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Abstract—The growing size of convolutional neural networks
(CNNs) requires large amounts of on-chip storage. In many
CNN accelerators, their limited on-chip memory capacity
causes massive off-chip memory access and leads to very high
system energy consumption. Embedded DRAM (eDRAM), with
higher density than SRAM, can be used to improve on-chip
buffer capacity and reduce off-chip access. However, eDRAM
requires periodic refresh to maintain data retention, which
costs much energy consumption.

Refresh is unnecessary if the data’s lifetime in eDRAM
is shorter than the eDRAM’s retention time. Based on this
principle, we propose a Retention-Aware Neural Accelera-
tion (RANA) framework for CNN accelerators to save total
system energy consumption with refresh-optimized eDRAM.
The RANA framework includes three levels of techniques:
a retention-aware training method, a hybrid computation
pattern and a refresh-optimized eDRAM controller. At the
training level, CNN’s error resilience is exploited in training to
improve eDRAM’s tolerable retention time. At the scheduling
level, RANA assigns each CNN layer with a computation
pattern that consumes the lowest energy. At the architecture
level, a refresh-optimized eDRAM controller is proposed to
alleviate unnecessary refresh operations. We implement an
evaluation platform to verify RANA. Owing to the RANA
framework, 99.7% eDRAM refresh operations can be removed
with negligible performance and accuracy loss. Compared with
the conventional SRAM-based CNN accelerator, an eDRAM-
based CNN accelerator strengthened by RANA can save 41.7%
off-chip memory access and 66.2% system energy consumption,
with the same area cost.

Keywords-Neural Network; Embedded DRAM (eDRAM);
Refresh Optimization; Retention Time

I. INTRODUCTION

Convolutional neural networks (CNNs) are widely used

in modern artificial intelligence applications, like image

classification, object detection and video surveillance, with

unprecedented accuracy. However, to achieve higher accu-

racy, CNN’s size keeps growing and produces large amounts

of intermediate data storage. Table I lists the maximum

layer storage requirements in four typical CNN models [1–

4]. Their layer’s input/output/weight storage requirement

reaches 0.3∼6.27MB in 16-bit precision, for the standard

ImageNet [5] input image size (224×224×3). The numbers

∗Corresponding author: Shouyi Yin (yinsy@tsinghua.edu.cn).

Table I
DATA STORAGE REQUIREMENTS OF CNNS (16-BIT)

CNN Models Max. Layer Max. Layer Max. Layer
Input (224×224×3) Inputs Outputs Weights

AlexNet [1] 0.30MB 0.57MB 1.73MB
VGG [2] 6.27MB 6.27MB 4.61MB
GoogLeNet [3] 0.39MB 1.57MB 1.30MB
ResNet [4] 1.57MB 1.57MB 4.61MB

Table II
CHARACTERISTICS COMPARISON OF SRAM AND EDRAM (32KB, IN

THE 65NM TECHNOLOGY NODE)

SRAM eDRAM

Data Storage Latch Capacitor

Area 0.181mm2 0.047mm2

Access Latency 1.730ns 1.541ns
Access Energy 1.139pJ/bit 0.662pJ/bit
Refresh Energy - 0.788μJ/bank
Retention Time - < 100μs (45μs in [6])
Features (+) Fast (+) Small area

(-) Large area (-) Refresh

will greatly increase when the networks process higher

resolution images.

Many CNN accelerators [7–11] have been designed to

enable highly energy-efficient CNN processing, but the small

footprint limits the on-chip memory capacity. Their on-chip

memory size is usually no more than 500KB with area

cost of 3 ∼ 16mm2 (normalized to 65nm). Extra off-chip

memory access is required when they compute the CNN

models in Table I.

Embedded DRAM (eDRAM), known for its high den-

sity, is adopted into modern CNN accelerators to provide

large on-chip memory capacity [12–15]. As shown in Table

II, eDRAM’s area cost is 26.0% of SRAM in the 65nm

technology node (simulated with Destiny [16]). However,

as an eDRAM cell stores data as charge on a capacitor,

the charge will leak over time and cause retention failures.

Thus, eDRAM cells need periodic refresh to maintain data

retention. The refresh interval usually equals to the weakest

cell’s retention time (45μs in [6]). We simulate ResNet
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Figure 1. Energy consumption breakdown of ResNet on the evaluation
platform.

[4] on our evaluation platform with eDRAM buffers, and

find out that eDRAM’s refresh energy takes up a quite

large part in the total system energy, as presented in Figure

1. Although large eDRAM buffers alleviate many off-chip

memory access, the refresh energy consumption becomes a

new problem that we can’t neglect.

We find out that, refresh is no longer required if the data’s

lifetime in eDRAM buffers is shorter than the eDRAM cell’s

retention time. In this paper, we propose a Retention-Aware

Neural Acceleration (RANA) framework that strengthens

CNN accelerators with refresh-optimized eDRAM, to save

total system energy consumption. The framework solves

two problems - the buffer storage problem caused limited

on-chip memory capacity, and the data retention problem

produced by eDRAM refresh. RANA includes three levels

of optimization techniques:

(1) Training Level: A retention-aware training method is

proposed to improve eDRAM’s tolerable retention time

with no accuracy loss. Bit-level retention errors are

injected during training, so the network’s tolerance to

retention failures is improved. A higher tolerable failure

rate leads to longer tolerable retention time, so more

refresh can be removed.

(2) Scheduling Level: A system energy consumption model

is built in consideration of computing energy, on-chip

buffer access energy, refresh energy and off-chip mem-

ory access energy. RANA schedules networks in a

hybrid computation pattern based on this model. Each

layer is assigned with the computation pattern that costs

the lowest energy.

(3) Architecture Level: RANA independently disables re-

fresh to eDRAM banks based on their storing data’s

lifetime, saving more refresh energy. A programmable

eDRAM controller is proposed to enable the above fine-

grained refresh controls.

The rest of this paper is organized as follows: Section

II provides a preliminary on CNN, CNN accelerators and

eDRAM. In Section III, we build an evaluation platform for

energy analysis, and point out the opportunities to optimize
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(a) CONV layer in CNNs.
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(b) Pseudo code of a CONV layer.

Figure 2. Illustration for a convolutional (CONV) layer.

overall system energy consumption. We then propose the

RANA framework in Section IV, including three levels of

optimization techniques. Section V presents the experimental

results of RANA on the evaluation platform. Section VI

concludes this paper.

II. PRELIMINARY

A. Convolutional Neural Network (CNN)
Most CNNs are mainly composed of three types of

layers: convolutional (CONV) layers, pooling layers and full

connection layers. CONV layers extract different levels of

features from the input image. Pooling layers follow CONV

layers and perform sub-sampling onto the feature maps. Full

connection layers are usually used in the last few layers and

act as a classifier. In this paper, our discussion is focused on

acceleration for CONV layers, for two reasons: 1) CONV

layers account for the majority of CNN’s runtime [17, 18];

2) Other layers can be transformed to execute in a similar

way with the CONV layer acceleration [11, 19–21].

Figure 2(a) illustrates a CONV layer in CNN. It takes

N×H×L feature maps as the inputs, and has M 3D CONV

kernels (N×K×K). Each kernel performs a 3D convolution

on the input maps with a sliding stride of S, which generates

a R × C output map. Therefore, the output map number

equals to the kernel number M . The computation of a

CONV layer can be expressed as the multi-level loop in

Figure 2(b), where Matrice I , O and W stand for the input

maps, output maps and kernel weights, respectively. The

basic operation of a CONV layer is multiply-accumulation,

i.e. the inner-most loop in Figure 2(b).

B. CNN Accelerator
Figure 3(a) shows a typical CNN accelerator architec-

ture used in many hardware CNN implementations like
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(b) Pseudo code of a CNN accelerator [10].

Figure 3. Illustration for a CNN accelerator.

[7–11]. In the CNN accelerator, there are a controller,

weight/input/output buffers and a computing core. Previous

works usually use a layer-by-layer accelerating style to

compute CNNs. That is, the layers in a network are se-

quentially mapped onto the accelerator. During runtime, the

controller schedules the other components based different

layers’ configurations. The input buffer and weight buffer

store the input maps and kernel weights of the current layer.

Due to the limited local storage in the computing core, only

part of the inputs and weights are loaded each time, and

computed by the processing elements (PEs). PEs perform

convolutions, activate and pooling functions to generate part

of output feature maps. The partial results are cached in the

output buffer. After many iterations, the final outputs are

sent to the off-chip memory, and will be loaded again for

the successive layer.

Figure 3(b) illustrates a typical computation pattern [10],

which indicates how a CONV layer executes in a CNN

accelerator. Compared with the original pseudo code in

Figure 2(a), Loop R, C, M and N are tiled by Tr, Tc, Tm
and Tn, due to the computing core’s limited local storage.

The inner-most four loops (Loop Tm/Tn/Tr/Tc) represent

the core computing part: N ×H ×L input feature maps are

tiled by Th×Th×T l, and then convolved by Tm 3D kernels

(Tn × K × K) to generate Tm × Tr × Tc output feature

maps. The loops out of the gray box (Loop M/R/C/N ) are

scheduled by the controller, which works as follows:

(1) Loop N : All the N input channels are loaded into the

core to compute the Tm×Tr×Tc output feature maps.

(2) Loop RC: The whole N×H×L input maps are loaded

Table III
ENERGY COST IN THE 65NM TECHNOLOGY NODE

Operation Energy Relative Cost

16-bit Fixed-Point MACa 1.3pJ 1.0x

16-bit 32KB SRAM Accessb 18.2pJ 14.3x

16-bit 32KB eDRAM Accessb 10.6pJ 8.3x

16-bit 32KB eDRAM Refreshb 48.1pJ 37.7x
16-bit 1GB DDR3 Accessc 2112.9pJ 1653.7x

a Extracted from the TSMC 65nm GP technology.
b Simulated with Destiny [16].
c Simulated with CACTI [26].

into the core to compute all the Tm×R×C output map

by repeating Loop N .

(3) Loop M : All the M×R×C output maps are computed

by repeating Loop N and Loop RC.

The above process is the memory control part of the

computation pattern. It only determines the memory access

order and doesn’t influence the core’s computing.

C. Memory Challenge for CNN Acceleration

Many previous CNN accelerators focus on optimizing the

core computing part to achieve high performance in com-

puting CONV layer [7, 9, 10, 22–25]. However, to achieve

state-of-the-art accuracy, CNN’s size grows significantly,

leading to massive memory access in CNN acceleration.

Table III shows the energy costs of basic arithmetic and

memory operations, extracted through simulation in the

65nm technology node. Off-chip memory access (DDR3)

costs orders of higher energy consumption than on-chip

memory access and the MAC operation. Notice that we use

DDR3 as the off-chip memory in this paper. Large CNN

models may not fit in on-chip buffer capacity and hence

require costly off-chip memory access. Therefore, off-chip

memory access energy usually takes up the most in total

system energy consumption, as pointed out in [7, 11, 19].

This is the buffer storage problem, known as a big
challenge for CNN acceleration.

D. Embedded DRAM (eDRAM)

Embedded DRAM (eDRAM), with higher density than

SRAM, is adopted into modern CNN accelerators to provide

large on-chip capacity [12–15]. Figure 4 shows the typical

structure of eDRAM. Each eDRAM cell is composed of an

access transistor and a storage capacitor. The logic state is

stored as electrical charge in the capacitor. The capacitor

loses charge over time through the current Ioff in the ac-

cess transistor. Therefore, an eDRAM cell requires periodic

refresh to maintain the correct logic state. Current eDRAM

designs pessimistically assume the worst-case retention time,

and end up refreshing all the eDRAM cells in a module at

the same, conservatively-high rate. Previous works [27, 28]

indicate that eDRAM refresh can be a bottleneck in total

energy consumption. As shown in Figure 1, although large

eDRAM buffers can help alleviate many off-chip memory
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Figure 4. Embedded DRAM (eDRAM) Structure.

access, the refresh operations lead to a big cost of energy.

This is the data retention problem, caused by introducing
eDRAM into CNN acceleration.

III. MOTIVATION

In this section, we build an evaluation platform to study

the buffer storage and data retention problems in eDRAM-

based CNN accelerators. Through the analysis, we point

out three opportunities to optimize overall system energy

consumption, leading to the RANA framework proposed in

Section IV.

A. Evaluation Platform

The evaluation platform is built as described in Figure

5. We first implement a SRAM-based test CNN accelerator

with totally 256 PEs working at 200MHz, where each PE

has one multiply-accumulator (MAC) inside. With 384KB

SRAM buffer capacity, the accelerator’s area is 5.682mm2

in the TSMC 65nm GP technology. The resource and area

costs are both close to many moderate-sized CNN accel-

erators [7–11]. Our design is synthesized with Synopsys

Design Compiler, whose layout is presented on the bottom

of Figure 5. The core’s computing logic is similar to a state-

of-the-art CNN accelerator Envision [10]: The 256 PEs are

organized in a 16x16 PE array, where the 16 rows of PEs

share the same inputs to compute 16 output channels in

parallel. The core’s local storage reaches 36KB in total,

so more data can be reused in the core to save buffer

access [19]. The controller is designed to enable flexible

reconfiguration of the memory control part, so we can

study different computation patterns on the same evaluation

platform. The input/output/weight buffers are organized as

a unified buffer system to support flexible data mapping for

different patterns. We run RTL-level cycle-accurate simula-

tion on the SRAM-based test CNN accelerator, for perfor-

mance estimation and memory access tracing. Thus, we can

analyze different computation pattern’s real performance,

data lifetime and memory access behaviors.

According to Table II, 1.454MB eDRAM can be obtained

with the same area cost of 384KB SRAM. Thus in our eval-

uation platform, we simulate eDRAM-based designs with

1.454MB eDRAM buffers, while other hardware parameters

stay the same as the SRAM-based design. The eDRAM’s

retention time distribution is in accordance with that in [6],

with typical retention time of 45μs. One layer in ResNet

[4] (Layer-A: “res4a branch1”) and one layer in VGG [2]

(Layer-B: “vgg conv9”) are selected for the running cases

in our discussions.
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Figure 5. Evaluation platform configurations and the accelerator’s layout.

B. Problem Analysis

1) Buffer Storage Problem: We begin with an in-depth

study on the typical computation pattern described in Figure

3(b). Since Loop M is the outer-most loop, all the inputs

should be stored on chip to be reused by all the M output

feature maps, to avoid extra off-chip memory access. The

outputs are computed out in a tile size of Tm×Tr×Tc, and

only Tm kernels are needed for convolution. Therefore, the

buffer storage requirements for inputs/outputs/weights (BSi,

BSo, BSw) can be calculated by:

BSi = N ·H · L (1)

BSo = Tm · Tr · Tc (2)

BSw = N · Tm ·K2 (3)

Take Layer-A as an example, the minimum total buffer

storage requirement BS equals to BSi+BSo+BSw=785KB

in 16bit-precision, which exceeds the SRAM-based accel-

erator’s buffer capacity (384KB, Tm, Tn, Tr, T c = 1).

Within the same area, eDRAM-based buffers of 1.454MB

can be placed in the design, so Layer-A’s intermediate data

can be cached on chip to avoid extra off-chip memory

access. However, it’s still possible that buffer capacity of

1.454MB cannot meet the storage requirement of too large

layers according to Table I, producing extra off-chip memory

access energy.
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2) Data Retention Problem: Moreover, eDRAM-based

buffers need periodic refresh to maintain data retention,

causing extra energy consumption. As mentioned before,

refresh can be avoid if the storing data’s lifetime is shorter

than the retention time. Thus, we take a further look at the

computation pattern’s input/output/weight lifetime. Since all

the inputs should be stored on chip to for reuse, the inputs’

lifetime in buffers equals to the total execution time of a

layer:

LTi =
M ·N ·R · C ·K2

MAC · Frequency · η (4)

, where MAC, Frequency and η are the number of

hardware MAC units (=256), working frequency (=200MHz)

and PE utilization. As for weights, they are fully used during

Loop RC, so their lifetime is

LTw =
Tm ·N ·R · C ·K2

MAC · Frequency · η (5)

It’s notable the outputs are kept accumulating in the PEs

without communicating with the output buffer. They are only

stored in the output buffer at the end of Loop M , when the

Tm outputs complete all the accumulations. The outputs

are quickly sent to the off-chip memory, so we regard their

lifetime in the output buffer (LTo) as 0. The accumulation

of outputs is a good property that can be utilized to reduce

lifetime. We will make a further discussion in Section IV-C1.

We run Layer-A on the test accelerator and measure the

lifetime of inputs/outputs/weights: LTo < LTw < LTi =
2294μs. Since the input lifetime exceeds eDRAM’s retention

time (45μs), refresh cannot be avoided, leading to the data

retention problem.

C. Optimization Opportunities

In Section III-B, we have analyzed how the buffer storage

and data retention problems come about in eDRAM-based

CNN accelerators. The produced off-chip memory access

energy and eDRAM energy are the two main sources of

total system energy consumption, as shown in Figure 1. To

solve the problems, the following two conditions should be

met in CNN acceleration:

(1) Buffer Storage Requirement < Buffer Capacity: If

the buffer storage requirement is smaller than the accel-

erator’s buffer capacity, no extra off-chip memory access

is needed, reducing much off-chip energy consumption.

(2) Data Lifetime < Retention Time: If the data lifetime

is shorter than eDRAM’s retention time, no refresh is

required, which saves lots of on-chip energy consump-

tion.

The buffer capacity can’t be changed once the accelerator

is designed, but the other three factors still have optimization

opportunities. In Section IV, we will propose techniques to

increase “retention time”, reduce data lifetime and shrink

buffer storage requirement.

IV. RANA FRAMEWORK

A. Overview

Although eDRAM’s high density increases on-chip buffer

capacity, the buffer storage problem might still exist if the

network is too large. Meanwhile, the data retention problem

caused by eDRAM will produce considerable refresh energy

consumption. In this section, we propose a Retention-Aware

Neural Acceleration (RANA) framework that strengthens

CNN accelerators with refresh-optimized eDRAM, to save

total system energy consumption. Figure 6 is an overview

of the whole framework. RANA takes the CNN accelerator

and target CNN model’s parameters as the inputs, and

then produces a 3-stage workflow. The first two stages lie

in the compilation phase, to generate configurations for

the accelerator. The last stage is in the execution phase,

where the accelerator runs based on the configurations, with

optimized energy consumption.

Stage � (Training): A retention-aware training method

is used to train the target CNN model to improve its

tolerance to retention failures. Retention failures are injected

by adding bit-level error masking to each layer of the

model. Under the given accuracy constraint, the training

method obtains the highest tolerable retention failure rate.

According the eDRAM’s retention time distribution, the

tolerable retention time is obtained according to the failure

rate, which is usually longer than the eDRAM’s typical

retention time.
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Figure 7. ResNet’s data lifetime before optimized.

Stage � (Scheduling): A system energy consumption

model is built in consideration of computing energy, on-

chip buffer access energy, refresh energy and off-chip mem-

ory access energy. For each CNN layer, RANA explores

different computation patterns, and estimates their energy

consumption based on data lifetime and buffer storage

analysis. RANA assigns the pattern with the lowest energy

to each layer separately, and results in a hybrid computation

pattern for the whole network. RANA generates layerwise

configurations in this stage, which contains the tolerable

retention time, each layer’s computation pattern and eDRAM

refresh flags to be used in the next stage.

Stage � (Architecture): A refresh-optimized eDRAM

controller is designed to enable independent refresh controls

on each buffer bank, to further optimize refresh energy.

During the execution phase, the refresh interval is initialized

as the tolerable retention time. The accelerator loads the

configurations layer by layer. The control logic and buffer

data mapping are adjusted for the current layer’s compu-

tation pattern. The eDRAM controller only issues refresh

to the bank whose refresh flag is valid, thus saving many

unnecessary refresh operations.

The proposed RANA framework can be applied to current

CNN hardware architectures, with only small modifications

on their memory control logic. The performance loss is neg-

ligible, because RANA doesn’t change their core computing

part and the eDRAM refresh overhead is minimized in this

framework.

B. Retention-Aware Training Method

We run ResNet on the evaluation platform and find out

that, not just Layer-A, all the layers’ data lifetime is longer

than eDRAM’s typical retention time (RT = 45μs), as

presented in Figure 7. Thus, refresh operations cannot be

avoided under such short retention time.

It would be quite meaningful if longer retention time

can be obtained, for two reasons: 1) The condition “Data
Lifetime < Retention Time” can be reached to avoid

refresh; 2) The refresh interval gets longer even if refresh

is still needed. Although eDRAM’s retention time is fixed
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Figure 8. Typical eDRAM retention time distribution [6].
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Figure 9. Retention-aware training method.

once fabricated, we can still improve the “retention time”

by exploiting CNN’s error resilience. This “retention time”,

i.e. tolerable retention time, refers to the retention time that

can be tolerated with no accuracy loss.

Figure 8 shows a typical eDRAM retention time distri-

bution [6], which is used in our evaluation platform. The

X axis is the retention time. The Y axis is the retention

failure rate, which equals to the fraction of the cells under

the given retention time. In conventional eDRAM design,

the refresh interval is conservatively decided by the cell with

the shortest retention time. For a 32KB-eDRAM buffer, the

weakest cell typically appears at the 45μs point [6] with

an failure rate of 3 × 10−6 (see Figure 8). However, the

majority of cells have much longer retention time than 45μs.

As shown in Figure 8, only ≈ 3 cells have retention time

of no more than 734μs, which means we can use a 16x

refresh interval with a cell failure rate of only 10−5. Thus,

the tolerable retention time can be relaxed to orders longer,

which greatly improves the benefits of our method.

We propose a retention-aware training method to improve

CNN’s tolerance to eDRAM cell failures, and thereby to

increase the tolerable retention time. As shown in Figure 9,

we introduce retention failures in the forward propagation
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(d) Lifetime/buffer storage analysis of ID
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(e) Lifetime/buffer storage analysis of OD
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(f) Lifetime/buffer storage analysis of WD

Figure 10. Pseudo code and lifetime/buffer storage analysis of Input Dominant (ID), Output Dominant and Weight Dominant (WD) computation patterns.

during the model’s training phase, by adding a mask to

each layer’s inputs and weights. The network has been

previously trained in fixed-point precision (typically 16-bit

or 8-bit) for hardware execution. The mask models retention

failures by injecting errors to each bit at a failure rate of

r. An error means the bit has a random value of 0 or 1

with equal probability. The fixed-point model is retrained to

maintain its accuracy. During each iteration in the training,

bit-level errors are randomly injected, so the weights would

be adjusted to the errors in the forward propagation. If the

final accuracy loss is acceptable, it means the model can

tolerate the retention failure rate. Therefore, cell failures

under the corresponding retention time cause little accuracy

loss, leading to a longer tolerable retention time to be used

in our method.

The proposed retention-aware training method is tested on

four CNN models, AlexNet [1], VGG [2], GoogLeNet [3]

and ResNet [4], with retention failure rates of 10−5, 10−4,

10−3, 10−2, 10−1. Figure 11 presents the relative top-1

accuracy under different retention failure rates. The baseline

accuracy is trained with no retention failure, in 16-bit fixed-

point precision. The results prove CNN’s error resilience to

retention failures. All the four benchmarks show no accuracy

loss at the failure rate of 10−5. From the failure rate of

10−4, the accuracy gradually decreases. According to Figure

8, the failure rate of 10−5 is corresponding to tolerable

retention time of 734μs. As shown in Figure 7, although

only three layers’ data lifetime is shorter than 734μs, many

layers are quite close to the purple line. If we can reduce the

data lifetime, more layers’ data lifetime will be shorter than

734μs and refresh operations can be removed from those

layers.

C. Hybrid Computation Pattern

1) OD: Reducing Data Lifetime: We will discuss how we

can optimize the computation pattern to optimize data life-

time. Let’s first go back to the previously discussed typical
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Figure 11. Relative accuracy under different retention failure rates.

computation pattern. As shown in Figure 10(a), we divide

the whole pattern into 4 levels of loops: the core computing

part as the 0th-level loop, and the memory control part (Loop

N,RC,M ) as the 1st/2nd/3rd-level loops respectively. We

find out that data lifetime and buffer storage are strongly
related to the loop ordering in the memory control part,
as illustrated in Figure 10(d): Loop M for inputs, Loop

RC for weights, and Loop N for outputs. For example, as

Loop M is the outer-most loop, the input lifetime equals to

the 3rd-level loop’s execution time (T3), and all the inputs

require storing on chip (BSi = N · H · L). Since both

buffer storage and lifetime are dominated by inputs, we name

this typical pattern as the input dominant (ID) computation

pattern.

Through the previous analysis on ID, we find out that

the output lifetime is quite different from the other two

data types’ lifetime. Unlike inputs/weights that are statically

stored in buffers for access, outputs are dynamically updated

by accumulations. For each update, the outputs are rewritten

to the buffer, which recharges the eDRAM cells and recovers

data retention just like eDRAM’s periodic refresh operations.

We exploit the output’s self-refresh property in accumu-

lation, and propose an output dominant (OD) computation

pattern. As shown in Figure 10(b), we change the memory
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Figure 12. Layer size analysis of ResNet (16-bit precision, input image
size = 224×224×3).

control part: Loop N is switched to the outer-most loop,

while the other loops keep the same ordering as in ID.

In this way, the computation pattern is reorganized: The

2nd-level loop generates all the output points with partial

accumulations and then store them in the output buffers.

The outputs are updated in the 3rd-level loop, which auto-

matically refresh the values stored in memory. The buffer

storage requirements and lifetime of inputs/outputs/weights

are:

BSi = Tn ·H · L (6)

BSo = M ·R · C (7)

BSw = Tn · Tm ·K2 (8)

LTi = LTo = T2 =
M · Tn ·R · C ·K2

MAC · Frequency · η (9)

LTw = T1 =
Tm · Tn ·R · C ·K2

MAC · Frequency · η (10)

As illustrated in Figure 10(e), both buffer storage and life-

time are dominated by outputs in the OD pattern. Although

all the outputs should be stored on chip, the 3rd-level loop

refreshes their values and lifetime. Thus, the output lifetime

(LTo) is reduced to the 2nd-level loop’s execution time (T2).

We run Layer-A in the OD pattern with tiling parameters

of Tm, Tn, Tc = 16, T r = 1. The layer’s data lifetime

equals to LTo = 72μs, which is shorter than the eDRAM’s

tolerable retention time (734μs), so no eDRAM refresh is

needed during Layer-A’s computation.

According to Equation (9), OD’s data lifetime can be

changed by adjusting Tn. For some large layers like Layer-

B in Figure 5, reducing Tn from 16 to 8 can alleviate all

the refresh, because the lifetime declines from 1290μs to

645μs. However, a smaller Tn means fewer data are stored

in the core, which will result in more buffer access energy.

Therefore, we should explore the tiling parameters to find

out the configuration with the lowest total system energy.

We will discuss it in Section IV-C3.

2) WD: Shrinking Buffer Storage Requirement: Unfortu-

nately, OD might still suffer from the buffer storage problem,

as all the outputs should be stored on chip. Figure 12 shows

ResNet’s layer sizes in 16-bit precision. Some layers’ output

size even exceeds the 1.454MB buffer capacity. The situation

will become worse if higher resolution images are processed.

We find out that the inputs and outputs dominate the size

of shallow layers. As the layer goes deeper, the input/output

size gets smaller while the weight size grows significantly.

The reason is that when the layer gets deeper, its input/output

feature map size (H×L, R×C) shrinks as well as the total

input/output size, while the channel count increases (from 3

to 512, 1024, or even 2048), leading to larger weight size.

As a result, inputs and outputs usually have similar counts,

while weights and outputs are quite complementary in size.

We propose a weight dominant (WD) computation pattern

as a supplement to OD in shallow layers, to shrink buffer

storage requirement when OD exceeds buffer capacity. As

illustrated in Figure 10(c), in WD, Loop RC is switched

to the 3rd-level loop, while the other loops keep the same

ordering as in ID. Similar to ID and OD, WD’s buffer storage

is dominated by the 3rd-level loop. All the weights should

be stored on chip, while only part of the input and output

feature maps are buffered. The buffer storage requirements

can be expressed as:

BSi = N · Th · T l (11)

BSo = Tm · Tr · Tc (12)

BSw = N ·M ·K2 (13)

3) Scheduling Scheme: Through the previous analysis,

we find out that OD and WD shows complementary proper-

ties in buffer storage for different layers in a network. Mean-

while, the tiling parameters (Tm, Tn, Tr, T c) also influence

total system energy. Usually, increasing tiling parameters

will reduce memory access times, but raise data lifetime

and buffer storage. Therefore, RANA explores different

computation patterns with different tiling parameters, and

assigns the pattern with the lowest energy to each layer

separately. ID is not included in the exploration space, for

two reasons: 1) ID’s lifetime is always longer than OD; 2)

ID’s buffer storage is usually similar to OD’s.

A system energy model is built for energy estimation:

Energy = α ·Emac+βb ·Ebuffer+γ ·Erefresh+βd ·Eddr

(14)

System energy is the sum of computing energy, buffer

access energy, refresh energy and off-chip memory access

energy. Emac, Ebuffer, Erefresh and Eddr are the energy

consumption for each MAC operation, buffer access, refresh

operation and off-chip memory access, as listed in Table

III. The coefficients refer to the total times of the above

operations. α equals to the layer’s total MAC operation

count. The memory access times βb, βd can be accurately
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Figure 13. RANA’s scheduling scheme for the hybrid computation pattern.

modeled as done in [11]. The refresh operation count γ is

obtained through simulation on the evaluation platform, with

data lifetime analysis.

Figure 13 presents RANA’s layer-based scheduling

scheme. The scheme takes the CNN accelerator and target

CNN model’s parameters as the inputs, and schedules each

layer’s computation pattern one by one. For each layer, the

exploration for patterns is formulated as an optimization

problem that minimizes total system energy consumption.

The tiling parameters are constrained by the local storage in

the core: Tn·Th·T l ≤ Ri, Tm·Tr·Tc ≤ Ro, Tm·Tn·K2 ≤
Rw, where Ri, Ro, Rw refer to core’s local input, output

and weight storage, measured in the data count. After the

exploration, we can obtain the best computation pattern for

each layer with the optimal energy consumption, under the

accelerator’s hardware constraints. Each layer’s computation

pattern is described as 〈OD/WD, Tm, Tn, Tr, T c〉, leading

to a hybrid computation pattern for the whole network. In

the end, the scheduling result is complied into layerwise

configurations, which contains the tolerable retention time,

each layer’s computation pattern and eDRAM refresh flags

to be used in the next stage.

D. Refresh-Optimized eDRAM Controller

1) Unified Buffer System: As discussed in Section IV-C,

the hybrid computation pattern shows different storage re-

quirements for different data types: OD’s buffer storage is

dominated by outputs (BSo = M ·R ·C), while WD’s buffer

storage is dominated by weights (BSw = M ·N ·K2). Thus

in WD, the weight buffer storage requirement (BSw) might

exceeds the weight buffer capacity (BSw), but there’s still

much space in the output buffer, leading to unnecessary off-

chip memory access. A unified buffer system for all the

data types, as in [8, 10], is required to better utilize the on-

eDRAM Bank

eDRAM Bank

eDRAM Bank

eDRAM Bank

eDRAM Bank

Programmable
Clock Divider

eDRAM Refresh Flags

Unified Buffer SystemeDRAM Controller

Refresh Issuer

Reference 
Clock

Figure 14. Refresh-optimized eDRAM Controller.

chip buffer capacity. Thus, data mapping in the buffers can

be easily adjusted to storage changes between layers: More

eDRAM banks are allocated to outputs in OD, while in WD

more eDRAM banks are used to store weights.

2) Memory Controller Modification: In conventional

eDRAM-based designs, all the eDRAM banks are conser-

vatively refreshed at the same rate. Through the analysis

in Section IV-C, we observe that different data types have

different lifetime. For example in Layer-B (see Figure 5),

the input, output and weight lifetime on the test accelerator

are LTi = LTo = 1290μs, LTw = 40μs when Tn = 16,

so the eDRAM cells storing weights don’t need to refresh

under the tolerable retention time of 734μs. Moreover, for

small networks like AlexNet, some eDRAM banks are not

used but still periodically refreshed.

Refresh energy can be further optimized by making more

fine-grained refresh controls on the eDRAM. Figure 14

shows the eDRAM controller structure that is modified to

support retention-aware refresh optimizations. The controller

has a programmable clock divider, independent refresh is-

suers and eDRAM refresh flags for each eDRAM bank. The

refresh flags indicate whether the data stored in one eDRAM

bank needs refresh. They are contained in the configurations

generated by Stage � of RANA, as different layers have

different refresh needs for eDRAM banks. For a bank, if no

data is stored in it, or its storing data’s lifetime is shorter

than the tolerable retention time, it will be set with a flag

of “disable”.

The programmable clock divider takes the accelerator’s

reference clock as the input and generates a refresh pulse.

The pulse period equals to the eDRAM’s tolerable retention

time obtained from the proposed training method. At each

refresh pulse, the eDRAM controller issues refreshes to the

eDRAM banks as indicated by the refresh flags. When the

current layer is completed, the next layer’s refresh flags will

be loaded into the controller. With the above modifications to

the eDRAM buffer controller, RANA independently enables

or disables refresh for each eDRAM bank, so unnecessary

refresh operations are largely alleviated and refresh energy

can be further reduced.
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Table IV
DESIGN CONFIGURATIONS FOR RANA EVALUATION

Design Name Buffer Type Buffer Capacity Computation Pattern Failure Rate Refresh Interval Memory Controller

S+ID SRAM 384KB ID - - -

eD+ID eDRAM 1.454MB ID 0 (3× 10−6) 45μs Normal

eD+OD eDRAM 1.454MB OD 0 (3× 10−6) 45μs Normal

RANA (0) eDRAM 1.454MB Hybrid (OD+WD) 0 (3× 10−6) 45μs Normal

RANA (E-5) eDRAM 1.454MB Hybrid (OD+WD) 10−5 734μs Normal

RANA*(E-5) eDRAM 1.454MB Hybrid (OD+WD) 10−5 734μs Optimized
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Figure 15. Total system energy comparison.

V. EXPERIMENTAL RESULT

A. Experiment Setup

We evaluate the RANA framework on the platform with a

test CNN accelerator implemented in the TSMC 65nm GP

technology, as described in Section III-A. We select four

famous CNN models as the benchmarks: AlexNet [1], VGG

[2], GoogLeNet [3] and ResNet [4]. The retention-aware

training framework is implemented with modifications to the

Caffe framework [29].

We will study the energy consumption of six designs

with the configurations in Table IV, under the same area

(5.682mm2), working frequency (200MHz) and MAC count

(256) constraints. For briefness, S+ID, eD+ID and eD+OD

are used to represent the three baseline designs SRAM+ID,

eDRAM+ID and eDRAM+OD, respectively. RANA (0)

strengthens eD+OD with a hybrid computation pattern.

RANA (E-5) runs the benchmarks trained with a failure rate

of 10−5 (no accuracy loss), so its eDRAM refresh interval

equals to 734μs. RANA*(E-5) further optimizes RANA

(E-5) with a refresh-optimized eDRAM controller. As for

energy measurement, we simulate the designs on the eval-

uation platform to obtain the operation counts α, βb, βd, γ.

The basic energy Emac, Ebuffer, Erefresh and Eddr are

in accordance with the numbers in Table III. Total system

energy consumption is estimated based on Equation (14).

B. RANA Evaluation

1) General Comparison: Figure 15 presents a general

comparison of the six designs on total system energy

consumption. All the numbers are normalized to S+ID’s

system energy for better comparison. Compared with the

S+ID, eD+ID has more on-chip buffer capacity (1.454MB

eDRAM vs. 384KB SRAM), thus saving off-chip memory

access by 40.3% on average. However, the total energy

is raised by 13.3% because of the extra eDRAM refresh

energy. An energy increase of 2.3x is observed on AlexNet,

because it’s a relatively small network with no extra off-chip

memory access, and the refresh takes up a large part of the

total energy. In comparison with eD+ID, eD+OD removes

more refresh operations due to its shorter lifetime and saves

refresh energy by 43.7%.

The rest designs are three versions of RANA strengthened

accelerators. RANA (0)’s total energy is 19.4% lower than

eD+OD, because the hybrid computation pattern saves more

off-chip memory access than OD. Through the retention-

aware training method, tolerable retention time of 734μs is

obtained at the failure rate of 10−5. Thus in RANA (E-

5), 98.5% refresh operations are removed from RANA (0)

and the total energy is further reduced by 45.4%. With

the refreshed-optimized eDRAM controller, RANA*(E-5)

becomes almost refresh-free. Refresh accounts for only 0.4%

of the total energy consumption. No significant energy re-

duction over RANA (E-5) is observed because RANA (E-5)

has already greatly optimized refresh energy. Moreover, for

accelerators with large on-chip memory, RANA*(E-5) shows

more advantages in saving unnecessary refresh operations,

which will be further discussed in Section V-B4.

Combing all the proposed techniques, RANA*(E-5) saves

41.7% off-chip memory access and 66.2% system energy

consumption, with the same area cost of the SRAM-based

baseline (S+ID). In comparison the eDRAM-based baseline

(eD+ID), it reduces 99.7% eDRAM refresh operations with

no accuracy loss.

2) Benefits on the Data Retention Problem: In Figure

15, a sharp energy drop is observed from RANA (0)

to RANA (E-5), because the increased tolerable retention

time and refresh interval remove 98.5% refresh operations.

We will go further to study RANA’s benefits on the data

retention problem. As shown in Figure 16, the accelera-

tor energy (excluding off-chip memory access energy) of

eD+ID, eD+OD and RANA(0) on ResNet is estimated under

different retention time (from 45μs to 1440μs). Refresh
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Figure 16. Accelerator energy comparison on ResNet: eD+ID vs. eD+OD
vs. RANA (0), with retention time (RT ) increasing from 45μs to 1440μs.

interval also gradually increases with the retention time.

We exclude off-chip memory access in Figure 16 because

it’s not significantly affected by retention time. eD+OD

always has lower refresh energy than eD+ID, and shows

more advantages when retention time is relatively long. For

instance, when retention time grows from 90μs to 180μs,

eD+ID’s refresh energy declines by 50.0% as refresh interval

doubles with the retention time. In comparison, eD+OD’s

refresh energy is reduced by 80.1%, because OD’s short

data lifetime makes more layers to meet the condition “Data
Lifetime < Retention Time” to avoid refresh. Notice that

refresh still accounts for a large part in the accelerator

energy even if retention time grows to 720μs in eD+ID, but

eD+OD is almost refresh-free in this case. RANA (0) has

similar refresh energy with eD+OD, although some of the

layers are assigned with the WD pattern by RANA. But the

hybrid pattern helps RANA (0) achieve lower system energy

with the optimized off-chip memory access, as presented in

Figure 15.

As illustrated in Figure 16, refresh energy can be greatly

reduced by increasing retention time. However, retention

time is usually not too long (45μs [6] in this paper, typically

< 100μs) and it’s fixed once eDRAM is fabricated. Owing

to the retention-aware training method, we achieve longer

tolerable retention time by exploiting CNN’s error resilience.

In RANA (E-5), tolerable retention time of 734μs is obtained

at the failure rate of 10−5 with no accuracy loss. It removes

98.5% refresh operations from RANA (0), whose retention

time is only 45μs.

3) Benefits on the Buffer Storage Problem: To evaluate

RANA’s benefits on the buffer storage problem, we conduct

a layerwise system energy comparison between eD+OD

and RANA (0) on VGG, as shown in Figure 17. For

each layer, RANA (0) is normalized to eD+OD’s energy

for better comparison. On Layer2∼8, RANA (0) achieves

significant energy reduction, because WD, instead of OD,

is selected as the computation pattern. The seven layers’

buffer storage requirements all exceed the eDRAM buffer

capacity (1.454MB). With the help of WD, the buffer storage
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Figure 17. Layerwise system energy comparison on VGG: eD+OD vs.
RANA (0).
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(a) System energy of RANA (E-5).
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(b) System energy of RANA*(E-5).

Figure 18. Total system energy comparison: RANA (E-5) vs. RANA*(E-
5), with buffer capacity increasing from 0.364MB to 11.632MB (0.25x∼8x
of 1.454MB).

requirements are lowered down, saving 79.5∼91.6% off-chip

memory access. Although the refresh energy slightly rises

due to WD, the total energy still declines by 47.8∼67.0%.

As for the other layers, RANA (0) selects OD according

to the system energy model, so the energy stays the same

as eD+OD. On the whole VGG, thanks to the hybrid

computation pattern, RANA (0) saves 19.4% system energy

in total.

4) Sensitivity to Buffer Capacity: We study our method’s

sensitivity to buffer capacity, by comparing RANA (E-5) and

RANA*(E-5)’s system energy consumption, with buffer ca-

pacity sweeping from 0.364MB to 11.632MB (0.25x∼8x of
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1.454MB). Figure 18(a) presents RANA (E-5)’s normalized

system energy with different buffer capacity, measured on

the four benchmarks. The off-chip memory access decreases

with the growing of buffer capacity, since more data can be

cached on chip. However, the total energy consumption grad-

ually rises when buffer capacity increases beyond 1.454MB.

The reason is that, in conventional eDRAM design, the

memory controller conservatively refresh all cells whether

they store data or not. Thus, increasing buffer capacity

directly produces more refresh operations. Once the buffer

capacity is larger than the required buffer storage, the refresh

for the unused eDRAM cells leads to a big waste of energy.

On AlexNet, eDRAM refresh energy takes up 26.3% of the

system energy when the buffer capacity reaches 11.36MB,

making its total energy even higher than that obtained with

363.5KB buffer capacity.

The problem is well solved in RANA*(E-5) by removing

the unnecessary refresh operations, as shown in Figure 18(b).

In RANA*(E-5)’s refresh-optimized eDRAM controller, re-

fresh is only issued to the eDRAM bank that stores data

with lifetime longer than the tolerable retention time, based

on the refresh flags contained in the configurations. As a

result, refresh energy no longer increases once the buffer

capacity meets the intermediate data storage requirement.

Compared with RANA (E-5), 65.5∼92.3% refresh energy is

reduced in RANA*(E-5).

It’s notable that, with 1.454MB buffer capacity, no extra

off-chip memory access exist for all the four benchmarks, in

both RANA (E-5) and RANA*(E-5). According to Table I,

the maximum layer size reaches 6.27MB for inputs/outputs,

and 4.61MB for weights. The hybrid computation pattern

of RANA, the buffer storage requirements are significantly

reduced, saving both refresh energy and chip area.

C. Scalability Analysis on DaDianNao

We apply the RANA framework to the state-of-the-art

eDRAM-based CNN accelerator DaDianNao [12], to study

RANA’s scalability to other architectures, as demonstrated

in Figure 19. Since we don’t have DaDianNao’s design

files, we build a cycle-accurate simulator to model its data

lifetime, with the following design parameters extracted

from one node of DaDianNao: 4096 PEs, organized in a

tree-like structure with tiling parameters of Tm = Tn =
64, T r = Tc = 1, 36MB on-chip eDRAM capacity, working

at 606MHz. For fair comparison, the eDRAM’s retention

time distribution is in accordance with that in Figure 8 [6].

DaDianNao is strengthened with three versions of RANA

configurations, i.e. RANA (0), RANA (E-5), RANA*(E-5),

with the same hardware parameters as DaDianNao’s. Their

optimization techniques related to RANA are configured as

in Table IV.

In DaDianNao, buffer access energy takes up 23.5%

of the total system energy consumption, because it only

uses the WD computation pattern and produces frequent
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Figure 19. Scalability analysis on DaDianNao [12].

access to its weight buffer. Owing to the hybrid computation

pattern, RANA (0) tends to use OD in most layers, saving

97.2% buffer access energy from the original DaDianNao.

With longer tolerable retention time (734μs), RANA (E-5)

reduces 94.9% refresh energy compared with RANA (0).

However, refresh energy still accounts for 36.9% of the

accelerator energy, because large parts of the 36MB eDRAM

are not used and still require periodic refresh. RANA*(E-

5) removes the unnecessary refresh operations with the

optimized eDRAM controller.

In comparison with the original DaDianNao, RANA*(E-

5) reduces 99.9% eDRAM refresh operations and saves

69.4% system energy consumption. No reduction in off-

chip memory access energy is observed because the 36MB

eDRAM stores all the intermediate data and alleviates all the

extra off-chip memory access. In such a high performance

accelerator with large on-chip memory like DaDianNao, the

RANA framework greatly optimizes both accelerator and

system energy, showing very good scalability.

VI. CONCLUSIONS

In this paper, we propose RANA, a Retention-Aware

Neural Acceleration framework, for CNN accelerators to

save system energy consumption with refresh-optimized

eDRAM. The RANA framework solves the buffer storage

and data retention problem, with three levels of techniques:

a retention-aware training method, a hybrid computation

pattern and a refresh-optimized eDRAM controller. RANA

can be applied to current CNN hardware architectures, with

only small modifications for the memory control logic. The

performance is maintained because RANA doesn’t change

their core computing part and the eDRAM refresh overhead

is minimized. Experimental results show that, an eDRAM-

based CNN accelerator becomes almost refresh-free after

strengthened by RANA. Meanwhile, RANA saves 41.7%

off-chip memory access and 66.2% system energy consump-

tion, compared with the conventional SRAM-based CNN

accelerator in the same area.
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