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Phonon thermal transport in noncrystalline materialse
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The thermal conductivities of a borosilicate glass and a polycarbonate have been measured in the temperature

range 0.04-60 K. Some samples contained well-defined holes to provide an additional source of phonon
scattering. The results at low temperatures are consistent with the predictions of the Debye model using

experimentally measured sound velocities. There is a sharp decrease in phonon mean free path with increasing

frequency so that, at higher temperatures (the "plateau" region}, thermal transport is provided predominantly

by phonons having frequencies much less that eo 4kT/h. For very small hole diameters, diffraction of
thermal phonons occurs. The data are compared with theoretical models of thermal transport in noncrystalline

materials.

I. INTRODUCTION

The thermal conductivity tt of a noncrystalline
material decreases monotonicaQy with decreasing
temperature below room temperature, ~ becomes
nearly temperature independent near 10 K, a re
gime often referred to as a plateau, and below
= 1 K attains a temperature dependence3' close to
T . In addition, the qualitative magnitude of & at
a given temperature depends very little on the
chemical structure of the material. 4 The similar
magnitude and temperature dependence for all
noncrystalline materials suggests that z is indepen-
dent of the details of the atomic arrangement and
depends only on the fact that the structure is amor-
phous.

Many theoretical models have been proposed to
account for this behavior of g. ' " Some of these
theories also attempt to explain other unusual low-
temperature properties observed in amorphous
systems, such as an anomalous specific heat,
acoustic attenuation, '~ acoustic dispersion, "and
thermal expansion. ~4 We will return to a discussion
of a few of these models in Sec. IV.

Empirically it has been known from ultrasonic~a
and light-scattering" ~ experiments that phonons
propagate in noncrystalline materials at fre-
quencies up to = 4&10' Hz and thus contribute to
thermal transport. Thermal phonons in this fre-
quency range correspond to temperatures ~0.4
K. There is also experimental evidence of ad-
ditional low-frequency (low-temperature} excita-
tions in glassy materials. ~8 ~~ It was the purpose
of the present work to determine the relative roles
of the two kinds of excitations in the thermal con-
ductivity of noncrystalline materials.

The plan was to produce phonon scattering from
the surfaces of the sample. Knowing the mean
free path of the phonons due to boundary scattering,
one obtains from g information on the specific
heat of the phonons as well as on the phonon mean
free path in the bulk material. Attempts to produce

boundary scattering in thin fil.ms or plates es-
sentially failed, as discussed in the following
paper. ~3 We therefore have used another method
of creating phonon scattering, namely, the intro-
duction of a large number of holes. We were able
to find two very different commerical materials,
a glass and a yolycarbonate, which contained well-
defined holes. The phonon mean free paths due to
the presence of the holes could be determined from
visual measurements of the sizes and densities of
holes. The results of the thermal-conductivity
measurements on these samples are presented in
Sec. IO. A qualitative explanation and analysis
of the data is also given in Sec. III, and a com-
parison with several theories is presented in Sec.
QT. In brief, our results are consistent with the
heat carriers being phonons with a density of states
given by the Debye model using measured acoustic
velocities, and with the mean free path of the
yhonons decreasing rapidly with increasing fre-
quency near 10 Hz so that the thermal conductance
in the plateau region is provided primarily by low-
frequency phonons. With very small hole diame-
ters diffraction of the thermal phonons becomes
important. This last effect is discussed separately
in Appendix A.

II. EXPERIMENT

The measurements were made on 250- p,m-thick,
fused capillary arrays of borosilicate glass~4 and
on 6-13-jti,m-thick polycarbonate sheets. ~' Both
materials contained weQ-defined cylindrical holes
of uniform size oriented perpendicular to the plane
of the sheets. (See the inserts in Figs. 2 and 3.}
The two materials were complementary in that the
glass was better characterized than the polycarbon-
ate, but the polycarbonate had a more appropriate
range of hole diameters and densities.

For the yolycarbonate the hole diameters ranged
from 0.03 to 8 pm and had porosities v (ratio
of open area divided by total area) of 0.004-0. 14,
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as verified by photographs obtained from both
optical and electron microscopes. The geometrical
mean free path E is given by

f '=n
I o(8)(1-cos8)d8,

TABLE I. Details concerning the thermal-conductivity
samples. d, hole diameter; n, density of holes; ~,
porosity; ll„mean free path due to holes; t, thickness;
6, glass; I', polycarbonate. All values were measured
except for sample I'6, where estimates of d and n were
provided by the vendor.

n

Sample (10 cm} (10 cm }
&a

(10 4 cm}
t

(10-' c~}
G1
G2
G3
G4
G5

P1
P2
P3
P4
P5
P6

0
53.3
21.9
5.35
2.11

0
8. 0
0.80
0.20
0.20
0.030

0
0. 0273
0.157
2, 71

16.2

0
0. 098

28
250
100
600

0
0.609
0. 590
0, 609
0.565

0
0.049
0.141
0.079
0.031
0. 0042

51.6
21.8

5.18
2.20

96
3.4
1.5
3.8
4.2

28. 0
24. 7
26. 5
25. 6
23.7

1.32
0.69
1.14
1.16
0.96
0.60

where n is the density of holes and o(8) is the dif-
ferential cross width. Assuming phonon wave-
lengths much less than the diameter d of the holes
and specular reflection of phonons at these sur-
faces, ~3 l = 3/4nd =0. 5ed/r .

The glass samples had hole diameters as small
as 2 pm with a typical porosity of x=0 6. .The
holes were arranged in a honeycomb structure,
with the large-diameter holes having a hexagonal
shape which became closer to circular for samples
with smaller-diameter holes (see insert in Fig. 3).
For this geometry, in the limit of large porosity
and with specular refleetion33 from the surfaces
of the pores, one would expect the mean free path
to be somewhat larger than the side of a hexagon.
We estimate l =1.1(~r '@—1)d. This expression
gives within 10% the same value as f =0.59d/r in
the range of interest, namely, 0.5&z&0.8, which
suggests that even for large porosities l =0.59d/~
applied reasonably well. The porosity was deter-
mined by weighing dry samples and utilizing the
known sample volume and bulk density, and n was
obtained from measurements in an optical micro-
scope. The results are summarized in Table I.

Because of the large temperature range re-
quired (0.04-60 K), data on each sample were ob-
tained in separate runs made either above or be-
low =2 K. Below 2 K the most important design
consideration was the very small thermal conduc-
tance of the samples. The sample length had to
be kept short to minimize the effects of heat leaks
and thermal time constants. A two-heater tech-
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(a) (b)
FIG. 1. Front (a) and side (b) views of samp1e mount.

Some dimensions are exaggerated for clarity. F, ther-
mal sink; H~, H2, electrical heaters; T, carbon resis-
tance thermometer; L, superconducting leads to heaters;
G, gold "isotherms. " Dashed line represents the size
and position of the glass samples.

nique was used, as shown in Fig. 1, rather than the
more common technique utilizing two thermometers,
since we could make electrical heaters narrower
than resistance thermometers. To obtain a datum,
power was first applied to heater H~ and the tem-
perature measured with thermometer T. The power
was then removed from H, and the same power
applied to heater H~. The second reading of the
thermometer T provided a temperature difference
from which the thermal conductivity g .could be cal-
culated. Throughout the measurement the thermal
sink F was maintained at a constant temperature.

By using two heaters the active length of the
samples could be as small as 600 gm for the low-
temperature measurements. Even at this sepa-
ration the heater power used at the lowest tempera-
tures was only = 10 '~ W or = 10 erg/day. The
heaters were vapor-deposited Constantan or several
hundred A thickness, width 3~10 ~ cm, length O. V

cm, and resistance of =100 Q. Only heaters
having the correct measured resistivity were
used to ensure a uniform film thickness and thus
the absence of localized hot spots when used as a
heater. Electrical leads were =4000-A films of
vapor-deposited PbSn. These films were super-
conducting and served to thermally isolate the
active portion of the sample.

The thermometer was a chip from a Speer car-
bon resistor with vapor-deposited PbSn leads as
discussed elsewhere. This was calibrated in
each run against cerium-magnesium-nitrate
magnetic thermometer, ~8 which in turn was cali-
brated against He vapor pressure as well as
several superconducting fixed points. At the
lowest temperatures the power dissipated in the
thermometer was limited to = 10 ~4 W to prevent
heating the thermometer above the temperature
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of its environment.
The samples were mechanically and thermally

anchored to the copper holder with GE 7031 varnish
or epoxy as shown in Fig. 1. The polycarbonate
covered the entire open area, while the glass plates
were self-supporting and thus attached only to the
copper finger. In the latter case, electrical con-
nection was made to the heater leads at the edges
of the glass sample by means of In wire.

At high temperatures, above 2 K, superconduct-
ing leads could not be used for thermal isolation,
so fine manganin wires were used. Also the
thermal time constants became long (&1 h for
some samples), and so calibrated Ge resistance
thermometers were used to avoid the drift
associated with carbon thermometers. ~9 For the
glass samples, manganin-wire heaters were glued
to thin Cu strips which in turn were glued to the
sample. The heater separation in this case was
increased to 0.2-1 cm to provide a greater ac-
curacy in the measured length of the sample, and
the heaters were extended the full width of the
samples, thus providing a more simple geometry.

For the polycarbonate samples above 2 K, a
holder similar to that of Fig. 1 was used for
mechanical support, except that a completely cir-
cular geometry helped to minimize the thermal
impedance of the sample and hence the time con-
stant. Aluminum rings 104 A thick were vapor
deposited beneath the manganin-wire heaters to
provide isotherms. A. circular Al disk was also
deposited beneath the thermometer. The elec-
trical resistances of the Al films were checked,
using the Wiedemann-Franz law, to be certain
they would remain isothermal.

Before measurements were made above 2 K, the
samples were "baked" in vacuum for almost a day
at a temperature of =25 K. Otherwise, during
measurements the sample temperature would not
vary exponentially with time when a heater was
energized, suggesting that a time-dependent heat
leak was present. These effects were most pro-
nounced near 9 K, and were assumed to be related
to the presence of residual He (thermal exchange
gas) on the sample surfaces. (Below 2 K no in-
fluence of residual He could be detected after the
apparatus was baked for a period of 1 h. ) For
measurements above 2 K the sample holders were
connected through a poor thermal link to a pumped
He stage rather than to the dilution-refrigeration

stage of the cryostat. As a check, a second, less
quantitative measurement of g was obtained for the
region between H~ and F in Fig. 1 by noting the
change in T before and after power was applied to
H).

Several nonstandard computations must be ap-
plied to the measured thermal conductance to ex-
tract z. First it is necessary to take into account

the fact that some of the material has been re-
moved from the samples to create the holes. As
discussed in Appendix B, this factor is particularly
important for the glass since the porosity is large,
x=0.6. If this computation were properly per-
formed, the measured g near room temperature,
where scattering from holes cannot be important, ~

would be the same for all glass or all polycarbon-
ate samples with or without holes.

For samples used below 2 K there are "edge ef-
fects" since the heaters do not extend the full
width of the sample. The situation is analogous
to the fringing electric fields of a parallel-plate
capacitor. Rather than attempt to calculate the
effect, the sample geometry was simulated on
electrically conducting paper using the same tech-
nique as described in Appendix B. This also had
the advantage that the effect of the small thermal
conductance to the "sides" of the sample could be
estimated at the same time. The net effect was
about a 35% change in the geometrical ratio L~ /f L„
where t is the sample thickness, Lz the heater
length, and Lz the separation betxveen heaters.

Another complication occurred for the low-tem-
perature measurements on the polycarbonate sam-
ples because of their very small thermal conduc-
tance. Some of the heat passed through the metallic
heater since the thermal impedance of the heater,
the polycarbonate, and the thermal boundary resis-
tanceibetween the two were all of the same order
of magnitude. The effective length of L2 is there
fore increased by =25'%%uo for L2 =600 pm. This
was verified experimentally by changing L2 between
200 and 1200 p.m on the same material. The cor-
rected measurements agreed to within 10%%.

The geometries of samples used above 2 K were
much better known, and so g measured above 2 K
could be used as a check of the calculations ap-
plied to measurements below 2 K. For both the
glass and the polycarbonate the low-temperature
a data were too large by = 8% for every sample.
Thus to provide a smooth transition between the
low- and high-temperature data, those obtained
below 2 K were multiplied by factors of about 0.92.
Because of the several computations, the thermal-
conductivity data for a given sample are considered
accurate only to within a multiplicative factor
which may differ from unity by =+10%.

III. DATA AND INTERPRETATION

The data for the borosilicate glass are shown in
Fig. 2. For the bulk (nonporous) samples these
data are in good agreement with other measure-
ments on borosilicate glasses. s For the porous
samples the presence of the holes depresses the
thermal conductivity at all temperatures up to
= 50 K, the high-temperature end of the plateau re-
gion. The fact that the data for the porous glass



4478 M. P. ZAITLIN AND .A. C. ANDERSON 12

I I I
/

I I I I I
I

I 1 I I
[

I I I I

@O &
!lg o '7

0 ~

— O .&.o
~ ~
~ ~
~ ~

p

0. 1 1.0 IO 100
T(K)

FIG. 2. Data for borosilicate glass samples. o,
sample G1 (see Table I); 6, sample G3; 0, sample G4;
a, sample G5. Solid curve is a "dominant phonon ap-
proximation" for sample G4 as discussed in the text.
Dotted lines were calculated, using no adjustable parame-
ters, assuming thermal transport by phonons which have
a Debye den. sity of states and which are scattered only by
the holes in the sample. Inserts show the arrangement
of the holes for sample G3 (top) and samples G4 and G5
(bottom).

of the crystals thermally shunts the amorphous
material at high temperatures (T~3 K), but that at
lower temperatures the scattering at the amorphous-
crystalline interfaces reduces ~. The net effect
is to remove the plateau, as has been observed in
noncrystalline materials with high-conductivity
fillers intentionally added. ' ' In brief, although
thermal transport in the polycarbonate may be
more complicated than in the glass, the polycarbon-
ate nevertheless is representative of a broad
class of materials.

The presence of the holes in the polycarbonate
depressed g just as in the glass, and in addition,
the data converge at temperatures above 10 K.
Also shown in Fig. 3 are data for two samples
(P3, P5) having greatly different hole diameters
and densities, yet nearly the same geometrical
mean free path due to holes (see Table I). The
thermal conductivities of the two samples are
nearly the same, indicating that the reduction in
g is indeed related to the mean free path produced
by the holes.

Although the two materials, glass and polycar-
bonate, are microscopically and chemically quite
different, the thermal conductivities of both ma-
terials are influenced in the same way by the scat-

and the bulk glass coincide above = 50 K indicates
that the missing-volume calculation of Appendix
8 was properly performed.

The data for the polycarbonate material are
shown in Fig. 3. For the nonporous samples g is
the same whether the material is unirradiated, 2'

irradiated but not etched, or etched and irradiated
but with a very small density of holes (sample P2),
and g is also independent of the thickness of the
sheet. The data below =1 K agree in temperature
dependence, and, within a factor of =2, in magni-
tude with measurements on materials such as
Mylar, polymethyl methacrylate, polystyrene, 34

polycarbonate, 5 epoxy, and GE 7031 varnish.
In brief the behavior of our low-temperature data
is representative of a variety of polymer and simi-
lar materials.

Above 1 K the plateau is less pronounced than in
other measurements on polycarbonate. ' This is
indicative of the presence of some crystallinity. M'~~

Indeed, according to the manufacturer, ~' the start-
ing material for our samples was 7-9'%% crystalline.
It is possible that the higher thermal conductivity

IO
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FIG. 3. Data for polycarbonate samples. o, sample
P1; 0, sample P3; Q, sample P5; 9', sample P4. In-
sert depicts the random arrangement of the holes. Solid
curves are theoretical fits of the tunneling model to Pl
and P4, the latter data probably being systematically
=10% low as discussed in the text. Dotted lines were
calculated, using no adjustable parameters, assuming
thermal transport by phonons which have a Debye density
of states and which are scattered only by the holes in
the sample.
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tering of.thermal carriers from the holes. We
therefore have reason to believe that conclusions
based on the above data will be representative of
most if not all noncrystalline materials.

We begin an interpretation of the data with a
discussion of the lowest temperature measure-
ments. As mentioned in Sec. I, phonons are known
to propagate below =0.4 K. Also the g of the porous
samples has a nearly T3 temperature dependence
at the lowest temperatures. These facts suggest
the use of the Debye model, giving

', Cvl = -2m'O'T I„/15ff'v' . (1)
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where g, is the measured thermal conductivity of
the nonporous material and &„ is the value given by
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FIG. 4. Comparison of the measured thermal con-
ductivity ~~ in the porous samples vs that K„calculated
from the Debye model using no adjustable parameters.
Units are W/om K. Comparison is made at 0.12 K ex-
cept for two glass samples measured to lower tempera-
tures and thus compared to 0, 06 K. ~, glass samples;
0, polycarbonate samples. Perfect agreement is repre-
sented by the line; the average deviation about this line
is =10%. Alternatively this plot may be viewed as a
comparison of the measured and calculated phonon mean
free paths.

Here l„ is the mean free path due to holes (Table
1), and v is an appropriate average of the mea.-
sured acoustic velocities. "4' This formula, which
contains no adjustable parameters, is represented
by the dotted lines in Figs. 2 and 3. The agree-
ment between the data and this simple model is
very good. This simple calculation neglects the
small influence of the "bulk" scattering which is
still present in the porous material. The bulk
scattering may be included by using

FIG. 5. (a) Qualitative frequency dependence of the
phonon mean free path l(&) in noncrystalline materials
(A-B-C), and the contribution C() to the phonon specific
heat of phonons having frequency as evaluated at three
different temperatures (0,E,+). Line I represents the
mean free path related to the presence of holes. (b) Tem-
perature dependence of the thermal conductivity associated
with the mean free paths shown in (a).

Eq. (1). This is simply Matthiesen's rule applied
to phonons. This calculation is compared with the
low-temperature data in Fig. 4 for all samples.

The good agreement at low temperatures be-
tween the data and the simple Debye model indi-
cates that the thermal carriers are phonons having
acoustic velocities and a Debye density of states.
Thus any additional or anomalous specific heat
beyond that calculated from the Debye model is to
be associated with nonpropagating thermal excita-
tions. These same conclusions concerning data
near = 0. 1 K have been obtained by Pohl et al. for
glass by measuring & of a sample consisting of
fine fibers roughened on the surfaces so as to pro-
duce boundary scattering of phonons. ~ Since these
conclusions are valid for both glass and polycar-
bonate, they are probably true for most, if not
all, noncrystalline materials.

The reduction in g due to the holes at tempera-
tures as high as =20 K requires a frequency-
dependent phonon mean free path. This result
cannot be explained by the "dominant phonon ap-
proximation" (+/2m=10"T HzK i), that is, by a
purely temperature-dependent mean free path.
The failure of this approach is demonstrated by the
solid curve in Fig. 2, which was calculated for
sample G4 as discussed above [Eq. (2)]. The curve
clearly does not describe the behavior of the data
at higher temperatures; in particular, w in the
plateau region is not depressed.

A qualitative explanation of the data is provided
in Fig 5. Both Fig.s. 5(a) and 5(b) are meant to
represent ln-ln graphs. In Fig. 5(a) line A
represents a phonon mean free path l(ar) which
has a frequency dependence of ~ ~ to account for
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the essentially Ta temperature dependence of K at
low temperatures. Line B represents an abrupt
and large decrease in I(~) near +0 which may be
present for various reasons as discussed in Sec.
IV. Line C is the minimum conceivable phonon
mean free path, a few A in length, as discussed
by Kittel, and as is often used to explain high-
temperature data. " The contribution C(+) to the
phonon specific heat for phonons having frequency
w [see Eq. (5)] is also shown in Fig. 5(a) for three
temperatures, namely, a low temperature T~
(curve D), an intermediate temperature Ts (curve
E), and a high temperature T~ (curve E}. The
thermal conductivity is proportional to an integral,
over frequency, of the product C(e)l(&o). It is
instructive to divide this integral into two parts,
one for low-frequency phonons having long mean
free paths and the other for ~) wp:

p (dg)

C((o)I ((o) d(oK cc
~p

Many models have been suggested to explain the
behavior of K in glassy materials. Even though
the discussion in Sec. III is intended to be qualita-

tdp / Glg)

C((u) l((o) d(u+, C((o}l((u) d(o . (3)
Jp &0

Here w~ is the Debye frequency. The first term in
Eq. (3) gives curve G in Fig. 5(b). The thermal
conductivity becomes constant above 7.'z because
C(~) at ~& v~ has become a, constant independent
of temperature. It is equivalent to having a ma-
terial with a Debye frequency of &0. In either
case there is a cutoff in the contributing modes.
The second term in Eq. (3) produces curve H in
Fig. 5(b). A curve of the total thermal conductivi-
ty, G plus II, therefore would contain a plateau
near T~.

To check the above ideas one introduces holes in
the sample. This produces a frequency-indepen-
dent I shown by line I of Fig. 5(a}, and values of
I larger than I (i.e. , line A) are no longer of im-
portance. The first term in Eq. (3) now gives
curve J'of Fig. 5(b). At low temperatures the
temperature dependence of K has changed from T
to T3, and K is depressed at temperatures up to
the line JJ, where high-frequency phonons become
important.

In brief, our data suggest that phonons conduct
thermal energy throughout the temperature range
of the experiments, and that the plateau region is
caused by an abrupt decrease in l with increasing
phonon frequency. Our data continue to be com-
patible with Kittel's suggested approximation of a

0
limiting mean free path of a few A for very-high-
frequency phonons.

IV. COMPARISON WITH THEORETICAL MODELS

1
K=

&0
C((o) pl d(o,

where, from the Debye model,

C(~) 3@8+4ehu/lr/3&2@3I T2(char/kr I )2

and

I= (I„'+ Is'+ I q )

for / & l~, otherwise

The subscripts A, B, and C refer to the phonon
scattering processes depicted in Fig. 5(a). For
Walton's model, l„=A(h&o/k) i and Es= B(he/I/) ~.

In the tunneling model, Is = B(h&o/0) ' again and

I„=( [(Ak/I&@) coth(}I~/RkT)]-'

+ (4A/PT ) ] ' for h(o/0) PT

tive, it nevertheless can be used to determine
that some models are incorrect. For example, a
widely quoted suggestion by Klemens44 that the
plateau arises from the long mean free paths of
longitudinal phonons at low temperatures is not
consistent with our data. Qn the other hand we can-
not rule out the possibility of a strong resonant
scattering between phonons and localized excita-
tions" 4 which could lead to an abrupt decrease in
l as indicated in Fig. 5(a). Alternatively, the de-
crease in / may be associated with a short correla-
tion length in the amorphous material. 4''~'"~5

Indeed phonons in any nonhomogeneous material
will have I ~ &o

' (Rayleigh scattering) if the phonon
wavelength A. is large relative to the size of the
local fluctuations in composition. '7

In the following we compare the data quantitative-
ly with two models, the density-Quctuation model
of Walton, and the tunneling-states model of
Phillips48 and of Anderson et al. Walton's model
has the advantage of being mathematically very
simple. In Fig. 5(a) lines B and C would in this
model be related to Rayleigh and Kittel scattering
as discussed above. According to Walton, line A
would also be due to density fluctuations, although
we do not defend this last statement. This model
makes no attempt to explain the other anomalous
properties of glassy materials discussed in Sec.
I. The tunneling model, on the other hand, can
account for a variety of properties, but is mathe-
matically more complicated. The tunneling model
as published concerns only the region A of Fig.
5(a). For B and C we will first use Rayleigh and
Kittel scattering as for Walton's model. An al-
ternative possibility will be discussed below.
Neither model attempts to obtain the theoretical
parameters from microscopic arguments.

The thermal conductivity is calculated from
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FIG. 6. Theoretical fits of the density-fluctuation
model (a) and the tunneling model (b) to the borosilicate
glass data. Symbols are the same as Fig. 2. Broken
curve in (b) shows the results of omitting the nonreso-
nant scattering of phonons.

or

I„={[(Ak/8(u) coth(8'(o/2kr)] '

+ (4Ak/5&v) ~] ~ for R&o/k&PT (9)

The second term in Eqs. (8} and (9) takes into ac-
count the "nonresonant" scattering from the tunnel-
ing states as discussed by JNckle. +

A comparison of these two models with the data
for the glass samples is provided in Fig. 6. The
Walton model provides a good fit to the data of
the nonporous sample with A=2. 11&&10 3 cmK,
B=0.88 cmK4, and i~=4&10 cm. The frequency
dependence of l~ could be increased without es-
sentially changing the fit; with Is o- + " (i.e. , an
abrupt decrease in I) the calculated plateau region
is slightly more horizontal. On the other hand,
l~~(d 3 does not fit the data.

The calculations for the nonporous glass sample
using the tunneling model require A= l. 56&&10

cmK, B=0.47 cmK4, le=4&10 8 cm, and P=1.5
x10 ' K . This value of p is close to the value
expected from ultrasonic measurements on
borosilicate glass. '~ The nonresonant term is
essential because without it there is no mechanism
to scatter low-frequency phonons at high tempera-
ture. Omitting this term gives the dashed curve
of Fig. 6. It might also be noted that the presence
of this term can produce a slight minimum in g in
the plateau region, ' although this behavior is usual-
ly not observed experimentally.

It may be concluded from the foregoing that the

temperature at which the plateau is located is very
insensitive to the properties of the material. Using
Walton's model for convenience, the plateau "be-
gins" because of the intersection of lines A and B
of Fig. 5(a), or at a temperature of T~ (B/A)~~~.
Large changes of B and/or A have little effect on

T~ since line B is so nearly vertical.
The value A=1.56&10 3 cmK obtained with the

tunneling model may be compared with a value of
2x10 3 cm K from acoustic attenuation measure-
ments on borosilicate glass'3 using longitudinal
phonons. The implication of the agreement is that
longitudinal and transverse phonons have a similar
mean fr ee Path in bulk noncrystalline materials,
as is also deduced from acoustic dispersion mea-
surements. '

The value of B obtained with either model can
be compared with theoretical estimates of Rayleigh
scattering. Zeller and Pohl4 have suggested an
"isotopic scattering" model in which the glass is
represented as a crystal with every atom displaced,
and the associated vacancies provide the scattering
sources. The mean free path is thenm'44

I(~) = 4~v '[ZV, ~'(5p/p)']-'

—4vv /Va(o (10)

where Vo is the size of the scattering center, E is
the fraction of volume taken up by the scattering
centers, and 5p/p is the fractional change in
density within a center. Using for Vo the value
suggested by Zeller and Pohl (about the size of an
atom), Eq. (10}leads to B=20 cm K', or a mean
free path more than an order of magnitude larger
than found experimentally. In attempting to in-
crease the theoretical scattering by increasing the
factor EV0(5p/p)~ in Eq. (10), one is faced with
the difficulty of constructing a model which pro-
vides sufficient scattering, yet is consistent with
the known density of the material.

In view of the difficulty in constructing a model
to produce strong Rayleigh scattering, it is in-
teresting to note that sufficient scattering can be
provided by tunneling states alone. A constant
density ~ of tunneling states, as a function of
energy &, is the usual assumption to explain the
approximately T behavior of z and the linear term
of the excess specific heat. Acoustic dispersion
measurements" on fused quartz require an ad-
ditional quadratic term in the density of states g
to explain the data,

6(e) =q) [1+r(&lk) ]

where the value of y is =0.08 K 2. The quadratic
term can also explain the "excess" T' term in the
measured specific heat ' and, in fact, the coeffi-
cient y deduced from the dispersion measurements
is the same as that deduced from the specific-heat
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measurements. If the density of tunneling states
is accurately described by Eq. (11), then the phonon
mean free path E„[Eqs. (8) and (9)] should be
multiplied by [1+y(k&o/k)3] ~. From specific-heat
measurements on a borosilicate glass, ~0 we find a
similar coefficient y to that for fused quartz. If
the calculation of g is now repeated including the
factor in Eq. (11), but with no Rayleigh scattering
(B=~), the result gives rather good agreement with
the measured data. ~ This agreement is perhaps
fortuitious since the tunneling model has been ex-
trapolated beyond the low-temperature region
where the parameters were determined.

In summary we have difficulty explaining the
magnitude of B in Fig. 5(a) in terms of Rayleigh
scattering. This is true for either the Walton or
the tunneling model. Qn the other hand the tunnel-
ing model can, using parameters consistent with
acoustic and calorimetric measurements, provide
the required frequency dependence of the phonon
mean free path.

So far we have noted that more than one model
may be made to agree with the data on the non-
porous glass samples. In comparing theory with
data from the porous samples we will use only the
models which include Rayleigh scattering. This
is primarily a matter of mathematical convenience
in representing the strong frequency dependence
of l(&u). Using the parameters thus determined for
the scattering in the bulk material, the curves for
the porous glass samples have been calculated and
included in Fig. 6, The agreement is in all cases
good at high and at low temperatures but becomes
progressively worse for either model near =4 K
as E„becomes smaller in magnitude. This might
be a failure of the models, or it could be the fail-
ure of our assumption that the reflection of phonons
from the holes is essentially specular. At lower
temperatures the present g data are consistent
with specular reflection. At shorter phonon wave-
lengths near 10 K (A. =20 A) this may not be true,
especially since the surfaces had been chemically
etched during manufacture, and etching can pro-
duce a rough surface. 33'4~ A sample was therefore
broken and the surfaces of the pores examined in
a scanning electron microscope. Indeed the sur-
faces were rough, but a definitive conclusion could
not be obtained. Were only nonsyecular scattering
present, one may observe from the insert of Fig.
2 that the net mean free path l„would be reduced
by a factor which might be as large as 3 or 4.
This would greatly improve the agreement between
calculation and data in Fig. 6, but a detailed cal-
culation would require a knowledge of the amount
of nonsyecular reflection as well as its frequency
dependence.

In comparing the models with the polycarbonate
data, the results are similar and so only the

tunneling model (with Rayleigh scattering) is shown
in Fig. 3. For either model /~ had to be rewritten
as B(h&o/k) ' to fit the data of the nonporous sam-
ples. We cannot be certain if the v ~ dependence
is indicative of a different scattering process than
in the glass, '3 or if the scattering has been com-
plicated by the presence of a slight crystallinity.
The curve in Fig. 3 for the nonporous sample has
yarameters A = 3.6 & 10 cm K, g = 1.6 x 10"3cm K,
lc= 6x10 8 cm, and P= 1 K ~. As before, these
parameters are used to describe the bulk scatter-
ing in the porous samples. For the porous sam-
ples the fit is very good with the largest discrep-
ancy occurring for the one curve shown in Fig. 3
which is intended to fit the data of sample P 4.
We believe that all of the data for this sample lie
uniformly = 10% low. Even so, the data are de-
pressed near = 2 K suggesting that a frequency-
dependent nonspecular reflection of yhonons is
again occurring at the surfaces of the holes. Be-
cause of the low porosity the effect in this case can
only be = 30%, which is consistent with the data. ~~

V. CONCLUSIONS

The data presented here for two very different
materials behave qualitatively in the same manner,
and thus the results are probably applicable to
most noncrystalline materials. We therefore
conclude that thermal transport in noncrystalline
materials is predominately by acoustic phonons.
In the plateau region of the thermal conductivity,
most of the heat flux is carried by low-frequency
yhonons due to an abrupt decrease in the yhonon
mean free path with increasing frequency. The
temyerature range in which the plateau appears is
rather insensitive to the characteristics of the
amorphous material, again because of the abrupt
decrease in mean free path. The measured
specific heat, in excess of that contributed by the
acoustic phonons, is related to localized or non-
propagating excitations.

Certain models of the thermal conductivity of
amorphous material, such as that of Klemens, are
not compatible with our data. Two models, that
of Walton and that of Phillips and of Anderson et
al. , are both compatible with our measurements.
The present data therefore do not by themselves
provide a definitive choice between these models,
which incorporate very different physical assump-
tions.
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for (0&(d&,

lg = f g((og/(d) for (0 ( (dg,

(Al)

(A2)

where l& is the value of l& at short wavelengths
(i.e. , no diffraction: 0. 59d/r), and ~, is the fre-
quency at which diffraction effects begin. Ne
would expect a value for &o, such that qa = ((oq /V)
&(d/2)=z, where z is a constant near unity, q is
the phonon wave number, and a is the hole radius.
A proper theoretical value for z should take ac-
count of the various yolarizations and yroyagation

T(K}
I.O

FIG. 7. Thermal conductivity K of a polycarbonate
sample containing ™300-A-diam holes (sample Ps),
divided by the thermal conductivity ~„of samples having
much larger hole diameters but ~early the same l&. In-
crease in the ratio below 0.2 K is due to diffraction of
phonons past the 300-A holes. Estimated uncertainty in
this ratio is no more than 2-3%, or less than the size of
the points.

APPENDIX A' PHONON DIFFRACTION

At sufficiently low temperatures in the porous
samples the dominant thermal-phonon wavelength
& should become so large that the waves diffract
about the holes, and hence the phonon mean free
path lz should increase relative to values at higher
temyeratures. %e would not expect diffraction
effects above 0. 1 K for the polycarbonate with
2000- or 8000-A-diam holes, but would expect an
increase in l near a few tenths of a Kelvin for that
with 300-A-diam holes. Jn Fig. 7 we have plotted
the ratio of z for the samyle with 300-A holes,
divided by that of the smoothed, averaged I(; of the
2000- and 8000-A data. All three samples have
nearly the same l, and hence v. The ratio of Fig.
7 is constant to within 1% from 0.2 to 1 K, a re-
gion in which scattering by holes dominates. But
the ratio increases below 0. 2 K as diffraction be-
comes imyortant. It should be noted that other
samples had a smaller thermal conductance than
the 300-A sample and thus this increase cannot be
attributed to some heat-leak or thermometry
problem.

To calculate the diffraction effect we use the
same approach outlined in Sec. P7 except

IO

E
~ IO

-4
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o
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FIG. 8. Thermal conductivity v of fused quartz (&,
from Ref. 58) and of two samples of Vycor (o, from Ref,
57) showing the decrease in v in the Vycor due to the
pores. Solid curve is a fit to the fused quartz to obtain
the frequency dependence of the phonon mean free path
in the bulk material. Dotted lines is a fit to the Vycor
using this mean free path plus the additional scattering
from the pores. Dashed curve is explained in the text.

directions of the yhonons relative to the axes of
the holes. This problem, however, is compli-
cated~4'5 and therefore we have used a simplified
model (phonons traveling perpendicular to the
axes, no distinction between modes) to get a
theoretical prediction of z =0.6. To fit the curve
in Fig. 7 for a hole diameter of = 300 P requires
z =0. 3. This is reasonable agreement considering
the uncertainties involved.

A more stringent test is provided by Vycor
glass. 7ycor is a two-phase glass with one phase
having been leached out to leave a silica glass
matrix containing a myriad of interconnected holes.
This remaining phase of Vycor is very much like
vitreous silica, as can be seen from the similarity
of their sound velocities. The thermal conductivi-
ty of 7ycor has been measured by Stephens~~ and is
shown in Fig. 8.

%'e now show that the thermal conductivity of
Vycor can be calculated from ~ of vitreous silica
with theinclusionof yhonon scattering from the
pores. As a first step the ~ of fused silica is
computed using, for simplicity, the Vfalton model.
The result is shown in Fig. 8 and compared with
the measurements made on fused silica by Zeller. ~
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The Vycor data of Fig. 8 have not been corrected
for the "missing volume" of the pores since in the
long-wavelength limit, where diffraction dominates,
the entire cross section of the sample partakes in
thermal transport. However for the higher-fre-
quency phonons the factor of Appendix B becomes
significant, The dashed curve in Fig. 8 indicates
the expected magnitude of the raw data; correction.
for the missing volume would move the data up to
the dotted curve. Below 4 K the difference is
negligible.

The measurements on polycarbonate and on Vycor
discussed in this appendix demonstrate the dif-
fraction of thermal phonons about pores when
A. &d. The agreement between the data and our
calculations lends further support to the picture of
phonon behavior depicted in Fig. 5.

APPENDIX 8: MISSING-VOLUME FACTOR

FIG. 9. Plot of the factor f, with which the measured
thermal conductance of porous samples must be multi-
plied to account for the missing material, as a function
of the porosity ~. Points were measured in an electrical
analog as discussed in the text; solid curve is a fit to
these data. Dashed curve is the result of a simplified
calculation.

The parameters A, B, etc. , in this calculation
are now considered to be constants.

Next, using Eqs. (Al) and (A2), the excellent
fit shown by the dotted line in Fig. 8 is obtained
for pycor with l,+, = 2. l x10 '(0/5)~ cm K . Any
value of l, in Eq. (Al}, so long as l, & 500 A, does
not alter z in the low-temperature region where
the experimental data exist. Since for Vycor we

expects, (= 0. 59d/r) to be less than 500 A, we
cannot deduce a value for l, from these data. Using
the value found for /&~& as well as the volume
porosity (~ 33%) and hole diameter (~ 60 A) deter-
mined by gas adsorption measurements, ' ' we
obtain z =1.2. This is somewhat larger than the
value of z determined from the polycarbonate data,
but may not be unreasonable in light of the very
different shapes of the pores in the two materials.
In fact, one would expect the very contorted pores
in Vycor to produce more diffraction at a given
wavelength, and this corresponds to a larger
value of z.

If holes are introduced in a solid sample of fixed
size, the thermal conductance is decreased be-
cause there is a smaller volume for the heat to flow
through. The problem of determining this change in
conductance can be solved mathematically, 6' but
if the holes are randomly placed the calculation be-
comes rather complicated. Since our samples are
essentially two-dimensional (the cylindrical holes
are perpendicular to the plane of the samples), the
problem can be solved empirically. The geometry
was simulated electrically using electrically con-
ducting paper with appropriate holes cut out, and
with silver paint to provide the equipotentials
representing isotherms.

First, the resistance of the paper was measured,
then four separate measurements were made with
different hole patterns cut in the paper. These
were (i) uniform holes randomly placed, (ii) uni-
form holes placed in a honeycomb pattern, (iii) a
single hole in the center of a square which, by sym-
metry, is equivalent to many holes placed on a
square-grid pattern, and (iv) two quarter-circles
cut from opposite corners of a rectangle which is
equivalent to the honeycomb pattern. The results
are shown in Fig. 9 as the function f(r)= (resis-
tance with holes)/(resistance without holes). All
four .hole patterns gave the same results. A
mathematical approximation ~ gave the broken
line in Fig. 9 which agrees very well with the
measurements. In applying this factor to our data,
the experimental result represented by the solid
line was used.
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