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ABSTRACT 
Wo show that a linear qjecific heat at low temperatures for glass follows 

naturally from general considerations on the glassy state. From the samo 
considerations we obtain tho cxperimentally observed anomalous low- 
temperaturc thermal conductivity, and we predict an ultrasonic attenuation 
which increases a t  low temperatures. Possible relationships with the linear 
specific heat in magnetic impurity systoms are pointed out!. We suggest 
cxperimental study of the relaxation of thermal and other properties. 

3 1. INTRODUCTION 
Zeller and Pohl (1971) have recently discovered a contribution to the 
low-temperature specific heat varying linearly with temperature in a 
variety of glasses. It is remarkable that a linear specific heat is observed 
(Anderson 1970) also in ‘spin glasses’ ; i.e. alloys like Cu-Mn where a 
random configuration of spins condenses at low temperature. We propose 
here an explanation for the linear specific heat, based on a statistical 
distribution of localized ‘ tunnelling levels ’, which suggests that a linear 
specific heat should be a universal feature of glass systems a t  low 
temperatures. Our model also predicts the observed anomalous thermal 
conductivity, and predicts an ultrasonic attenuation which increases a t  
low temperatures. 

$ 2. THE MODEL 
The central hypothesis of our model is that in any glass system there 

should be a certain number of atoms (or groups of atoms) which can sit 
more or less equally well in two equilibrium positions. In terms of an 

t Also at Cavendish Laboratory, Cambridge, England. 
P.M. A 

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
9:

13
 0

3 
Ju

ne
 2

01
3 



2 P. W. Anderson et al. on 

E l  

I I I 

X I  X P  

Energy E of the system as a function of a generalized coordinate x, 
measuring position along a line connecting two nearby local minima 
of E. 

X 

appropriate position coordinate x for such an atom, or set of atoms, the 
energy E (2) will then have two local minima, separated by a barrier, as 
shown in the figure. The figure is a section of the 3N-dimensional 
configuration space along the coordinate connecting two such local 
minima. The atoms of interest for the specific heat will be those for which 
the energy barrier is sufficiently great so that resonant tunnelling between 
the two local minima does not occur, but sufficiently small so that tunnelling 
between the two levels can take place and thermal equilibration can occur 
during the time span of the specific heat experiment (say sec < t < 103 
sec). Of the atoms with barriers in the acceptable range, those 
contributing to the specific heat a t  a low temperature T (T is of the order 
of 0.1-10"~) will be atoms for which the energies of the two local minima 
are accidentally degenerate to within an amount of order kT. We argue 
that this must lead to a specific heat proportional to T. I n  general, the 
energies of the two levels will be more or less random quantities, dependent 
on such factors as the particular configuration of atoms surrounding the 
two minima, on local strains, etc. Inasmuch as the positions of the two 
minima are spatially separated, we would expect that the probability 
distribution of the energy difference AE between the two levels will vary 
on the scale of these random energies (perhaps 0.1 ev to 1 ev in a typical 
glass) and will be smooth on the scale of kT. I n  particular, n(AE) ,  the density 
of levels per unit volume and per unit AE, with energy difference AE and 
with tunnelling time in the acceptable range, should be non-zero and 
continuous in the vicinity of AE=O. The density of such levels with 
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Anomalous Low-temperature Thermal Properties of Glasses 3 

AE<kT is then proportional to T ,  leading to  an entropy and a specific 
heat likewise proportional to T .  The specific heat is given, in fact, by 

AE e x p ( - A E / k T )  
{ ( kT)  [1+ exp ( - AE/kT)]2 

'= 1; n(AE)  

(1) . . . . . . . . . . . . . .  77, 

6 
N - k2Tn(0). 

To make our argument clearer, let us consider a model Hamiltonian 
which describes the two-level system consisting of the ground states in 
the two local energy wells. We write 

where El and E,  are the energies of the local minima in the potential 
energy E ( x ) ,  nu, and nu, are the energies of zero-point motion about these 
minima, nu, is an energy of the order of the zero-point energy, and the 
factor exp ( - A )  represents the overlap between the wave functions for the 
two potential wells. For the potential of the figure we have 

where rn is the mass of the tunnelling atom or group of atoms. Let 

. . . . . .  A E = E ~ + K . u ~ - E ~ - ? ~ ~  (4) 

be the difference between the two diagonal elements of H .  (We shall 
arbitrarily choose the indices 1 and 2 so that AE 2 0.) The correction to 
the eigenvalues of the Hamiltonian due to the off-diagonal element will be 
negligible provided 

( 5 )  X > in= In ( 2?iw0/AE). . . . . . . .  
If condition ( 5 )  is satisfied, then transitions between the two energy levels 
can occur only by a process such as phonon-assisted tunnelling, with 
emission or absorption of a phonon necessary to  conserve energy. The 
rate of such transitions can be written roughly in the form 

. . . . . . .  ,N r0 exp ( - 2h), (6) 

where we estimate r0 to be of the order of 1012sec-1. 
form for r will be discussed below. 

A more accurate 
t can be written The condition 

. . . . . . .  X < A,,,= 4 In (rot). (7) 
Since we have a situation where r0 is of the order of uo, and t $ ?i ro-1/2AE-1/2, 
there will be a substantial range of h in the acceptable region between 
Amin and Amax. Furthermore, the limits ( 5 )  and ( 7 )  of this region depend 
only weakly (i.e. logarithmically) on the value of AE when AE z kT,  so 
that this range may be considered constant for our purposes. If m is the 

A 2  
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4 P. W. Anderson et al. on 

mass of an oxygen atom, and Ax NN 1 A, then the acceptable values of V will 
be V 5 0.2 ev. If, as is more likely, a whole SiO, tetrahedron must move, 
V may have to  be even smaller ; this is the most delicate point in the 
argument. Since the qualitative form of the figure requires that lAE 15 V ,  
this implies that the density of levels n(AE) described by our model with 
h in the ‘ acceptable range ’ should actually vary on the scale of 0.1 ev, as 
i t  must go to zero for JAEl>O.lev. This is however quite consistent 
with our previous assertion, that n(AE) is constant on the scale of JcT. 

It should be emphasized that the density of levels with h in t h e  
‘ acceptable range ’ is much smaller than the total density of modes with 
level splitting AE.  There are a vast number of modes having small AE 
which are inaccessible because their energy barriers are too big for 
tunnelling to occur, or because they require the cooperative motion of too 
many atoms. The fact that glasses are in a metastable state to begin with 
implies that there are large numbers of states with arbitrary A E  (both 
positive and negative relative to the occupied state of the system) which 
are only inaccessible because they are separated from the occupied states 
by large energy barriers. 

We have experimental information about the total number of roughly 
equivalent inaccessible states. Ancient but, apparently, reliable measure - 
ments (Gutzow 1926 ; Simon and Lange 1926) of the zero-point entropy of 
fused SiO, and of glycerol are available. In  the case of SiO, these suggest 
that there are of the order of 2N metastable ‘ground’ configurations, 
where N is the number of Si tetrahedra. Similarly, glycerol, which has 
about three or four rigid molecular groups capable of relative rotation, 
also has of the order of two configurations per rigid group. 

The difference in energy between these configurations must be less than 
the glass transition temperature T,, since at that temperature the glass is 
still fluid and all configurations are available to it. That is about 0.1 ev. 
Again it would seem reasonable that the energy differences are otherwise 
random. Our point of view would be that the states important in the 
anomalous specific heat are simply the tail of a continuous distribution of 
alternative states which includes those which give the zero-point, entropy, 
a ‘ tail ’ in the sense that there must be a continuous distribution of barrier 
sizes V ,  and these are the states with relatively low barriers. 

If the observed linear spacific heat of fused silica is interpreted according 
to eqn. (l),  one finds that n(O)x0.04 states per ev per SiO, group. The 
total number of level pairs with AE <O.lev, and barrier heights in the 
acceptable range, is thus estimated to be approximately 1/250 of the total 
number of SiO, groups. This seems to  be a reasonable number, consistent 
with the information available. 

It is not easy to speculate meaningfully on the distribution of the 
barriers. Most of the simple models we have tried tend to suggest a 
predominance of rather high barriers ; but. the observations, as discussed 
above, suggest rather that there is a very broad distribution of barrier 
heights, with low ones as probable as high ones. That is, we require that 
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Anomalous Low-temperature Thermal Properties of Glasses 5 

of the order of 10% of the barriers be - 0.2 ev or less, where we would guess 
that the average barrier involves breaking one or more bonds, - several 
ev. Why the statistics of these barriers is so uniform over a wide spectrum 
of types of glass remains a mystery. Various situations in which V and 
Ax are sufficiently small can be imagined. For instance, all of the crystal- 
line forms of quartz exhibit ' high-low ' transitions in which oxygen 
bridges between Si tetrahedra bend away from a linear Si-0-Si 
configuration. Apparently in all crystalline phases the oxygens have a 
double-minimum potential and the same may be likely for the glass. 

The important modes are likely to be quite different in different glasses, 
and the experimental observation that the magnitude of the linear specific 
heat is roughly constant in a wide variety of glasses, seems somewhat 
surprising in the context of this model. The point may be that i t  is 
accessibility rather than anything else which determines n(0). 

One important consequence of the proposed explanation of the linear 
specific heat in glasses is the implication that the observed specific heat 
should depend roughly logarithmically on the length of time over which the 
observation is made. This feature should be subject to experimental 
tests. 

If the transition between the two levels of the figure involves a net 
motion of charge, as would be the case of the motion of a single oxygen 
atom in fused silica, then the modes under consideration should also give a 
contribution to the dielectric relaxation of the glass which would depend 
roughly logarithmically on the length of time of observation. Since there 
appears to be no such contribution to the dielectric response, we assume 
that the motions responsible for the specific heat involve the rigid rotation 
or displacement of neutral SiO, tetrahedra. 

5 3. THERMAL TRANSPORT 
Zeller and Pohl (1971) have also found an anomaly in the low- 

temperature thermal conductivity of glasses. The thermal conductivity 
varies as T 2  which is interpreted as a mean free path for phonons going as 
w-l instead of the w-, expected for disordered systems (and which is seen 
a t  higher temperatures). It is natural to  inquire whether this can be 
explained in terms of resonant scattering of the acoustic phonons off the 
same modes which we are invoking to  explain the specific heat. The 
condition that the level pair have a large scattering cross section for a 
relatively wide frequency range about the resonance w = AE/& is that h 
be approximately equal to the hmin defined in ( 5 ) ,  so that there be large 
overlap between the wavefunctions for the two levels of the model. Thus 
resonant scattering of phonons will only occur for a small fraction of those 
configurations which contribute to the linear specific heat. Also, several 
of the approximations made above will have to be refined when hwhmi,. 

The mean free path for a phonon with 3 kT is given by 

1 = (crv)-l, . . . . . . . . (8) 
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6 P. W. Anderson et al. on 

where (T is the scattering cross section and v the number of resonant 
scatterers per unit volume. For resonant scattering 

u = 4rc2/w2, . . . . . . . . .  (9) 

and the frequency o of the phonon must coincide with the energy splitting 
of the two-level systems to within the level width, r. 

The density of resonant scatterers will then be given by 

. . . . . . . .  x n(o)( r), (10) 

where ( l') is the average value of I' for the class of levels we have considered 
above. 

To estimate the width of the two-level system, let us assume that the 
decay of the upper state occurs with the emission of a longitudinal acoustic 
phonon, and that the coupling to the phonon can be described as a change 
in the unperturbed energies E l  and E,, entering the diagonal part of (2 ) ,  
proportional to the local dilation. Then the one-phonon matrix element 
for transitions between the two eigenstates of ( 2 )  can be written 

b!IZB(-) Ro ll2 oo exp ( - A)  . . . . . .  
2p vc2 € 

where w is the phonon frequency, p is the mass density, V is the volume of 
the system, B is the difference in the deformation potential constants for 
the two unperturbed levels, and 

. . . .  f i ~ =  [ ( A E ) 2 +  [26woexp( -A)]2]1/2 (12)  

is the actual difference between the two energy eigenvalues of (2 ) .  The 
width of the upper level, due to  the spontaneous emission of a phonon of 
frequency u z  E ,  is given by 

uo2 exp ( - 2A) 
3 

where M is the mass per unit cell, and w,, the Debye frequency. We must 
calculate the average value of r over the ensemble of levels with varying 
values of A,  AE, wo, and B, consistent with the condition that E = w : 

(I?)= /p(AE,wo,A,B)I'8(w-r)dBdAdwodAE, . . (14) 

where p represents the probability distribution for the varying values of 
AE, wo, A and B over the ensemble of levels considered, normalized so that 
Jp(O,wo,A, B)dBdAdw,= 1.  Integrating with respect to  AE, we find 

(r)= / d B d w o /  
d h - -  3nB2 u3 w2,exp ( - 2X) 

Amin MC2 u D 3  w2 
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Anomalous Low-temperature Thermal Properties of Glassses 7 

where Amin is now given by 

(16) 

(Cf. eqn. (5) above.) 
We shall assume that w is sufficiently small, and that the distribution of 

w0 is cut off sufficiently rapidly, so that w <wo, for essentially all the levels 
under consideration. In  this case, if we assume p to be a reasonably 
slowly varying function of its variables, we may carry out the A integration 
in (15) and write 

hlnin =In (2w0/w). . . . . . .  

The quantity in square brackets, which we shall denote by D,  depends on w 
only logarithmically, through the variable Amin.  Combining our previous 
equations we then find 

which has essentially the experimentally observed frequency -dependence, 
An estimate for D may be obtained if we guess 

where (Y is some unknown exponent describing the A-dependence of p ,  and 
B is a typical value of the deformation potential constant. (The dependence 
of D on A,,, must - be cancelled by the dependence of n(0) on this quantity.) 
If we assume B x 1 ev, ci = 1, Amin x 5, A,,, = 20, and use the value of 
n(O), M(~OA.U.)  and wD ( 3 0 0 " ~ )  appropriate to fused silica, we can get the 
correct order of magnitude for the mean free path, namely 1 x cm a t  
1 OK. 

5 4. ULTRASONIC ATTENUATION 
The formula for 1 given by eqn. (18) is independent of temperature, and 

For more general values of fiw/kT, we is valid for phonons with &W 2 kT. 
find a decay length 

If one thinks of the decay process as a resonant absorption of the 
acoustic energy by the two-level system, then the factor (cothfiw/2kT) 
represents the decrease in the absorption because of the equalization of the 
occupation of the two levels. Thus for phonona of frequency small 
compared to kT, we find an ultrasonic attenuation proportional to W2/T. 
For fixed frequency, this increases as T is decreased. 
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8 P. W. Anderson et al. on 

If the frequency is decreased sufficiently, at fixed temperature, one 
should eventually reach a regime where relaxation processes are more 
important than resonant absorption of the phonon energy, and eqn. (20) 
will no longer apply. 

5 5. SPIN GLASSES 
Marshall (1960), Herring (private communication) and Klein and 

Brout (1963) have pointed out that  the linear specific heat in spin glasses 
follows naturally from two assumptions. The first is highly plausible : 
that the distribution of local magnetic fields on the spins has a width 
linear in the concentration of spins, of order T,, the 'glass transition 
temperature '. The second has never been adequately justified : that  
only one component H" of the local field is important, and (by similar 
handwaving arguments to ours about E )  that there is no singularity in its 
distribution at  H Z l o c = O ,  so that there is a constant (dN/dH)IfIZ,, .  

But undoubtedly the other components of HI,,, which provide 
off-diagonal matrix elements connecting the states of different M,, are not 
to be neglected ; if they have the same distribution as I€,, the density of 
states +O as H+O and we get no linear specific heat. We can make 
contact with our present point of view, however, by noting that the 
proper starting point for understanding the spin glass is not so much the 
energy levels of a spin in some fixed random magnetic field, but rather 
the classical potential energy as a function of the simultaneously specified 
orientations of all of the spins. The metastable states of the spin glass 
will then correspond to local minima in the energy of the spin configuration. 
The primary effect of the quantum mechanical uncertainty principle, 
which forbids exact knowledge of the orientation of a spin, is to cause a 
zero point motion of the spin system about the local energy minimum. 
Tunnelling between one local minimum and another can occur only if the 
separation in configuration space is not too great, or if the transition 
involves the rearrangement of a small number of spins. The energy 
diagram of the figure can be applied to such a rearrangement if we interpret 
x as a generalized coordinate appropriate to the simultaneous motion of a 
small number of spins. The remainder of the reasoning, leading to the 
linear specific heat, should go through unchanged in the present case. 
Note that the linear specific heat of the spin glass is again predicted to have 
roughly logarithmic dependence on the observation time. Note also that 
if the interaction between the spins varies as the inverse cube of the 
distance between the spins, the specific heat will remain independent of 
concentration of the spins, provided that the time of experimental 
observation, as well as the rate of cooling through the ' glass transition ', 
are appropriately scaled. In particular, if the concentration is increased 
by a factor of V, the system will be isomorphic to the original if we scale 
temperatures, frequencies, tunnelling rates, and energies per spin by the 
same factor v. 
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in crystalline NaBr : F, which he has explained in terms of the tunnelling 
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degeneracy is split by random strains. (References to various other 
calculations of the effects of tunnelling levels on the properties of imperfect 
crystals may be found in Rollefson’s thesis (1970) and in a review article by 
Narayanamurti and Pohl (1970).) A suggestion that similar kinds of 
defect states could be responsible for the anomalous thermal properties of 
glasses is also contained in Zeller and Pohl (1971 a, b). 

9 

REFERENCES 
ANDERSON, P. W., 1970, Mater. Res. Bull., 5, 549. 
GUTZOW, I., 1926, 2. phys. Chem., 221, 153. 
HERRING, C. (private communication). 
KLEIN, M. W., and BROUT, R., 1963, Phys. Rev., 132, 2412. 
MARSHALL, W., 1960, Phys. Rev., 118, 1519. 
NARAYANAMURTI, V., and POHL, R. O., 1970, Rev. mod. Phys., 42, 201. 
ROLLEFSON, R. J., 1970, Ph.D. Thesis, Cornell Materials Science Center Report 

SIMON, F., and LmaE, I?., 1926, 2. Phys., 38, 227. 
STEPHEN, R. B., ZELLER, R.  C., and POHL, R. O., 1971, Bull. Am. phys. Soc., 

ZELLER, R. C., and POHL, R. O., 1971 a, Phys. Rev. (to be published) ; 1971 b, 

No. 1382. 

16, 377. 

Bull. Am. phys. Soc., 16, 377. 

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
9:

13
 0

3 
Ju

ne
 2

01
3 




