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Abstract

On the basis of a moment method, general solutions of a linearized Boltzmann equation for a

normal Fermi system are investigated. In particular, we study the sound velocities and damping

rates as functions of the temperature and the coupling constant. In the extreme limits of col-

lisionless and hydrodynamic regimes, eigenfrequency of sound mode obtained from the moment

equations reproduces the well-known results of zero sound and first sound. In addition, the mo-

ment method can describe crossover between those extreme limits at finite temperatures. Solutions

of the moment equations also involve a thermal diffusion mode. From solutions of these equations,

we discuss excitation spectra corresponding to the particle-hole continuum as well as collective

excitations. We also discuss a collective mode in a weak coupling case.

PACS numbers: 52.35.Dm, 67.25.dt, 67.85.Lm
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I. INTRODUCTION

In discussing collective excitations of quantum degenerate gases, there arises a distinction

between hydrodynamic and collisionless regimes. Let ω be a frequency of a collective mode

and τ be a mean-collision time. The hydrodynamic regime is characterized by ωτ ≪ 1,

while the collisionless regime is characterized by ωτ ≫ 1. The present paper is devoted to

detail analyses of collective excitations in both limiting regimes and in the crossover regime.

We deal with a sound propagation in a population balanced normal Fermi gas.

In general, the viscosity calculated in the hydrodynamic regime diverges at the absolute

zero temperature (T = 0), and hence it was considered that sound could not propagate

at T = 0. In 1957, using the Fermi liquid theory [1], Landau predicted that a sound

propagation could occur in liquid 3He even at very low temperatures owing to the mean-

field interaction [2]. This new type of sound was called zero sound, which differs from first

sound propagating because of a small dissipation achieved by local equilibrium.

Khalatnikov and Abrikosov conducted detail calculations of the dispersion relation and

derived the sound attenuation coefficient of the zero and first sound modes [3]. Abel et.

al. confirmed the existence of zero sound in the liquid 3He [4]. They also observed a

crossover between the zero and first sound modes, and measured temperature dependence

of the sound velocity and of the sound attenuation coefficient. The theoretical prediction

based on the Landau’s Fermi liquid theory [3] agreed with the experimental data. Until now,

investigations of liquid 3He have been conducted in detail, and the results are summarized

in many text books [5]. The Landau’s Fermi liquid theory is also summarized in standard

textbooks [6].

With the realization of the Bose-Einstein condensate as a turning point [7], vigorous

studies of ultracold atomic gases have been conducted. Ultracold atomic gases have flexibil-

ities such as controllability of an interaction parameter using the Feshbach resonance. These

systems open new windows to investigate phenomena that were difficult and impossible to

study in the liquid helium and superconductors.

As mentioned below, a number of studies on the collective modes have been also reported

in ultracold Fermi gases. Dipole oscillations were studied in collisionless and collisional

regimes in two component 40K gases [8, 9]. Experiments of the collective excitation in

the BCS-BEC crossover regime have been performed using 6Li gases [10, 11, 12, 13]. In
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particular, the reference [13] reported the sound velocity in the BCS-BEC crossover regime.

Collective excitations in Fermi gases have been also investigated theoretically. The dipole

mode [14] and the quadrupole mode [15] were analyzed making use of the moment method.

Zero sound with arbitrary spin was investigated [16]. Bruun et. al. studied collective modes

in trapped gases extensively and intensively [17, 18, 19]. Tosi’s group studied collective

modes by solving the Boltzmann equation numerically [20, 21, 22, 23]. They studied the

dipole mode of two component trapped gases as a function of a collision rate in some sit-

uations [20, 21], and the crossover between zero and first sound modes in the cigar-shaped

trap [22, 23]. Recently, collective excitations in the unitarity limit were studied [24, 25, 26].

As noted earlier, after a publication of the path-breaking work by Landau [2], a classic

paper by Khalatnikov and Abrikosov studied the crossover between zero sound and first

sound [3]. They treated a mean-collision time as temperature-dependent, but approximated

other quantities by those at T = 0. When the system is in the collisional regime at finite

temperatures, a sound velocity within this analysis reaches that of first sound evaluated at

T = 0. This simple approximation is appropriate as long as we restrict discussion to the

Landau’s Fermi liquid theory, since this theory focuses on quasiparticles at sufficiently low

temperatures. In the experiments in liquid 3He [4], however, the temperature dependence

of first sound velocity has been observed, although it was small. In usual atomic gases,

furthermore, first sound has a significant temperature dependence, and hence the simple

treatment mentioned above is invalid at high temperatures. It is therefore necessary to

discuss the crossover between the zero and first sound modes with a more efficient treatment

valid at wide range of temperatures.

Brooker and Sykes attempted to analyze the general solution of the linearized Boltzmann

equation to investigate the crossover of sound propagation [27]. They expanded a deviation

from local equilibrium in terms of spherical harmonic functions, and introduced different

relaxation times for different spherical harmonics. They, however, used an approximation

only appropriate in the low temperature regime, and hence the analysis was not appropriate

at high temperatures. They, furthermore, could not obtain the explicit solution because of

the computational difficulty at that time, although they gave an equation to be solved.

Although the physics on the crossover between the zero and first sound modes has been

understood to some extent, some issues shown above still remain. With the developments

of recent experimental techniques in ultracold atomic gases and of theoretical methods, it is
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meaningful to revisit the study of sound mode in Fermi systems with a modern approach.

In the present paper, we investigate the crossover between zero sound and first sound over

wide parameter ranges with a single theoretical framework. For this purpose, we analyze

the general solution of the linearized Boltzmann equation using the moment method.

The moment method is suitable for describing the crossover of collective excitations be-

tween collisionless and hydrodynamic regimes. So far in cold atomic gases, the moment

method has been used to study characteristic collective excitations in trapped systems, such

as monopole, dipole, quadrupole and scissors modes [28, 29, 30, 31]. With a use of same

technique, collective modes in atomic gases with internal degrees of freedom were also stud-

ied [32, 33]. The moment equation for the uniform system, however, has not been solved to

study sound modes in quantum many-body systems. This is one of the new points in the

present paper.

In the Landau’s Fermi liquid theory, central players are quasiparticle, and hence the-

oretical studies have been done in the very low temperature regime. Those studies are

based on the Landau Boltzmann equation for quasiparticles. In dilute quantum gases, on

the other hand, real atoms are central players. These systems are described by the Boltz-

mann equation for real particles. Although the Boltzmann equation has the same form as

the Landau Boltzmann equation, this equation is applicable up to the high-temperature

Maxwell-Boltzmann gas regime. Studies of sound mode in ultracold atomic gases thus need

a single theory which can be applied up to high temperatures. The present study can solve

those issues.

The contents of the present paper are summarized as follows: (a) The spectrum of the

sound mode obtained from the general solution shows the crossover between zero sound and

first sound. In collisionless and collisional regimes, the sound velocities reproduce the results

calculated in each limiting regime. This method also offers the frequency of first sound with

the temperature dependence. This result cannot be obtained by a standard approach such

as given in Ref. [3]. (b) The results of the moment method include a thermal diffusion mode.

(c) The moment method reproduces not only a collective mode of the sound propagation,

but also the particle-hole continuum. (d) In a weak coupling case, the crossover between

zero sound and first sound has a different character from the crossover in a strong coupling

case.

The present paper is organized as follows. Section II deals with one of the main topics
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of the present paper. Making use of the moment method, we will derive moment equations.

In Sec. III, we calculate the sound velocity and damping rate of first sound in the hydro-

dynamic regime. Section IV gives detailed analysis of zero sound in the low temperature

regime. In Sec. V, we will show results of moment equations, and analyze the crossover

between zero sound and first sound. Section VI is devoted to discussion. Section VII gives

summary and conclusion. We devote Appendices A and B to derive relaxation times. In

Appendix A, we calculate transport coefficients in the hydrodynamic regime based on the

Chapman-Enskog method. In Appendix B, we evaluate relaxation times associated with the

transport coefficients. We compare the mean collision rate with these relaxation rates: the

viscous relaxation rate and the thermal conductivity relaxation rate. Appendix C describes

a standard analysis of the random-phase approximation.

II. LINEARIZED BOLTZMANN EQUATION AND MOMENT EQUATION

In this paper, we consider two component atomic Fermi gas interacting with s-wave

scattering. We assume a population balanced gas of two spin components with the same mass

m. The equation of motion for distribution functions within a semiclassical approximation

is described by the following Boltzmann equation:

∂fσ(p, r, t)

∂t
+

p

m
· ∇rfσ(p, r, t) −∇rUσ(r, t) · ∇pfσ(p, r, t) = Icoll[fσ], (1)

where an index σ = {↑, ↓} represents spin component. Uσ(r, t) is the contribution of a

mean-field interaction given by Uσ(r, t) = gn−σ(r, t). nσ(r, t) represents the local density.

The interaction strength g is given by g = 4π~
2a/m, and a is the s-wave scattering length.

The collision integral Icoll[fσ] on the right hand side of Eq. (1) is given by

Icoll[fσ(1)] =
2πg2

~

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4δ(p1 + p2 − p3 − p4)δ

(

p2
1

2m
+

p2
2

2m
− p2

3

2m
− p2

4

2m

)

× [1 − fσ(1)] [1 − f−σ(2)] f−σ(3)fσ(4) − fσ(1)f−σ(2) [1 − f−σ(3)] [1 − fσ(4)] ,

(2)

where fσ(i) is fσ(i) ≡ fσ(pi, r, t).

We shall linearize the distribution function around static equilibrium (denoted by

f 0
σ(p, r)), using fσ(p, r, t) = f 0

σ(p, r) + δfσ(p, r, t) = f 0
σ(p, r) + δf̃σ(p, r, t) + δf ′

σ(p, r, t).

5



Here, δf̃σ(p, r, t) is the local equilibrium distribution function linearized around static equi-

librium f̃σ(p, r, t) = f 0
σ(p, r) + δf̃σ(p, r, t), and δf ′(p, r, t) denotes departure from local

equilibrium.

The local equilibrium distribution is determined by the condition Icoll = 0, and is given

by

f̃σ(p, r, t) =
1

exp
{

β̃(r, t) [p− mv(r, t)]2 /2m
}

z−1
σ (r, t) + 1

, (3)

where the local fugacity zσ(r, t) is

zσ(r, t) = exp
{

β̃(r, t) [µ̃σ(r, t) − gñ−σ(r, t)]
}

. (4)

β̃(r, t) is a local temperature θ̃(r, t) = kBT̃ (r, t) = 1/β̃(r, t), ñσ(r, t) is a local density, µσ(r, t)

is a local chemical potential, and v(r, t) is local velocity. These local variables depend on

position and time.

It is convenient to write fluctuations of the distribution function around static equilibrium

as

δfσ(p, r, t) =
∂f 0

σ

∂ε0
σ

νσ(p, r, t). (5)

The factor νσ(p, r, t) is the averaged extra energy of particles around equilibrium [34]. Writ-

ing δf̃σ(p, r, t) and δf ′
σ(p, r, t) as

δf̃σ(p, r, t) =
∂f 0

σ

∂ε0
σ

ν̃σ(p, r, t), δf ′
σ(p, r, t) =

∂f 0
σ

∂ε0
σ

δνσ(p, r, t), (6)

one also has νσ(p, r, t) = ν̃σ(p, r, t) + δνσ(p, r, t).

Using Eq. (5) in the Boltzmann equation (1), one obtains the following equation:

∂f 0
σ

∂ε0
σ

[

∂νσ(p, r, t)

∂t
+

p

m
· ∇νσ(p, r, t) −∇gδn−σ(r, t) ·

p

m

]

= Icoll[fσ]. (7)

We shall apply a relaxation time approximation to the collision integral. The relaxation time

τ is a characteristic time with which a system reach local equilibrium. In this approximation,

the collision integral can be reduced to

Icoll[fσ] = −fσ − f̃σ

τ
= −1

τ

∂f 0
σ

∂ε0
σ

δνσ. (8)

We now linearize the local equilibrium quantities as θ̃(r, t) = θ0 + δθ(r, t), µ̃σ(r, t) = µ0
σ +

δµσ(r, t), and v(r, t) = v0 + δv(r, t) = δv(r, t), where θ0 = kBT 0, chemical potential µ0, and
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velocity v0 = 0 represent static equilibrium. The linearized local equilibrium distribution

function is then given by

ν̃σ(p, r, t) = aσ(r, t) + b(r, t) · p + c(r, t)p2, (9)

where

aσ(r, t) ≡ −
[

β0gn0
−σ − β0µ

0
σ

]

δθ(r, t) − δµσ(r, t) + gδn−σ(r, t), (10)

b(r, t) ≡ −δv(r, t), (11)

c(r, t) ≡ − β0

2m
δθ(r, t). (12)

We now look for the plane wave solution of the linearized Boltzmann equation, represent-

ing as

νσ(p, r, t) = νσ(p,q, ω)ei(q·r−ωt), δnσ(r, t) = δnσ(q, ω)ei(q·r−ωt), (13)

where resultant functions ν̃σ and δνσ are also written as

νσ(p,q, ω) = ν̃σ(p,q, ω) + δνσ(p,q, ω), (14)

ν̃σ(p,q, ω) = aσ(q, ω) + b(q, ω) · p + c(q, ω)p2. (15)

The linearized Boltzmann equation with the relaxation time approximation is thus given by

∂f 0
σ

∂ε0
σ

[(

ω − p · q
m

)

νσ(p,q, ω) +
p · q
m

gδn−σ(q, ω)
]

= −i
1

τ

∂f 0
σ

∂ε0
σ

δνσ(q, ω). (16)

Here, the density fluctuation δnσ(q, ω) is

δnσ(q, ω) = aσ(q, ω)Wσ,0 + c(q, ω)Wσ,2 +

∫

dp

(2π~)3

∂f 0
σ

∂ε0
σ

δνσ(q, ω), (17)

where we define

Wσ,n ≡
∫

dp

(2π~)3

∂f 0
σ

∂ε0
σ

pn. (18)

From Eqs. (14)-(17), the linearized Boltzmann equation is reduced to

∂f 0
σ

∂ε0
σ

{(

ω − p · q
m

)

[

aσ(q, ω) + b(q, ω) · p + c(q, ω)p2 + δνσ(q, ω)
]

+
p · q
m

g

[

a−σ(q, ω)W−σ,0 + c(q, ω)W−σ,2 +

∫

dp

(2π~)3

∂f 0
−σ

∂ε0
−σ

δν−σ(q, ω)

]}

= −i
1

τ

∂f 0
σ

∂ε0
σ

δνσ.

(19)
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We now discuss the general solution of the linearized Boltzmann equation, a main topic

of the present paper. As derived in the above, the linearized Boltzmann equation with the

averaged extra energy around the static equilibrium νσ(p) is reduced to

∂f 0
σ

∂ε0
σ

[(

ω − p · q
m

)

νσ(p) +
p · q
m

gδn−σ

]

= −1

τ

∂f 0
σ

∂ε0
σ

[

νσ −
(

aσ + b · p + cp2
)]

. (20)

We do not write explicitly q, and ω in νσ and δnσ, since these dependences are not important

for further calculation. We shall use the viscous relaxation time given in Eq. (B9) (derived

in Appendix A and B) as the relaxation time τ , because the density fluctuation is the most

strongly coupled to the viscous relaxation. This approximation to the collision integral is

a good one in the vicinity of local equilibrium. In the collisionless regime ωτ ≫ 1, this

approximation can describe zero sound, because the collision term can be neglected owing

to the large value of τ . We remark that the relaxation time evaluated by a small correction

from static and local equilibrium could be quantitatively different from the actual relaxation

time in the collisionless regime ωτ ≫ 1 and also in the intermediate regime ωτ ≈ 1.

We expand the fluctuation in terms of the spherical harmonics as

νσ(p) ≡
∞
∑

l=0

l
∑

m=−l

νm
σ,l(p)P m

l (cos θ)eimφ. (21)

Multiplying Eq. (20) by e−im′φ and integrating it over φ, we have the following linearized

Boltzmann equation:

∞
∑

l=0

∂f 0
σ

∂ε0
σ

[(

ω − pq

m
cos θ

)

νm
σ,lP

m
l (cos θ)

]

+
∂f 0

σ

∂ε0
σ

(pq

m
cos θ

)

gδn−σδm,0

= − i

τ

∂f 0
σ

∂ε0
σ

[

∞
∑

l=0

νm
σ P m

l (cos θ) −
(

aσ + b · p + cp2
)

δm,0

]

. (22)

One finds that only the mode with m = 0 is coupled to the mean-field potential. This is

due to the isotropic interaction. This mode (m = 0) corresponds to the longitudinal wave.

In anisotropic interactions, there also exists the mode with m 6= 0, such as transverse zero

sound with m = 1. Since we consider the crossover from the longitudinal zero sound to

the longitudinal first sound, we only take the mode with m = 0. Let us use the notations

νm=0
σ,l (p) ≡ νσ,n(p), and P m=0

l (cos θ) ≡ Pl(cos θ), for simplicity. It is also useful to define the

following moment:

〈pnνσ,l〉 ≡
∫

dp

(2π~)3

∂f 0
σ

∂ε0
σ

pnνσ,l(p). (23)
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The density fluctuation is expressed as δnσ = 〈νσ,0〉.
Multiplying Eq. (22) by pnPl′(cos θ) and integrating over θ and p, we obtain the moment

equation given by

ω〈pnνσ,l〉 −
l

2l − 1

q

m
〈pn+1νσ,l−1〉 −

l + 1

2l + 3

q

m
〈pn+1νσ,l+1〉 + g

q

m
Wσ,n+1〈ν−σ,0〉δl,1

= − i

τ
〈pnνσ,l〉 +

i

τ
(aσWσ,n + cWσ,n+2) δl,0 +

i

τ
bWσ,n+1δl,1. (24)

We have made use of an orthogonality relation

∫ π

0

dθ sin θPl(cos θ)Pl′(cos θ) =
2

2l + 1
δl,l′, (25)

and a recurrence formula for the Legendre polynomials

cos θPl(cos θ) =
l + 1

2l + 1
Pl+1(cos θ) +

l

2l + 1
Pl−1(cos θ). (26)

The moments associated with p0P0(cos θ), pP1(cos θ) and p2P0(cos θ) correspond to num-

ber of particles, momentum, and the energy, respectively. The collision integral vanishes

when we take these moments, because of the conservation law. Equations determining co-

efficients aσ, b, and c are then given by

〈νσ,0〉 − aσWσ,0 − cWσ,2 = 0, (27)
∑

σ

(〈pνσ,1〉 − bWσ,2) = 0, (28)

∑

σ

(

〈p2νσ,0〉 − aσWσ,2 − cWσ,4

)

= 0. (29)

We used an assumption that directions of the velocity and of the sound propagation are

parallel b ‖ k, where b is related to the velocity through Eq. (11). As a result, one obtains

coefficients given by

aσ =
1

Wσ,0
〈νσ,0〉 −

1

Θ

Wσ,2

Wσ,0

∑

σ′

〈p2νσ′,0〉 +
1

Θ

Wσ,2

Wσ,0

∑

σ′

Wσ′,2

Wσ′,0
〈νσ′,0〉, (30)

b =
〈pν↑,1〉 + 〈pν↓,1〉

W↑,2 + W↓,2

, (31)

c =
1

Θ

(

∑

σ

〈p2νσ,0〉 −
∑

σ

Wσ,2

Wσ,0
〈νσ,0〉

)

, (32)

9



where Θ ≡
∑

σ

(

Wσ,4 − W 2
σ,2/Wσ,0

)

. Finally, we obtain the following moment equation:

ω〈pnνσ,l〉 −
l

2l − 1

q

m
〈pn+1νσ,l−1〉 −

l + 1

2l + 3

q

m
〈pn+1νσ,l+1〉 + g

q

m
Wσ,n+1〈ν−σ,0〉δl,1

= − i

τ
〈pnνσ,l〉

+
i

τ

[

Wσ,n

Wσ,0

+
1

Θ

(

Wσ,nW 2
σ,2

W 2
σ,0

− Wσ,n+2Wσ,2

Wσ,0

)]

〈νσ,0〉δl,0

+
i

τ

1

Θ

(

Wσ,nWσ,2W−σ,2

Wσ,0W−σ,0
− Wσ,n+2W−σ,2

W−σ,0

)

〈ν−σ,0〉δl,0

+
i

τ

1

Θ

(

Wσ,n+2 −
Wσ,2Wσ,n

Wσ,0

)

(

〈p2ν↑,0〉 + 〈p2ν↓,0〉
)

δl,0

+
i

τ

Wσ,n+1

W↑,2 + W↓,2

(〈pν↑,1〉 + 〈pν↓,1〉) δl,1. (33)

One can obtain the eigenmode by solving this eigenvalue problem; however, equations

are not closed even if higher moments are taken into account. We shall truncate an equation

at sufficiently high moment, which does not affect the spectrum of the collective mode of

interest. Note that this equation is not the same one derived in Ref. [27]. The equation (33)

is much simpler than that in Ref. [27]. We do not use many relaxation times as in Ref. [27],

but a single relaxation time is introduced. Reference [27] added an extra equation to make

a closed set of equations, but we do not need an extra equation. In next two sections, we

grasp sound velocities and damping rates in the two limiting regimes: hydrodynamic and

collisionless regimes.

III. FIRST SOUND

We solve the linearized Boltzmann equation in Eq. (19) in the hydrodynamic regime in

the present section. When we take the zeroth, first, and second moments of the Boltzmann

equation, the collision integral vanishes because of conservation laws. As shown in Eqs.

(A46) and (A47) in Appendix A, one can obtain a closed set of hydrodynamic equations

including dissipative terms. The hydrodynamic equations in terms of the moments are

10



written as

ω [aσ(q, ω)Wσ,0 + c(q, ω)Wσ,2] =
b(q, ω) · q

3m
Wσ,2, (34)

∑

σ

{

ωb(q, ω)Wσ,2 − aσ(q, ω)
Wσ,2

m
q − c(q, ω)

Wσ,4

m
q

+g
Wσ,2

m
[a−σ(q, ω)W−σ,0 + c(q, ω)W−σ,2]q

}

− i4ηq2b(q, ω) = 0, (35)

ω [a↑(q, ω)W↑,2 + a↓(q, ω)W↓,2 + c(q, ω)(W↑,4 + W↓,4)]

− b(q, ω) · q
3m

(W↑,4 + W↓,4) − 4iκm2c(q, ω)Tq2 = 0. (36)

Relations δθ(q, ω) = kBδT (q, ω) and b(q, ω) = −v(q, ω) are used, and the velocity v(r, t)

is assumed to be parallel to a vector q.

The above equations can be written in terms of physical quantities: the density δnσ(q, ω),

the velocity v(q, ω) and the energy δE(q, ω), whose quantities are given by

δnσ(q, ω) =aσ(q, ω)Wσ,0 + c(q, ω)Wσ,2, (37)

v(q, ω) = − b(q, ω), (38)

δE(q, ω) =a↑(q, ω)W↑,2 + a↓(q, ω)W↓,2 + c(q, ω)(W↑,2 + W↓,2). (39)

Density fluctuations of an in-phase mode δntot(q, ω) ≡ δn↑(q, ω) + δn↓(q, ω) and of an out-

of-phase mode δn−(q, ω) ≡ δn↑(q, ω)−δn↓(q, ω) exist because of the two component system.

The hydrodynamic equations in terms of these quantities are written as

0 = ωδn−(q, ω), (40)

0 = ωδntot(q, ω) +
2W2

3m
q · v(q, ω), (41)

0 =

(

ω − i
2ηq2

W2

)

q · v(q, ω) +
q2

2mW2
δE(q, ω) − gq2

2m
δntot(q, ω), (42)

0 =
(

ω − 4iκm2Tq2R
)

δE(q, ω) +
2W4

3m
q · v(q, ω) − 4iκm2Tq2R

W2

W0

δntot(q, ω), (43)

where R is defined as 1/R ≡ 2(W4−W 2
2 /W0), and the assumption of the population balanced

gas Wn ≡ W↑,n = W↓,n is used. We note that the out-of-phase mode is decoupled from the

hydrodynamic mode composed of the total density, the velocity, and the energy, in the

population balanced gas.

Solving the secular equation for fluctuations (δntot(q, ω),q·v(q, ω), δE(q, ω)), one obtains

an equation

F1(ω) + F2(ω) = 0, (44)

11



where

F1(ω) ≡ ω3 − ω
q2

3m2W2
(W4 − gW 2

2 ), (45)

F2(ω) ≡ −ω2

(

2iηq2

W2
+ 4iκm2Tq2R

)

+
4

3
iκTq4R

(

W4

W2
− gW2

)

. (46)

We omit terms of second and higher order in transport coefficients κ and η. These coefficients

are assumed to be small in the hydrodynamic regime.

A frequency ω of a collective excitation can be separated into a real part Ω and an

imaginary part Γ with being a damping rate: ω ≡ Ω − iΓ. Undamped solutions satisfy

F1(Ω) = 0. Frequencies Ω 6= 0 obtained from F1(Ω) = 0 are

Ω± ≡ ±Ω =

√

W4 − gW 2
2

3W2

q

m
. (47)

A mode Ω = 0 which is a thermal diffusion mode also exists, and it will be discussed in Sec.

VIII.

In the weak coupling limit at T → 0, the frequency is given by Ω ≈ qvF/
√

3, where vF is

the Fermi velocity given by vF ≡ (~/m)(3π2Ntot/V )1/3. Ntot is the total number of particle,

and V is a volume. In the strong coupling limit at T → 0, on the contrary, the frequency is

given by Ω ≈ q
√

gNtot/(2mV ) = qvF

√

gρF/3, where ρF is the density of state at the Fermi

energy given by ρF ≡ 2m(3π2Ntot/V )1/3/(2π~)2.

Damping rates and transport coefficients are assumed to be small in the hydrodynamic

regime. The term F2(Ω − iΓ) including transport coefficients can be then approximated by

F2(Ω), so that we reduce Eq. (44) as F1(Ω − iΓ) + F2(Ω) = 0. As a result, one obtains the

damping rate Γ± as

Γ± ≈ −i
F2(Ω±)

Ω±(Ω± − Ω∓)
= −ηq2

W2

− κTq2m2

W4 − gW 2
2

, (48)

where we use F1(ω) = ω(ω − Ω+)(ω − Ω−).

12



IV. ZERO SOUND

This section discusses a sound mode in the collisionless regime. We start with the lin-

earized Boltzmann equation based on Eq. (22):
∞
∑

l=0

∂f 0
σ

∂ε0
σ

[(

ω − pq

m
cos θ

)

νσ,lPl(cos θ)
]

+
∂f 0

σ

∂ε0
σ

(pq

m
cos θ

)

g〈ν−σ,0〉

= − i

τ

∂f 0
σ

∂ε0
σ

[

∞
∑

l=0

νσPl(cos θ) − 〈νσ,0〉
Wσ,0

− 〈pν↑,1〉 + 〈pν↓,1〉
W↑,2 + W↓

p cos θ

]

, (49)

where the simplified notations νm=0
σ,l (p) ≡ νσ,n(p) and P m=0

l (cos θ) ≡ Pl(cos θ) are used. We

assume conservation laws only for number of particles and for momentum as in Ref. [3]:

aσ = 〈νσ,0〉/Wσ,0, b =
∑

σ

〈pνσ,1〉/
∑

σ

Wσ,2, and c = 0.

Equation (49) can be reduced to

∂f 0
σ

∂ε0
σ









∞
∑

l=0

νσ,lPl(cos θ) − g
cos θ

cos θ − iτω − 1

iτpq/m

〈ν−σ,0〉









=
1

iτ

∂f 0
σ

∂ε0
σ

1
pq

m

1

cos θ − iτω − 1

iτpq/m

[〈νσ,0〉
Wσ,0

+
〈pν↑,1〉 + 〈pν↓,1〉

W↑,2 + W↓,2
p cos θ

]

. (50)

Multiplying this equation by 1 and p cos θ, and integrating over the momentum p, we obtain

the following two equations:
(

1 − gA0,1 −
1

iτq/m

A−1,0

W0

)

〈ν0〉 =
1

iτq/m

A0,1

W2

〈pν1〉, (51)

(

1

3
− 1

iτq/m

A1,2

W2

)

〈pν1〉 =

(

gA1,2 +
1

iτq/m

A0,1

W0

)

〈ν0〉, (52)

where Wn ≡ W↑,n = W↓,n. We consider the in-phase mode 〈pnνl〉 ≡ 〈pnν↑,l〉 + 〈pnν↑,l〉. The

coefficient An,l is defined as

An,l ≡
∫

dp

(2π~)3

∂f 0

∂ε0
pn cosl θ

cos θ − iτω − 1

iτpq/m

, (53)

where the spin index in ∂f 0/∂ε0 is omitted.

Let us consider zero sound in the low temperature regime. We impose the temperature

dependence only to the relaxation time, and simply evaluate the coefficient An.l as the value

at T = 0. From Eqs. (51) and (52), the following dispersion relation can be obtained:

1 − i
s′′

s
+ W 0(s)

[

gρF + i
s′′

s
+ i3s′′ (s − is′′)

]

= 0. (54)
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The function W 0(s) is the Lindhard function given by

W 0(s) = 1 − s

2
ln

∣

∣

∣

∣

s + 1

s − 1

∣

∣

∣

∣

. (55)

s and s′′ are defined as s ≡ (iτω − 1)/(iτvFq), and s′′ ≡ 1/(τvFq), respectively. The

dispersion relation (54) is first derived by Khalatnikov and Abrikosov [3]. The notations

used here follows in Ref. [35].

The frequency of the collective mode in collisionless limit τω ≫ 1 is given by

1 + gρF

(

1 − Ω

2vFq
ln

∣

∣

∣

∣

Ω + vFq

Ω − vFq

∣

∣

∣

∣

)

= 0, (56)

where we omit s′′ in the dispersion relation (54) because it is small. This result can be also

obtained by the random phase approximation discussed in Appendix C. The frequency is

given by ω = qvF{1 + 2 exp [−1/(gρF)]} in the weak coupling limit gρF ≪ 1; the frequency

is given by ω = qvF

√

gρF/3 in the strong coupling limit gρF ≫ 1.

The damping rate Γ = −Im(ω) in the collisionless limit τω ≫ 1 is obtained by the

following way. We expand the dispersion relation (54) to first order in s′′ and Γ since these

are small. As a result, we obtain the damping rate Γ as

Γ =
1

τ

[

1 − (gρF + 1 + 3s2
0)(s

2
0 − 1)

gρF(gρF + 1 − s2
0)

]

, (57)

where s0 ≡ Ω/vFq. This is seen in Ref. [35].

The frequency and the damping rate in the low frequency regime ωτ ≪ 1 can be also

evaluated based on the dispersion relation (54). The Lindhard function W 0(s) is approxi-

mated as W 0(s) ≃ −1/3s2 − 1/5s4 in this regime. When we consider the dispersion relation

(54) with the first order of the relaxation time τ , we obtain

(

ω

vFq

)2

=
1

3
(gρF + 1) − 4

15
iωτ. (58)

As a result, the frequency of the collective mode is given by Ω = qvF

√

(1 + gρF)/3. One

obtains Ω ≃ qvF

√

gρF/3 in the strong coupling case gρF ≫ 1. This corresponds to the

frequency of the first sound at T = 0 in Eq. (47) in the strong coupling limit. The damping

rate can be approximately evaluated as Γ ≃ 2τ(vFq)2/15 from Eq. (58). This damping rate is

consistent with the damping rate of the first sound in Eq. (48), if we impose the temperature

dependence in Eq. (48) only to the relaxation time, and evaluate other quantities in Eq.

(48) as the value at T = 0. The viscous term −ηq2/W2 alone contributes this damping rate.
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V. RESULTS : SOUND MODE FROM ωτ ≪ 1 TO ωτ ≫ 1

This section presents the results obtained by solving the moment equation (33). We focus

on the crossover from zero sound to first sound.

The collisionless regime ωτ ≫ 1 and the collisional regime ωτ ≪ 1 can be realized by

controlling the temperature T . In the high temperature regime, atoms are colliding with

each other frequently, so that the hydrodynamic regime ωτ ≪ 1 is achieved. In the low

temperature regime, on the contrary, the Pauli blocking makes the phase volume where the

atoms are scattered restricted, and hence the collisionless regime ωτ ≫ 1 is realized.

The coupling constant α = gNtot/(V εF) also plays a role determining the collisionless and

collisional regimes, where εF is the Fermi energy given by εF ≡ [~2/(2m)](3π2Ntot/V )2/3.

The mean-field potential is proportional to the coupling constant α, while the collision

integral (or the relaxation rate) is proportional to α2. The collisionless regime ωτ ≫ 1 could

be realized in the weak coupling regime. In the strong coupling regime, on the contrary, the

collision term (or the relaxation rate) is dominant compared with the mean-field potential,

so that one would be in the collisional regime. From these points of view, we study the

sound mode from ωτ ≪ 1 to ωτ ≫ 1 as a function of the temperature T and of the coupling

constant α.

In Fig. 1, eigenvalue ω of the collective excitation is plotted as a function of T . We show

a strong coupling case α = 15. We chose the wavenumber q = 0.05kF. We take moments up

to l = 30 and n = 30 in this calculation, although less moments, for example up to l = 10

and n = 10, reproduces the same result.

Figure 1 (a) shows the phase velocity c defined by c ≡ Ω/q where Ω ≡ Re(ω). Figure 1

(b) shows damping rate Γ given by Γ = −Im(ω). Solid lines in Figs. 1 (a) and (b) represent

the phase velocity and the damping rate obtained from the moment equation (33). Dashed

lines in Figs. 1 (a) and (b) represent those of zero sound obtained from Eq. (56) and given

in Eq. (57), respectively. Dotted lines in Figs. 1 (a) and (b) represent those of first sound

given in Eq. (47) and Eq. (48). Solutions of the moment method coincide with asymptotic

solutions in two limiting regimes: collisionless and hydrodynamic regimes. Note that the

moment equations show the crossover between the zero and first sound modes as well as the

temperature dependence of first sound. Corresponding behavior of our result is also seen

in the experimental result in Ref. [4], which reported temperature dependence of the sound
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FIG. 1: Frequency and damping rate of collective excitation as a function of temperature. Figure

(a) shows the phase velocity. Figure (b) shows the damping rate. Solid lines correspond to an

eigenmode obtained from the moment equation. Dashed lines in (a) and (b) represent the phase

velocity and the damping rate of zero sound, respectively. Dotted lines in (a) and (b) represent

those of first sound. The coupling constant α = 15 is used.

velocity and the amplitude attenuation coefficient of liquid 3He.

In the collisional hydrodynamic regime ωτ ≪ 1, the dispersion relation in Eq. (54) first

derived by Khalatnikov and Abrikosov [3] cannot reproduce our results correctly, because

the temperature dependence is imposed only to the relaxation rate (see also Eq. (58)).

In Eq. (47), W4, which is proportional to the pressure, strongly depends on temperature,

and this brings temperature dependence of the sound velocity of first sound. (W2, which

is proportional to the density, does not have the temperature dependence under a fixed

volume.)

As for the damping rate, the dispersion relation in Eq. (58) does not involve the con-

tribution of the thermal conductivity. Even if we neglect the second term in Eq. (48), the

dispersion relation in Eq. (58) still does not reproduce our result, although the difference

is quite small. The difference also comes from the temperature dependence of the pressure

in the term W4, which is not involved in Eq. (54). It is, nevertheless, remarkable that the

dispersion relation (54) first derived by Khalatnikov and Abrikosov [3] excellently grasps the

sound velocities and damping rates in both collisionless and hydrodynamic regimes.

In turn, we plot the phase velocity c and the damping rate Γ of the collective mode as a
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FIG. 2: Phase velocity in (a) and damping rate in (b) are shown as a function of the coupling

constant α = gNtot/V εF, fixing the temperature at T = 0.025εF. Solid lines in (a) and (b) show

the results obtained by the moment method. The dashed lines in (a) and (b) are the phase velocity

and the damping rate of zero sound, respectively. The dotted lines in (a) and (b) represent those

of first sound, respectively.

function of the coupling constant α in Figs. 2 (a) and (b). We show the low temperature

case kBT = 0.025εF. Again, we choose the wavenumber q = 0.05kF, and take moments up

to l = 30, and n = 30. Solid lines in Figs. 2 (a) and (b) show the phase velocity and the

damping rate obtained from the moment equation (33). The dashed lines and the dotted

lines in Figs. 2 (a) and (b) show the velocity and damping of zero sound (given in Eqs. (56)

and (57)) and first sound (given in Eqs. (47) and (48)), respectively. The crossover from

zero sound to first sound can be clearly seen in this figure.

From Fig. 2 (a), one can see that the phase velocity of zero sound is close to that of first

sound in the strong coupling regime. This is due to the fact that the phase velocity c of

zero sound is given by the same formula as that of first sound c ≈ vF

√

gρF/3 in the strong

coupling limit at T = 0. Note that the mechanisms of sound propagation are quite different

in two regimes.

One could change the coupling constant α = gNtot/(V εF) by controlling a density Ntot/V ,

or an interaction strength g through the Feshbach resonance. The Fermi energy is also a

function of the density, i.e., εF ∝ (Ntot/V )2/3, and hence the coupling constant α has a

density dependence: α ∝ (Ntot/V )1/3.
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VI. DISCUSSION

In this section, we discuss physical implication of results obtained from the moment

equation. First, we discuss a hydrodynamic mode other than the sound mode. Second,

excitation spectrum of the particle-hole continuum obtained from the moment equation is

discussed. Third, we discuss the sound mode in a weak coupling case is made. Forth, other

issues and future problems are discussed.

A. Thermal Diffusion Mode

In discussing the collective mode in the hydrodynamic regime, there usually exist five

modes, corresponding to the particle number, the velocity and the energy. Two modes are

the first sound modes ±Ω− iΓ, related to the particle number and the velocity of a certain

direction, discussed in Sec. III. Other two modes are shear modes Γη related to the velocity

of remaining two directions. The other is the thermal diffusion mode Γκ related to the

energy. Note that the shear modes and the thermal diffusion mode are purely damping

modes.

In the present paper, we assume that vectors b and q are parallel each other as treated

in Sec. II and Sec. III. This means that velocity of the fluid v is assumed to be parallel to

the wavenumber vector of the collective mode q, and hence two shear modes are neglected.

In this subsection, we discuss the thermal diffusion mode.

In Sec. III, we noted that a collective mode Ω = 0 exists. Assume that the result is written

as ω = −iΓ, and consider the term up to the first order in damping rate and transport

coefficients in Eqs. (45) and (46). Setting F1(−iΓ) + F2(0) = 0, we obtain damping rate of

the thermal diffusion mode

Γκ = − 2κTm2q2W 2
2 (1 − gW0)

(W4 − gW 2
2 )(W4W0 − W 2

2 )
. (59)

Since the moment method provides the general solution of the linearized Boltzmann

equation, the thermal diffusion mode should be also included. In Fig. 3, the damping

rates corresponding to the thermal diffusion mode are plotted. In this calculation, we take

moments up to l = 30 and n = 30, and chose the wavenumber q = 0.05kF. The solid lines

are the damping rates obtained from the moment equation (33). The dotted lines are the

damping rates given in Eq. (59). In Fig. 4 (a), the damping rate of the thermal diffusion
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mode versus temperature is shown for the coupling constant α = 15. In Fig. 4 (b), the

damping rate versus the coupling constant α is shown for the temperature kBT = 0.025εF.

Parameters in Figs. (a) and (b) are the same as in Fig. 1 and Fig. 2, respectively. We

confirm that the present moment method provides the thermal diffusion mode.
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FIG. 3: Thermal diffusion modes are plotted as a function of temperature in (a), and of the coupling

constant in (b). Solid lines in (a) and (b) are the results obtained by the moment method. The

dotted lines represent thermal diffusion modes given in Eq. (59).

B. Particle-Hole Continuum

In discussing zero sound, one often uses the random phase approximation. The usual

random phase approximation (see Appendix C) gives excitation spectra in the particle-hole

continuum as well as a collective mode. We discuss excitation spectra at T = 0 obtained by

solving the moment equation from this point of view.

In Fig. 4, we plot real part of eigenvalues obtained from the moment equation (33) as a

function of the wavelength q at T = 0. The real part of these frequencies is symmetric with

respect to the q-axis, so that we show only the region Ω > 0 in Fig 4. We take moments up to

l = 30 and n = 30 in the numerical calculation. The coupling constant α ≡ gNtot/(V εF) = 5

is used. From Fig. 4, one finds that real parts of eigenvalues in the moment equation

also include excitation spectra corresponding to the particle-hole continuum as well as the

collective excitation. The gradient of the edge of the particle-hole continuum excitation in
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FIG. 4: Eigenvalues Ω = Re(ω) as a function of the wavelength q at T = 0, obtained from the

moment equation.

this figure is seen to be 2 in our dimensionless units, which corresponds to Ω = vFq in the

real physical units.

In the usual random phase approximation, the denominator of the response function is

given by ω + εp − εp+q, and hence spectrum includes ω = p · q/m + q2/(2m) [36]. This

feature brings the phonon excitation ω ∝ q at the long-wavelength regime q/kF ≪ 1, and

the parabolic excitation ω ∝ q2 at q/kF ≫ 1, where kF is the Fermi wavenumber. Solution

of the semiclassical Boltzmann equation only involves the denominator ω −p ·q/m, as seen

in Eq (C4), and hence our calculation can reproduce only the phonon regime: Ω ∝ q.

We presented discussion of the particle-hole continuum, but we remark some issues shown

in VID.

C. On the Weak Coupling Case

The phase velocity of zero sound is always larger than the Fermi velocity when g > 0.

The phase velocity of first sound, however, could be less than the Fermi velocity in the

weak coupling case and at low temperatures. In such cases, the spectrum of the collective

excitation is not necessarily pushed up above the particle-hole continuum. We discuss the

results in such a weak coupling case.
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We calculate phase velocities c ≡ Re(ω)/q as a function of the temperature in α = 1. We

chose q = 0.01kF. In the calculation, we take moments up to l = 11 and n = 11. A reason

of truncation at the moderate moments is that it allows us to clearly see transitions of the

each eigenvalue. At T ≃ 0, zero sound is seen as a separate eigenvalue where c ∼ vF. At

finite temperatures, we confirmed that the eigenvalue of the collective excitation is buried

in the particle-hole continuum. In this calculation, we also found that the spectra of zero

sound and of first sound are not continuous in contrast with the strong coupling case. This

result suggests that a collective mode in a weakly coupling system has a different feature

from that in a strongly coupling system. It is unclear that how the collective mode behaves

in the weakly coupling system in the crossover regime, even if more moments are taken. In

a separate paper, we will calculate the dynamic structure factor of a normal Fermi system

at finite temperatures, and discuss this problem [37].

D. Remarks and Future Problems

Before closing this section, we make some remarks on results of the present method and

propose future problems.

We first note some issues on the present method. Even if we set the relaxation rate 1/τ

to be zero, the coefficient matrix of the moment equation (24) is not symmetric, although

the matrix elements are real. The eigenvalues are thus complex, in general. Those damping

rates, namely, the imaginary parts of the resulting eigenvalues, range from −vFq to vFq

at T = 0, and hence the present moment method could not reproduce the results of the

random phase approximation perfectly. We note that those damping rates increase as the

temperature T or the coupling constant α increases. In addition, there exists an additional

purely damped mode, which is not included in the sound mode or the thermal diffusion

mode. This mode does not belong to the complex eigenvalues discussed above either. The

damping rate of this mode could be negative at certain temperatures and certain coupling

constant. Albeit the present moment method involves the issues mentioned above, we insist

that the present method offers very intriguing studies on the collective mode over a wide

range of parameters.

In turn, we shall discuss the future problem from the physical point of view.

The excitation spectra in the weakly interacting system is complicated as discussed in
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Sec. VI C. The spectrum of the collective excitation buried in the particle-hole continuum

in the crossover regime. The collective mode and the single particle excitations are strongly

related in this crossover regime, and hence the effect of Landau damping could be important.

One issue is how the feature of the collective mode remains or disappears in this regime.

In a separate article, we will study this problem by the dynamic structure factor [37]. The

effect of the Landau damping would be seen in the peak width of the dynamic structure

factor.

It is also interesting to solve the equation derived by Brooker and Sykes [27]. The

equations in Ref. [27] involves additional equation in order to close the moment equation.

Ref. [27], in addition, introduces different relaxation times for different moments. Such a

treatment is complicated compared with our formulation, and it is not obvious how the

additional equation affects our result.

The Landau’s Fermi liquid theory focuses on the low temperature property, since this

theory is based on an idea that a lifetime of quasi-particles are sufficiently long at very low

temperatures. For this circumstance, the crossover between the zero and first sound modes

has been studied theoretically only within the low temperature approximation. In ultracold

Fermi gases, the real-particle picture is also important in both a classical gas regime and

a weakly interacting Fermi system. Our formulation allows one to describe such a system.

The temperature T , the density Ntot/V and also the interaction strength g are controllable

with recent techniques in ultracold atomic gases. We expect that behaviors of the collective

mode shown in the present paper would be observed in the experiments of ultracold Fermi

gases.

We now comment on the application of the present work to a strongly interacting Fermi

gas near the unitarity limit. At sufficiently high temperatures of the Maxwell-Boltzmann

regime, real particles are important, and thus a gas is described by the Boltzmann equation

with an energy dependent cross section [25]. In contrast, in the low temperature regime

above the superfluid transition temperature, the system may be described by the Landau’s

Fermi liquid theory for quasiparticles. One expects a crossover from quasiparticle picture

to real particle picture with increasing temperature, which may be studied by the moment

method developed in the present paper. Explicit determination of the range of s-wave

scattering length as well as of the temperature, where the kinetic equation analysis based on

the long-living quasiparticle picture is valid, will require many-body calculation for a Fermi
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gas near the unitarity limit [38].

VII. SUMMARY AND CONCLUSION

The moment method is suitable for describing the collective mode from collisionless to

collisional regimes with only a relaxation time approximation. We solved the linearized

Boltzmann equation for a normal Fermi system using this method, and obtained the general

solution. We discussed the crossover between the zero and first sound modes as a function of

the temperature and the coupling constant. We found that an eigenfrequency of a collective

mode obtained from the moment equations reproduces the sound velocity and the damping

rate in the crossover regime as well as both collisionless and collisional limiting regimes.

Through the analysis of the moment equation, we found that the moment method provides

the thermal diffusion mode. We also discussed the excitation spectra of the particle-hole

continuum, and the sound mode in a weak coupling case. We finally made remarks on the

present method and proposed future problems.
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APPENDIX A: CHAPMAN-ENSKOG METHOD AND TRANSPORT COEFFI-

CIENTS

In this section, we give a derivation of transport coefficients in a degenerate Fermi gas

based on the Chapman-Enskog method. The result in this section will be used to evaluate

the relaxation time in the next section.

The transport coefficient in the Landau’s Fermi liquid was first calculated by Abrikosov

and Khalatnikov [39]. Afterwards, it was analyzed in several papers [40, 41, 42, 43]. The
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Chapman-Enskog method was first generalized to quantum gases by Uehling and Uhlen-

beck [44, 45]. In this Appendix, the analysis is based on Ref. [46].

Following the standard procedure, we define the following hydrodynamic physical quan-

tities:

density : nσ(r, t) ≡
∫

dp

(2π~)3
fσ(p, r, t), (A1)

total density : ntot(r, t) ≡
∑

σ

nσ(r, t), (A2)

velocity : nσ(r, t)vσ(r, t) ≡
∫

dp

(2π~)3

p

m
fσ(p, r, t), (A3)

pressure tensor: Pµν(r, t) ≡
∑

σ

Pσ,µν(r, t)

≡
∑

σ

m

∫

dp

(2π~)3

[pµ

m
− vσ,µ(r, t)

] [pν

m
− vσ,ν(r, t)

]

fσ(p, r, t),

(A4)

energy density : E(r, t) ≡
∑

σ

Eσ(r, t)

≡
∑

σ

∫

dp

(2π~)3

1

2m
[p− mvσ(r, t)]2 fσ(p, r, t), (A5)

heat current : Q(r, t) ≡
∑

σ

Qσ(r, t)

≡
∑

σ

∫

dp

(2π~)3

1

2m
[p− mvσ(r, t)]2

[ p

m
− vσ(r, t)

]

fσ(p, r, t),

(A6)

rate-of-strain tensor : Dσ,µν(r, t) ≡
1

2

[

∂vσ,µ(r, t)

∂xν

+
∂vσ,ν(r, t)

∂xµ

]

. (A7)

Indexes µ and ν are Cartesian components.

We assume that local velocities of two components are the same vµ(r, t) ≡ v↑,µ(r, t) =

v↓,µ(r, t). This means that a rate-of-strain tensor is the same for two components, and hence

we define Dµν(r, t) ≡ Dσ,µν(r, t). With the above quantities, generalized hydrodynamic

equations are given by

∂

∂t
nσ(r, t) + ∇r · [nσ(r, t)v(r, t)] = 0, (A8)

mntot(r, t)

[

∂

∂t
+ vν(r, t)

∂

∂xν

]

vµ(r, t) = − ∂

∂xν
Pµν(r, t) −

∂

∂xµ
[gn↑(r, t)n↓(r, t)] , (A9)

∂

∂t
E(r, t) + ∇rQ(r, t) + ∇r [E(r, t)v(r, t)] +

∑

µν

Dµν(r, t)Pµν(r, t) = 0. (A10)
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These hydrodynamic equations are obtained by multiplying Eq. (1) by 1, p and p2 and

integrating over p. The collision integral in Eq. (1) vanishes owing to the conservation law.

In the collision-dominated regime, the first approximation to the distribution function

is the local equilibrium distribution f̃σ(p, r, t). In local equilibrium, the hydrodynamic

quantities are given by

ñσ(r, t) =
1

Λ3(r, t)
F3/2(zσ(r, t)), (A11)

P̃µν(r, t) = δµνP̃ (r, t) = δµν

∑

σ

kBT (r, t)

Λ3(r, t)
F5/2(zσ(r, t)), (A12)

P̃ (r, t) =
2

3
Ẽ(r, t), (A13)

Q̃(r, t) = 0, (A14)

where Λ(r, t) is the local thermal de Broglie wavelength:

Λ(r, t) ≡
[

2π~
2

mkBT (r, t)

]1/2

. (A15)

Fn(zσ(r, t)) is the Fermi function [47] given by

Fn(zσ) =
1

Γ (n)

∫

dx
xn−1

exp (x)z−1
σ + 1

, (A16)

where Γ(n) is the Gamma function. With the above quantities, hydrodynamic equations in

local equilibrium are given by

∂

∂t
ñσ(r, t) + ∇r [ñσ(r, t)v(r, t)] = 0, (A17)

mñtot(r, t)

[

∂

∂t
+ v(r, t) · ∇r

]

v(r, t) = −∇r · P̃ (r, t) −∇ [gñ↑(r, t)ñ↓(r, t)] , (A18)

∂

∂t
Ẽ(r, t) +

5

3
∇r

[

Ẽ(r, t)v(r, t)
]

= v(r, t) ·
[

∇rP̃ (r, t)
]

. (A19)

In order to treat departure from local equilibrium, we introduce the following form of the

distribution function:

fσ(p, r, t) = f̃σ(p, r, t) + f̃σ(p, r, t)
[

1 − f̃σ(p, r, t)
]

Ψσ(r, t). (A20)

Since the number of particle, the total momentum, and the total energy is conserved, the
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following three constraints are imposed;
∫

dp

(2π~)3
f̃σ(p, r, t)

[

1 − f̃σ(p, r, t)
]

Ψσ(p, r, t) = 0, (A21)

∑

σ

∫

dp

(2π~)3
pµf̃σ(p, r, t)

[

1 − f̃σ(p, r, t)
]

Ψσ(p, r, t) = 0, (A22)

∑

σ

∫

dp

(2π~)3
p2f̃σ(p, r, t)

[

1 − f̃σ(p, r, t)
]

Ψσ(p, r, t) = 0. (A23)

The local equilibrium distribution (3) satisfies the detail balance of the scattering
[

1 − f̃σ(1)
] [

1 − f̃−σ(2)
]

f̃−σ(3)f̃σ(4) = f̃σ(1)f̃−σ(2)
[

1 − f̃−σ(3)
] [

1 − f̃σ(4)
]

. With a use of

this relation, the collision integral in the right hand side of the Boltzmann equation reduces

to

Icoll[fσ(1)] ≡L̂σ[Ψσ(1)]

≡2πg2

~

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4δ(p1 + p2 − p3 − p4)δ

(

p2
1

2m
+

p2
2

2m
− p2

3

2m
− p2

4

2m

)

×
[

1 − f̃σ(1)
] [

1 − f̃−σ(2)
]

f̃−σ(3)f̃σ(4) [Ψσ(4) + Ψ−σ(3) − Ψ−σ(2) − Ψσ(1)] .

(A24)

It is useful to introduce dimensionless momentum variable ξ(r, t) ≡ u(r, t)
√

m/[2kBT̃ (r, t)]

where mu(r, t) ≡ p− mv(r, t), and to introduce the dimensionless collision operator

L̂
′

σ [Ψσ(1)] ≡
∫

dξ2

∫

dξ3

∫

dξ4δ (ξ1 + ξ2 − ξ3 − ξ4) δ
(

ξ2
1 + ξ2

2 − ξ2
3 − ξ2

4

)

×
[

1 − f̃σ(1)
] [

1 − f̃−σ(2)
]

f̃−σ(3)f̃σ(4) [Ψσ(4) + Ψ−σ(3) − Ψ−σ(2) − Ψσ(1)] .

(A25)

The collision integral L̂σ[Ψσ(1)] is then reduced to L̂σ[Ψσ(1)] = L̂
′

σ [Ψσ(1)] /C̃(r, t), where

the coefficient C̃(r, t) is defined as C̃(r, t) ≡ ~
3π3/

{

4a2m
[

kBT̃ (r, t)
]2
}

.

Here, let us substitute the distribution function in the local equilibrium to the left hand

side of the Boltzmann equation:
[

∂

∂t
+

p

m
· ∇r −∇Uσ(r, t) · ∇p

]

f̃σ(p, r, t)

=

[

1

zσ(r, t)

(

∂

∂t
+

p

m
· ∇r

)

zσ(r, t) +
mu2(r, t)

2kBT̃ 2(r, t)

(

∂

∂t
+

p

m
· ∇r

)

T̃ (r, t)

+
mu(r, t)

kBT̃ (r, t)
·
(

∂

∂t
+

p

m
· ∇r

)

v(r, t) + β̃(r, t)∇rUσ(r, t) · u(r, t)

]

×
[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t). (A26)
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This equation can be written in a simpler form as shown below. Note that density and

pressure satisfy the following equations:

∂ñσ(r, t)

∂t
=

3

2

ñσ(r, t)

T̃ (r, t)

∂T̃ (r, t)

∂t
+

γσ(r, t)kBT̃ (r, t)

zσ(r, t)

∂zσ(r, t)

∂t
(A27)

= − 3

2

ñσ(r, t)

T̃ (r, t)
v(r, t) · ∇rT̃ (r, t) − γσ(r, t)kBT̃ (r, t)

zσ(r, t)
v(r, t) · ∇rzσ(r, t)

− ñσ(r, t) [∇r · v(r, t)] , (A28)

∑

σ

∂P̃σ(r, t)

∂t
=
∑

σ

{

−5

2

P̃σ(r, t)

T̃ (r, t)
∇rT̃ (r, t) · v(r, t) − ñσ(r, t)kBT̃ (r, t)

zσ(r, t)
∇rzσ(r, t) · v(r, t)

−5

3
P̃σ(r, t) [∇r · v(r, t)]

}

, (A29)

∂P̃σ(r, t)

∂t
=

5

2

P̃σ(r, t)

T̃ (r, t)

∂T̃ (r, t)

∂t
+

ñσ(r, t)kBT̃ (r, t)

zσ(r, t)

∂zσ(r, t)

∂t
, (A30)

∇rP̃σ(r, t) =
5

2

P̃σ(r, t)

T̃ (r, t)
∇rT̃ (r, t) +

ñσ(r, t)kBT̃ (r, t)

zσ(r, t)
∇rzσ(r, t), (A31)

where we define γσ(r, t) ≡ F1/2(zσ(r, t))/[kBT̃ (r, t)Λ3(r, t)]. Here, we shall consider the

following equation:

∑

σ

[

ñσ(r, t)

γσ(r, t)

∂ñσ(r, t)

∂t
− ∂P̃σ(r, t)

∂t

]

. (A32)

Using Eqs. (A27) - (A30), and (A32), one obtains

∂T̃ (r, t)

∂t
= −v(r, t) · ∇rT̃ (r, t) − 2

3
T̃ (r, t) [∇r · v(r, t)] . (A33)

From Eqs. (A27), (A31) and (A33), one also obtains the following equation:

∂zσ(r, t)

∂t
= −v(r, t) · ∇rzσ(r, t) =

zσ(r, t)

ñσ(r, t)kBT̃ (r, t)
v(r, t) ·

[

∇rP̃σ(r, t) − 5

2

P̃σ(r, t)

T̃ (r, t)
∇rT̃ (r, t)

]

.

(A34)

Using the above equations, we reduce the left hand side of Boltzmann equation to
[

∂

∂t
+

p

m
· ∇r −∇Uσ(r, t) · ∇p

]

f̃σ(p, r, t)

=

(

1

T̃ (r, t)
u(r, t) · ∇rT̃ (r, t)

[

mu2(r, t)

2kBT̃ (r, t)
− 5

2

F5/2(zσ(r, t))

F3/2(zσ(r, t))

]

+
m

kBT̃ (r, t)

∑

µν

Dµν(r, t)

[

uµ(r, t)uν(r, t) − δµν
1

3
u2(r, t)

]

+
ñtot

ñσ
dσ(r, t) · u(r, t)

)

×
[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t), (A35)
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where we define dσ(r, t) as

dσ(r, t) ≡ 1

kBT̃ (r, t)ñtot

ñσñ−σ

ñtot

{[

∇P̃σ(r, t)

ñσ

+ ∇Uσ(r, t)

]

−
[

∇P̃−σ(r, t)

ñ−σ

+ ∇U−σ(r, t)

]}

.

(A36)

In the population balanced gas, one finds dσ(r, t) = 0. As a result, the left hand side of

the Boltzmann equation under the local equilibrium in the population balanced Fermi gas

is reduced to
[

∂

∂t
+

p

m
· ∇r −∇Uσ(r, t) · ∇p

]

f̃σ(p, r, t)

=







√

2kBT̃ (r, t)

m

ξ(r, t) · ∇rT̃ (r, t)

T̃ (r, t)

[

ξ2 − 5

2

F5/2(zσ(r, t))

F3/2(zσ(r, t))

]

+2
∑

µν

Dµν(r, t)

[

ξµ(r, t)ξν(r, t) − δµν
1

3
ξ2(r, t)

]

}

[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t). (A37)

We introduce an ansatz for the departure from the equilibrium, which is

Ψσ(ξ) ≡C̃(r, t)







[

2kBT̃ (r, t)

m

]1/2
∇T̃ (r, t) · ξ(r, t)

T̃ (r, t)
Aσ(ξ)

+2
∑

µν

Dµν(r, t)

[

ξµ(r, t)ξν(r, t) −
1

3
δµνξ

2(r, t)

]

Bσ(ξ)

}

. (A38)

This comes from a consideration that the solution Ψσ(ξ) must be a linear function of ∇T̃ (r, t)

and Dµν(r, t), based on Eq. (A37). We substitute this into the collision integral on the right

hand side of the Boltzmann equation. Comparing Eq. (A37) with this result, one obtains

the following relations:

L̂
′

σ [ξAσ(ξ)] = ξ

[

ξ2 − 5

2

F5/2(zσ(r, t))

F3/2(zσ(r, t))

]

[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t), (A39)

L̂
′

σ

[[

ξµ(r, t)ξν(r, t) −
1

3
δµνξ

2(r, t)

]

Bσ(ξ)

]

=

[

ξµ(r, t)ξν(r, t) −
1

3
δµνξ

2(r, t)

]

[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t). (A40)

THe ansatz (A38) automatically satisfies two constraints (A21) and (A23). For the

constraint (A22) to be satisfied, the function Aσ(ξ) should satisfy

∑

σ

∫

dξ(r, t)f̃σ(ξ, r, t)
[

1 − f̃σ(ξ, r, t)
]

ξ2(r, t)Aσ(ξ) = 0. (A41)
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Transport coefficients such as the thermal conductivity and the viscosity are obtained

using the ansatz (A38). The thermal conductivity κ is defined by

Q(r, t) = −κ(r, t)∇T̃ (r, t). (A42)

From Eqs. (A6), (A20), and (A38), it is given by

κ(r, t) = − kB

24a2

[

2kBT̃ (r, t)

m

]1/2
∑

σ

∫

dξξ4(r, t)
[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t)Aσ(ξ). (A43)

The shear viscosity η is defined by

P (r, t) = δµνP̃µν(r, t) − 2η(r, t)

[

Dµν(r, t) −
1

3
TrD(r, t)δµν

]

. (A44)

From Eqs. (A4), (A20), and (A38), it is given by

η(r, t) ≡ − m

60a2

[

2kBT̃ (r, t)

m

]1/2
∑

σ

∫

dξξ4(r, t)
[

1 − f̃σ(p, r, t)
]

f̃σ(p, r, t)Bσ(ξ). (A45)

Note that the second viscosity (the bulk viscosity) is absent. In more general, the second

viscosity vanishes in the normal gas interacting with the s-wave scattering, because a uniform

compression at a steady rate changes the thermodynamic equilibrium into a new one (see

the second of Ref. [6]).

Using these quantities, we reduce hydrodynamic equations for the velocity and the energy

density to

mntot(r, t)

[

∂

∂t
+ v(r, t) · ∇

]

vµ +
∂

∂xµ

P̃ (r, t) +
∂

∂xµ

[gn↑(r, t)n↓(r, t)]

=
∂

∂xν

{

2η(r, t)

[

Dµν(r, t) −
1

3
TrD(r, t)δµν

]}

, (A46)

∂

∂t
E(r, t) + ∇ [E(r, t)v(r, t)] + [∇ · v(r, t)] P̃ (r, t)

= ∇ [κ(r, t)∇T (r, t)] + 2η(r, t)
∑

µν

[

Dµν(r, t) −
1

3
TrD(r, t)δµν

]2

. (A47)

Based on Refs. [44, 46], we shall take the function Aσ(ξ) as

Aσ(ξ) = A

[

ξ2(r, t) − 5

2

F5/2(zσ)

F3/2(zσ)

]

. (A48)
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Note that this satisfies a constraint in Eq. (A41). Multiplying Eq. (A39) by ξ[ξ2 −
5
2
F5/2(zσ)/F3/2(zσ)], and integrating over ξ, one obtains the coefficient A as follows:

A =

∑

σ

∫

dξξ2
[

ξ2 − 5
2

F5/2(zσ)

F3/2(zσ)

]2

[1 − f̃σ]f̃σ

∑

σ

∫

dξ
[(

ξ2 − 5
2

F5/2(zσ)

F3/2(zσ)

)

ξ
]

L̂′

[

ξ
(

ξ2 − 5
2

F5/2(zσ)

F3/2(zσ)

)] =
15

4

π3/2

IA

∑

σ

[

7

2
F7/2(zσ) − 5

2

F2
5/2(zσ)

F3/2(zσ)

]

,

(A49)

where IA is defined as

IA ≡
∑

σ

∫

dξ

[(

ξ2 − 5

2

F5/2(zσ)

F3/2(zσ)

)

ξ

]

L̂′

[

ξ

(

ξ2 − 5

2

F5/2(zσ)

F3/2(zσ)

)]

. (A50)

On the other hand, based on Refs. [44, 46], we shall take the function Bσ(ξ) as Bσ(ξ) ≡
B. Integrating over ξ and summing over σ, ν and µ, after multiplying Eq. (A40) by

(ξνξµ − 1
3
δνµξ2), one obtains the coefficient B as follows:

B =

∑

σ

∑

µν

∫

dξ
[

ξµ(r, t)ξν(r, t) − 1
3
δµνξ

2(r, t)
]2

f̃σ(p, r, t)
[

1 − f̃σ(p, r, t)
]

∑

σ

∑

µν

∫

dξ
[

ξµ(r, t)ξν(r, t) − 1
3
δµνξ2(r, t)

]

L̂′
σ

[(

ξµ(r, t)ξν(r, t) − 1
3
δµνξ2(r, t)

)]

=
5

2
π3/2 1

IB

∑

σ

F5/2(zσ), (A51)

where

IB ≡
∑

σ

∫

dξ

[

ξµ(r, t)ξν(r, t) −
1

3
δµνξ

2(r, t)

]

L̂′
σ

[(

ξµ(r, t)ξν(r, t) −
1

3
δµνξ

2(r, t)

)]

.

(A52)

The collision integral satisfies the hermitian property

∑

σ

∫

dξΦσ(ξ)L̂′
σ[Ψσ(ξ)] =

∑

σ

∫

dξΨσ(ξ)L̂′
σ[Φσ(ξ)]. (A53)

The collision integral in Eq. (A25) also satisfies L̂′
σ[ξ1] = 0, and L̂′

σ[ξ2
1 ] = 0 owing to the

conservation of the momentum and the energy; then, IA and IB are reduced to simpler

formulae given by

IA =
∑

σ

∫

dξξξ2L̂′
σ

[

ξ2ξ
]

, IB =
∑

σ

∫

dξξµξνL̂
′
σ [ξµξν ] . (A54)

We shall introduce new variables given by ξ1 ≡ (ξ0 + ξ′)/
√

2, ξ2 ≡ (ξ0 − ξ′)/
√

2, ξ3 ≡
(ξ′

0 + ξ′′)/
√

2, and ξ4 ≡ (ξ′
0 − ξ′′)/

√
2. Note that these variables satisfy relations ξ0 = ξ′

0
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and |ξ′| = |ξ′′|, because of the conservation of the momentum of the center of mass and of

the energy in the relative motion. Here, we shall define a function Fσ(ξ0, ξ
′, y′, y′′) given by

Fσ(ξ0, ξ
′, y′, y′′) ≡ f̃σ(1)f̃−σ(2)

[

1 − f̃−σ(3)
] [

1 − f̃σ(4)
]

(A55)

=
zσz−σ exp [−(ξ2

0 + ξ′2)]

[1 + zσ exp (−ξ2
1)][1 + z−σ exp (−ξ2

2)][1 + z−σ exp (−ξ2
3)][1 + zσ exp (−ξ2

4)]
,

(A56)

where ξ2
1 ≡ (ξ2

0 + 2ξ0ξ
′y′ + ξ′2)/2, ξ2

2 ≡ (ξ2
0 − 2ξ0ξ

′y′ + ξ′2)/2, ξ2
3 ≡ (ξ2

0 + 2ξ0ξ
′y′′ + ξ′2)/2, and

ξ2
4 ≡ (ξ2

0 − 2ξ0ξ
′y′′ + ξ′2)/2. The function Fσ(ξ0, ξ

′, y′, y′′) satisfies the following relations:

∑

σ

Fσ(ξ0, ξ
′, y′′, y′) =

∑

σ

F−σ(ξ0, ξ
′, y′, y′′) (A57)

∑

σ

Fσ(ξ0, ξ
′,−y′,−y′′) =

∑

σ

Fσ(ξ0, ξ
′, y′, y′′) (A58)

∑

σ

Fσ(ξ0, ξ
′,−y′, y′′) =

∑

σ

Fσ(ξ0, ξ
′, y′,−y′′). (A59)

The integrals in (A54) in terms of the new variables are thus rewritten as

IA =
√

2π3

∫ ∞

0

dξ0ξ
4
0

∫ ∞

0

dξ′ξ′7
∫ 1

−1

dy′

∫ 1

−1

dy′′
∑

σ

Fσ(ξ0, ξ
′; y′, y′′)(y′2 + y′′2 − 2y′2y′′2),

(A60)

IB =
1√
2
π3

∫ ∞

0

dξ0ξ
2
0

∫ ∞

0

dξ′ξ′7
∫ 1

−1

dy′

∫ 1

−1

dy′′
∑

σ

Fσ(ξ0, ξ
′; y′, y′′)(1 + y′2 + y′′2 − 3y′2y′′2).

(A61)

For simplicity, we again introduce variables ξ0 ≡ √
2η cos φ and ξ′ ≡ √

2η sin φ. The

condition of the population balanced gas is given by µ̃↑ = µ̃↓. In this condition, the function

Fσ(η, φ, y′, y′′) can be reduced to

Fσ(η, φ, y′, y′′) =
1

4

1

cosh (η − β̃µ̃tot/2) + cosh (ηy′ sin 2φ)

1

cosh (η − β̃µ̃tot/2) + cosh (ηy′′ sin 2φ)
,

(A62)
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where µ̃tot ≡ µ̃↑ + µ̃↓. As a result, integrals IA and IB are reduced to

IA =25π3

∫ ∞

0

dηη11/2

∫ π/2

0

dφ cos4 φ sin7 φ

∫ 1

−1

dy′

∫ 1

−1

dy′′(y′2 + y′′2 − 2y′2y′′2)

× 1

cosh (η − β̃µ̃tot/2) + cosh (ηy′ sin 2φ)

1

cosh (η − β̃µ̃tot/2) + cosh (ηy′′ sin 2φ)
,

(A63)

IB =23π3

∫ ∞

0

dηη9/2

∫ π/2

0

dφ cos2 φ sin7 φ

∫ 1

−1

dy′

∫ 1

−1

dy′′(1 + y′2 + y′′2 − 3y′2y′′2)

× 1

cosh (η − β̃µ̃tot/2) + cosh (ηy′ sin 2φ)

1

cosh (η − β̃µ̃tot/2) + cosh (ηy′′ sin 2φ)
.

(A64)

Before closing this section, we summarize that the thermal conductivity κ and the vis-

cosity η are given by

κ = − kB

a2

(

2kBT̃ (r, t)

m

)1/2
75

128
π3 1

IA

{

∑

σ

[

7

2
F7/2(zσ) − 5

2

F2
5/2(zσ)

F3/2(zσ)

]}2

, (A65)

η = − m

a2

(

2kBT̃ (r, t)

m

)1/2
5

32
π3 1

IB

[

∑

σ

F5/2(zσ)

]2

, (A66)

where Eqs. (A43), (A45), (A49) and (A51) are used.

APPENDIX B: RELAXATION TIME

A purpose of the present appendix is to derive relaxation times using results obtained in

the previous section. Let us consider the solution in the collisional hydrodynamic regime.

In this regime, the departure from local equilibrium on the left hand side of the linearized

Boltzmann equation (19) are neglected. Solving it for δνσ(p,q, ω), one obtains

δνσ(p,q, ω) = iτ
{(

ω − p · q
m

)

[

aσ(q, ω) + b(q, ω) · p + c(q, ω)p2
]

+
p · q
m

g [a−σ(q, ω)W−σ,0 + c(q, ω)W−σ,2]
}

. (B1)

A closed set of equations for aσ(q, ω), b(q, ω) and c(q, ω) can be obtained from Eq. (19)

by multiplying Eq. (19) by 1, p, p2 and integrating over p. The zeroth moment yields

ωaσ(q, ω) =
Wσ,2

Wσ,0

[

b(q, ω) · q
3m

− ωc(q, ω)

]

. (B2)
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The second moment yields

ωa↑(q, ω)W↑,2 + ωa↓(q, ω)W↓,2 +

[

ωc(q, ω)− b(q, ω) · q
3m

]

(W↑,4 + W↓,4) = 0. (B3)

From Eqs. (B2) and (B3), relations given by

ωc(q, ω) =
b(q, ω) · q

3m
= −δv(q, ω) · q

3m
, (B4)

and aσ(q, ω) = 0 are obtained; therefore the departure from local equilibrium in Eq. (B1)

is reduced into

δνσ(q, ω) = iτ
p · q
2m2

β0

[

p2 − Wσ,4

Wσ,2

]

δθ(q, ω) + iτ

[

−δv(q, ω) · q
3m

p2 +
p · q
m

δv(q, ω) · p
]

.

(B5)

From Eq. (A42), the heat current in the Fourier representation is given by Q(q, ω) =

−κiqδT (q, ω). From Eqs. (A6) and (B5), the thermal conductivity κ is thus obtained as

κ = −
∑

σ

kB
β0τ

12m4

(

Wσ,6 −
W 2

σ,4

Wσ,2

)

. (B6)

The Fourier representation of the rate-of-strain tensor in Eq. (A7) is given by Dµν(q, ω) =

i [qµvν(q, ω) + qνvµ(q, ω)] /2, and hence the pressure tensor is Pµν(q, ω) = δµ,νP (q, ω) −
2η [Dµν(q, ω) − δµ,νTrD(q, ω)/3]. From Eq. (B5), the viscosity η is obtained as

η = −
∑

σ

τWσ,4

15m2
. (B7)

Comparing Eq. (A65) with Eq. (B6), we obtain the relaxation time associated with the

thermal conductivity (denoted by τκ) given by

τκ = − 15
π13/2

~
7

g2m3(kBT )2

1

IA

{

∑

σ

[

7

2
F7/2(zσ) − 5

2

F2
5/2(zσ)

F3/2(zσ)

]}

= − 4π5
~

7

g2m3(kBT )2
A. (B8)

Comparing Eqs. (A66) and (B7), on the other hand, we obtain the relaxation time associated

with viscosity (denoted by τη) given by

τη = − 10
π13/2

~
7

g2m3(kBT )2

1

IB

∑

σ

F5/2(zσ) = − 4π5
~

7

g2m3(kBT )2
B. (B9)

We have used the following relation:

Wl,σ = − (l + 1)
1

Λ3

(2mkBT )l/2

kBT

1√
π

Γ

(

l + 1

2

)

F l+1

2

(zσ). (B10)
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Equations (A65) and (A66) are written in terms of the temperature and the fugacity in

local equilibrium. We note that these quantities should be taken as equilibrium values in

the expressions for the relaxation times.

On the other hand, the mean-collision time τcoll is defined by

Ntot

V

1

τcoll
≡
∫

dp1

(2π~)3
Icoll[fσ(1)] (B11)

=
2πg2

~

∫

dp1

(2π~)3

∫

dp2

(2π~)3

∫

dp3

(2π~)3

∫

dp4δ(p1 + p2 − p3 − p4)

× δ

(

p2
1

2m
+

p2
2

2m
− p2

3

2m
− p2

4

2m

)

[1 − fσ(1)] [1 − f−σ(2)] f−σ(3)fσ(4). (B12)

Following the procedures analogous to those deriving Eqs. (A63) and (A64), we reduce τcoll

to

Ntot

V

1

τcoll
=g2m9/2(kBT )7/2

23/2π5~10

∫ ∞

0

dηη5/2

∫ π/2

0

dφ cos2 φ sin3 φ

∫ 1

−1

dy′

∫ 1

−1

dy′′

× 1

cosh (η − βµtot/2) + cosh (ηy′ sin 2φ)

1

cosh (η − βµtot/2) + cosh (ηy′′ sin 2φ)
.

(B13)

In Fig. 5, viscous and thermal relaxation rates are plotted. The mean-collision rate is also

shown. The coupling constant α ≡ gNtot/V εF = 1 is used, where εF is the Fermi energy.

Behavior of the viscous relaxation time is different from that of the mean-collision time, as

noted in Ref. [15]. The viscous relaxation rate is severalfold bigger than the mean-collision

rate, and is effective in the hydrodynamic regime compared with other relaxation rates. In

the low temperature regime, although the thermal relaxation rate is bigger than the viscous

one, the difference is very small.

In summary, the viscous relaxation rate is the most important in the high temperature

regime. We apply this viscous relaxation rate to the relaxation time in the moment method,

because the density oscillation is the most strongly coupled with the viscous relaxation, and

this relaxation rate is dominant in the high temperature regime.

APPENDIX C: RANDOM PHASE APPROXIMATION

We solve the linearized Boltzmann equation in the collisionless limit using the random

phase approximation. For this purpose, we add a small perturbation Uσ(q, ω) to evaluate

34



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h̄
/(

τ
ε F

)

kBT/εF

FIG. 5: Relaxation rates 1/τ versus temperature. Viscous and thermal conductivity relaxation

rates are shown with solid and dashed lines, respectively. The mean-collision rate is plotted with

dotted line. A coupling constant gNtot/V is assumed to be the Fermi energy: α ≡ gNtot/V εF = 1.

the density response function. The linearized Boltzmann equation becomes

∂f 0
σ

∂ε0
σ

{(

ω − p · q
m

)

νσ(q,p, ω) +
p · q
m

[Uσ(q, ω) + gδn−σ(q, ω)]
}

= 0, (C1)

where we neglect the collision integral on the right hand side. The fluctuation around static

equilibrium is thus given by

νσ(r,p, ω) = − 1

ω − p·q

m

p · q
m

[Uσ(q,p, ω) + gδn−σ(q, ω)] . (C2)

Since the density fluctuation can be written as

δnσ(q, ω) =

∫

dp

(2π~)3

∂f 0
σ

∂ε0
σ

νσ(q,p, ω), (C3)

the density fluctuation in terms of a response function χ0
σ(q, ω) is given by δnσ(q, ω) =

χ0
σ(q, ω) [Uσ(q, ω) + gδn−σ(q, ω)], where the density response function χ0

σ(q, ω) is defined as

χ0
σ(q, ω) = −

∫

dp

(2π~)3

∂f 0
σ

∂ε0
σ

1

ω − p·q

m

p · q
m

. (C4)

We assume that the density perturbation is the same for the two components: U(q, ω) ≡
Uσ(q, ω) = U−σ(q, ω). The density fluctuation is then reduced to δnσ(q, ω) =

χ(q, ω)U(q, ω), where the response function is given by

χ(q, ω) =
χ0

σ(q, ω)[1 + gχ0
−σ(q, ω)]

1 − g2χ0
σ(q, ω)χ0

−σ(q, ω)
. (C5)
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Zero of the denominator of a response function gives the frequency of the collective mode.

In this case, the dispersion relation of the zero sound is obtained from the following equation:

1 − gχ0(q, ω) = 0, (C6)

where we assumed the population balanced gas and used the relation χ0(q, ω) ≡ χ0
σ(q, ω) =

χ0
−σ(q, ω).

Note that, this equation (C6) at T = 0 reproduce the dispersion relation (56). Solution

of the linearized Boltzmann equation involves the denominator ω − p · q/m, as seen in Eq

(C4). This means that excitations within the linearized Boltzmann equation can reproduce

only the phonon regime: Ω ∝ q.
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