuro-synaptic behavior and learning methodologies, Sec. IV presents
non-volatile memories as the building block for neuromorphic sys-
tems. Finally, before concluding, we highlight on future prospects and
key areas of research that can further the cause of neuromorphic hard-
ware by exploiting non-volatile technologies.

II. GENERIC NEURO-SYNAPTIC BEHAVIORAL AND
LEARNING REQUIREMENTS

One of the key advantages of non-volatile technologies is that
their intrinsic device characteristics can be leveraged to map certain

aspects of biological neurons and synapses. Let us highlight few repre-
sentative behaviors for both neurons and synapses that form the basic
set of neuro-synaptic dynamics usually replicated through non-volatile
devices.

A. Neurons

Neural interactions are time varying electro-chemical dynamics
that gives rise to brain’s diverse functionalities. These dynamical
behaviors in turn are governed by voltage dependent opening and
closing of various charge pumps that are selective to specific ions such
as Naþ and Kþ.10,11 In general, a neuron maintains a resting potential,
across its cell membrane by maintaining a constant charge gradient.
Incoming spikes to a neuron lead to an increase in its membrane
potential in a leaky-integrate manner until the potential crosses a cer-
tain threshold after which the neuron emits a spike and remains non-
responsive for a certain period of time called as the refractory period. A
typical spike (or action potential) is shown in Fig. 3 highlighting the
specific movements of charged ions through the cell membrane.
Additionally, it has been known that the firing activity of neurons is
stochastic in nature.12,13

Having known the generic qualitative nature of neural function-
ality, it is obvious that a resulting model, describing the intricacies of a
biological neuron, would consist of complex dynamical equations. In
fact, detailed mathematical models such as Hodgkin–Huxley model14

and spike response model have been developed, which closely match
the behavior of biological neurons. However, implementing such mod-
els in hardware turns out to be a complex task. As such, hardware
implementations mostly focus on simplified neuronal models, such as
Leaky-Integrate-Fire (LIF) model15–17 shown in Fig. 3. Consequently,
the diverse works on mimicking neurons using non-volatile technolo-
gies can be categorized into three genres—(1) the Leaky-Integrate-Fire
(LIF) neurons, (2) the Integrate-Fire (IF) neurons, and (3) Stochastic-
Firing (s-F) neurons. Figure 2 graphically represents the typical neural
behavior for each type of neuron, while Fig. 3(c) presents a Venn-
diagram highlighting various works based on non-volatile technologies
and the corresponding neural behavior that they are based on.

• Leaky-Integrate-Fire (LIF) neurons: The membrane potential of
an LIF neuron is incremented at every instance when the neuron
receives an input spike. In the interval between two spikes, the
neuron potential slowly leaks, resulting in the typical leaky-
integrate behavior shown in Fig. 2. If the neuron receives suffi-
cient input spikes, its membrane potential crosses a certain
threshold, eventually allowing the neuron to emit an output
spike.

• Integrate-Fire (IF) neurons: The IF neuron is a simplified version
of the LIF neuron without the leaky behavior. Essentially, an IF
neuron increments its membrane potential at every spike main-
taining its potential at a constant value between two spikes, as
shown in Fig. 2. IF neurons fire when the accumulated mem-
brane potential crosses a pre-defined threshold.

• Stochastic-Firing neurons: In contrast to deterministic neurons
that fire whenever the neuron crosses its threshold, a stochastic
firing neuron fires with a probability, which is proportional to its
membrane potential. In other words, for a stochastic neuron, an
output spike is emitted with a certain probability, which is a
function of the instantaneous membrane potential. In its simplest
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form, a stochastic firing behavior can be modeled by a firing
probability, which increases with the input stimulus. However,
stochasticity can also be combined with LIF and IF neurons, such
that once the neuron crosses the threshold, it only emits a spike
based on a probabilistic function.

LIF neurons are most widely used in the domain of SNNs. The
leaky nature of LIF neurons renders a regularizing effect on their firing
rates. This can help particularly for frequency based adaptation mech-
anisms that we will discuss in the next section.18 IF neurons are typi-
cally used in supervised learning algorithms. In these algorithms, the
learning mechanism does not have temporal significance, and hence,
temporal regularization is not required. Stochastic neurons, on the
other hand, have a different computing principle. Due to the probabil-
istic nature of firing, it can also act as a regularizer and also lead to bet-
ter generalization behavior in neural networks. All the aforementioned
neurons can leverage the inherent device physics in NVM devices for
efficient hardware implementation.

B. Synapses

Information in biological systems is governed by transmission of
electrical pulses between adjacent neurons through connecting bridges,
commonly known as synapses. Synaptic efficacy, representing the
strength of connection through an internal variable, is the basic crite-
rion for any device to work as an artificial synapse. Neuro-chemical
changes can induce plasticity in synapses by permanently

manipulating the release of neurotransmitters and controlling the
responsiveness of the cells to them. Such plasticity is believed to be the
fundamental basis of learning and memory in the biological brain.
From the neuromorphic perspective, synaptic learning strategies can
be broadly classified into two major classes: (1) unsupervised learning
and (2) supervised learning.

1. Unsupervised learning

Unsupervised learning is a class of learning algorithms associated
with self-organization of weights without the access to labeled data. In
the context of hardware implementations, unsupervised learning
relates to biologically inspired localized learning rules where the weight
updates in the synapses depend solely on the activities of the neurons
on its either ends. Unsupervised learning in spike-based systems can
be broadly classified into (i) Spike Timing Dependent Plasticity
(STDP) and (ii) frequency dependent plasticity.

Spike timing dependent plasticity (STDP), shown in Fig. 4, is a
learning rule, which strengthens or weakens the synaptic weight based
on the relative timing between the activities of the connected neurons.
This kind of learning was first experimentally observed in rat’s hippo-
campal glutamatergic synapses.19 It involves both long-term potentia-
tion (LTP),20 which signifies the increase in the synaptic weight2þ, and
long-term depression (LTD), which signifies a reduction in the synap-
tic weight. LTP is realized through STDP when the post-synaptic neu-
ron fires after the pre-synaptic activity, whereas LTD results from an

FIG. 3. (a) The biological neuron and a typical spiking event. Various ions and the role they play in producing the spiking event are shown. (b) A simplified neural computing
model highlighting the flow of information from the input of neurons to the output. Spikes from various pre-neurons are multiplied by the corresponding weights and added
together before being applied as an input to the neuron. The neuron shows a typical leaky-integrate behavior unless its membrane potential crosses a certain threshold, leading
to emission of a spike. (c) The LIF differential equation.
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acausal spiking between the pre-synaptic and post-synaptic neurons,
wherein the post-synaptic neuron fires before the pre-synaptic neuron.

Mathematically, the relative change in synaptic strength is depen-
dent on the timing difference of the post-synaptic and pre-synaptic
spikes as

dwðDtÞ ¼ Aþ expð�Dt=sþÞ if Dt > 0; (1)

¼ A� expðDt=s�Þ if Dt < 0: (2)

Here, Aþ, A�, sþ; s� are the amplification coefficients and time-
constants, respectively, and Dt is defined as the difference between the
pre-synaptic and post-synaptic firing instants. STDP has been widely
adopted in not only computational neuroscience but also neuromor-
phic systems as the de facto unsupervised learning rule for pattern
detection and recognition.

In conjunction to long-term modification of synaptic weights,
the physiology of synapses induces yet another type of learning, i.e.,
frequency dependent plasticity, dependent on the activity of the pre-
synaptic potential.21,22 Activity-dependent learning can induce two
types of changes in the synaptic strength. The change occurring over a
short timescale (hundreds of milliseconds in biological systems) is
known as Short-Term Plasticity (STP), while the long-term effects are
a form of LTP that can last between hours to years. In general, at a
given instance, a pre-synaptic activity induces STP; however, when the
pre-synaptic activity reduces, the synaptic efficacy is reverted back to
its original state. Repeated stimuli eventually result in LTP in the syn-
apses. As STP corresponds to the recent history of activity and LTP
relates to long-term synaptic changes resulting from activity over a
period of time, they are often correlated with short-term memory
(STM) and long-term memory (LTM), respectively, in mammals.23

2. Supervised learning

Although unsupervised learning is believed to form the dominant
part of learning in biological synapses, the scope of its applicability is
still in its nascent stages in comparison to conventional deep learning.
An alternative ex situ learning methodology to enable spike-based
processing in deep SNNs is restricting the training to the analog
domain, i.e., using the greedy gradient descent algorithm as in conven-
tional DLNs and converting such an analog valued neural network to
the spiking domain for inferencing. Various conversion algo-
rithms24–26 have been proposed to perform nearly lossless transforma-
tion from the DLN to the SNN. These algorithms address several
concerns pertaining to the conversion process, primarily emerging due
to differences in neuron functionalities in the two domains. Such con-
version approaches have been demonstrated to scale to state-of-art
neural network architectures such as ResNet and VGG performing
classification tasks on complex image datasets as in ImageNet.27 More
recently, there has been a considerable effort in realizing gradient-
based learning in the spiking domain itself28 to eliminate conversion
losses.

III. NON-VOLATILE TECHNOLOGIES FOR
NEUROMORPHIC HARDWARE

As elaborated in Sec. II, SNNs not only are biologically inspired
neural networks but also potentially offer energy-efficient hardware
solutions due to their inherent sparsity and asynchronous signal
processing. Advantageously, non-volatile technologies provide two

FIG. 4. Different kinds of learning strategies can be broadly classified into (i) spiking
timing dependent plasticity (STDP), (ii) frequency dependent plasticity, and (iii) gradient-
based learning. STDP induces both potentiation and depression of synaptic weights in a
non-volatile fashion based on the difference in spike timing of pre-neurons and post-
neurons, Dt. Classical STDP assumes an exponential relationship with Dt, as demon-
strated by Bi and Poo.19 Other variants of STDP have also been observed in mamma-
lian brains. Frequency dependent plasticity manifests itself in the form of short-term
plasticity (STP) and long-term potentiation (LTP). The change in the synaptic weight, in
this case, depends on how frequently the synapse receives stimulus. STP and LTP form
the basis of short-term and long-term memory in biological systems. Finally, gradient-
based learning is a supervised learning scheme where the change in the synaptic weight
depends on gradients calculated from error between the predicted and the ideal output.
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additional benefits with respect to neuromorphic computing. First, the
inherent physics of such devices can be exploited to capture the func-
tionalities of biological neurons and synapses. Second, these devices
can be connected in a crossbar fashion allowing analog-mixed signal
in-memory computations, resulting in highly energy-efficient hardware
implementations.

In this section, we first delve into the possibilities and challenges
of such non-volatile devices, based on various technologies, used to
emulate the characteristics of synapses and neurons. Subsequently, we
describe how crossbar structures of such non-volatile devices can be
used for in-memory computing and the associated challenges.

A. Phase change devices

Phase change materials (PCMs) such as chalcogenides are the
front-runners among emerging non-volatile devices—with speculation

about possible commercial offerings—for high density, large-scale
storage solutions.31 These materials can encode multiple intermediate
states, rendering them the capability of storing multiple bits in a single
cell. More recently, PCM devices have also emerged as a promising
candidate for neuromorphic computing due to their multi-level stor-
age capabilities. In this section, we discuss various neuromorphic
applications of PCM devices.

1. PCM as neurons

PCM devices show reversible switching between amorphous and
crystalline states, which have highly contrasting electrical and optical
properties. In fact, this switching dynamics can directly lead to inte-
grate and firing behaviors in PCM-based neurons. The device struc-
ture of such a neuron comprises a phase change material sandwiched
between two electrodes, as shown in Fig. 5(a). The mushroom

FIG. 5. (a) Device structure of a PCM-based IF neuron.29 The thickness of the amorphous region (shown in red) represents the membrane potential of the neuron. The inte-
grating and firing behaviors for different incident pulse amplitudes and frequencies are shown (bottom). (b) Device structure of a photonic IF neuron based on PCM (GST).30

The input pulses coming through the INPUT port get coupled to the ring waveguide and eventually to the GST element, changing the amorphous thickness. The output at the
“THROUGH” port represents the membrane potential, which depends on the state of the GST element.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 021308 (2020); doi: 10.1063/1.5113536 7, 021308-7

Published under license by AIP Publishing

https://scitation.org/journal/are


structure shows the shape of the switching volume just above the
region known as the heater. The heater is usually made of resistive ele-
ments such as W, and high current densities at the contact interface
between the phase change material and the heater cause locally con-
fined Joule heating. When the PCM in the neuron is in its initial amor-
phous state, a voltage pulse that has an amplitude low enough so as to
not melt the device but high enough to induce crystal growth can be
applied. The resulting amorphous thickness, ua, on application of such
a pulse is given as29

dua
dt
¼ �vgðRthðuaÞPp þ TambÞ; uað0Þ ¼ u0 (3)

where vg is the crystal growth velocity dependent on the temperature
determined by its argument RthðuaÞPp þ Tamb. Here, Rth is the thermal
resistance and Tamb is the interface temperature between amorphous
and crystalline regions. The variable, ua, in Eq. (1) can be interpreted
as the neuron’s membrane potential where Pp is the input variable
controlling the dynamics. On successive application of crystallization
pulses, the amorphous thickness, ua, decreases, leading to lower con-
ductance and temporal integration of the membrane potential.
Beyond a certain threshold conductance level, the neuron fires, or in
other words, the PCM changes to a crystalline state. A reset mecha-
nism puts the neuron back in its original amorphous state. The afore-
mentioned integrate-and-fire characteristics in PCM neurons are
accompanied by inherent stochasticity. The stochasticity arises from
different amorphous states created by repeated resets of the neuron.
Different initial states lead to different growth velocities, which result
in an approximate Gaussian distribution of inter-spike intervals, the
interval between adjacent firing events. Populations of such stochastic
IF neurons have also been used in detection of temporal correlation in
parallel data streams.32

Thus far, we have talked about electronic devices mimicking neu-
ronal behavior using PCM. Such behavior can also be achieved with Si-
based photonic devices with PCM embedded on top of them.30 Such a
device is shown in Fig. 5(b), which consists of a Si microring resonator
on the SiO2 substrate with a phase change material, Ge2Sb2Te5 (GST),
deposited on top of the ring waveguide. The membrane potential of
such a neuron or, in other words, the amorphous thickness of the
PCM can be modulated by guiding laser pulses through Si waveguides.
Light gets evanescently coupled to the PCM element and changes the
thickness of the amorphous region, thereby allowing an optical IF neu-
ron based on PCM elements, as shown in Fig. 5(b) (bottom).

2. PCM as synapses

We have discussed the ability of PCM to store multiple bits in a
single cell. This multi-level behavior of PCM-based devices makes
them a promising candidate to emulate synaptic characteristics. In
addition, the large contrast in electrical properties allows for a signifi-
cantly high ON/OFF resistance ratio in PCM devices. The same two-
terminal structure described in Fig. 5(a) can be used as a synaptic
device. The programming of such a synapse is performed through the
phase transition mechanism between amorphous and crystalline
states. Amorphization (or “RESET”) is performed by an abrupt melt-
quench process, where high and short voltage pulses are applied to
heat the device followed by rapid cooling such that the material solidi-
fies in the amorphous state. On the other hand, crystallization is

performed when an exponential current above the threshold voltage
leads to heating of the material above its crystallization temperature
and switches it to the crystalline state, as depicted by the I–V charac-
teristics in Fig. 6(a). The crystallization (or “SET”) pulses are much
longer as opposed to amorphization (or RESET) pulses, as shown in
Fig. 6(b). Multiple states are achieved by progressively crystallizing the
material, thus reducing the amorphous thickness.

These multi-level PCM synapses can be used to perform unsu-
pervised on-chip learning using the STDP rule.33 LTP and LTD using
STDP involves a gradual increase and decrease in conductance of
PCM devices, respectively. However, such a gradual increase or
decrease in conductance needs to ensure precise control, which is diffi-
cult to achieve using identical current pulses. As a result, by configur-
ing a series of programming pulses of increasing or decreasing
amplitude [Fig. 7(a)], both LTP and LTD have been demonstrated
using PCM devices.34–36 In this particular scheme, the pre-spikes con-
sist of a number of pulses of gradually decreasing or increasing pulses,
whereas the post-spike consists of a single negative pulse. The differ-
ence between the magnitude of the pre-spike and post-spike due to
overlap of the pulses varies with the time difference, resulting in the
change in conductance of the synapse following the STDP learning
rule. The scheme for potentiation is explained in Fig. 7(a). A simplified
STDP learning rule with constant weight update can also be imple-
mented using a single programming pulse by shaping the pulses
appropriately33 as shown in Fig. 7(b). However, such pulse shaping
requires additional circuitry. These schemes rely on single PCM devi-
ces representing a synapse. Alternatively, using a “2-PCM” synapse,
one can potentially implement LTP and LTD characteristics that can
be independently programmed. Such a multi-device implementation
becomes important for PCM technology as the amorphization is an
abrupt process, and it is difficult to control the progression of different
amorphization states, which poses a fundamental limitation toward
realizing both LTP and LTD in a single device. Visual pattern recogni-
tion has been demonstrated using such 2-device synapses, which are
able to learn directly from event-based sensors.37 While these works
focus on asymmetric STDP, which forms the basis of learning spatio-
temporal features, PCM synapses can also exhibit symmetric STDP
based learning enabling associative learning.38 As we had discussed
about IF neurons, the difference in optical responsivity of PCMs can
also lead to emulation of synaptic behavior on Si-photonic devices.
The change in optical transmission in photonic synaptic devices arises
from the difference in the imaginary part of the refractive index of
PCMs in their amorphous and crystalline states. The gradual increase

FIG. 6. (a) I–V characteristics of PCM devices showing SET and RESET points for
two states. (b) Pulsing schemes for SET and RESET processes to occur, showing
the temperatures reached due to the pulses.
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in the optical response of PCM elements by modulating the refractive
index can be achieved through varying the number of programming
pulses. This has been exploited to experimentally demonstrate unsu-
pervised STDP learning in photonic synapses.39 To scale beyond single
devices, the rectangular waveguides used in this work can be replaced
with microring resonators to perform unsupervised learning in an
atemporal fashion.40

3. PCM crossbars

We have thus far talked about isolated PCM devices mimicking
the neuronal and synaptic behaviors. Interestingly, these devices can
be connected in an integrated arrangement to perform in-memory
computations involving a series of multiply and-accumulate (MAC)
operations. Such operations can be broadly represented as a multipli-
cation operation between an input vector and the synaptic weight
matrix, which is key to many neural computations. Vector–matrix
multiplication (VMM) operations require multiple cycles in a standard
von-Neumann computer. Interestingly, arranging PCM devices in a
crossbar fashion (or in more general terms, arranging resistive memo-
ries in a crossbar fashion) can engender a new, massively parallel para-
digm of computing. VMM operation, which is otherwise a fairly
cumbersome operation, can be performed organically through the
application of Kirchoff’s laws as follows. This can be understood
through Fig. 8, where each PCM device encodes the synaptic strength
in the form of its conductance. The current through each device is pro-
portional to the voltage applied and the conductance of the device.

Currents from all the devices in a column get added in accordance
with Kirchoff’s current law to produce a column-current, which is a
result of the dot-product of the voltages and conductance. Such a dot-
product operation can be mathematically represented as

Ij ¼
X
i

ViGij; (4)

where Vi represents the voltage on the i-th row and Gij represents the
conductance of the element at the intersection of the i-th row and j-th
columns. This ability of parallel computing within the memory array
using single-element memory elements capable of packing multiple
bits paves the way for faster, energy-efficient, and high-storage neuro-
morphic systems.

In addition to synaptic computations, PCM crossbars can also be
used for on-chip learning that involves dynamic writing into individ-
ual devices. However, parallel writing to two-terminal devices in a
crossbar is not feasible as the programming current might sneak to
undesired cells, resulting in inaccurate conductance updates. To allevi-
ate the concern of sneak current paths, two-terminal PCM devices are
usually used in conjunction with a transistor or a selector. Such mem-
ory cell structures are termed as “1T-1R” or “1S-1R” (shown in Fig. 8)
and are extensively used in NVM crossbar arrays. Such 1T-1R crossbar
arrays can be seamlessly used for on-line learning schemes such as
STDP. To that effect, PCM crossbars were used as one of the first of its
kind to experimentally demonstrate on-chip STDP based learning,41,42

and simple pattern recognition tasks were conducted using the arrays.

FIG. 7. (a) STDP learning in PCM synapses34 by a series of pulses of increasing (decreasing) amplitude demonstrating LTP behavior (left) similar to neuroscientific experi-
ments19 (right). Reprinted with permission from Kuzum et al., Nano Lett. 12(5), 2179–2186 (2012). Copyright 2012 American Chemical Society. (b) STDP learning effected due
to overlap of appropriately shaped pulses.33 Reprinted with permission from Ambrogio et al., Front. Neurosci. 10, 56 (2016). Copyright 2016 Author(s), licensed under a
Creative Commons Attribution (CC BY) license.
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Although these works focused on smaller scale crossbar arrays of size
10� 10, slightly modified 2T-1R memory arrays have also been
explored for in situ learning on a much bigger scale.43 Using two tran-
sistors enables simultaneous LIF neurons and STDP learning charac-
teristics in an integrated fashion.

We have discussed how unsupervised STDP learning can be
implemented using PCM crossbars. However, on-line learning using
STDP requires complex programming schemes and is difficult to scale
to larger crossbars. On the other hand, networks trained with super-
vised learning can be mapped on to much larger PCM crossbar arrays
for inferencing. These neural networks have been experimentally dem-
onstrated to perform complex image recognition tasks44,45 with reason-
able accuracy. Note that for these works, the supervised learning
schemes were implemented with software and the PCM crossbars were
used for forward propagation both during training and inferencing.

We have discussed how PCM crossbars leverage Kirchoff’s laws to
perform neuro-synaptic computations in the electrical domain. In the
optical domain, however, the dot-product operation can be implemented
using wavelength-division-multiplexing (WDM).40,46 The input is
encoded in terms of different wavelengths, and each synaptic device
modulates the input of a particular wavelength. The resulting sum is fed
to an array of photo-detectors to realize the dot-product operation.

PCM technology shows remarkable scalability and high-storage
density, making them amenable to efficient neuromorphic systems.

However, further material and device research is necessary to truly
realize the full potential of PCM-based neuromorphic accelerators.
First, the most common PCM devices are based on the chalcogenide
material group comprising elements Ge, Sb, and Te due to their high
optical contrast, repeatability, and low reflectivity. In the GeSbTe sys-
tem ranging from GeTe to Sb2Te3, Ge2Sb2Te5 has been identified as
the optimum material composition47,48 based on the trade-offs
between stability and switching speed. Despite this development,
PCMs suffer from significantly high write power due to their inherent
heat dependent switching and high latency. Second, PCM devices suf-
fer from the phenomenon of resistance drift, which is more pro-
nounced for high resistance states (HRSs). The resistance drift is the
change in the programmed value of the resistance over time after pro-
gramming is completed. This has been attributed to structural relaxa-
tions occurring shortly after programming.49–51 The effect of drift on
neural computing has been studied, and possible mitigation strategies
have been proposed.52 However, the inability to reliably operate PCM
devices at high resistance states has an impact on large-scale crossbar
operations. In light of these challenges, it is necessary to investigate
newer materials that offer more stability and lower switching speeds
for efficient and scalable neuromorphic systems based on PCM
devices.

B. Metal-oxide RRAMs and CBRAMs

An alternative class of materials to PCMs for memristive systems
are perovskite oxides such as SrTiO3,

53 SrZrO3,
54 Pr0:7Ca0:3MnO3

(PCMO),55 and binary metal oxides such as HfOx,
56 TiOx,

57 and
TaOx,

58 which exhibit resistive switching with lower programming
voltages and durations. Such resistive switching is also observed when
the oxide is replaced by a conductive element. Two-terminal devices
based on these materials form the base of Resistive Random Access
Memories (RRAMs). The devices with oxides in the middle are known
as metal-oxide RRAMs, whereas the ones with conductive elements
are known as the Conductive Bridge RAM (CBRAM). Although the
internal physics of these two classes of resistive RAMs is slightly differ-
ent, both kinds of devices have a similar behavior and hence applica-
bility. In the initial years of research, RRAM was envisaged to be a
non-volatile high-density memory system along with CMOS-
compatible integration. With significant development over the years,
various other applications leverage the non-volatility of RRAMs for
power and area-efficient implementations. Among these, neuromor-
phic computing is a dominant candidate, which exploits the multi-
level capability and the analog memory behavior of RRAMs to emulate
neuro-synaptic functionalities. In this section, we will discuss how
RRAMs can directly mimic neuronal and learning synaptic behaviors
using single devices.

1. Metal-oxide RRAMs and CBRAMs as neurons

The dynamics of a voltage driven metal-oxide RRAM device was
first investigated by HP labs in their iconic work on TiO2, which iden-
tified the first device61 showing the characteristics of a memristor, pre-
dicted by Chua in 1971.62 The oxide material can be conceptually split
into two regions, a conductive region and an insulating region. The
conductance of such a device can be given by its state variable, w,
which varies as

FIG. 8. Synaptic devices arranged in a crossbar fashion along with selector devices
to perform dot-product operations. The input voltages are applied to the different
rows of the crossbars, and the current from each column represents the dot-
product, Ij ¼

P
ViWij , between the input voltages and the conductance, W, of the

devices.
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I ¼ gMðw=LÞVðtÞ;
dw
dt
¼ f ðwðtÞ;VðtÞÞ: (5)

Interestingly, the RRAM device can be used in an integrator circuit as
a resistor in parallel to an external capacitance, as shown in Fig. 9
(top), to emulate the LIF characteristics where the conductance of the
device can be used as an internal variable.59 When the memristor is in
its OFF state, the current through the circuit is low, and hence, it does
not output a spike. Once the memristor reaches its ON state, the
current suddenly jumps, which can be converted to analog spike. The
voltage across the memristor, in that case, obeys the dynamics of a LIF
neuron, given by Eq. (1) in Sec. IIA. A similar neuron circuit has also
been explored for CBRAM devices based on Cu=Ti=Al2O3

60 [Fig. 9
(bottom)]. Unlike PCMs, to emulate the differential equations of the
LIF neuron, an R-C circuit configuration is used. If the leaky behavior
is not required, the internal state of the neuron or the membrane
potential can be directly encoded in the oxygen concentration in the
device. By manipulating the migration of oxygen vacancies using
post-synaptic pulses, IF neurons can be realized by oxide-based
devices.63 To that effect, oxide-based devices have been used to
design common neuronal models involving leaky behavior, such as
the Hodgkin–Huxley model and leaky IF model.64

2. Metal-oxide RRAMs and CBRAMs as synapses

Much like PCM devices, RRAM devices can also be programmed
to multiple intermediate states between the two extreme resistance
states, which are known as the high resistance state (HRS) and the low
resistance state (LRS). This capability of behaving as an analog mem-
ory makes RRAMs suitable for mimicking synaptic operations in neu-
ral networks. The physics behind emulating such synaptic behavior
rests on soft di-electric breakdown in metal-oxide RRAM devices and
dissolution of metal ions in CBRAM devices. The device structure for
a metal-oxide RRAM is shown in Fig. 10(a). In the case of the metal-

oxide RRAM, the switching mechanisms can be categorized as (a) fila-
mentary and (b) non-filamentary. The filamentary switching results
due to the formation and rupture of filamentary conductive paths due
to thermal redox reactions between metal electrodes and the oxide
material. The “forming” or SET process occurs at a high electric field
due to the displacement and drift of oxygen atoms from the lattice.
These oxygen vacancies form localized conductive filaments, which
form the basis of filamentary conduction in RRAM devices. The form-
ing voltage can be reduced by thinning down the oxide layer65 and
controlling annealing temperatures during deposition.66 The RESET
mechanism, on the other hand, is well debated, and ionic migration
has been cited as the most probable phenomenon.67,68 A unified model
of RESET proposes that the oxygen ions that drifted to the negative
electrode causes the insulator/anode interface to act as a “oxygen reser-
voir.”69 Oxygen ions diffuse back into the bulk due to a concentration
gradient and possibly recombine with the vacancies that form the fila-
ment such that material moves back to the HRS. The I–V characteris-
tics are shown in Fig. 10(b) where varying SET and RESET pulses lead
to different resistance states. In order to emulate synaptic behavior
through analog memory states in filamentary RRAMs, various pro-
gramming techniques have been explored. For example, the SET cur-
rent compliance can be used to modulate the device resistance by
determining the number of conductive filaments. On the other hand,
varying the external stimulus can control the degree of oxidation at
the electrode and oxide interface, resulting in a gradual change in resis-
tance.70 These analog states in RRAM devices can be exploited to per-
form learning on devices using various pulsing techniques. To that
effect, the time dependence of synaptic conductance change in STDP
learning can be induced by manipulating the shapes of pre-synaptic
and post-synaptic voltage waveforms,71,72 shown in Fig. 11(a). Similar
to programming PCM devices, a gradual increase or decrease in con-
ductance can be achieved using a succession of identical pulses as well,
as shown in the figure. Such a pulsing scheme, despite requiring a
more number of pulses, provides a more granular control over the
synaptic conductance,73,74 shown in Fig. 11(b). Furthermore, adding
more peripheral transistors to programming circuits can further
enable precise control over STDP. For example, a 2T/1R synapse uses
the overlapping window of two different pulses to generate program-
ming current to induce time-dependent LTP and LTD.75 In the case of
filamentary RRAMs, variability in the forming process induces sto-
chasticity in resistive switching, which can be leveraged to design sto-
chastically learning synapses. The switching probability can be

FIG. 9. (a) RRAM59 and (b) CBRAM60 neuron circuits showing the memristive
device RN (below) or RON=OFF (top) in parallel to a capacitor to emulate LIF
characteristics.

FIG. 10. (a) Basic device structure for RRAM devices consisting of a metal-oxide
layer sandwiched between two electrodes. (b) I–V characteristics showing varying
SET and RESET points, leading to different resistance states.
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controlled by using a higher pulse amplitude. Stochastic synapses have
the ability to encode information in the form of probability, thus
achieving significant compression over deterministic counterparts.
Learning stochastically using binary synapses has been demonstrated
to achieve pattern learning.76 Unsupervised learning using multi-state
memristors can also be performed probabilistically to yield robust
learning against corrupted input data.77

Oxides of some transition metals, such as Pr0:7Ca0:3MnO3

(PCMO), exhibit non-filamentary switching as well. This type of
switching, on the other hand, results from several possible phenomena
such as charge-trapping or defect migration at the interface of metal
and oxide, which end up modulating the electrostatic or Schottky bar-
rier. Although the switching physics in non-filamentary RRAM devi-
ces is different from that in filamentary RRAMs, the fundamental
behavior of using these RRAM devices as synapses is quite similar.
Non-filamentary RRAMs can also be programmed using different
voltage pulses to exhibit multi-level synaptic behavior. Moreover, vary-
ing pulse widths can instantiate partial SET/RESET characteristics,
which have been used to implement STDP characteristics in RRAM
synapses.78,79 By encoding the conductance change using the number
of pulses coupled with appropriate waveform engineering can enable
various kinds of STDP behaviors, explained in Sec. II B, of isolated

RRAM devices showing non-filamentary switching.80 In addition to
long-term learning methods, RRAM devices with controllable volatil-
ity can also be used to mimic frequency dependent learning, thus
enabling a transition from short-term to long-termmemory.81 By con-
trolling the frequency and amplitude of the incoming pulses, STP-LTP
characteristics have been achieved in WO3 based RRAM synapses.82

In general, higher amplitude pulses in quick succession are required to
transition the device from decaying weights to a more stable persistent
state. Such metastable switching dynamics of RRAM devices have
been used to perform spatiotemporal computation on correlated
patterns.83

Thus far, we have discussed how metal-oxide RRAM devices can
emulate synaptic behavior. Next, we will discuss CBRAM devices,
which also exhibit similar switching behavior by just replacing the
oxide material with an electrolyte. The switching mechanism is analo-
gous to filamentary RRAM except that the filament results in a metal-
lic conductive path due to electro-chemical reactions. This technology
has garnered interest due to its fast and low-power switching. Most
CBRAM devices are based on Ag electrodes where resistive switching
behavior is exhibited due to the contrast in conductivity in Ag-rich
and Ag-poor regions. The effective conductance of such a device can
be written as88

FIG. 11. (a) Appropriately shaped pulses representing the post-synaptic and pre-synaptic potential.72 The overlap between the two pulses in time leads to STDP learning char-
acteristics in the form of the writing current flowing through the device. Reprinted with permission from Rajendran et al., IEEE Trans. Electron Devices 60(1), 246–253 (2012).
Copyright 2013 IEEE. (b) STDP characteristics can also be emulated by passing multiple pulses, repetitively.74 Reprinted with permission from Wang et al., in 2014 IEEE
International Electron Devices Meeting (IEEE, 2014), p. 28. Copyright 2014 IEEE.

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 7, 021308 (2020); doi: 10.1063/1.5113536 7, 021308-12

Published under license by AIP Publishing

https://scitation.org/journal/are


Geff ¼
1

RONwþ ROFFð1� wÞ ; (6)

where w defines the normalized position of the end of the conducting
region at the interface of Ag-rich and Ag-poor regions. The conduc-
tance of such a device can also be gradually manipulated to implement
STDP using a succession of pulses.88 Here, the exponential depen-
dence on spike timing is implemented using time-division multiplex-
ing where the timing information is encoded in the pulse width.
CBRAM based STDP learning has been implemented on-chip using
CMOS integrate-and-fire neurons.89 As with filamentary RRAM devi-
ces, stochastic behavior in CBRAM devices can also enable low-power
probabilistic learning. One such implementation uses the recency of
spiking as a measure of manipulating the probability of the device for
visual and auditory processing.90 Some CBRAM devices also exhibit
decay in conductance, which can be leveraged to implement short-
term plasticity. Ag2 S based synapses also show the properties of sen-
sory memory, wherein conductance does not change for some time,
before exhibiting STP.91

3. Metal-oxide RRAM and CBRAM crossbars

RRAMs are two-terminal devices, similar to PCMs. Hence, like
PCMs, RRAM devices can also be arranged into large-scale resistive
crossbars, shown in Fig. 8, for building neuromorphic systems. RRAM
crossbar arrays can be integrated seamlessly with CMOS circuits for
hybrid storage and neuromorphic systems. To that effect, a 40� 40
array with CMOS peripheral circuits has been demonstrated to reliably
store complex bitmap images.92 Such an experimental demonstration
is a testimony to the scalability of RRAM crossbars. Leveraging this
scalability, studies have proposed RRAM crossbar arrays to perform in
situ learning in single layer neural networks.93,94 This scalability has
been corroborated by the recent development in the process technol-
ogy, which have led to the realization of large crossbars of sizes up to
128� 128 to perform image processing tasks95 and in situ learning for
multi-layer networks.45 The aforementioned works focus on using
RRAM as an analog memory. To achieve more stability, RRAM cross-
bar arrays have also been used as binary weights in a scalable and par-
allel architecture85 to emulate a large-scale XNOR network.96 Both
PCM and RRAM crossbars have been extensively explored at an
array-level, and Table I provides a comparative study of different
experimental demonstrations. It should be understood that large-scale
RRAM crossbars have been primarily explored for non-spiking type
networks; however, the compute primitives can be easily ported to
realize spike-based computing. We will later discuss NVM architec-
tures based on these RRAM crossbars, which show immense potential

to achieve energy-efficiency and high density compared to standard
CMOS-based computing.

Thus far, we have discussed metal-oxide RRAM crossbar arrays.
From a scalability point of view, CBRAM crossbars exhibit similar
trends. To that effect, high-density 32� 32 crossbar arrays based on
Ag–Si systems have been experimentally demonstrated, which can be
potentially used to build neuromorphic circuits. Simulation studies
based on such Ag–Si systems show significant potential of using large-
scale crossbars for image classification tasks.97

Of the two classes of materials belonging to the RRAM family,
metal-oxide RRAM devices have been more dominantly explored in
the context of developing large-scale neuromorphic circuits. However,
despite significant progress, RRAM-based devices suffer from signifi-
cant variability, particularly in the filament formation process. On the
other hand, non-filamentary RRAM devices, being barrier-dependent,
may lead to trade-offs between stability and programming speed.
Overall, further material research is crucial toward making RRAMs
viable for large-scale neuromorphic systems.

C. Spintronic devices

Akin to other non-volatile technologies, spin based devices were
conventionally investigated as a non-volatile replacement for the exist-
ing silicon memories. What makes spin devices particularly unique as
compared to other non-volatile technologies is their almost unlimited
endurance and fast switching speeds. It is therefore not surprising that
among various non-volatile technologies, spin devices are the only
ones that have been investigated and have shown promise as on-chip
cache replacement.98 With respect to neuromorphic computing, it is
the rich device physics and spin dynamics that allow efficient mapping
of various aspects of neurons and synapses into a single device. As we
will discuss in this section, spintronics brings in an alternate paradigm
in computing by using electron spin as the memory storage variable.
The fact that spin dynamics can be controlled by multiple physics
including current induced torques,99 domain wall motion,100 voltage
based spin manipulation,101 and elastic coupling adds to the rich
device possibilities with spintronics and their applications to neuro-
morphic computing. In this section, we would describe key representa-
tive works with spin devices showing their applicability as IF-, LIF-,
and stochastic neurons, and synaptic primitives.

1. Spin devices as neurons

As mentioned earlier, it is the rich spin dynamics that allows
mapping of different aspects of biological neurons using a single
device. In fact, the simplest and the most well-known spin device—the
two-terminal Magnetic Tunnel Junction (MTJ)—can be seen as a

TABLE I. NVM Technologies.

Technology PCM45 RRAM84 RRAM85 RRAM86 RRAM87

Crossbar size 512 � 512 108 � 54 128 � 128 128 � 16 512 � 512
ON/OFF ratio 10 5 N/A 10 N/A
Area per operation (lm2) 22.12 24 0.05 31.15 N/A
Latency (ns) 80 10 13.7 0.6 9.8
Energy-efficiency (TOPS/W) 28 1.37 141 11 121.38
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stochastic-LIF neuron. MTJs are composed of two ferromagnetic (FM)
nanomagnets sandwiching a spacer layer105 as shown in Fig. 12(a).
Nanomagnets encode information in the form of the direction of
magnetization and can be engineered to stabilize in two opposite
directions. The relative direction of the two FMs—parallel (P) vs anti-
parallel (AP)—results in two distinct resistive states—LOW vs HIGH
resistance. Switching the MTJ from the P to the AP state or vice versa
can be achieved by passing a current through the MTJ, resulting in
transfer of torque from the incoming spins to the FMs. Interestingly,
the dynamics of the spin under excitation from a current induced tor-
que can be looked upon as a stochastic-LIF dynamics. Mathematically,
the spin dynamics of an FM, shown in Fig. 12(b), can be expressed

effectively using the stochastic-Landau–Lifshitz–Gilbert–Slonczewski
(s-LLGS) equation,

@m̂
@t
¼�jcjðm̂�HEFFÞþa m̂�@m̂

@t

� �
þ 1
qNs
ðm̂� Is� m̂Þ

1þa2

c
@m̂
@t

� �
¼�ðm̂�HEFFÞþaðm̂� m̂�HEFFÞ

þ 1
qNs
ðm̂� Is� m̂Þ (7)

where m̂ is the unit vector of free layer magnetization, c is the gyro-
magnetic ratio for the electron, a is Gilbert’s damping ratio, and HEFF

FIG. 12. (a) MTJ-based neuron102 showing the device structure (top) and leaky-integrate characteristics (bottom). Sengupta et al., Sci. Rep. 6, 30039 (2016). Copyright 2016
Author(s), licensed under a Creative Commons Attribution (CC BY) license. The magnetization of the free layer of the MTJ integrates under the influence of incoming current
pulses. (b) ME oxide-based LIF neuron103 showing the device structure (top) and LIF characteristics (bottom). Reproduced with permission from Jaiswal et al., IEEE Trans.
Electron Devices 64(4), 1818–1824 (2017). Copyright 2017 IEEE. (c) SHE-MTJ-based stochastic neuron102 showing the device structure (top) and the stochastic switching
characteristics (bottom). Reprinted with permission from Sengupta et al., Sci. Rep., 6, 30039 (2016); Copyright 2016 Author(s), licensed under a Creative Commons Attribution
(CC BY) license. (d) DWM-based IF spiking neuron104 showing the device structure (top) and integration and firing behavior (bottom) over time. For incident input spikes, the
domain wall moves toward the MTJ at the end, thus decreasing the resistance of the device. When the domain wall is at the end, the resistance reaches its lowest, enough for
the neuron fires. Reproduced with permission from Sengupta and Roy, Appl. Phys. Rev. 4(4), 041105 (2017). Copyright 2017 AIP Publishing.
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is the effective magnetic field including the shape anisotropy field,
external field, and thermal field. This equation bears similarities with
the leaky-integrate-and-fire behavior of a neuron. The last term repre-
sents the spin transfer torque (STT) phenomenon, which causes the
magnetization to rotate by transferring the torque generated through
the change in angular momentum of incoming electrons.
Interestingly, the first two terms can be related to the “leak” dynamics
in an LIF neuron, while the last term relates to the integrating behavior
of the neuron as follows. When an input current pulse or “spike” is
applied, the magnetization starts integrating or precessing toward the
opposite stable magnetization state owing to the STT effect (last term).
In the absence of such a spike, the magnetization leaks back toward
the original magnetization state (Gilbert damping, second term).
Furthermore, due to nano-scale size of the magnet, the switching
dynamics is a strong function of a stochastic thermal field, leading to
the stochastic behavior. This thermal field can be modeled using
Brown’s model.106 In terms of Eq. (7), the thermal field can be incor-
porated intoHEFF as a magnetic field,

Hthermal ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2akT
jcjMsV

s
; (8)

where f is a zero mean, unit variance Gaussian random variable, V
is the volume of the free layer, T is the temperature, and k is the
Boltzmann constant. A typical, stochastic-LIF behavior using MTJ
is shown in Fig. 12(a).102 While the two-terminal MTJ does repre-
sent the stochastic-LIF dynamics, the very fact that the leaky and
integrate behaviors are controlled by intricate device physics and
intrinsic material parameters makes it difficult to control as needed
for a large-scale circuit/system implementation. As a result, alter-
nate physics such as the magneto-electric switching (ME) has been
proposed as stochastic-LIF neurons, wherein the leaky and inte-
grating behaviors can be easily controlled through device dimen-
sions and associated circuit elements. In ME devices, the voltage
induced electric field polarization induces a magnetic field at the
interface of the FM and ME oxide, which induces switching of the
FM layer. The ME oxide layer acts a capacitor, and a series resis-
tance can enable LIF neuronal dynamics in such a device. The ME
switching process is susceptible to noise like the conventional MTJ
switching and hence inherently mimics the stochastic dynamics
with the LIF behavior.103 By controlling the ME oxide dimension
in Fig. 12(b) and/or the leaky resistive path, the LIF dynamics can
be easily tweaked as per requirement. In essence, we have seen that
both current induced MTJ and voltage driven ME switching can
act as stochastic-LIF neurons. However, on one hand, current
based MTJ is difficult to control, while on the other hand, ME
switching is still in its nascent stage of investigation and needs
extensive material research for bringing the device to mainstream
applications.

Alternatively, at the cost of reduced dynamics, three terminal
Spin-Orbit-Torque MTJ (SOT-MTJ) has been used as a reliable sto-
chastic spiking neuron while neglecting the leaky-integrate dynam-
ics.102 SOT-MTJ is reasonably mature, and also its three terminal
nature brings in attractive circuit implications. First, SOT-MTJ is
switched by passing a bi-directional current through a heavy-metal
(HM) layer, as shown in Fig. 12(c). When a charge current enters the
HM, electrons of opposite spins get scattered to the opposite sides of

the layer, and a spin-polarized current is generated, which rotates the
magnetization in the adjacent MTJ such that the switching probability
increases as the magnitude of the input current is increased. This in
turn implies that the incoming current passes through a much lower
metal resistance and sees a constant metal resistance throughout the
switching process as opposed to current based switching in conven-
tional two-terminal MTJs. As we will see later, the existence of a low
input resistance for the neuron allows easy interfacing with synaptic
crossbar arrays. Second, the decoupled read-write path in SOT-MTJs
allows for independent optimization of the read (inferencing) and
write (learning) paths. A typical SOT-MTJ and its sigmoid-like
stochastic switching behavior are shown in Fig. 12(c). While the
aforementioned behaviors depicted in Fig. 12(c) correspond to an
SOT-MTJ with a high energy-barrier (10–60 kT), telegraphic
SOT-MTJ with an energy-barrier as low as 1 kT has also been explored
as stochastic neurons.107

In addition to smaller magnets, wherein the entire magnet
switches like a giant spin, longer magnets known as domain wall mag-
nets (DWMs)108 have been used as IF neurons. DWMs consist of two
oppositely directed magnetic domains separated by a domain wall [see
Fig. 12(d)]. Electrons flowing through the DWM continuously
exchange angular momentum with the local magnetic moment.
Current induced toque affects the misaligned neighboring moments
around the domain wall region, thus displacing the domain wall along
the direction of current flow. The instantaneous membrane potential
is encoded in the position of the domain wall, which moves under the
influence of post-synaptic input current. The direction of movement is
determined by polarity of the incident current. The resulting magnetic
polarity can be sensed by stacking a MTJ at an extremity of the DWM,
and subsequent thresholding is performed when the domain wall
reaches that extremity. The leak functionality in such a neuron can be
implemented by passing a controlled current in the opposite direction.
A constant current driven leak would result in increased energy con-
sumption; as such, voltage driven DWMs based on elastic coupling
can be used to reduce the energy consumption.109 However, a concern
with DWM-based neuromorphic devices is that the motion of domain
walls might be pinned by the presence of defects.110 To that effect,
magnetic skyrmions promise enhanced stability and has been explored
in the context of emulating neuromorphic behavior.111 In summary,
we have described multiple devices and their physics and extent of
bio-fidelity, wherein spin is used as the basic state variable. Let us
now consider the applicability of spin devices as synaptic elements
(Fig. 13).

2. Spin devices as synapses

Recall that, for PCM and RRAM devices, the existence of multi-
ple non-volatile resistance states between the two extreme HIGH and
LOW resistances makes them suitable as synaptic elements. On similar
lines, spin devices can be engineered to enable a continuous analog
resistive stable state between its AP (HIGH) and P (LOW) resistances.
This is achieved by stacking an MTJ over DWMs. The position of the
domain wall determines the resistance state of the device. In extreme
cases, the magnetization direction of the entire DWM aligns with that
of the pinned layer, resulting in a LOW resistance state of the device,
shown in Fig. 13. Conversely, the magnetization direction of the
DWM in the opposite direction to that of the pinned layer leads to an
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Anti-Parallel (AP) configuration, which defines the HIGH resistance
state of the device. With respect to the position of the domain wall, x,
the resistance of the device changes as

Geq ¼ GP
x
L
þ GAP

L� x
L
þ GDW : (9)

Here, GP (GAP) is the conductance of the MTJ when the domain
wall is at the extreme right (left) of the DWM. GDW is the conductance
of the domain wall region, and L is the length of the DWM. Owing to
low write currents, synaptic elements based on DWM devices113 can
achieve orders of magnitude lower energy consumption over corre-
sponding realizations in other non-volatile technologies. Similar to
spin neurons, inducing switching using the Spin-Hall effect (SHE)
through a heavy-metal below the MTJ, the programming current can
be further reduced. DWM-based devices have been explored to mimic
the behavior of multi-level synapses in works such as Ref. 114. With a
few extra transistors, STDP learning can be enabled by a relatively sim-
ple programming scheme as shown in Fig. 13.112 This scheme lever-
ages the exponential characteristics of transistors in the sub-threshold
regime. A linearly increasing voltage is applied to the gate of the tran-
sistor, MSTDP, which is activated when the pre-neuron spikes. When
the post-neuron fires, an appropriate programming current passes
through the HM layer, which now depends exponentially to the timing
difference due to the sub-threshold operation. It is worth noting that
although the DWM provides a way to encode multiple stable states in
spin devices, the key drawback of such devices is the extremely limited
HIGH–LOW resistance range. The resistance range for spin devices is
much lower than their PCM and RRAM counterparts. Encoding mul-
tiple states within the constrained resistance range raised functionality
concerns considering variability.

Alternatively, non-domain wall devices such as two-terminal
MTJs of three terminal SHE based MTJs can be used as synapses. In
the absence of DWMs, MTJs can only encode binary information, i.e.,
two resistance states. In such a scenario, stochasticity can play an inter-
esting role in realizing multi-level behavior by probabilistic switching.
In spin devices, such thermally induced stochasticity can be effectively

controlled by varying the amplitude or duration of the programming
pulse as shown in Fig. 12(c). This benefit of controlled stochasticity
leads to energy-efficient learning in binary synapses implemented
using MTJs.115,116 An advantage of on-chip stochastic learning is that
the operating currents are lower than the critical current for switching,
thus ensuring low-power operations. Such multiple stochastic MTJs
can be represented as a single synapse to achieve an analog weight
spectrum.117 These proposals of stochastic synapses based on MTJs
have shown applications of pattern recognition tasks on a handwritten
digit dataset.

Finally, the precessional switching in the free FM layer in the
MTJ inherently represents a dependence of switching on the frequency
on programming inputs. On the incidence of a pulse, the magnetiza-
tion of the free FM layer moves toward the opposite stable state.
However, if the pulse is removed before the switching is completed, it
reverts back to its original stable state. These characteristics can be
used to represent volatile synaptic learning in the form of STP-LTP
dynamics.118

3. Spintronic crossbars

Synapses based on 2-terminal MTJs can be arranged in a crossbar
fashion, similar to other memristive technologies. The currents flowing
through the MTJs of each column get added in the crossbar and repre-
sent the weighted sum of the inputs. Unlike the two-terminal devices,
SHE based MTJs, being 3-terminal devices, have decoupled read and
write paths. As a result, they require a modified crossbar arrangement.
One major advantage of spin neurons is that current through the syn-
aptic crossbars can be directly fed to the current controlled spin neu-
rons. As discussed earlier, spin devices suffer from very low ON/OFF
resistance ratios compared to other technologies. Hence, despite exper-
imental demonstration of isolated synaptic spin devices,119 large-scale
crossbar-level neuromorphic implementations have been mostly lim-
ited to simulation studies. Such simulation studies have been based on
reasonable ON/OFF ratios considering a predictive roadmap.120 To
that effect, multi-level DWM-based synapses have been arranged in a

FIG. 13. STDP learning scheme in the DWM-based spin synapse112 using peripheral transistors. The exponential characteristics of STDP are realized by operating MSTDP in
the sub-threshold region and applying a linearly increasing voltage at its gate. MSTDP is activated when a pre-neuron spikes, and the programming current (shown in blue)
through the transistor is injected into the HM layer (grey) when a post-neuron spikes. Reproduced with permission from Sengupta et al., Phys. Rev. Appl. 6(6), 064003 (2016).
Copyright 2017 American Physical Society.
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crossbar fashion to emulate large-scale neural networks, both in a fully
connected form114 and as convolutional networks.121 In addition to
inferencing frameworks based on spin synapses, STDP based learn-
ing112 has also been explored at an array-level, as shown in Fig. 14, to
perform feature recognition and image classification tasks. As dis-
cussed earlier, MTJ-based binary synapses require stochasticity for
effective learning. They can leverage the inherent stochasticity in the
network, and a population of such synapses can perform on-line learn-
ing, which not only achieves energy-efficiency but also enables
extremely compressed networks.116

These simulation-based designs and results show significant
promise for spin based neuromorphic systems. However, several tech-
nological challenges need to be overcome to realize large-scale systems
with spin. As alluded to earlier, the ON/OFF ratio between the two
extreme resistance states is governed by the TMR of the MTJ, which
has been experimentally demonstrated to reach 600% (Ref. 122), lead-
ing to an ON/OFF ratio of 7. This is significantly lower than other
competitive technologies and poses a limitation on the range of synap-
tic weight representation at an array level. Second, MTJs can only rep-
resent binary information. For multi-bit representation, it is necessary
to use domain wall devices or multiple binary MTJs at the cost of
area density. However, since synapses in the neural networks usually
encode information in an analog fashion, the lack of multi-state
representation in MTJs can potentially limit the area-efficiency of
non-volatile spin devices for neuromorphic applications. The lack of
multi-bit precision can be alleviated with architectural design facets
such as “bit-slicing.” This involves multiple crossbars with binary devi-
ces to represent multiple bits of storage. Despite such provisions,
improved sensing circuits along with material exploration to achieve
higher TMR is necessary to truly realize the potential of spin devices

as a viable option to emulate synaptic behavior for large-scale neuro-
morphic systems.

D. Ferroelectric FETs

Similar to the phase change and ferromagnetic materials, another
member of functional material family is ferroelectric (FE) materials. In
addition to being electrically insulating, ferroelectric materials exhibit
non-zero spontaneous polarization (P), even in the absence of an
applied electric field (E). By applying an external electric field (more
than a threshold value, called the coercive field), the polarization direc-
tion can be reversed. Such an electric field driven polarization switch-
ing behavior of FE is highly non-linear (compared to di-electric
materials) and exhibits non-volatile hysteretic characteristics. Due to
the inherent non-volatile nature, FE based capacitors have been histor-
ically investigated for non-volatile memory elements. However, in fer-
roelectric field effect transistors (FEFETs), an FE layer is integrated at
the gate stack of a standard transistor and thus offers all the benefits of
CMOS technology in addition to several unique features offered by
FE. The FE layer electrostatically couples the underlying transistor.
Due to such coupling, FEFETs offer non-volatile memory states by vir-
tue of polarization retention of FE. Beside CMOS process compatibil-
ity, one of the most appealing features of FEFET based memory is the
ability of voltage based READ/WRITE operation, which is unlike the
current based READ/WRITE schemes in other non-volatile memory
devices (spin based memory and phase change memory). Due to the
non-volatility and the intricate polarization switching dynamics of FE,
FEFETs have garnered immense interest in recent times as a potential
candidate for neuron-mimicking and multi-bit synaptic devices. In

FIG. 14. A crossbar arrangement of spintronic synapses connected between pre-neurons A and B and post-neurons C and D, showing peripheral circuits for enabling STDP
learning.112 Reproduced with permission from Sengupta et al., Phys. Rev. Appl. 6(6), 064003 (2016). Copyright 2017 American Physical Society.
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this section, we will briefly discuss the recent progress in FEFET based
neuro-mimetic devices.

1. FEFETs as neurons

The dynamics in a ferroelectric FET device can be used to mimic
the functionality of a biological neuron. In a scaled FEFET, if identical
sub-threshold pulses (“sub-coercive” in the context of FE) are applied
at the gate terminal [shown in Fig. 15(a) (leftmost)], the device
remains in the OFF state (since the sub-threshold pulses are insuffi-
cient for polarization switching). However, after a certain number of
pulses are received, the FEFET abruptly switches to the highly conduc-
tive state [Fig. 15(a) (rightmost)]. Such phenomena can be understood
as the initial nucleation of nano-domains followed by an abrupt polari-
zation reversal of the entire grain connecting the source and drain of
FEFETs. Before the critical threshold is reached, the nucleated nano-
domains are not capable of inducing a significant charge inversion in
the channel, leading to the absence of the conduction path (OFF state).
The accumulative P-switching presented in Ref. 125 appears to be
invariant with respect to the time difference between the consecutive
excitation pulses, and therefore, the device acts as an integrator.
Moreover, the firing dynamics of such FEFET based neurons can be
tuned by modulating the amplitude and duration of the voltage
pulse.123,125 However, to implement the leaky behavior, a proposed
option is to modulate the depolarization field or insertion of a negative
inhibit voltage in the intervals between consecutive excitation pulses.
Apart from this externally emulated leaky process, an intrinsically
leaky (or spontaneous polarization relaxation) process has been

theoretically predicted in Ref. 126. Such spontaneous polarization
relaxation has been attributed as the cause of domain wall instabil-
ity,126 and such a process has recently been experimentally demon-
strated in an HfxZr1-xO2 (HZO) thin-film.127 By harnessing such a
quasi-leaky behavior along with the accumulative and abrupt polariza-
tion switching in FE, a quasi-leaky-integration-fire (QLIF) type FEFET
based neuron can offer an intrinsic homeostatic plasticity. Network
level simulations utilizing the QLIF neuron showed a 2.3� reduction
in the firing rate compared to the traditional LIF neuron while main-
taining the accuracy of 84%–85% across varying network sizes.127

Such an energy-efficient spiking neuron can potentially enable ultra-
low-power data processing in energy constrained environments.

2. FEFETs as synapses

We have seen how the switching behavior of a FEFET can mimic
the behavior of a biological neuron. The switching behavior also pro-
duces bi-stability in FEFETs, which makes them particularly suitable
for synaptic operations. The bi-stable nature of spontaneous polariza-
tion of ferroelectric materials causes voltage induced polarization
switching characteristics to be intrinsically hysteretic. The device struc-
ture of a FEFET based synapse is similar to a neuronal device as shown
in Fig. 15(b) (leftmost). The FE electrostatically couples with the
underlying transistor. Due to such coupling, FEFETs offer non-volatile
memory states by virtue of polarization retention of the ferroelectric
(FE) material. In a mono-domain FE (where the FE area is comparable
to the domain size), two stable polarization states (�P andþP) can be
achieved in the FE layer, which, in turn, yield two different channel

FIG. 15. (a) FEFET device structure showing an integrated ferroelectric layer in the gate stack of the transistor (leftmost). A series of pulses can be applied to emulate the inte-
grating behavior of neurons and the eventual firing through abrupt switching of the device.123 (b) A FEFET synaptic device (leftmost) showing programming pulsing schemes
generating the STDP learning curve based on the change in charge stored in the device.124
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conductances for the underlying transistor. Such states can also be
referred to as “low VT” (corresponds to þP) and “high VT” (corre-
sponds to �P) states.128 Even though the polarization at the lattice
level (microscopic polarization) can have two values (þP or �P), in a
macroscopic scenario, multi-domain nature of FE films (with the area
significantly higher than the domain size), multiple levels of polariza-
tion can be achieved. Furthermore, the polycrystalline nature of the FE
film offers a distribution in the polarization switching voltages (coer-
cive voltage) and time (nucleation time) in different grains. As a result,
a voltage pulse dependent polarization tuning can be obtained such
that the overall polarization of the FE film can be gradually switched.
This corresponds to a gradual tuning of channel conductivity (or VT)
in FEFETs and can be readily exploited to mimic multi-level synap-
ses,124,129 in a manner similar to what has already been reported for
PCM and RRAMs. As noted above, FEFETs are highly CMOS com-
patible, which makes their applications as neuro-mimetic devices quite
appealing.

Recently, several FEFET based analog synaptic devices have been
experimentally demonstrated,124,130,131 where the conductance poten-
tiation and depression via a gradual VT tuning were obtained by apply-
ing a voltage pulse at the gate terminal. However, in the case of
identical voltage pulses, the observed potentiation and depression
characteristics are highly non-linear and asymmetric with respect to
the number of pulses. To overcome such non-ideal effects, different
non-identical pulsing schemes were proposed in Ref. 130, which utilize
a gradual modulation of pulse magnitude or pulse time. Such non-
identical pulsing schemes demonstrate a significant improvement in
potentiation/depression linearity and symmetry. However, if pulses
are not identical throughout the programming process, an additional
step of accessing the weight value is needed every time, and an update
takes place so that an appropriate pulse can be applied. This leads to
design overheads and may reduce the training efficiency. To overcome
such detrimental effects, an optimum weight update scheme using
identical pulses for improved linearity and asymmetry was experimen-
tally demonstrated in a FE-Germanium-NanoWire-FET (FE-
GNWFET).131 Based on the experimentally extracted parameters of
the FE-GNWFET, simulation of the multi-layer perceptron neural net-
work over 1 � 106 MNIST images predicts an on-line learning accu-
racy of �88%. It should be noted that the underlying physics in
potentiation/depression linearity and symmetry enhancement in FE-
GNWFETs over the conventional FEFET is still unclear. Hence, there
is a timely demand for further theoretical understanding that can
enable aggressive device level engineering for achieving higher linearity
and symmetry in FEFET based synaptic devices.

FEFET synapses can also be used to enable learning with the
STDP based update scheme, which can also be achieved.124 In order to
utilize the single FEFET as a two-terminal synapse connected to the
pre- and the post-neuron, a resistor is connected between the gate and
drain [Fig. 15(b) (leftmost)] terminals. Thus, the pre-spike is applied
to the gate and resistor, while the source and bulk are controlled by
the post-neuron. With this synaptic scheme and the spiking waveform
depicted in Fig. 15(b) (middle), the relative spike timing between the
pre- and the post-neurons can be converted into voltage-drop across
the FEFET. The closer the spiking in the time domain, the larger the
voltage-drop, which induces a larger conductivity change in the
FEFET. The corresponding STDP pattern showing the potentiation
and depression is depicted in Fig. 15(b) (rightmost).

3. FEFET crossbars

FEFETs utilize the electric field driven writing scheme, and such
a feature is unique when compared with the Spin-, PCM-, and
RRAM-based synaptic devices. Therefore, FEFET based synaptic devi-
ces are potential candidates for low-power realization of neuro-
mimetic hardware. These transistor-like devices can also be arranged
in a crossbar fashion to perform dot-product operations. Simulation
studies using the population of neuronal and synaptic devices have
been studied for image classification tasks.130–132 We discussed earlier
that the multi-state conductance of FEFETs originates from the multi-
domain behavior of the FE layer at the gate stack. However, such
multi-domain features of FE (domain size and patterns) are highly
dependent on the physical properties of FE (i.e., thickness, grain size,
etc.).126 As a consequence, in a FEFET synaptic array, the multi-state
behavior of FEFETs may suffer from the variability of the FE layer
along with the variation induced by underline transistors. Therefore,
large-scale implementation of the synaptic array with identical FEFET
characteristics will be challenging, which can potentially be overcome
with high quality fabrication of FE films and variation aware designs.
Despite the benefits offered by FEFETs, the technology is still at its
nascent stage in the context of neuro-mimetic devices, and crossbar-
level implementations will be potentially explored in the future.

E. Floating gate devices

Most of the aforementioned non-volatile technologies are based
on non-Si platforms requiring effective integration and CMOS com-
patibility. Si-based non-volatile memories, such as Flash memory, use
floating gate devices134 to store data. These devices have seen consider-
able commercial use in universal serial bus (USB) flash drives and solid
state drives. Owing to their non-volatility, floating gate devices were
one of the first devices explored for emulating synaptic behavior in
neuromorphic systems. Furthermore, these devices are even more
promising because of their standard process technology. In this sub-
section, we will discuss how neuro-synaptic functionalities can be
effectively mimicked using floating gate devices.

1. Floating gate devices as neurons

A floating gate (FG) transistor has the same structure as a con-
ventional MOSFET, except for an additional electrode between the
gate and the substrate, called the floating gate, shown in Fig. 16(a).
The non-volatility is induced by the charge stored on the floating gate
of the transistor. As the charge stored in the floating gate increases, the
threshold voltage of the transistor decreases, as shown in Fig. 16(b).
This charge storage dynamics can also be leveraged to emulate inte-
grating behavior in a leaky IF neuron.133 Such a LIF neuron circuit is
shown in Fig. 17. Block A shows the integrating circuit where a charge
is injected into the floating gate by the pre-synaptic current. This mod-
ulates the voltage at the floating gate, VFG, which accounts for the inte-
gration. Over time, the charge decays, introducing a leaky behavior.
The leak factor is dependent on the tunneling barrier thickness. The
balance between charge injection and charge ejection determines the
neuron operation. The rest of the circuit performs the thresholding
and resetting operation as required by a LIF neuron.
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2. Floating gate devices as synapses

Unlike the neuronal behavior, which depends on the charge
injection/ejection dynamics of the floating gate, the synaptic behavior
depends primarily on charge storage and its ability to modulate the
conductance of the device. The charge storage mechanism is governed
by two phenomena known as the Fowler–Nordheim (FN) tunnel-
ing135,136 and hot-electron injection (HEI). HEI requires a high posi-
tive voltage across the gate and the source such that electrons have
enough kinetic energy to cross the insulating barrier between the float-
ing gate and the channel. Charge gets trapped in the floating gate and
remains intact even after removal of voltage due to the excellent insu-
lating abilities of SiO2. The other mechanism involves FN tunneling,
which stores and removes charge from the floating gate in a reversible
manner. A sufficiently high positive voltage between the source and
control gate causes the electrons to tunnel into the floating gate,
whereas an equivalent voltage of opposite polarity removes the charge.
Charge in the floating gate increases the threshold voltage of the tran-
sistor, thus enabling two stable states in the FG transistor, based on the
presence and absence of charge. This can be used to emulate binary
synapses. In addition, due to the analog nature of charge, by manipu-
lating the amount of charge stored in the floating gate, multi-level cells

(MLC) are possible. Such multi-level storage capability of FG transis-
tors have been heavily used in flash memory technologies.137,138 This
analog memory characteristics along with excellent stability and reli-
ability, especially for multi-level states, make FG devices promising for
emulating analog synaptic behavior. In fact, the earliest proposals of
on-chip synapses with computing and learning abilities were based on
FG transistors.139–141

3. Floating gate crossbars

Owing to the integrability with CMOS processes, floating gate
transistors have been used to implement large-scale arrays of program-
mable synapses to perform synaptic computations between popula-
tions of neurons. The exponential dependence of injection and
tunneling currents on the gate and tunneling voltages can be further
used to perform STDP based weight update in such “single transistor”
synapses.142,143

FG transistors overcome most of the major challenges encoun-
tered by the previously discussed non-volatile technologies including
reliability and stability. Moreover, the retention time can also be mod-
ulated by varying the tunneling barrier of the gate oxide. However, this
comes with a trade-off that FG transistors require high voltage for
writing and reading. Moreover, unlike the high-density storage offered
by PCM and RRAM technologies, FG transistors consume a larger
area. The power-hungriness and area inefficiency have thus propelled
research toward more energy and area-efficient solutions offered by
beyond-CMOS technologies.

F. NVM architecture

So far, we have discussed how NVMs, owing to their intrinsic
physics, can be exploited as neural and synaptic primitives. A compari-
son table of the aforementioned NVM technologies is shown in
Fig. 18. Additionally, we have seen that, at a circuit level, the dense
crossbar arrangement and associated analog computations present a
promising way forward with respect to in-memory computing.
Advantageously, beyond devices and circuits, even at an architectural

FIG. 17. Floating gate leaky-integrate-and-fire neuron133 showing (a) the integrating circuit, (b) and (c) feedback amplifier circuits for thresholding operation, and (d) reset
circuit.133

FIG. 16. (a) Basic floating gate transistor structure showing the control gate and
the floating gate separated by a blocking oxide layer. (b) Increasing charge in the
blocking oxide layer lowers the threshold voltage, VT, of the transistor causing
higher current at a particular voltage.
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(or system) level, NVMs and crossbars provide interesting opportuni-
ties for energy- and area-efficiency. NVMs provide a radical departure
from the state-of-the-art von-Neumannmachines due to the following
two factors: (1) NVM based crossbars are being looked upon by the
research community as the holy grail for enabling in-memory mas-
sively parallel dot-product operations, and (2) the high storage density
offered by NVMs allows construction of spatial neuromorphic archi-
tectures, leading to higher levels of energy, area, and latency improve-
ments.144–147 Spatial architectures differ from conventional processors
in the sense that the latter rely heavily on various levels of memory
hierarchy, and data have to be shuffled back and forth between various
memory sub-systems over long distances (between on-chip and off-
chip memory). As such, the energy and time spent in getting the data

in the right level of memory hierarchy, before it can be processed, lead
to the memory-wall bottleneck. Since the storage density of NVMs is
much larger [a single static random access memory (SRAM) cell stor-
ing one bit of data consumes 150F2 area compared to an NVM that
can take 4F2 space storing multiple bits], they lend themselves easily
for distributed spatial architectures. This implies that an NVM based
neuromorphic chip can have a crossbar array that stores a subset of
the network weights, and such multiple crossbars can be arranged in a
tiled manner, wherein weights are almost readily available within each
tile for processing.

Keeping in view the aforementioned discussion, a generic NVM
based distributed spatial architecture is shown in Fig. 19, enable map-
ping of neural network applications entirely using on-chip NVM. The

FIG. 18. Table showing a comparison of different beyond-CMOS NVM technologies and some representative works on demonstrations and design of neuronal and synaptic
elements in a spiking neural network. Note that neurons and synapses can also be designed using non-volatile floating gate transistors (discussed in Sec. III E). However, in
this table, we focus on beyond-CMOS materials due to their non-standard material stack.
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various computing cores with their crossbar arrays are interconnected
through network-on-chip (NOC). A distinct characteristic of SNN
architecture is event-drivenness. SNNs communicate through spikes,
i.e., binary information transfer between neurons. As such, for on-chip
NOCs, spike-addresses are communicated between various compute
cores rather than energy expensive transfer of actual data.144

Furthermore, only those units are active, which have received a spike,
and others remain idle, resulting in added energy-efficiency. Note that
both spike-based on-chip communication and event-drivenness are
direct consequences of SNN based data processing. Distributed archi-
tectures based on NVM technologies have been explored heavily to
build special-purpose accelerators for both machine learning work-
loads such as convolutional neural networks (CNNs), multi-layer per-
ceptrons (MLPs), and long short term memories (LSTMs),145–148 as
well as SNNs.144,149 These works have demonstrated significant
improvements over CMOS-based general purpose systems such as
central processing units (CPU), graphics processing units (GPU), or
application specific integrated circuits (ASICs),150 which highlight the
potential of neuromorphic computing based on NVM devices.

Until now, we have talked about inference-only accelerators that
require fixed-point arithmetic, which NVM crossbars are well suited
for. In addition, on-chip training based on unsupervised learning has
been explored at a primitive level using low-precision devices;151,152

however, training accelerators for large-scale tasks, which use such
primitives, have not been demonstrated yet. Moreover, supervised
learning, on the other hand, requires floating-point arithmetic due to
small magnitude of weight updates, which is difficult to be captured by
fixed-point representation. Architectures, which support training, thus
face a significant challenge of incorporating such small updates to
NVM crossbars. This problem is accentuated especially with limited
endurance and high write latency of some NVM technologies, such as
PCMs and RRAMs. Writing into crossbars in parallel using pulse
width encoding schemes has been proposed although the scalability of
such a technique still needs to be investigated.153 Based on the discus-
sion in this section, two important developments that are yet to be
seen from the neuromorphic community with respect to architectures
based on NVMs are (1) experimental demonstration of large-scale
inference-only NVM crossbar systems that can rival their CMOS

counterparts, for example, the CMOS based large-scale neuromorphic
chip presented in Refs. 154 and 155, and (2) investigation and estab-
lishment of the limits of crossbar based neuromorphic systems for on-
chip training keeping in mind the constrained writability of NVM
technologies.

IV. PROSPECTS
A. Stochasticity—Opportunities and challenges

We have discussed about the promises of NVM technology for
emulating neuro-synaptic behavior using single devices. These devices
can have inherent variability embedded into their intrinsic physics,
which can lead to stochastic characteristics. This is a major advantage
from CMOS-based implementations where extra circuitry is required
to generate stochastic behavior. Stochastic devices derive inspiration
from the inherent stochasticity in biological synapses. Such synaptic
uncertainty can be used in both learning and inferencing157 in spiking
neural networks. This is especially crucial for binary or ternary synap-
ses where arbitrary weight update may result in overwriting previously
learned features. Using stochasticity in binary synapses can vastly
improve its feature recognition capabilities. This can be done in both a
spatial manner158 where a number of synapses are randomly chosen
for weight update or a temporal manner116 where learning in a proba-
bilistic manner can follow the footsteps of the STDP based synaptic
weight update algorithm. Stochastic STDP thus enables feature recog-
nition with extremely low-precision synaptic efficacy, resulting in
compressed networks,152 which has the potential to achieve significant
energy efficiency when implemented on hardware.151 Stochastic learn-
ing is particularly helpful for low-precision synapses because its adds
an analog probabilistic dimension, thus ensuring less degradation in
accuracy in low-precision networks. For higher-precision networks
where the classification accuracy does not degrade, stochasticity does
not make a significant difference.

In addition to stochastic learning, we have also discussed how
stochastic devices can be used to mimic the functionality of cortical
neurons. In PCM devices, stochasticity has been explored in integrate-
and-fire neurons29 where multiple reset operations lead to different
initial glass states. Although such stochastic IF characteristics can be
exploited for robust computing, the overhead for achieving control
over such stochasticity remains to be seen. On the other hand, in spin
devices, stochastic neurons with sigmoidal characteristics are heavily
tunable. These kinds of neurons have been explored both using high
energy-barrier (10–60 kT) magnets102 and low barrier magnets (1
kT).107 While the resultant sigmoidal behavior looks similar, a 1 kT
magnet loses its non-volatility and is more susceptible to variations,
leading to more complex peripheral circuit design.156 This results in
the peripheral energy dominating the total energy consumption of
such devices, which, interestingly, often makes them less energy-
efficient than high barrier counterparts (Fig. 20).

B. Challenges of NVM crossbars

We have also discussed about the promises of NVM technology
for emulating neuro-synaptic behavior using single devices. We have
shown how these devices can be connected in an integrated crossbar
network to perform large-scale neural computing. Although the prom-
ise of enabling parallel in-memory computations using crossbar arrays
is attractive from the energy- and area-efficiency perspective, many
non-ideal devices and circuit behaviors limit their wide scale

FIG. 19. A representative neuromorphic architecture based on NVM crossbars as
basic compute engines.
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applicability. These include the variability in RRAM states, which can
detrimentally affect the verity of analog computations in synaptic ele-
ments. This is primarily due to the uncontrolled nature of the variabil-
ity in filamentary RRAM or CBRAM devices.159 PCM devices on the
other hand, in spite of being less prone to variability, suffer from resis-
tance drifting due to structural relaxations after the melt-quench
amorphization of the material.160 Resistance drifting primarily affects
high resistance states in PCMs and hence adversely impacts the perfor-
mance of neural networks especially for ex situ trained networks.52

Carefully manipulating the highest resistance state of operation using
partial resetting pulses can potentially reduce the impact of resistance
drift.52 Spintronic devices are more robust with respect to variability
and endurance challenges as compared to RRAM and PCM technolo-
gies owing to their stable and controlled switching. However, practical
devices suffer from low contrast in conductivity between the stable
extremities. The low ON–OFF ratio severely affects the mapping of
synaptic weights when implemented in neural networks and is the
major technical roadblock for synaptic implementations using spin
devices. Additionally, all non-volatile devices have energy and latency
expensive write operations in comparison to conventional CMOS
memories. This in turn limits the energy-efficiency of performing on-
chip synaptic plasticity that requires frequent write operations.

Apart from device variations and limitations, building large-scale
crossbars using non-volatile synaptic devices is a major hurdle toward
realizing the goal of neuromorphic accelerators. Crossbar sizes are
severely limited by various factors such as peripheral resistances, para-
sitic drops, and sneak paths. Figure 21 shows a schematic of a realistic
crossbar with source, sink, and line resistances and peripherals. When
training is performed on-chip taking into account the non-ideal cross-
bar behavior, such inaccuracies in crossbar computations can be miti-
gated to a large extent. However, for neuromorphic systems designed
as inference-only engines, it is necessary to perform effective modeling
of the crossbar array, which can potentially account for the non-
idealities during off-line training and take corrective measures for
accurate crossbar computations. Such modeling can either involve rig-
orous graph-based techniques for linear circuits,161 simple equations

involving Kirchoff’s laws under certain assumptions,162 or even data-
dependent fitting.163 Considering the minimal effect of IR-drops along
the metal lines, equations of a crossbar under the effect of peripheral
resistances can be simplified as

Ij ¼
P

Vi;niGij

1þ Rsink
P

Gij
; (10)

Vi;ni ¼ Vi
1=Rs

1=Rs þ
P 1

Rji þ Rsink

: (11)

Here, Ij is the current of the j-th column, Vi is the input voltage to the
i-th row of the crossbar, (Rij ¼ 1=GijÞ is the resistance/conductance of
the synaptic element connecting the i-th row with the j-th column,
Vi;ni is the degraded input voltage due to the effect of peripheral resis-
tances, Rs is the effective source resistance, and Rsink is the effective
sink resistance. These resistances in relation to a crossbar are shown in
Fig. 21. This modeling gives us an intuition about the behavior of
crossbars, which can help preserve the computation accuracy. For
example, lower synaptic resistances result in higher currents, which
results in larger parasitic drops across the metal line. On the other
hand, higher operating resistances might lead to low sensing margins,
necessitating the need for expensive peripheral circuitry. The presence
of sneak paths in synaptic crossbars can also adversely affect the pro-
gramming process, thus harming the performance of on-chip learning
systems.

In addition to non-ideal elements in NVM crossbars, the design
of peripheral components such as Digital-to-Analog Converters

FIG. 21. A realistic crossbar system showing the peripheral circuits including digi-
tal-to-analog converters (DACs) at the input to the crossbar and analog-to-digital
converters (ADCs) at the output. Crossbars can possess non-ideal resistance ele-
ments such as the source resistance ðRsource), line resistance (Rline), and sink resis-
tance (Rsink).

FIG. 20. A comparison in energy consumption for stochastic spin neurons for various
energy-barrier heights.156 Reproduced with permission from Liyanagedera et al., Phys.
Rev. Appl. 8(6), 064017 (2017). Copyright 2017 American Physical Society.
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(DACs) and Analog-to-Digital Converters (ADCs) is essential toward
building large-scale neuromorphic systems. As shown in Fig. 21,
DACs are used to convert bit-streamed data to voltages, whereas the
ADCs convert back the analog voltage outputs from a sample-and-
hold array into digital bits. These converters are especially necessary as
the sizes of neural network models are much higher than the size of a
single crossbar. As a result, multiple crossbars are required to represent
the entire neural network, which necessitates digital communication
between the outputs of individual crossbars. As the crossbar size
increases, the precision requirements for ADCs become higher, lead-
ing to enormous power consumption, which can potentially reduce
the benefits in terms of energy consumption that NVM crossbars
inherently offer. However, the inherent robustness of neural networks
toward computation errors may allow us to design approximate
peripheral circuitry based on ADCs with lower precision require-
ments. Moreover, efficient mapping of crossbars and introducing pro-
grammability in peripheral precision requirements can potentially
preserve the benefits offered by NVM technology. In light of these
challenges such as device variations, non-ideal resistances, sneak paths,
and peripheral design, careful design space exploration is required to
identify optimum resistances for operation and crossbar sizes of syn-
aptic elements along with efficient device-circuit-algorithm co-design
for exploring effective mitigation techniques.

C. Mitigating crossbar non-idealities

NVM provides a massively parallel mode of computations using
crossbars. However, as we have discussed previously, analog comput-
ing is error-prone due to the presence of circuit-level non-idealities
and device variations. Various mitigation techniques have been
explored to address these computing inaccuracies. Although some of
these techniques have been demonstrated for artificial neural net-
works, the methodologies still hold true for spike-based neuromorphic
computing. The most commonly used methodology to recover the
performance of neural networks due to crossbar-level computing
errors is to re-train the network using software models of resistive
crossbars. The re-training approach involves updating the weights of
the network based on information of non-idealities in crossbars. This
has been explored for both stuck-at-faults164 and device variations165

where it has been observed that re-training the network with aware-
ness about the defect or variation distribution can minimize the effects
of these non-idealities on classification performance. Re-training,

however, does not recover the performance of an ideal neural network
without any non-idealities. The presence of non-idealities in the for-
ward path of a neural network may require a modified backpropaga-
tion algorithm to closely resemble the ideal neural network.162 For
unsupervised learning algorithms such as STDP, the impact of non-
idealities may be significantly lower due to the ease of enabling on-line
learning, which can automatically account for the errors. In addition
to static non-idealities in the crossbars, the effect of non-linearity and
asymmetry of programming characteristics of NVM devices can also
be detrimental to the performance of the network. Reliable mitigation
due to such programming errors can be performed by novel pulsing
schemes.166,167 These pulsing schemes involve modulation of pulse-
widths based on the current conductance state, which help restore
linearity.

Beyond re-training, other static compensation techniques can
also be used to recover some system level inaccuracies. For example,
the limited ON/OFF ratio and precision of NVM synaptic devices can
result in computational errors, which can be taken care of by effective
mapping of weight matrices to synaptic conductance.168 Static trans-
formations of weight matrices have been explored to alleviate circuit-
level non-idealities.169 This methodology performs gradient search to
identify weight matrices with non-idealities that resemble ideal weight
matrices. Most of the compensation techniques adopted to account for
computation inaccuracies in NVM crossbars address very specific
problems. A more complete and holistic analysis, modeling, and miti-
gation of crossbar non-idealities are necessary to completely under-
stand the impact and explore appropriate solutions.

D. Multi-memristive synapses

Multi-memristive synapses are examples, wherein device limita-
tions have been countered by the use of circuit techniques, albeit at
additional area overhead. Figure 22 depicts two illustrations, which use
multiple NVM devices to represent one synaptic weight. In Fig. 22(a),
two separate PCM devices were used to implement LTD and LTP sep-
arately. Incrementing the PCM device corresponding to LTP increased
the neuronal input, whereas incrementing the device corresponding to
LTP decreased the neuronal input. By this scheme, the authors in Ref.
35 were able to simply the peripheral write circuits since only incre-
ments in device resistances were required for representing both LTP
and LTD plasticity. Note that conventionally using one single device
would have required write circuits for both incrementing and

FIG. 22. (a) Two separate NVM devices used for LTP and LTD, and the resulting output of the synapse is fed to the neuron. (b) Multiple NVM devices connected in parallel to
increase the current range of the synapse. (c) Through the use of an arbitrator, any one of the devices is selected for learning.
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decrementing the PCM device resistance, and given the complex
nature of waveforms required to write into PCM devices, this would
have led to additional area overhead. In yet another work, more than
one memristors were connected in parallel [Fig. 22(b)]170 to allow the
increased current range of the overall synaptic cell. For learning, an
arbitration scheme was used to select one memristor and program in
accordance with the learning scheme as shown in Fig. 22(c). With ref-
erence to these examples, we believe that such schemes, wherein device
level constraints can be mitigated through the use of clever circuit
techniques, can be a key enabler for NVMs in neuromorphic comput-
ing without solely relying on better material stack and manufacturing
processes for improved device characteristics.

E. Beyond neuro-synaptic devices and STDP

As would be apparent by now, the state-of-the-art in neuromor-
phic hardware using non-volatile devices can be characterized in two
broad categories of works—(1) those that tend to mimic the LIF
dynamics of a neuron using device characteristics and (2) others that
are geared toward synaptic functionalities and associated learning
through STDP in shallow SNNs. On the other hand, the state-of-the-
art on the algorithmic side of neuromorphic computing has taken a
step forward beyond LIF dynamics and STDP learning. We have dis-
cussed briefly about how supervised learning such as gradient descent
can also be used for spike-based systems. Previously, supervised learn-
ing has been performed in the artificial neural networks (ANN)
domain, and trained networks have been converted to SNNs.27

Although this method has been scaled to complex image recognition
datasets such as ImageNet, one particular drawback of this scheme is
high inference latency. To circumvent that, researchers have explored
learning schemes, which incorporate such gradient descent algorithms
in the spiking domain itself.28,171,172 Moreover, combining unsuper-
vised and supervised learning techniques have also been widely
explored.173 This kind of hybrid learning technique has shown better
scalability (to deeper networks) and improved accuracy.

We believe that it is important for the hardware community to
move beyond mimicking neurons and synapses on shallow SNNs and
find ways and means of executing more dynamic learning schemes on
hardware for deeper spiking networks. Such improved learning
schemes would inevitably require complex compute operations, which
could be beyond the intrinsic device characteristics of non-volatile
devices. As such, there is a need to explore systems, wherein computa-
tions can be segregated between non-volatile sub-arrays and CMOS
based compute engines, allowing the overall system to benefit both
from parallelism offered by NVMs and the compute complexity
offered by CMOS engines. This would also be a key enabler in building
end-to-end deployable neuromorphic systems (wherein a spike-based
sensor is directly interfaced to a neuromorphic processor) that can
cater to real life task as in ultra-low energy IoT systems. Such IoT sys-
tems not only are important from a research perspective but can also
provide a possible commercial niche-application for neuromorphic
processors based on non-volatile technologies.

F. NVM for digital in-memory computing

Most of the current works involving neuromorphic computing
and emerging devices have concentrated on analog-mixed-signal com-
puting. However, the inherent approximations associated with analog

computing still remain a major technical roadblock. In contrast, one
could use digital in-memory computing for implementing on-chip
robust SNN networks. These implementations can use various digital
techniques, as in use of read only memory (ROM) embedded RAM in
NVM arrays174 or peripheral circuits based on in-memory digital
computations.175 Interestingly, these works do not require heavy re-
engineering of the devices themselves. As such, they can easily benefit
from the recent technological and manufacturing advancements
driven by industry for commercialization of various non-volatile tech-
nologies as memory solutions.

Furthermore, in a large neural network, NVM can be used as sig-
nificance driven in-memory compute accelerators. For example, layers
of the neural network, which are less susceptible to noise, can be accel-
erated using analog in-memory computing, while those layers that
need more accurate computations can be mapped on NVM arrays
rendering digital in-memory computing. Thus, fine-grained heteroge-
neous in-memory computing (both digital and analog) can be used in
unison to achieve both lower energy consumption and higher applica-
tion accuracy. It is also well known that NVMs that store data digitally
are easier to program as opposed to analog storage, which requires
multiple “read-verify” cycles. Thus, on-chip learning, which requires
frequent weight updates, is more amenable to digital or heterogeneous
(digital þ analog) computing arrays as opposed to analog storage of
data. Additionally, bit errors induced due to digital computing can be
easily rectified using error correction codes. Thereby, resorting to digi-
tal processing for critical or error susceptible computation could help
widen the design space for use of NVMs as SNN accelerators.

G. Physical integrability of NVM technology with
CMOS

There are several works on experimental demonstration of in-
memory computing primitives based on non-volatile memories, espe-
cially RRAM and PCM technologies.45,84,95 NVM devices in most
state-of-art RRAM and PCM crossbars are accompanied by a CMOS
selector device (like a transistor). Such a 1T-1R crossbar configuration
resolves sneak paths during read and write operations.176 Crossbars
based on NVM technologies such as RRAM,177 PCM,178 and
Spintronics179 are fully compatible with the CMOS back end of the
line (BEOL) integration process. There are some issues that need to be
considered. For example, PCM is fabricated in crystalline form, as
BEOL integration involves high temperature processes. Although there
have been large-scale demonstrations on RRAM and PCM crossbars
with CMOS peripherals, work on CMOS integration of spintronic
devices has been limited to small scale Boolean logic circuits.179 It is to
be noted that the limited use of spin devices for the crossbar structure
is a result of the low ON–OFF ratio for spintronic devices and not
because of compatibility issues pertaining to integration of spin devices
with CMOS technology. In fact, the current advancement in process
integration for spin based devices with CMOS technology has led to
recent widespread interest for commercial use of spin based read-write
memories.180 FEFETs, on the other hand, follow the standard Front
End of Line (FEOL) CMOS process. Thus, all the NVM technologies
being explored can be physically integrated with CMOS.

V. CONCLUSION

The growing complexity of deep learning models and the
humongous power consumption of standard von-Neumann
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computers while implementing such models have led to a three decade
long search for bio-plausible computing paradigms. They draw inspi-
ration from the elusive energy-efficiency of the brain. To that effect,
non-volatile technologies offer a promising solution toward realizing
such computing systems. In this review article, we discuss how the
rich intrinsic physics of non-volatile devices, based on various technol-
ogies, can be exploited to emulate bio-plausible neuro-synaptic func-
tionalities in spiking neural networks. We delve into the generic
requirements of the basic functional units of SNNs and how they can
be realized using various non-volatile devices. These devices can be
connected in an intricate arrangement to realize a massively parallel
in-memory computing crossbar structure representing a radical depar-
ture from the existing von-Neumann computing model. A huge num-
ber of such computing units can be arranged in a tiled architecture to
realize extremely area and energy-efficient large-scale neuromorphic
systems. Finally, we discuss the challenges and possible solution of
realizing neuromorphic systems using non-volatile devices. We believe
that non-volatile technologies show significant promise and immense
potential as the building blocks in neuromorphic systems of the future.
In order to truly realize that potential, a joint research effort is neces-
sary, right from the materials that would achieve better trade-offs
between higher stability and programming speeds and exhibit more
linear and symmetric characteristics. This material investigation
should be complemented with effective device-circuit co-design to alle-
viate problems of variations and other non-idealities that introduce
errors into neuromorphic computations. Finally, there must be effi-
cient hardware-algorithm amalgamation to design more hardware-
friendly algorithms and vice versa. With these challenges in mind and
possible avenues of research, the dream of achieving truly integrated
non-volatile technology based neuromorphic systems should not be
far into the future.
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