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The ultrasonic attenuation in glasses at low temperatures is calculated using the 
model proposed by Anderson, Halperin, and Varma. It is found that the resonant 
absorption of sound by the localized two-level systems saturates and can be observed 
only if the sound amplitude is extremely small. A second contribution to the sound 
absorption is derived which arises from the relaxation of the localized excitations and 
does not saturate. Qualitative agreement with recent measurements of the ultrasonic 
attenuation in fused silica is obtained. 

1. Introduction 

The recent observation 1 of an anomalous temperature dependence 
of the specific heat and the thermal conductivity of glasses at tempera- 
tures below about  1 K has stimulated theoretical investigation into the 
thermal and acoustical properties of amorphous insulators. Fulde and 
Wagner (FW) 2 proposed a theory which is based on the assumption that 
structural relaxation leads to a diffusive mode which is especially im- 
portant  at short wavelengths. A more explicit model has been put for- 
ward by Anderson, Halperin, and Varma (AHV) a who assume that a cer- 
tain number  of atoms have two equilibrium positions in an asymmetric 
double-well potential. Transitions between the two positions are possible 
by tunneling, whereby a resonant phonon is absorbed or emitted. A 
similar model has been developed by Phillips 4. 

Both theories predict that the ultrasonic attenuation should increase 
with decreasing temperature below about 1 K. According to AHV, this 
anomalous temperature dependence results f rom the resonant absorption 
of sound quanta by localized two-level systems. Since the absorption 
by two-level systems saturates for high power input, the contribution of 
resonant absorption to the ultrasonic attenuation saturates for large 
sound amplitudes. This mechanism was already proposed by Heinicke, 

1 Zeller, R. C., Pohl, R. O.: Phys. Rev. B 4, 2029 (1971). 
2 Fulde, P., Wagner, H. : Phys. Rev. Letters 27, 1280 (1971). 
3 Anderson, P. W., Italperin, B. I., Varma, C. M.: Phil. Mag. 25, 1 (1972). 
4 Phillips, W. A. : J. Low Temp. Phys. 7, 351 (1972). 
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Winterling, and Dransfeld s in order to explain the discrepancy between 
thermal and coherent phonon mean free paths. We estimate the value 
of the power input at which saturation effects become important. We 
find that for typical experimental values of the power which is fed into 
the ultrasonic wave the resonant absorption of sound is indeed saturated. 
In this case the linear attenuation coefficient which results from resonant 
absorption is strongly reduced and cannot be observed experimentally. 

For  a comparison of the two theories it is of interest to see how 
structural relaxation, which is the basic concept of FW, is described by 
the model of AHV. Since the two equilibrium positions of a particular 
atom correspond to different atomic configurations, the tunneling tran- 
sition can be considered as a mechanism of structural relaxation. The role 
of the phonons in this process is to transport energy from "h o t  a toms" 
to "cold  atoms".  We derive the sound absorption which results from 
this relaxation process. Since in the relaxation process the ultrasonic 
wave interacts with all two-level systems which have an excitation energy 
in the thermal energy range the relaxation absorption does not saturate. 
We compare the relaxation contribution with recent experimental results 6 
for the high-frequency ultrasonic attenuation in fused silica at tempera- 
tures down to 1.1 K. Qualitative agreement between theory and experi- 
ment is obtained. 

2. The Model 

We first describe the model proposed by AHV in order to explain 
the observed anomalies of the specific heat and the thermal conductivity. 
Since the specific heat was found 1 to vary lineraly with temperature the 
first objective of such a model must be to introduce excitations which 
have a constant density of states in the energy range of interest. The 
first hypothesis of AHV is that in a glass a certain number of atoms 
(or groups of atoms) exist, which have two equilibrium positions cor- 
responding to the minima of asymmetric double-weU potentials (Fig. 1). 
The motion of such atoms can be approximately described as an oscil- 
lation around either of the two potential minima. At low temperature 
the localized oscillators are in their ground states. We denote the ground 
states corresponding to the two equilibrium positions by l a )  and I t ) .  
These states are not exact eigenstates because of the tunneling through 

5 Heinicke, W., Winterling, G., Dransfeld, K.: Proceedings of the Second Intern. 
Conf. on Light Scattering in Solids, ed. M. Balkanski, p. 463. Paris: Flammarion 
1971. 

6 Arnold, W., Baumann, J., Berberich, P., Hunklinger, S., Leiderer, P., Nava, R., 
Dransfeld, K.: Proceedings of the Intern. Conf. on Phonon Scattering in Solids, 
ed. H. J. Albany, p. 359, Paris: La Documentation Franqaise 1972. 
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Fig. 1. Asymmetric double-well potential with localized oscillator ground states 

the potential barrier from one minimum to the other. The properties of 
a quantum-mechanical two-state system are determined by a hamiltonian 
matrix 

1 

~ is equal to the energy difference between the localized ground states 
which is the sum of the energy difference between the two potential 
minima and the difference in zero-point energy of the two oscillators. 
The off-diagonal matrix element A is due to the overlap of the wave- 
functions of the localized oscillators which gives rise to tunneling from 
one position to the other. A can be written as 

A = h co o e-~, (2) 

where hco o is of the order of the zero-point energy for the motion of 
an atom around one potential minimum (which may be of the order of 
10 -2 eV), and 2 is roughly proportional to the square-root of the height 
V of the potential barrier and to the distance d between the two potential 
minima (see Fig. 1). The eigenstates I 1) and 12) of H o have energies 

E I , 2 = + � 8 9  with E=Ve2A-A 2. (3) 

They represent a two-level system with level spacing equal to E. We are 
interested in low temperatures where only those two-level systems contri- 
bute to the thermal properties which have a separation in energy E ~  h coo. 
Therefore, we have to consider only double-well potentials with values 
of A which are much smaller than hcoo. As a consequence, the exact 
value or the distribution of the values of coo is not relevant for our results. 

In order to explain the linear temperature dependence of the specific 
heat the two-level systems must have a uniform distribution of the ex- 
citation energy E. This requirement is met by AHV by assuming that the 
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parameters e and 2 are uniformly distributed in the range important  at 
low temperature. With this assumption we have for the probability distri- 
bution P(e, 2) (for 1 cm 3 of the substance) 

P (8, 2) = P, (4) 

where P is a constant. F rom the measured specific heat 1 we derive a 
value of 4.35 �9 1031 erg -1 cm -3 for P. 

In order that the ensemble of localized two-level systems can respond 
to an external perturbation a mechanism must exist through which 
transitions between the eigenstates l l )  and 12) become possible. Such a 
mechanism is provided by the interaction with long-wavelength phonons. 
The coupling between the localized two-level systems and the phonons 
derives f rom the deformation of the double-well potentials which is 
caused by an elastic wave 7. The deformation adds a perturbation H 1 to 
the hamiltonian for a two-state system. We neglect for simplicity a 
possible variation of the. off-diagonal matrix element and write 

Expressing ~ ~ in terms of the elastic strains by means of a deformation 
potential parameter  B (which we assume to be the same for longitudinal 
and transverse waves), and the elastic strains in terms of phonon crea- 
tion and annihilation operators s we obtain the matrix element for ab- 
sorption or emission of a phonon of momentum k and polarization a 

<k, 21H  I1>= {-L--k A 
\2pc~] ---E" (6) 

Here p is the density of the glass and c~ stands for the (longitudinal or 
transverse) sound velocity. Given the transition matrix element, one can 
calculate the rate zj- 1 at which a particular two-level systemj  in the upper 
state emits a phonon thereby returning to the lower state, and the rate 
(Zk, ~)-1 at which a phonon with momentum k and of polarization c~ is 
absorbed by one of the localized modes with which it is at resonance. 
Using the golden rule we obtain 

zj_ 1 1 2 2 2 
= -~t~+~t5 ~ ctgh (7) 

and 

(z,, ~) -1 = ~  tgh , co=c~, k, fl-1 = k B T  " (8) 

7 Sfissmann, J. A.: Phys. of Condensed Matter 2, 146 (1964); - -  J. Phys. Chem. 
Solids 28, 1643 (1967). 

8 Kittel, C. : Quantum theory of solids, chap. 2. New York: J. Wiley 1963. 

16 Z. Physik, Bd. 257 
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Fig. 2. Distribution of relaxation rates ~-i of two-level systems 

The factor (cF s+  2 cF s) appears in the expression for the relaxation rate 
z71 because the emitted phonon can belong to either the longitudinal or 
one of the two transverse phonon branches. It follows from Eq. (7) that 
the maximum relaxation rate vff 1 (E) of a two-level system with excitation 
energy E=Vs-z-+-~ is obtained for A = E  and e=0. For the values of 
the parameters % c t, and p of quartz glass 

cz= 5.8 �9 105 cm sec -1, ct= 3.75 �9 105 cm sec -1, p=2.2  g cm -a, 

and the parameter B which we fit to the ultrasonic attenuation (Chapter 4) 
we get the numerical value 

z~ 1 (E) = 1.95.10 s (E/kB) 3 ctgh (fiE~2) [sec- 1]. (9) 

The probability distribution P(E, ~-1) for finding a two-level system 
with excitation energy E and relaxation rate z-1 turns out to be 

P 
P ( E , z - 1 ) =  2 ( l_%(E) /z ) l / z  for z>r, ,(E).  (10) 

The remarkable feature is the strong increase of the distribution function 
P(E, "c-1) at very long relaxation times (Fig. 2). The atoms with very long 
relaxation times are those with a high potential barrier separating the 
two potential minima. As AHV have pointed out, this distribution of 
relaxation times leads to a logarithmic dependence of the measured 
specific heat on the time the sample is given to respond to the external 
heat supply in the experiment. A change of this response time from 1 sec 
to 1 gsec should reduce the specific heat by a factor of 3. 

The phonon relaxation rate "c~, ~ depends on the temperature through 
the population factor 

tgh (tiff-) = 1-2no(E) ,  no(E)=[exp(flE)+l] - I  . 
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(no is the distribution function for the two-level systems in equilibrium.) 
With increasing temperature the resonant absorption decreases because 
of the equalization of the occupation of the two levels. 

With the result (8) for the phonon absorption rate, one can explain a 
the measured thermal conductivity 1 x and predict the ultrasonic attenua- 
tion at low temperature. Assuming that heat is transported only by 
phonons, which are scattered by the localized modes, one obtains a 
T2-variation of x which agrees roughly with the measured temperature 
dependence. Comparison with the measured absolute value of tc yields an 
estimate of the deformation potential B of the order of 1 eV. For ultrasonic 
phonons (hog~knT) AHV predict a variation of the attenuation with 
frequency and temperature as m2/T. The attenuation should decrease as 
lIT with increasing temperature since the resonant scatterers are bleached 
out with increasing population of the upper energy level. 

3. Saturation of the Resonant Absorption 

We mentioned already that the resonant absorption of phonons by 
the localized two-state systems depends on the population of the energy 
levels. If an ultrasonic wave has a sufficiently small amplitude it does not 
affect the occupation numbers of the energy levels (averaged over one 
period of the sound wave). For larger sound amplitudes, however, the 
influence of the impressed sound wave on the occupation numbers may 
become important and lead to non-linear effects in the sound absorption. 
In fact, since the absorption of a sound quantum corresponds to the 
transition of an atom from the ground state to the excited state, it is 
clear that the population of the upper levels increases in proportion to 
the energy which is absorbed from the ultrasonic wave. If the amplitude 
of the sound wave is increased further, a situation is finally obtained in 
which the two energy levels are equally populated. In this situation the 
absorption of energy is completely determined by the rate of the recom- 
bination process in which the excited atoms return to their ground states. 
The absorption of energy has reached its saturation value which is in- 
dependent of the sound anaplitude. 

We can calculate this saturation absorption since we know the relaxa- 
tion time for phonon emission of an excited two-level system. The re- 
combination rate h i of the two-level system j is given by 

- hj - nj (1 + No (E j)) - (1 - n j) No (E j) (11) 
~j 

where z~-1 is the relaxation rate (7) without the population factor: 

16" 
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and N O (E) is the Bose function 

No(E) = [exp (f iE)-  1]- 1. 

The rate (l l) attains its maximum value n~ ~) for n j= 112. Since in the 
stationary case the rates of recombination and excitation are equal, the 
saturation value of the energy absorption is given by 

Q~ = h ~o ~ -ca) (12) t t j  �9 

1, I ~ - - n o l < r  

Here we sum over all two-level systems satisfying the resonance condi- 
tion which requires that the excitation energy fits the ultrasonic frequency 
within the combined energy and frequency uncertainties (denoted by F). 
The sum can be evaluated using the distribution P(E, z-1) of excitation 
energies and relaxation times given in Eq. (10): 

co 

O,,=hcok 2F ~ d(.r-1)~-l P(hw, v-1). 
o 

The integral in this expression has the value P .  ~'~ 1 (h 09). The result for 
the maximum absorption (per unit volume and time) is 

�9 ( 1  2) B2Fpco * (13) 
Q~= e-~t~ + ~ 2rcp 

For a frequency of 1 GHz and a relative energy uncertainty F]ho~ of 
2~ (which results from the finite relaxation time of the localized excita- 
tions and the uncertainty of the ultrasonic frequency 9) this maximum 
absorption at 1 K is 8 . 1 0  -9 Watt cm -3. 

We estimate the acoustic power for which the resonant absorption 
begins to saturate by comparing the linear absorption rate with the maxi- 
mum absorption (2,. For a given acoustic power J8 (per unit area) the 
linear absorption rate is equal to jdl, where the mean free path I is the 
product of the sound velocity and the phonon relaxation time (8). 
Equating the linear with the maximum absorption we find for the critical 
power input j}~) at which saturation effects become important 

�9 1 2 l=(~+~5t5)_ - FC3~3 , j~)=Q~ . 

The value of the saturating power turns out to be extremely small�9 For a 
frequency of 1 GHz at 1 K, for instance, it is of the order of 4 . 1 0  -8 
Watt cm -2 which is by about five orders of magnitude smaller than 
typical experimental values of the acoustic power input. 

The ultrasonic attenuation of fused silica at low temperatures has 
recently been measured 6 in an attempt to test the predictions of the theo- 
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Fig. 3. Comparison of theory and experiment for the ultrasonic attenuation in fused 
silica at 2 GHz. Full line: experiment; dashed-dotted line: resonant absorption; dashed 

lines: relaxation absorption 

des of AHV and FW. Fig. 3 shows the experimental results for a fre- 
quency of 2 GHz and temperatures down to 1.1 K. The mean free path 
due to non-saturated resonant absorption is included for comparison. 
This has a value of 1.2 cm for 2 GHz at 1 K. Comparing the experimental 
with the theoretical curve one cannot rule out the possibility that the 
resonant absorption shows up at temperatures below 1.1 K. But the 
same authors have very recently extended the measurements to tempera- 
tures below 1 K (down to 0.5 K) and found no indication of the resonant 
absorption 9. The preliminary results at 500 MHz show a continuous 
decrease of the attenuation down to the lowest measured temperature. 
This result is in keeping with our conclusion that the resonant absorption 
should not be observable in a standard ultrasonic attenuation measure- 
ment because of saturation effects. In order to avoid saturation one 
would have to reduce the acoustic power by several orders of magnitude. 
Only experiments with extremely weak sound pulses could provide a 
direct test of the AHV model*. 
* Note  added in proof:  After this paper had been completed a strong amplitude 

dependence of the ultrasonic attenuation at very low acoustic power has indeed 
been observed by Hunklinger, Arnold, Stein, Nava, and Dransfeld (to be pub1. in 
Physics Letters). 

9 Private communication by the authors of Ref. 6. 
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In the next chapter we consider the contribution to the ultrasonic 
attenuation which results from the relaxation of the tunneling states. 
This part of the absorption does not saturate. Some of the experimental 
results of Ref. 6 can be explained by this absorption mechanism. 

4. Sound Absorption due to Relaxation 

In the ensemble of two-level systems thermal equilibrium is established 
via transitions which involve the emission and absorption of phonons. 
The relaxation to equilibrium is mediated by the phonons which are ex- 
changed between the localized two-level systems. In simple physical terms, 
the relaxation process can be explained as a transport of energy by pho- 
nons from "hot  atoms" to "cold atoms". In the relaxation process energy 
is absorbed from the external perturbation and fed into the two-level 
systems and the phonon system. In the case where the perturbation is 
caused by a coherent sound wave the relaxation gives rise to sound absorp- 
tion. We calculate now this contribution to the sound absorption which 
follows without any additional assumptions from the model of AHV. 

We describe the ensemble of two-level systems and the phonon 
system by their distribution functions nj and Nk,~,. n i gives the time- 
dependent probability for finding the two-level system j in the excited 
state, Nk,~ is the usual space- and time-dependent phonon distribution 
function. The variation of the distribution functions is determined by 
two coupled Boltzmann equations which contain the perturbation caused 
by the sound wave as a driving force. We separate the oscillating parts 
fin and 6N of the distribution functions from the equilibrium distribu- 
tions no and No defined earlier by writing 

nj=no(E~)+6nj, Nk,~=No(et,,~,)+fN,,,,. (15) 

Linearizing with respect to 6 n and 6N we obtain the linearized Boltzmann 
equations 

0 + 1 ]  O no 3 6E i 
--~i ] 6nj-~ OEj 8t 

(16a) 

\ x,. l k , ~  ' ' ~ 

Zk,~/ ' O~k,~ 8t 

= c t g h ( ~ - ~ ) ~ V i 2 ~ ( E j - e k , ~ ) ~ n j ,  
(16b) 
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where 6Ej and 6ek,, denote, respectively, the variation of the excitation 
energy of two-level systemj and of the energy of the phonon (k, a) under 
the influence of the sound wave, and 

2 2 
r / - 2  _ _  7r Aj (17) 
v j ,  ~ - - - - T ~ - -  " p C~ Ej 

is essentially the square of the transition matrix element (6). In general 
one must solve the coupled equations (16a, b) for both oscillating parts 
6n and 6N of the distribution functions. At high frequences, however, 
we may assume that the phonons remain in thermal equilibrium. Neglect- 
ing the phonon disturbance we get immediately from Eq. (16a) 

Ono 6Ej (18) 
0 nj = OEj 1 + i (09 z j ) -  ~ " 

The sound absorption is calculated as the ratio between the energy dissi- 
pation and the energy current per unit volume. The energy fed into the 
ensemble of two-level systems per unit time is given by the time average 

0_=~ <nj(t) ri~j(t))t, (19) 
J 

and the energy current of the sound wave is equal to 

2 (20) j~ = p v~ c~, 

where v~ is the velocity amplitude of the wave. Inserting the solution (18) 
for 6nj into (19) we obtain for the mean free path l of an ultrasonic 
phonon 

1 1 { _  092 j t 
- - I " (21)  l~(09) j~ 

The contribution of every two-level system j shows the typical relaxation 
behaviour 1~ with the corresponding relaxation time zj. Summing over 
all two-level systems corresponds to averaging over the relaxation times 
zj. It is convenient to evaluate the sum over the two-level systems by 
averaging over the potential parameters e and 2 according to the substitu- 
tion 

E--*P~d~d2.  
J 

10 Herzfeld, K. F., Litovitz, T. A.: Absorption and dispersion of ultrasonic waves. 
New York: Academic Press 1959. 
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The energy change 6Ej derived from the perturbation hamiltonian (5) is 

ej v s (22) 6Ej=2B Ej c~," 

It is worth mentioning that the accepted order of magnitude of B (1 eV) 
corresponds to a Grtineisen parameter of order 104 since around 1 K 
the relevant energies Ej are of the order of 10 -4 eV. The large value of 
the deformation potential is the reason why the relaxation mechanism 
leads to an observable attenuation at low temperatures. In the limiting 
cases of low frequency or high temperature and high frequency or low 
temperature we find for the inverse mean free path of longitudinal pho- 
nons 

l~1_ 7tB2 p ~ 
4pc~ (23) 

for high temperature where co ~m ~ 1, and 

(1 2 )  3((3)B4P(kBT) 2c3h4 l t- l= -~ +-~t 5 (24) 

for low temperature where 09u 1. Choosing a value of 1.3 eV for the 
deformation potential parameter B we get the numerical results 

l~ -x =2.2.10 -9 V [cm -1] (25) 
and 

171 =0.31 T 3 fern-l]. (26) 

At low temperature the absorption is independent of frequency as is 
characteristic for a relaxation mechanism. In this region the neglect of 
the disturbance of the phonon distribution can be justified if 

tOZp~ ~ 1, 

where Zb-h I is the averaged resonant absorption rate of thermal phonons. 
At high temperature a quadratic frequency dependence of the absorption 
may be expected for a relaxation mechanism, but we find a linear fre- 
quency dependence. This unusual behaviour has its origin in the existence 
of two-level systems with very long relaxation times which according to 
AHV are characteristic of the glassy state. 

Fig. 3 shows a comparison of the calculated relaxation absorption 
Eqs. (25) and (26) with the measured absorption 6 in fused silica at 2 GHz. 
The low-temperature part of the relaxation absorption is in reasonable 
agreement with experiment. It is unclear whether the flat high-tempera- 
ture part of the absorption curve can be observed since at higher tem- 
peratures a different relaxation mechanism becomes important which is 
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due to t rans i t ions  of ac t iva ted  a toms  over  the  t op  of the  po ten t ia l  barr ier .  
I t  is k n o w n  tha t  this mechan i sm leads to a peak  in the  sound  abso rp t ion  
at  a b o u t  40 K 11. A t  low tempera tu res  the con t r ibu t ion  f rom this mecha-  
nism is difficult  to es t imate  since it depends  s t rongly  on the unknow n  
cut-off  a t  low energies in the  d is t r ibut ion  of the ac t iva t ion  energies. 

This work grew out of many stimulating discussions with Dr. S. Hunklinger. I am 
very indebted to him for sharing with me his knowledge of amorphous solids and 
keeping me informed on the process of the experimental work. I wish to thank also 
Dipl.-Phys. W. Arnold, P. Berberich, P. Leiderer, Professors K. Dransfeld, R. Nava, 
H. Wagner, and Dr. M. Papoular for helpful discussions and comments. 

11 Anderson, O. L., B/Smmel, H. E.: J. Am. Ceram. Soc. 38, 125 (t955). 
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