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Postfach 1913, D–52425 Jülich, Federal Republic of Germany

M. A. Ramos
Laboratorio de Bajas Temperaturas, Departamento de Fisica de la Materia Condensada,

Condensed Matter Physics Center (IFIMAC) and Instituto Nicolas Cabrera,
Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid, Spain

(Dated: November 19, 2013)

The Lindemann criterion is reformulated in terms of the average shear modulus Gc of the melting
crystal, indicating a critical melting shear strain which is necessary to form the many different
inherent states of the liquid. In glass formers with covalent bonds, one has to distinguish between
soft and hard degrees of freedom to reach agreement. The temperature dependence of the picosecond
mean square displacements of liquid and crystal shows that there are two separate contributions to
the divergence of the viscosity with decreasing temperature: the anharmonic increase of the shear
modulus and a diverging correlation length .

PACS numbers: 63.50.+x, 64.70.Pf

According to the hundred years old Lindemann cri-
terion [1], melting occurs when the thermal motion of
the atoms of the crystal reaches a critical mean square
displacement of about one tenth of the interatomic dis-
tance. It is not very accurately fulfilled [2, 3], but it is
an intriguing unexplained relation between dynamics and
thermodynamics which has always fascinated the physi-
cists working in the field.

Here we reformulate the Lindemann criterion in terms
of the average shear modulus Gc of the melting crystal.
If one takes the crystal to be a Debye solid and uses the
high temperature approximation, the Lindemann crite-
rion reads

〈u2

c〉(Tm) =
3kBTm

Mω2

D

≡ (0.072a)2, (1)

where the value 0.072 has been fitted to the data collec-
tion of Grimvall and Sjödin [3], 〈u2

c〉 is the mean square
displacement in one direction, the atomic distance a is
defined by the atomic volume v = a3, M is the average
atomic mass and ωD is the Debye frequency.

The Debye frequency is given by the longitudinal sound
velocity vl and the transverse sound velocity vt

ω3

D =
18π2

v(1/v3l + 2/v3t )
. (2)

Taking an average ratio vl/vt of 1.8, one gets the mean
square displacement

〈u2

c〉 = 0.159
kBT

Gcv
a2 (3)
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and can express the Lindemann criterion in terms of
Mv2t = Gcv

Gcv = 31kBTm = 51kBTg, (4)

with the approximate relation Tg = 0.6 Tm between melt-
ing temperature Tm and glass temperature Tg.
The formulation suggests a new view of the Lindemann

criterion: it does not indicate an instability of the crys-
tal, but it is rather a necessary condition for the entropy
of the liquid. In order to obtain the two stable inher-
ent structures per atom which together with the excess
vibrational entropy supply the melting entropy of about
kB per atom, one needs to shear the atomic volumes in
the melt by about ten percent. Obviously, construct-
ing a stable solid out of flexible strained units provides
much more possibilities than a construction out of rigid
units, though one has to pay the price of a considerable
strain energy. Above Tm, the entropy gain overcompen-
sates this shear energy and makes the liquid the stable
thermodynamic state.

substance ρ M Tg G Gv
kBTg

fs
Gv

fskBTg

kg/m3 a.u. K GPa
vit-4a 6112 60.0 640 31.3 58.2 1 58.2
Se 4167 78.96 304 1.5 11.3 1/3 33.9

SiO2 2198 20 1473 35.0 26.0 5/9 46.8
GeO2 3590 34.9 933 21.0 26.5 5/9 47.7
B2O3 1792 13.9 550 5.2 8.8 1/5 44.0
CKN 2174 19.1 340 4.7 14.9 19/33 25.9
PVC 1370 10.4 350 1.3 3.1 1/9 27.9

TABLE I: Measured ratio Gv/kBTg in seven glass formers.
vit-4 is the metallic glass vitralloy-4, CKN stands for the ionic
glass former K3Ca2(NO3)7 and PVC is polyvinylchloride. a

ref. [4]; all other data from reference [5].

The glass shear modulus G is usually smaller than Gc.
Table I lists experimental values of Gv/kBTg. In the
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metallic glass vitralloy-4, the value is even higher than
the Lindemann prediction of eq. (4), showing that a mix-
ture of atoms with different sizes melts more easily than
a pure substance. In a large data collection on metal-
lic glasses [4], the values for Gv/kBTg range from 48 to
91. The same tendency is seen in numerical calculations
for the Lennard-Jones potential, where one only reaches
the glass state with atoms of different sizes [6, 7], while
a pure Lennard-Jones crystal has the same Lindemann
mean square displacement at its melting point as pure
metals [8].

Selenium has a much lower Gv/kBTg-ratio than the
metallic glasses. But selenium has covalent bonds. Each
selenium atom is covalently bonded to two neighbors.
This implies that one has two hard degrees of freedom
per atom (the Se-Se distance and the Se-Se-Se angle) and
one soft van-der-Waals degree of freedom; the fraction fs
of soft degrees of freedom per atom is 1/3. In selenium,
the frequency of the Se-Se bond stretching vibration is
about eight times higher than the van-der-Waals band
at low frequencies [9]. The Se-Se-Se covalent bending vi-
bration is lower, but still about a factor of three higher
than the low frequency band. This implies that 90 %
of the mean square displacement is due to the van-der-
Waals bonds. One degree of freedom supplies virtually
the whole mean square displacement and eq. (3) is de-
rived for three equivalent degrees of freedom per atom.
Consequently, Gv/kBTg has to be corrected by a factor of
3. Indeed, Gv/fskBTg = 33.9 is about two thirds of the
Lindemann prediction for the crystalline shear modulus.

The same argument holds for other covalently bonded
glass formers. In the next two examples, silica and ger-
mania, the four Si-O stretching degrees of freedom are
markedly harder than the five O-Si-O bending vibrations
[10, 11]. In B2O3, one excludes the B-O stretching as well
as the O-B-O bending. This leaves three van-der-Waals
degrees of freedom per B2O3-unit, arriving at fs = 1/5.
For the ionic glass former CKN, one considers the NO3

unit as a rigid molecule with only six degrees of freedom,
reducing the number of degrees of freedom by 19/33. The
polyvinylchloride monomer C2H3Cl has only the two C-
C rotations as soft degrees of freedom, which implies
fs = 1/9, again in reasonable agreement with the Lin-
demann criterion. The average value for the seven glass
formers in Table I is Gv/fs = 41 kBTg, about 80 % of
the crystalline value of eq. (4).

It is tempting to look for a connection between this
value and the effective energy barrier for the flow at Tg,
which happens to have a value nearby, about 36 kBTg.
But in the Lindemann relation Gv is a force constant,
not a barrier. Converting it into a barrier requires a
microscopic consideration:

Consider the four neighboring atoms shown in Fig. 1,
undergoing a shear transformation from the stable con-
figuration on the left to another stable configuration on
the right. The second derivative of their potential in the
shear angle is 4Gv. The difference between the shear an-
gle of the two stable configuration is 60 degrees, in radian

units close to 1. For a cosine potential, the corresponding
barrier height E4 is 2Gv/π2.
Of course, such a structural jump is not possible within

a stable solid. In fact, the energy maximum configuration
of the square in the middle is even stable in an fcc crys-
tal, because the elastic matrix around the square com-
pensates the negative spring inside. The same is true for
the gliding triangle motion of six atoms [12], which con-
verts an octahedron into a bitetrahedron. In this case,
the barrier is only 3Gv/2π2 (6 kBTg for Gv = 41 kBTg),
because the shear angle from one stable configuration to
the other is smaller.
While a single four-atom or six-atom jump is not possi-

ble, it seems likely that the real structural transitions at
Tg are combinations of several such jumps within a cen-
tral core, leading to a new core which again fits reason-
ably well into the surrounding elastic matrix. To obtain
the total barrier Eb of about 36 kBTg needed to inflate
the microscopic time constant τ0 = 10−13 seconds to the
relaxation time of hundred or thousand seconds at the
glass transition, one has to postulate a combination of
about six elementary six-atom jumps, consistent with an
inner core of twenty to forty atoms.
In this picture, the energy barrier for the flow is

not only proportional [13] to the temperature-dependent
modulus G, but also to the number ns of four-atom or
six-atom jumps within the central core (the cooperatively
rearranging region [14]), which might increase with de-
creasing temperature. An increase and even a divergence
of a dynamic correlation length with decreasing tempera-
ture has been first postulated by Adam and Gibbs [14]. It
is a tempting idea: the structural entropy extrapolates to
zero at the Kauzmann temperature, so one has less and
less possibilities to jump into another structural state.
Then the structural reorganization requires larger and
larger cooperatively rearranging volumes. The Adam-
Gibbs concept is supported by numerical calculations,
which have been able to see the increase of the correla-
tion length with decreasing temperature in various ways
[15, 16].
Following Jeppe Dyre [13], we define the fragility in

Eb

FIG. 1: The potential energy of a group of four atoms in close
packing as a function of the local shear.
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terms of the negative logarithmic derivative I of the flow
barrier with respect to temperature (I = (m− 16)/16 in
terms of the usual measure m of the fragility [17]). The
flow barrier (taking six-atom units)

Eb =
3ns

2π2
Gv (5)

is proportional both to ns and to T/〈u2〉 (via Gv and eq.
(3)). Therefore it has the negative logarithmic derivative

−
∂ lnEb

∂ lnT
= −

∂ lnns

∂ lnT
+

(

∂ ln 〈u2〉

∂ lnT
− 1

)

(6)

At first sight, this separation in two contributions
seems to contradict the experimental finding of a pro-
portionality of the flow barrier to the shear modulus
alone in many substances [13]. This discrepancy, how-
ever, has been resolved by a recent thorough investiga-
tion of mean square displacements at different energy res-
olution [18]. One needs a resolution corresponding to a
time scale of at least several nanoseconds to see the mean
square displacement of the macroscopic shear modulus.
The temperature dependence of the quantity 〈u2〉/T on
the picosecond level is always too weak to explain the
full fragility. This has also been seen in a recent data
collection [19], which postulated a proportionality of the
logarithm of the viscosity to α+ β/〈u2〉+ γ/〈u2〉2. The
term γ/〈u2〉2 introduces a similar effect as the temper-
ature dependence of ns and dominates the behavior at
Tg.
The best experiment for a check of these ideas is a

twenty-year old determination [20] of the mean square
displacements in glassy, liquid and crystalline selenium
(Fig. 2). The logarithmic derivative of the liquid 〈u2〉
at Tg = 304 K is 3.1, explaining 2.1 units of the total
fragility I = 4.4 (the usual fragility [17] m is 87). Thus
more than half of the fragility remains unexplained and
must be attributed to a logarithmic decrease of ns of
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FIG. 2: The mean square displacements in crystalline, glassy
and liquid selenium [20] Note that the liquid data extrapolate
to the crystalline ones at 252 K.

2.3 with temperature (note that this information on the
volume of the cooperatively rearranging region comes di-
rectly from the pair correlation function; it is not neces-
sary to invoke higher correlations [21, 22]).

The mean square displacement of the undercooled liq-
uid extrapolates to the one of the crystal at 252 K, close
to the Kauzmann temperature of 240 K where the ex-
cess entropy over the crystal extrapolates to zero and
the Vogel-Fulcher temperature of 251 K where the vis-
cosity extrapolates to infinity [23]. In fact, one finds
a proportionality of the logarithm of the viscosity ratio
η/η0 (η0 high temperature viscosity, which in selenium
is 3.1·10−4 Pa s) to the inverse difference between liquid
and crystalline mean square displacements [20]. It holds
over eighteen decades of viscosity variation, from the ag-
ing regime below Tg up to a temperature high above the
melting temperature, providing a much better fit of the
viscosity than any Vogel-Fulcher law.

The same proportionality between the logarithm of the
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FIG. 3: (a) The mean square displacements in crystalline,
glassy and liquid ortoterphenyl [25]. The lines are the corre-
sponding fits. (b) Proportionality of the logarithm of the vis-
cosity [24] η/η0 with η0 = 0.2 Pa s to the inverse difference be-
tween liquid and crystalline mean square displacements (the
continuous line). The dashed line is the Vogel-Fulcher rela-
tion obtained by linearizing the mean square displacements
around Tg.
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viscosity ratio [24] and the inverse difference between liq-
uid and crystal mean square displacement is found in
orthoterphenyl (OTP). The mean square displacements
[25] in Fig. 3 (a) show a much stronger curvature at Tg

than those of selenium. Nevertheless, if one fits 〈u2〉 in
terms of a third order function (the continuous line in
Fig. 3 (a)) and 〈u2

c〉 in terms of a second order function
in temperature (the dashed line in Fig. 3(a)), one finds
again the proportionality shown by the continuous line
in Fig. 3 (b). The fit with η0 = 0.2 Pa s fails above Tm,
but still covers twelve decades of viscosity variation.
One obtains a clearer understanding of these two ex-

perimental findings assuming that ns is proportional to
the inverse difference between crystal and liquid shear
modulus Gc−G. In the Adam-Gibbs reasoning [14], ns is
inversely proportional to the structural entropy difference
of liquid and crystal. A proportionality of the shear mod-
ulus difference to the entropy difference sounds plausible.
The assumption provides the extrapolated divergence of
ns at Gc = G which one obviously needs to understand
the strong tendency to a divergence of the viscosity close
to Tg. Since Eb is proportional to the product of ns and
Gv

log η/η0 ∝
Eb

T
∝

Gv

T (Gc −G)
∝

1

〈u2〉 − 〈u2
c〉
, (7)

if one neglects the weak temperature dependence of the
crystal shear modulus Gc. Note that a linearization of
both 〈u2〉 and 〈u2

c〉 around Tg converts this relation into
the Vogel-Fulcher law log η/η0 ∝ 1/(T − T0), thus iden-

tifying the Vogel-Fulcher temperature T0 with the point
where the extrapolated mean square displacement of the
liquid reaches the crystalline one.

To summarize, the Lindemann criterion has its physi-
cal basis in the entropy of the liquid: a temperature able
to reach a mean square displacement of one tenth of the
interatomic distance in the crystal is also able to distort
the structural units of the liquid by a shear angle of about
one tenth. The shear flexibility allows to form a much
larger number of stable inherent structures in the liquid
than those accessible to rigid units, enhancing the liq-
uid entropy to the point where it compensates the shear
energy and makes the liquid the stable phase.

One can use the Lindemann criterion to estimate the
flow barrier in the liquid. The estimate requires a geo-
metrical consideration of the elementary relaxing units,
of which several have to combine to form a cooperatively
rearranging region. On the basis of this concept, one
finds a physical explanation for the proportionality of the
logarithm of the viscosity ratio η/η0 (η0 high temperature
viscosity) to the inverse of the difference of the picosec-
ond mean square displacements of crystal and liquid. A
measurement of these two quantities allows to determine
the volume of the cooperatively rearranging region. The
heavily discussed fragility of undercooled liquids is due
to a combination of two classical mechanisms, the Adam-
Gibbs mechanism of a diverging correlation length and
the proportionality of the flow barrier to the picosecond
shear modulus.
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