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ABSTRACT 
On-chip learning with compute-in-memory (CIM) paradigm has 
become popular in machine learning hardware design in the recent 
years. However, it is hard to achieve high on-chip learning accuracy 
due to the high nonlinearity in the weight update curve of emerging 
nonvolatile memory (eNVM) based analog synapse devices. 
Although digital synapse devices offer good learning accuracy, the 
row-by-row partial sum accumulation leads to high latency. In this 
paper, the methods to solve the aforementioned issues are presented 
with a device-to-algorithm level optimization. For analog synapses, 
novel hybrid precision synapses with good linearity and more 
advanced training algorithms are introduced to increase the on-chip 
learning accuracy. The latency issue for digital synapses can be 
solved by using parallel partial sum read-out scheme. All these 
features are included into the recently released MLP + 
NeuroSimV3.0, which is an in-house developed device-to-system 
evaluation framework for neuro-inspired accelerators based on 
CIM paradigm.  
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1) Introduction 
Compute-In-Memory Paradigm In the past decade, neural 
network based machine learning algorithms have witnessed rapid 
development and achieved commercial success in image/speech 
recognition. However, the intensive matrix multiplication 
operations and massive data movement between computation units 
and memory make it inefficient to implement neural network based 
algorithms on traditional computation platform (e.g. CPU), which 
is based on von-Neumann architecture. The reasons can be 
explained by the lack of parallelism during the matrix 
multiplication and the so-called memory bottleneck. To overcome 
these challenges, GPU is used to speed up the training process of 
the neural networks due to its highly parallel computation 
mechanisms. However, the high power consumption of GPU 
(~100W scale) prevents it from being applied to the edge devices 
where the power budget is limited.  

To alleviate the memory bottleneck, which is caused by the 
insufficient memory bandwidth during the frequent data transfer 
between memory and computing unit when doing matrix 
multiplication, one promising solution is to perform computation 
inside the memory, which is referred to as compute-in-memory 
(CIM) [1]-[6]. The basic idea of CIM is to map the elements of a 
matrix into the conductance matrix of memory cells, which is 
termed as synaptic array and each memory cell is called a synapse. 
The vector is input at each row of the memory array as voltage level 
and the multiplication results are represented by the partial sum 
current at each column, as shown in Figure 1.  
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Figure 1: Implementation of vector-matrix multiplication with 
compute-in-memory paradigm.   

MLP + NeuroSim Simulator CIM paradigm is facilitated by 
recent research breakthroughs in emerging non-volatile memory 
(eNVM). Four promising eNVM candidates: resistive RAM 
(RRAM), phase change memory (PCM), spin-transfer-torque 
magnetic RAM (STT-MRAM) and ferroelectric field-effect 
transistor (FeFET) are featured of their small cell size, short 
programming time, good endurance and data retention, which is 
beneficial for CIM paradigm. To help evaluate the impact of 
memory device properties on the performance of CIM based neural 
network accelerator, an in-house device-to-system simulation 
framework MLP+NeuroSim was developed [7],[8], which is 
publically available at GitHub [9]. The overall architecture of this 
simulator is shown in Figure 2. In general, the framework consists 
of two parts: the MLP simulator and NeuroSim simulator. The 
MLP simulator helps evaluate the on-chip learning or inference 
accuracy with a 2-layer MLP network. The default network 
topology is 400-100-10 for MNIST dataset. Device properties such 
as nonlinearity, cycle-to-cycle variations, device-to-device 
variations and number of conductance levels are considered as 
input parameters to build the synaptic arrays. On the other hand, the 
circuit-level performance metrics including chip area, read/write 
latency, dynamic energy consumption and leakage power are 
estimated by the NeuroSim simulator. The performance metrics of 
periphery circuit modules (e.g. sense amplifiers, mux, decoders et. 
al) and synaptic arrays are evaluated by built-in analytical models 
and user defined values at specific technology node. More details 
about the methodologies used in the framework can be found in our 
previous papers [7] [8].    
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Figure 2: Overview of the simulator architecture of MLP + 
NeuroSim framework.  

So far, Version 1.0 and 2.0 of the MLP + NeuroSim framework 
have been released in 2017 and 2018, respectively. In these two 
versions, both analog and digital synaptic arrays with their 
periphery circuit modules are supported. Various devices such as 
RRAM, PCM, STT-MRAM, FeFET, and SRAM are benchmarked 
for their performance in on-chip learning and on-chip inference. 
While these devices achieve good performance for on-chip 
inference, challenges occurs for on-chip learning. The main reason 
is that the nonlinear and asymmetric weight update curve of analog 

synapses prevent it from achieving high learning accuracy because 
of the inaccurate weight update. Although digital synapses based 
on eNVMs or SRAM offers good learning accuracy, the drawbacks 
of them are also obvious. For eNVMs based digital synaptic arrays, 
the row-by-row read is time consuming for partial sum calculation. 
For SRAM based synaptic arrays, although it features of high 
read/write speed, the high leakage power, volatility and high area 
cost limit its applications in large scale neural network accelerators.  

In this paper, device-to-algorithm level optimizations are pursued 
to address the aforementioned challenges. In section 2, the methods 
to improve the on-chip learning accuracy of the analog synapses 
based synaptic array are illustrated. In general, hybrid precision 
synapses and advanced training algorithms such as adaptive 
momentum estimation (Adam) are utilized. In section 3, the high 
read latency of digital synaptic arrays is reduced by parallelizing 
the partial sum read-out. In section 4, the new features of 
MLP+NeuroSimV3.0 are summarized and a benchmark table of 
state-of-the-art synaptic devices is presented. The key factors to 
achieve high on-chip learning accuracy is discussed. In section 5, 
conclusions are drawn and a blueprint for the future design 
automation tool development plan is presented.  

2) Improving Online Learning Accuracy for 
Analog Synapse Based Accelerator 

In analog synapse based accelerators, the multi-bit weight is stored 
in one memory cell, where RRAMs and PCMs with either crossbar 
or 1-transistor and 1-resistor (1T1R) cell structure are usually used. 
With analog synapses, each partial sum value is obtained in parallel 
from one column of the array. It is more time-efficient compared 
with digital synapses, where the partial sums corresponding to 
different weight bits need to be sequentially added up with an adder 
at the edge of the array. However, as described previously, the on-
chip learning accuracy is degraded due to the nonlinear/asymmetric 
weight update curve of eNVMs based analog synapses. In this 
section, hybrid precision synapse and advanced learning algorithms 
are applied to improve the on-chip learning accuracy.  

2.1 Hybrid Precision Synapse 
As is known, the nonlinear and asymmetric weight update curve 
(conductance vs. # programming pulse) prevents the analog 
synapses from achieving high on-chip learning accuracy. Besides, 
the relatively longer programming pulse width (~tens of 
nanoseconds or above) of eNVMs limits the training speed. 
Recently, capacitor based analog synapse such as 3-transistor-1-
capacitor (3T1C) cell [10] is proposed to alleviate these problems. 
Although capacitor based analog synapse offers good linearity and 
fast programming speed, it suffers from the volatility and small 
dynamic range.  

To leverage the good linearity, fast programming speed of capacitor 
and the non-volatility, abundant conductance states of eNVMs, the 
weight stored in a synapse can be divided into 2 parts and stored 
into different devices. The first part of the weight has a lower 
numerical significance and is stored in the capacitor devices, which 
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is termed low significance weight (LSW, WLSW). The other part of 
the weight with higher numerical significance is stored in the 
eNVMs, which is termed high significance weight (HSW, WHSW). 
During training, only the LSW is frequently updated due to the fast 
programming speed of capacitor. A significance factor F is defined 
to represent the numerical significance of the HSW.  Therefore, the 
weight stored can be represented as W = F × WHSW + WLSW, as 
shown in Figure 3.  A synapse that is capable to store the volatile 
LSW and non-volatile HSW is termed as hybrid precision synapse 
in this paper.  

0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0
WHSW = (0101)2 = 510

WLSW = (0010)2 = 210

F=16
Wtotal = 16·5+2=82

WHSW = (01)2 = 110

WLSW = (010010)2 = 1810

F=64
Wtotal = 64·1+18=82

An example: decimal weight = 82
HSW (non-volatile)

LSW (non-volatile)

 

Figure 3: an illustration of the weight storage in a hybrid 
precision synapse 

At present, two types of hybrid precision synapses are proposed, as 
shown in Figure 4. One is based on PCMs and capacitor [11], which 
is called 3T1C +2PCM synapse since in the original design there 
are 3 transistors, 1 capacitor and 2 PCMs (with 2 selection 
transistors) in a synapse. The other one is based on the ferroelectric 
transistor [12], which is called 2T1F synapse since in the original 
design, there are 2 CMOS transistors and 1 ferroelectric transistor 
in a synapse.  

In the 3T1C + 2PCM synapse, the LSW is stored in a MOS 
capacitor, which tunes the gate voltage of the NMOS transistor 
connected. Two access transistors (AG) are used to control the 
charging and discharging of the capacitor. The HSW is represented 
by the weight difference between a PCM pair, symbolled as G+ and 
G-, respectively. To increase the HSW, the G+ is programmed by a 
series of set pulses. To decrease the HSW, the G- is programmed 
by a series of set pulses. For the 2T1F synapse, similarly, the LSW 
is stored at the gate capacitor of the FeFET, which is tuned by 
charging and discharging the gate node. The HSW is programmed 
by the multi-domain polarization switching in the ferroelectric gate 
dielectrics [13], which is non-volatile. It should be noted that the 
LSW and HSW are both stored as the channel conductance of the 
FeFET but with different programming mechanisms. In such 
hybrid synapses, the LSW is volatile and may be lost due to the 
leakage in the off-state transistors.   
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Figure 4: Schematics of hybrid precision synapses (a). 
3T1C+2PCM synapse [11]. (b). 2T1F synapse [12]. 

Array Design To enable the control of individual synapse in an 
array, we add two more transistors to control the access to VDD 
and GND in a synapse, respectively, as shown in the red dash box 
in Figure 4. These two transistors are called power gate (PG) in this 
paper. The array level architecture design is shown in Figure 5 (a) 
and (b) respectively. In both designs, switch matrices are used to 
manipulate the control lines. A reference column is added to 
represent negative partial sum values, which is obtained by 
subtracting the partial sum digits of the reference column from the 
partial sum digits of regular columns. In the periphery circuits, 
analog to digital converter (ADC) based on multilevel sense 
amplifiers is used to convert the analog partial sum current to digital 
values. Specifically, for the synaptic array with 3T1C + 2 PCM 
synapse, it is assumed that the partial sum current corresponding to 
LSW and HSW are first converted to digital values and then added 
up to obtain the total weight, although in [11], an analog summation 
of the partial sum current is conducted and followed by digital 
conversion. To reduce the overhead of periphery circuits, a mux is 
used to share periphery circuit modules among different columns.  
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Figure 5: synaptic arrays with (a) 3T1C+2PCM synapse and 
(b) 2T1F synapse 

Partial Sum Read The partial sum read operation in 3T1C + 
2PCM is conducted in 3 steps as follows.  

1. Read the partial sum corresponding to HSW (HSW Psum). It 
is a 2-step process. First, the partial sum corresponding to the 
G+ synapses (G+ Psum) is read-out. Then, it is subtracted by 
the partial sum corresponding to G- synapses (G- Psum). The 
2-1 mux will forward the G+ Psum to subtractor from register 
during subtraction.  

2. The HSW Psum is shifted to left by log2(F), where the 
significance factor F is defined as an integer power of 2 to 
make the shift amount integer.  

3. Read the partial sum corresponding to the LSW (LSW psum) 
and then adding it up with the HSW Psum. To get LSW psum, 
the 2-1 mux will be configured to deliver the partial sum of 
the reference column to the subtractor. 



  
 

 
 

The partial sum read in 2T1F based synaptic cell is similar except 
that it does not need to read the LSW and HSW separately as they 
are both encoded as the channel conductance of FeFET.  

LSW Write In both synapses, the weight update is conducted by 
programming the capacitor row-by-row during training.  

1. Turn on the PGs of the selected synapse 

2. If weight update ΔW > 0, pulses with high voltage are applied 
to AG1 to charge the gate node. Otherwise, if ΔW < 0, pulses 
with low voltage are applied to AG2 to discharge the gate node.  

HSW Write (Weight Transfer) For the capacitor node, if its 
voltage is too low or too high, the NMOS may operate out of linear 
region, and also the gate voltage may decay over time due to 
leakage current. Therefore, after certain amount of training batch, 
the LSW is read out and transferred to HSW by programming 
eNVMs. The weight transfer for 3T1C+ 2PCM based synapse can 
be conducted as follows.  

1. Read out LSW weight WLSW row by row.  

2. Calculate the amount of weight to be transferred to HSW by 
ΔWHSW = WLSW/F.  

3. Program the G+ cell by applying set pulses to its BL if 
ΔWHSW>0. Otherwise, program the G- PCM cell if ΔWHSW<0.  

4. After weight transfer, program the LSW to an intermediate 
level and therefore the original LSW is discarded.  

The weight transfer for 2T1F synapse based array is slightly 
different. The weight of the whole synapse (W) is read-out row-by-
row. The HSW is reprogrammed to a new weight level of W/F. 
Similarly, the LSW is discarded after the weight transfer.  

Table 1 list the MLP+NeuroSim benchmark results for synaptic 
arrays based on these two hybrid precision synapses. The device 
parameters for PCM and FeFET are obtained from [14] and [13], 
respectively. An ideal eNVM synapse is selected as the baseline. 
Due to the improved linearity, the synaptic arrays with hybrid 
precision synapses can achieve comparable on-chip learning 
accuracy with ideal device. Slight accuracy degradation is observed 
due to the weight loss after weight transfer and the cycle-to-cycle 
variations in a real device. However, a significant area overhead is 
observed due to two reasons: 1). The multilevel polarization 
switching in FeFET is only reported at μm scale for FeFET [13] 2). 
The relatively large capacitance (100fF) is used in the design [11], 
[12].  

Table 1 The Benchmark Results for Hybrid Precision Synapse 
(32nm Technology Node) 

 
Device 3T1C+2PCM 2T1F Ideal 

eNVMs 

# of conductance 
states 

PCM: 16 
Capacitor: 32 
(6 bits in total) 

F=4 

HSW: 2bits 
LSW: 4 bits 

(6 bits in total) 
F=16 

6 bits 

Nonlinearity 
(weight 

increase/decrease) 

Capacitor: 0.2/-0.2 
PCM: 0.105 (LTP 

only) 
0.5/0.5 0/0 

R
ON

 PCM: 4.71 KΩ 
Capacitor: 25KΩ 559.28KΩ 200kΩ 

ON/OFF ratio PCM: 19.8 
Capacitor: 20 45 50 

Weight increase pulse 
HSW: 0.7V (avg.) 

/6μs 
LSW:1V/300ps 

HSW: 2-4V/3μs 
LSW: 1V/300ps 2V/10ns 

Weight decrease pulse Capacitor:1V/300ps HSW: 2-4V/3μs 
LSW: 1V/300ps 2V/10ns 

Cycle-to-cycle 
variation (σ) 

PCM: 1.5% 
Capacitor: 0.5% 1.5% 0% 

Online learning 
accuracy 93.8% 94.6% 94.7% 

Area 330,330 µm2 334,270µm2 7477.4μm2 

Latency 3.15s 
(3.06s for transfer) 

0.38s 
(0.28s for transfer) 1.56s 

Energy 16.69 mJ 7.53 mJ 4.37 mJ 
Leakage power 1.66 mW 2.94 mW 105.6 μW 

2.2    Training Algorithms 
In the previous two versions of MLP + NeuroSim framework, 
stochastic gradient descent (SGD) is used during the 
backpropagation stage for on-chip learning. In the V3.0, more 
training algorithms are supported to help increase the on-chip 
learning accuracy. Here, we briefly talk about the options of 
training algorithms in V3.0. More mathematical details about these 
algorithms can be found in an online tutorial [15]. 

Stochastic Gradient Descent (SGD) SGD is the training algorithm 
used in V1.0 and V2.0. It calculates the gradient and conduct 
weight update after each training image with a pre-defined learning 
rate. This feature makes SGD suitable for online learning because 
of the fast execution speed. However, relatively large fluctuation of 
the learning accuracy is also observed during training because of 
the fixed learning rate.  

Momentum Momentum method is a revised weight update scheme 
for SGD. The weight update is a linear combination of the gradient 
at present time t and the weight update at previous time t-1. It 
alleviates the accuracy fluctuation in SGD and offers faster 
convergence. Similar to SGD, the learning rate is fixed.   

Adaptive Gradient (Adagrad) In Adagrad, the learning rate for 
weight wij is divided by its accumulative gradient update during the 
training, i.e. the learning rate undergoes a monotonic decay during 
the training and it decays faster if the wij undergoes a large amount 
of weight update in its training history. Therefore, Adagrad 
provides good convergence and alleviates the learning accuracy 
fluctuation during training.  

Root Mean Square Propagation (RMSprop) In RMSprop, the 
learning rate of weight wij  is divided by the moving average of its 
recent gradients. Therefore, RMSprop avoid the monotonic decay 
of learning rate in Adagrad.  

Adaptive Moment Estimation (Adam) Adam is a training 
algorithm that combines RMSprop and the momentum method. 
The learning rate is self-adaptive based on the moving average of 
1st and 2nd moments of the gradient.  

To illustrate the effect of different training algorithms on on-chip 
training, the learning accuracy vs. epoch is plotted in Figure 6. Two 
devices, Ag:a-Si based RRAM [16] with high non-linearity and 
EpiRAM [17] with low non-linearity is selected here for 



` 
 

 

comparison. It is observed that the on-chip learning accuracy can 
be improved by using more advanced training algorithms. It can be 
explained that those batch-based training algorithms improve the 
equivalent weight precision by accumulating the tiny ΔW [18]. 
Another possible explanation is that more “deep” local optimal 
points are introduced in the loss function by using devices with high 
nonlinearity. Training with SGD are easy to be trapped into those 
local optimal points while algorithms such as Adam, RMSprop can 
help escape from local optimal points and therefore achieves high 
training accuracy.  For Ag/a-Si, the learning accuracy fluctuation is 
alleviated by the training algorithms with self-adaptive learning 
rate, i.e. Adagrad, RMSprop and Adam. 

However, since those algorithms are batch based, whether they are 
still effective when the training images is not abundant in on-chip 
learning needs further examination. Besides, the hardware 
overhead (such as buffers) is not negligible to implement these 
algorithms, which is scheduled in our development plan for future 
version. In this version, the algorithms are supported in software 
level to examine their effect on improving the on-chip learning 
accuracy.   

  

Figure 6: Training accuracy vs. epochs for Ag:a-Si [16] and 
EpiRAM [17] devices.  

3) Improving On-chip Learning Efficiency for 
Digital Synapse Based Accelerator 

Accelerators based on digital synapses feature of the immunity to 
device nonlinearity/variability as only “0”s and “1”s are stored in 
each memory cell. However, the partial sum read-out for digital 
synaptic array (e.g. STT-MRAM, SRAM) is conducted row by row, 
which leads to high latency. In this V3.0, a parallel read-out 
architecture for SRAM based synaptic array is proposed in Figure 
7 [2],[4]. The WL decoder for the row-by-row read-out array is 
replaced with a WL switch matrix to turn on all WLs at a time. The 
partial sum of each column is sensed by the multilevel sense 
amplifier. A reference generator is used to generate the reference 
voltage levels for the multilevel sense amplifier. The adder and 
register to accumulate the partial sum of each row after the S.A. in 
the row-by-row SRAM array is eliminated.  

The benchmark results for row-by-row and parallel read-out SRAM 
array are listed in Table 2. The area cost for parallel SRAM array 
is increased due to the multilevel sense amplifiers and the reference 
generator. The read latency of parallel read-out SRAM array is 
reduced significantly compared with the row-by-row scheme, 
which leads to lower total latency. In the parallel SRAM array, the 

total latency is limited by the write latency, which has to be 
conducted row-by-row. In Table 2, row-by-row read-out scheme 
using STT-MRAM is shown for comparison, which suffers from 
longer write latency/energy but benefits from lower leakage power. 
The parallel read-out scheme of STT-MRAM is for the future 
investigation, as the on/off ratio of STT-MRAM is very limited.  
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4) Benchmark Results for State-of-the-art 
Synaptic Devices 

Besides the features mentioned above, in V3.0, the range of 
algorithm weight is changed from (0,1) to (-1,1), which is more 
widely in today’s neural network algorithms. To represent the 
negative weight, a reference column is added in the array, which 
represents the level “0”. In the forward stage, the partial sum 
current of a regular column is first read out and converted to digits 
by ADC. At the same time, the partial sum digit of the reference 
column is obtained. Then, the partial sum of the reference column 
is subtracted from that of the regular column by subtractor.  

A new benchmark table in V3.0 is presented in Table 3 while the 
benchmark results in V2.0 [19] is presented in Table 4 for 
comparison. Both tables are obtained at 32nm node. From the 
benchmark table, a few remarks can be made.  

1. In V3.0, both the latency and energy consumption are reduced 
for synaptic devices with relatively good linearity but long 

Table 2 Benchmark Results for Digital Synaptic Arrays with Row-by-
Row Read and Parallel Read 

 

Device SRAM 
(row-by-row) 

SRAM 
(parallel read) 

STT-MRAM 
(row-by-row) 

# of conductance 
states 6 bits 6 bits 6 bits 

R
ON

 -- -- 3.5kΩ 
ON/OFF ratio -- -- 2.3 

Weight increase pulse -- -- 1V/10ns 
Weight decrease pulse -- -- 1V/10ns 

Online learning 
accuracy ~94% ~94% ~94% 

Area 65,728 µm2 74,699µm2 66,632 µm2 

Latency 5.98 s 
(4.16s for read) 

1.73s 
(0.11s for read) 

90.1s (row-by 
row) 

Energy 15.56 mJ 19.1 mJ 146.2 mJ 
Leakage power 2.80 mW 2.69 mW 84.0 µW 

 



  
 

 
 

write pulse width (e.g. EpiRAM, TaOx/HfOx, PCM). It can be 
explained by the weight range change from (0,1) to (-1,1), 
where the number of programming pulses is reduced by half 
to change the weight by ΔW in V3.0. As a result, both the write 
latency and energy consumption due to synapse programming 
decrease.   

2. For PCMO, which has poor linearity, both latency and energy 
consumption are increased since its learning accuracy is 
slightly increased from 10% to 20%, which leads to more 
write pulses applied. 

3. The area cost for all the devices is increased due to the 
hardware overhead to support the negative weight.  

4. In V3.0, for digital synaptic arrays, row-by-row read-out 
SRAM shows much lower latency and energy consumption 
than STT-MRAM due to the relatively large write pulse width 
and the large write current for STT-MRAM. By parallelizing 
the partial sum current read-out, the latency of SRAM can be 
further reduced.  

5. In general, analog synapses provides better area efficiency but 
they suffers from low learning accuracy due to the non-ideal 
weight update. Both the eNVM-based digital synapses and 
hybrid precision synapses shows good learning accuracy with 
additional area cost. SRAM-based digital synapses is good for 
on-chip learning due to its low latency and high learning 
accuracy. However, due to its volatility, the weights are stored 
off-chip and weight load is needed before inference.   

From the benchmark table, the key factors to achieve high on-chip 
learning accuracy can be concluded. First, good linearity and 
symmetry in the weight update curve is required. Relatively low 
cycle-to-cycle variation is also necessary. For example, even 
though the linearity of TaOx/HfOx is comparable with EpiRAM, it 
shows lower on-chip learning accuracy due to its large cycle-to-
cycle variation. Besides, for analog synapses, abundant 
conductance levels are also needed to provide sufficient precision 
for weight update. 

Conclusions 
In this paper, new features of the MLP + NeuroSimV3.0 are 
introduced. For analog synapses, hybrid precision synapse and 
advanced learning algorithms are added to increase the on-chip 
learning accuracy. For digital synapses, the parallel partial sum 
read-out scheme is supported to reduce the read latency for SRAM 
array. For future versions, the spiking neural network is to be 
supported. The hardware modules to support on-chip learning will 
be added.  
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Table 4. The Benchmark Table in NeuroSimV2.0 (at 32nm node) 
 Analog eNVM synapses 

Digital synapse 

Device type Ag:a-Si TaOx/HfOx PCMO AlOx/HfO2 GST PCM EpiRAM HZO FeFET 6-bit SRAM 
(row-by-row) 

# of conductance states 97 128 50 40 100-120 64 32  

Nonlinearity (weight 
increase/decrease) 2.4/-4.88 0.04/-0.63 3.68/-6.76 1.94/-0.61 0.105/2.4 0.5/-0.5 1.75/1.46 

 

RON 26 MΩ 100 KΩ 23 MΩ 16.9 kΩ 4.71 kΩ 81 kΩ 559.28 kΩ  

ON/OFF ratio 12.5 10 6.84 4.43 19.8 50.2 45  

Weight increase pulse 3.2V/300µs 1.6V/50ns -2V/1ms 0.9V/100µs 0.7V 
(avg.)/ 6µs 5V/5µs 3.65V (avg.)/ 

75ns 
 

Weight decrease pulse -
2.8V/300µs 1.6V/50ns 2V/1ms -1V/100µs 3V (avg.)/ 

125ns -3V/5µs -2.95V (avg.)/ 
75ns 

 

Cycle-to-cycle variation 
(σ) 3.5% 3.7% <1% 5% 1.5% 2% <1% 

 

Online learning accuracy 76.2% 73.7% 10.1% 19.5% 87% 92.6% 90% 94.5% 

Area 5594.6μm2 7965.3μm2 5594.6μm2 14834μm2 45203μm2 8445.9μm2 6334.8μm2 53944μm2 

Latency (optimized) 68327s 33.3s 1.78s 3161.2s 386.0s 294.36s 3.11s 4.19s 
Energy (optimized) 27.65mJ 9.72mJ 0.89mJ 136.03mJ 83.86mJ 45.95mJ 1.19mJ 9.48mJ 

Leakage power 93.74μW 93.74μW 93.74μW 93.74μW 93.74μW 93.74μW 93.74μW 2.65mJ 

 

Table 3. The Benchmark Table in NeuroSimV3.0 (at 32nm node) 
 Analog eNVM synapses 

Device type Ag:a-Si [16] TaOx/HfOx 
[20] 

PCMO 
[21] 

AlOx/HfO2 
[22] GST PCM [14] 

EpiRAM 
(Ag:SiGe) 

[17] 

HZO FeFET 
[13] 

# of conductance states 97 128 50 40 100-120 64 32 
Nonlinearity (weight 

increase/decrease) 2.4/-4.88 0.04/-0.63 3.68/-6.76 1.94/-0.61 0.105/2.4 0.5/-0.5 1.75/1.46 

RON 26 MΩ 100 KΩ 23 MΩ 16.9 KΩ 4.71 KΩ 81 KΩ 559.28 KΩ 
ON/OFF ratio 12.5 10 6.84 4.43 19.8 50.2 45 

Weight increase pulse 3.2V/300µs 1.6V/50ns -2V/1ms 0.9V/100µs 0.7V (avg.)/ 
6µs 5V/5µs 3.65V (avg.)/ 

75ns 

Weight decrease pulse -2.8V/300µs 1.6V/50ns 2V/1ms -1V/100µs 3V (avg.)/ 
125ns -3V/5µs -2.95V (avg.)/ 

75ns 
Cycle-to-cycle variation 

(σ) 3.5% 3.7% <1% 5% 1.5% 2% <0.5% 

Online learning 
accuracy ~72% ~80% ~33% ~20% 89% 92% 88% 

Area 6292.3 µm2 8663.1 µm2 6292.4 µm2 21,760 µm2 46,565µm2 9144.3µm2 7032.6µm2 
Latency (optimized) 31997s 10.15s 12218s 470.42s 203.0s 229.6s 2.73s 
Energy (optimized) 13.44mJ 4.01mJ 2.53mJ 15.26mJ 35.0mJ 31.01mJ 1.9mJ 

Leakage power 105.65µW 105.65µW 105.65µW 105.65µW 105.65µW 105.65µW 105.65µW 

 
 Digital synapse Hybrid precision synapse 

Device type 6-bit SRAM 
(row-by-row) 

6-bit SRAM 
(parallel) 

6-bit STT-
MRAM (row-by-

row) 
3T1C+2PCM [11] 2T1F [12] 

# of conductance states -- 

 

-- 

PCM: 16 
Capacitor: 32 
(6 bits in total) 

F=4   

HSW: 2bits 
LSW: 4 bits 

 (6 bits in total) 
F=16 

Nonlinearity (weight 
increase/decrease) --  -- Cap.: 0.2/-0.2;  

PCM: 0.105 (LTP only) 0.5/0.5 

RON --  3.5 KΩ PCM: 4.71 KΩ; Cap. : 25KΩ 559.28KΩ 
ON/OFF ratio --  2.3 PCM: 19.8; Cap. : 20 45 

Weight increase pulse --  1V/10ns HSW: 0.7V (avg.) /6μs 
LSW:1V/300ps 

HSW: 2-4V/3μs 
LSW: 1V/300ps 

Weight decrease pulse --  1V/10ns Capacitor:1V/300ps LSW: 1V/300ps 
HSW: 2-4V/3μs 

Cycle-to-cycle variation 
(σ) --  -- PCM: 1.5%, Cap.: 0.5% 1.5% 

Online learning 
accuracy ~94% ~94% ~94% 93.8% 94.6% 

Area 65,728 µm2 74,699µm2 66,632  µm2 330,330 µm2 334,270µm2 

Latency (optimized) 5.98 s 1.73s 
(0.11s for read) 90.1s 3.15s  

(3.06s for transfer) 
0.38s  

(0.28s for transfer) 
Energy (optimized) 15.56 mJ 19.1 mJ 146.2 mJ 16.69 mJ 7.53 mJ 

Leakage power 2.80 mW 2.69 mW 84.0 µW 1.66 mW 2.94 mW 

 


