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This series will be about different experiments and examples in

probabilistic machine learning. The advantages of probabilistic

machine learning is that we will be able to provide probabilistic

predictions and that the we can separate the contributions from

different parts of the model. In this first post, we will

experiment using a neural network as part of a Bayesian model.

This allows us to use the feature learning aspect of deep

learning with the uncertainty estimates provided by the

Bayesian framework. For those not familiar with the Bayesian

framework, the first chapter of Probabilistic Programming and

Bayesian Methods for Hackers is suggested. In a nutshell, in the

Bayesian framework, probabilities are seen as a degree of belief

based on prior knowledge. The net result being that we will see

the data as fixed and the parameters as random variables.

Because of this, the parameters of our model will be

represented by distributions. In comparison, in the frequentist

framework, the parameters are fixed, but the data is random.

The confidence interval representing the expected result of

different samples. We will evaluate the posterior P(θ|y) using

numerical methods. The posterior is proportional to the

likelihood P(y|θ) times the prior P(θ).
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For our experiment, the main assumption is to train a Neural

Network, as a feature extractor, to be used in a Bayesian linear

regression. The Neural Network architecture is chosen

accordingly to the type of data. Our example will be about time

series forecasting so we will use a LSTM (Long Short Term

Memory) neural network since it will be able to extract time

dependencies. The main advantage of this complete separation

of the Neural Network from the Bayesian model is that a

pretrained Neural Network giving good features can be used as

is to make probabilistic predictions. One of the disadvantages is

that we lose the regularization aspect of Bayesian Deep

Learning for the Neural Net which need to be achieved

otherwise.

Our goal is to give a probabilistic forecast to a time series

generated using only a short term time dependence, i.e.

ARMA(4,2). The time series in seperated into two parts. The

first one is the autoregressive AR(4) which means that the next

value depends linearly on the last four values. The second part

is the moving average part MA(2) which mean that the next

value will also depend on the last two noise values. Those two

parts combined constitute the ARMA(4,2) process. The LSTM

will identify the structure in the time series while the Bayesian

model will provided the probabilist estimates. In a first step, we

will train a LSTM with a linear last layer which will mimic the

Bayesian linear regression. Afterwards, we will include the

LSTM as a feature extractor in our Bayesian model. We will

describe the full model in the third section. The next three

sections will be about



Training the LSTM,

Describing the Bayesian model and

Making probabilistic predictions

but let’s first take a look at the data generated.

Since the process is ARMA (4,2), we have only a short term

dependency, no seasonality (nor cycles) and no trend. If we had

those two components, further preprocessing would have been

needed, but we want to stay in the happy path for this example.

Before moving forward, I want to mention that the LSTM was

implemented in PyTorch and the Bayesian model was

implemented in PyMC3.
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The LSTM was trained with sequences of seven time steps with

the mean squared error loss. We used early stopping to prevent

overfitting. We can see in the next figures that our predictions



on the training set are close to the true values and that the

errors can be well fitted using the Normal distribution.

We now have an accurate predictor for our time series that

gives only point-wise predictions. In the next section, we will

include it in a Bayesian model to obtain probabilistic

predictions.
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First of all, we will look at a graphical representation of our

model. White circles are stochastic nodes, shaded circle are

observations and square node are the results of deterministic

transformations. The full arrows points to the parameters of the

stochastic node and the dashed line are deterministic

transformations. We will start at y which is the value that we

want to predict.
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We suppose that y follows a Normal(μ, σ). μ is the equivalent of

the predicted value of our LSTM which is defined by



where zᵢ are the last hidden state of our LSTM, θᵢ the weights of

the linear layer, θₒ is the bias and n is the number of last hidden

states of the LSTM. The main difference between the last layer

of the LSTM model and the Bayesian model is that the weights

and bias will be represented by a Normal distribution instead of

being point estimates (i.e. single values). σ is the random error

of the predictor that could not be captured by the uncertainty

on the weights. At this point, z can be considered like a

deterministic transformation done by the LSTM of the observed

data. Since the uncertainty of the weights will not depend on

the specific data values themselves, we only characterise the

model uncertainty. The steps to include the LSTM in our

Bayesian model are as follows:

We trained the LSTM with a linear last layer

We remove the last layer and used the LSTM as a feature

extractor

We replaced the original linear layer by a Bayesian linear

regression

Now that we know all the parameters of our model that we

want to evaluate, let’s look at their distributions obtained using

ADVI (Automatic Differentiation Variational Inference) and

some fine tuning with MCMC (Markov Chain Monte Carlo).



Those inference numerical methods were combined by using

the ADVI posterior as the MCMC prior which can be easily done

in PyMC3. The ADVI method has the advantage of being

scalable, but only gives an approximate posterior. The MCMC

method is slower but converges to the exact posterior. In a

further post, we will examine those in more details.

In this step, we have used the trained LSTM as part of a

Bayesian model. We have obtained distributions for the

parameters which were point estimates in the previous step. We

are now ready to make probabilistic predictions.
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The forecasts are made using the Posterior Predictive Checks

(i.e. the parameters of the model given the features are

sampled to obtain the probabilistic forecast). We can see in the

next figure the results with the 95% confidence interval. We

can notice that most predictions are close to the true value and

that most predictions fall in the confidence interval.
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Let’s do a small recap. We trained at LSTM on a time series to

obtain accurate prediction. We could have stopped there, but

we wanted a probabilistic prediction. Because of this, we used

the LSTM as a feature extractor to be used in a Bayesian model.

Since the Bayesian model parameters are represented by

distributions, we could characterise the model uncertainty. The

Bayesian model is then used to make probabilistic prediction

using the posterior predictive checks. A lot of ideas are put

together in this post. As stated earlier, this is part of a series of

posts on probabilistic modeling so we will tackle some of the

pieces individually in further posts.

Thanks for reading!
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