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1 . Introduction 

1 . RELATION BETWEEN LATTICE DEFECTS AND CONTINUUM THEORY 

Among the imperfections to which a crystal is subject. ’ some (inter- 

relatively permanent . The introduction of one of them generally alters the 
1 F . Seitz. in “Imperfections in Nearly Perfect Crystals” (W . Shockley. ed.), Chap- 

79 

stitial and impurity atoms. vacant lattice sites. dislocations . . .  ) are 

ter 1 . Wiley. New York. 1952 . 
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position of every lattice point. Obviously in calculation we cannot take 
every lattice point into account explicitly in a crystal of any size, and 
must be content to treat the greater part of the crystal as a continuum. 
In favorable cases the exact behavior in the regions where the continuum 
approximation is inappropriate is unimportant and can be taken into 
account by giving suitable values to certain parameters appearing in the 
continuum solution. 

The continuum analog of a crystal containing imperfections is an 
elastic body in a state of stress not produced by surface and body forces. 
The appropriate tool for handling the (‘continuum theory of lattice 
defects” is thus the usual theory of elasticity modified to include internal 
stress. Unlike the residual stresses encountered in engineering practice, 
these internal stresses have to be considered as capable of moving about 
in the medium. Such mobile “strain figures” were discussed by Burton2 
and Larmor3 when elastic models of the ether were in vogue. Recent 
interest in solid state physics has stimulated further development. It is 
the object of the present review to emphasize some of the background 
principles and to illustrate them by specific examples chosen to bring out 
the peculiar features involved. Naturally the continuum theory can 
hardly be expected to answer questions of current interest about the more 
intimate behavior of lattice defects (e.g., the binding energy of two 
adjacent point defects). On the other hand, the theory perhaps suffers 
from the disadvantage that its limitations are more immediately obvious 
than are those of other approximate methods which have t o  be used in 
dealing with the solid state, for it sometimes gives good results even in 
what appear to be extreme cases. 

2. BASIC IDEAS AND SURVEY OF TOPICS 

Of the properties of lattice defects, only some can be expected to 
survive and still be describable in the continuum idealization. The theory 
of elasticity is concerned with the relation between the deformation of a 
body and the energy content of itself and its surroundings. Thus we are 
effectively limited to a discussion of the deformations and energy changes 
associated with the presence of defects. 

The first problem is to find a way of transcribing defects into their 
continuum analog. This can usually be done in a plausible ad hoc way for 
particular types of defect (Section a). It is also possible to develop a 
general theory based on an internal stress (( source function” bearingthe 
same relation to the internal strain as charge does to electric field in 
electrostatics (Section 4b). Closely related to this is the description of 

3 J. Larmor, Phil. Trans. Roy. SOC. A190, 205 (1897). 
C .  V. Burton, Phil. Mag. 151 33, 191 (1892). 
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internal stress in terms of a continuous distribution of dislocations 
(Section 9d). 

Figure 1 shows a body containing a number of defects S, T, and inter- 
acting with its surroundings, typified by a weight W and a spring P.  If 
X moves about, the deformation and elastic energy of the body change. 
At the same time the changes of shape of its outer surface communicate 
themselves to W and P and alter their potential energy. 

The shape of the body is related to the position of a defect in a rather 
complicated way. When the defect is moved its elastic field is not simply 
transported with it bodily, since this would usually violate whatever 
boundary conditions may have been imposed at  its surface. It is often 
convenient to divide the elastic field into a part which is transported 
bodily with the defect (“field in an infinite medium”) and a remainder 
(“image field”) which adjusts itself so that the boundary conditions are 

FIG. 1. To illustrate Section 2. 

satisfied. We shall see that the image field often plays an unexpectedly 
important role. There is an analogy with electrostatic problems involving 
charges in a finite medium whose dielectric constant is large enough to 
confine the field effectively to its interior, as opposed to the case of 
charges in free space, where inconvenient surface integrals can be 
relegated to infinity. 

Generally it will not be enough to describe a defect by its position 
alone; for example, a dislocation loop may change its shape. Let a, B . . . 
be a (possibly infinite) set of parameters sufficient to characterize the 
configuration of the defects. Both the elastic energy of the body E,1 and 
the potential energy E,,, of any external mechanism connected with i t  
will depend on the parameters. Rather than Eel and EsXt individually, the 
quantity of physical interest is their sum, the total en erg^^,',^ 

Etot = Es*(a,P - * .) + Eext(a,B - - a) .  

If the parameters are able to vary (subject to oertain constraints), it is 
EtOt and not Eel or E,,, which must be minimized with respect to them to 

4 B. A. Bilby, Proc. Phys. SOC. (London) A63, 3 (1950). 
6 M. 0. Peach, J. Appl. Phys. 22, 1359 (1951). 
6 J. D. Eshelby, Phil. Trans. Rog. SOC. A244, 87 (1951). 
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find the equilibrium state. In  fact the distinction between internal and 
external energy is artificial, though convenient. Consider, for example, a 
dislocation in a specimen strained in a tensile testing machine by tighten- 
ing a screw. We may regard this as a case of a defect in a body (the 
specimen) acted on by external forces, or as a defect in a complicated 
self-stressed body (specimen plus machine). 

From a thermodynamic point of view E,,, is likewise the important 
quantity. The properties of a nonisolated system may be derived from a 
knowledge of its enthalpy or Gibbs free energy under adiabatic or iso- 
thermal conditions. Although we shall usually regard Eel as “purely 
mechanical” it is strictly the body’s internal energy in the adiabatic case, 
or its Helmholtz free energy in the isothermal case.’S8 It follows that E,,, 
is its enthalpy or Gibbs free energy, for these quantities are introduced 
precisely to  give an  account of the internal energy or Helmholtz free 
energy of the body plus the energy of its environment under the guise of 
considering a property of the body alone. If we take this wider point of 
view we may also derive thermodynamic information from the tempera- 
ture variation of EtOt. (On the elastic model this variation will be deter- 
mined by thermal expansion and the change of elastic constants with 
temperature.) 

In  the infinitesimal theory of elasticity two or more elastic fields may 
be superimposed. The expression for Etot will then be made up of “self- 
energy” terms quadratic in the individual fields together with interaction 
terms involving products of pairs of fields. It is often convenient to deal 
with the interaction energies rather than with E,,,, particularly when the 
self-energy terms are formally infinite. Even when there are such infinite 
terms it is possible to “subtract them out” and find a simple expression 
for the interaction terms (Section 6). 

In accordance with usage in analytical mechanics and thermo- 
dynamics we may call 

the generalized force associated with the parameter a. Equilibrium is 
determined by equating to zero the generalized forces corresponding to 
those paramkters which are supposed to  be freely variable. In  nonequi- 
librium problems the generalized forces, being derivatives of the free 
energy, are the driving forces which provide the raw material for a kinetic 
calculation of the rate of approach to equilibrium by arguments outside 
the scope of a continuum theory. 
I. S. Sokolnikoff, “Mathematical Theory of Elasticity.” McGraw-Hill, New York, 
1946. 

8 A. E. Green and W. Zerner, “Theoretical Elasticity,” p. 72. Oxford Univ. Press, 
London and New York, 1954. 

F(a)  = -daEt&/da 
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If it is sufficient to give the Cartesian coordinates x, y, z specifying 

(2.1) 

the position of a defect, we may call 

F = -(a/&, a/@/, a/a~)E,,, 

the force on the defect in the narrower sense. It is often convenient to 
subdivide F along the following lines. Consider the force on the defect S 
in Fig. 1. 

(i) If S is the only defect in the body and W and P are absent, 
E,, = E,, will vary with the position of the defect. Because in a homo- 
geneous body the existence of F is evidently related to the presence of the 
surface, we may speak of it as an image force F', in analogy with the 
nomenclature in electrostatics. The surface of an internal cavity 0 will 
make a contribution to the image force. The cavity will still make a con- 
tribution even if it is filled with material, provided its elastic constants 
differ from those of the remainder of the body. More generally, inhomo- 
geneities of the medium will contribute to F'. In fact we may simply say 
that F' is due to inhomogeneities if we regard the body as part of an 
infinite body whose elastic constants are zero outside a certain region. 

(ii) If the defect T is introduced, the force on S will have a different 
value, say F = F' + F*, and we may call F T  the force which T exerts on S. 

(iii) If surface tractions are next applied (as by W and P), F becomes, 
say, Fr + FT + FE. Then FE can be regarded as the force exerted on 8 by 
the surface tractions, or the external mechanism responsible for them. 

(iv) If 2, y, z now refer to  the position of the cavity or region of elastic 
inhomogeneity 0, E,, will depend on 2, y, z and we may speak of F as the 
force on the inhomogeneity. 

The results of Section 5a lead a t  once to simple expressions for F" and 
FT (Section 5b), while in Section 6 we find an expression for the force on 
an inhomogeneity. In  Section 7 we develop a general expression for the 
force on a singularity or inhomogeneity which embraces the foregoing 
results but which is not limited to infinitesimal deformations. In  the 
infinitesimal case it completes the results of Section 5b by giving a formula 
for F' analogous to the expressions for FE and FT. 

As a first illustration we take the familiar misfitting sphere model for 
a point defect. Image effects play an important part here. They make a 
large contribution to the volume change produced by the defect, and their 
retention is essential if we are to reach formally the intuitively obvious 
result that a uniform density of defects produces a uniform macroscopic 
dilatation of the body containing them (Section 8a). In  Section 8b we take 
up the effect of point defects on the x-ray diffraction pattern of a crystal 
in relation to its macroscopic deformation. Image terms again make 
themselves felt in the elastic theory of the energy of solid solutions 
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(Section 8c). In Section 8d we refine the model of a point defect by in- 
cluding the effect of anisotropy, and in Section 8e we consider a defect 
as a lattice inhomogeneity. 

I n  Section 9 we consider some particular topics in the theory of dis- 
locations. (There are several excellent accounts of the general t h e ~ r y . ~ ~ ~ ~ ~ ’ ~ )  
Section 9a gives a formal derivation of the interaction energy of a dis- 
location loop with a stress-field. Section 9b deals with image effects, in 
particular the problem of a screw dislocation in a rod. This presents un- 
expected features and is of some interest in connection with the properties 
of metallic “whiskers.” Dislocations in motion (Section 9c) present some 
intriguing theoretical problems, but a t  present they do not appear to be 
of much practical significance. Finally in Section 10 we gather together 
a few points relating to the behavior of lattice inhomogeneities on a large 
scale. 

I I .  Formal Theory 

3. ELEMENTS OF ELASTICITY 

The clearest approach to the usual infinitesimal theory, with which 
we shall be chiefly concerned, is by way of the general theory of finite 
deformation. Moreover, since some of our results hold in the general 
case, we give first a simple formulation of the theory of finite strain in a 
medium with an arbitrary stress-strain relation. 

Throughout we use the convention that a repeated suffix is to be 
summed over the values 1 , 2 , 3  and that suffixes following a comma denote 
differentiation : 

eii = ell + e 2 2  + e33, ui,j = dui/axj, ui,jk = d2ui/axjaxk, 
p . .  a l , j  . = p .  ~ I , I  + pi2,2 + p i 3 , ~ .  

The symbol 6ij has the value 1 or 0 according to whether i and j are or are 
not equal. The symbol eijk has the value 1 if i j k  is an even permutation of 
123, -1 if it is an odd permutation and is zero otherwise. 

The state of finite strain produced in a medium (conveniently visual- 
ized as a transparent jelly) by body and surface forces may be described 
most vividly thus. Imagine space partitioned into small cubes by the net- 
work of a rectangular coordinate system xi. Within the body we embed a 
network of threads coinciding with the coordinate net. When the medium 
is strained, the embedded net becomes a curvilinear coordinate system 

(Fig. 2a), and the shape and size of any small mesh (cubic before 

@ F. R. N. Nabarro, Advances in Phys. 1, 269 (1952). 
10 W. T. Read, Jr., “Dislocations in Crystals.” McGraw-Hill, New York, 1963. 
l1 A. Seeger, “Handbuch der Physik,” 3rd ed., p. 383. Springer, Berlin, 1955. 
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deformation) gives an immediate picture of the deformation in its 
neighborhood. 

The vector u joining a point xi of the undeformed coordinate net to a 
point Z i  of the deformed net with 21 = 2 1 ,  22 = x2, $8 = x3 is evidently 
the finite displacement undergone by the particle of material originally 

X 

c i, 'M 
4 

-t 
U 

a 

b 

FIG. 2. Finite deformation. 

at xi.  As a vector field, the displacement may be considered to be a func- 
tion of the rectilinear xi or the curvilinear Zi. Let u(ri) denote the vector 
arrow whose tail is at xi, u(&) the arrow whose head is a t  zi. The relations 

if 
u(xi) = ~(z,), au(xi)/axj = au(iz)/azj 

xi = zi 
merely expresses the fact that every u-arrow joins the points xi, & with 
identical c.oordinate numbers. Thus, mathematically, we need not dis- 
tinguish the xi (Lagrangian coordinates) from the h (embedded coordi- 
nates). Let ui be the components of u along the unit vectors il, iz, i 3  of the 
undeformed coordinate system: 

u = umim = ulil + uziz + u&. 
A small cube with edges 4, eiz, eio (Fig. 2b) before deformation be- 

comes a parallelepipedal mesh of the deformed coordinate system with 
edges eel, eez, te3 where 
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For the purposes of the theory of elasticity we need to disentangle from 
the ei (or the um,i) a measure of deformation free from any reference to the 
orientation of the elementary mesh. The six scalar products 

gij = ei * ej = ui,j + ~ j , i  + Um,iUm,i + 6ij 

evidently provide such a measure, for they give the lengths of the edges 
(egll+ . . .) and the angles between them (cos-1 g12/g11*gz2* . . .) and so 
enable us to reconstruct the mesh the correct size and shape without 
telling us how to orientate it. In  plaoe of the gij, the strain components 

$3 - a gi‘ ZJ (3.2) e . .  - 1( - a,.) 
are generally used. 

Let the material all round the elementary mesh be cut away and let 
such forces be applied to its free surfaces that it retains its shape, size, and 
orientation. Let e2pj be the force on the face which, before deformation, 
had the positive xj axis normal to it. Then the pij defined by resolving pj 
along il, iz, i3, 

pj = PijL = pijii + pzjiz + p3ji3, 

are the (unsymmetrical) Boussinesq12 stress components. The equation of 
equilibrium of the mesh is easily shown to be 

where 
f = fmim 

is the body force per unit mesh of the deformed (or equally well, the un- 
deformed) coordinate net. Cbnsideration of the work done in a small 
additional deformation of the body shows that 

(3.4) 

where W is the density of elastic energy per unit mesh. 

stated, second-order terms in the strain tensor are neglected, 
In the infinitesimal linear theory,? which we shall use unless otherwise 

eij = B(ui,j + uj,i) (3.5) 

W = h j k i e i j e k l .  (3.6) 

and W is taken to be a general quadratic expression in the eij: 

12 L. Brillouin, “Les Tenseurs en MBchanique et en $hticitB,’’ p. 246. Masson, Paris, 
1949. 
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The suffixes of the elastic constants c i j k l  have the same symmetry as those 
of ei3ekz, that is, i and j or k and 1 or (ij) and (k l )  may be interchanged with- 
out altering c i j k l .  The stress tensor is now symmetrical, 

p i j  = p j i  = C i j k l e k l  = Ci jk lUkJ .  (3.7) 

(3.8) 

Moreover, in an isotropic medium 

pi j  = hem,bij + 2peii. 

The equilibrium equation is 
p . .  . = 0 %a (3.9) 

in the absence of body forces and 

p i j , j  + f i  = 0 (3.10) 

in their presence. In the isotropic case (3.10) may be written in terms of 
the displacement: 

pV2u + (A + p )  grad div u + f = 0. (3.11) 

For finite strain, the problem of finding a rotation which when com- 
bined with the deformation eij will send the cube with edges eil, eiz,  ei3 into 
the parallelepiped with edges eel, eez, tea is rather complex. In the linear 
theory, however, we may define the rotation to be half the curl of the 
displacement, 

or more conveniently as the antisymmetric tensor 

We have 

ij. s - - - & i j k U j , k  

ij.. t3 = * ( u . .  rt3 - u .  31% .)* (3.12) 

6, = - € i j k G k ,  i j k  = v %a 

With an eye to later application, it is convenient to have a definition of the 
rotation directly in terms of the ei and ii without reference to  the u i ~ .  If 
ei and ii differ only infinitesimally, the magnitude of the vector il X el is 
the angle through which il must be rotated to coincide with el. Its direc- 
tion is the axis about which the rotation must be performed. Then 
*(il X el + iz X ez) * i s  is the x 3  component of the averages of the rota- 
tions of the edges eil, tiz of that face of the elementary cube of Fig. 2b 
which has is  for normal. In  fact we may put 

ij = Hi1 X el + i2 X e2 + is  X e3) (3.13) 
for then 

ij3 = -61~ = Nil x el + i 2  x ez) * i3 = HUZJ - UM> 

by (3.1), in agreement with (3.12). 
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From (3.5) and (3.12), we have 

G j , ,  = e k a , 3  - e k j , i  or 6 i . k  = - € l i j e k i , j .  (3.14) 

The two tensor fields e i j ,  ijij cannot be strain and rotation in an elastic field 
with a displacement function unless they satisfy (3.14). But this is not 
enough to ensure the existence of a displacement, for the line integral 

(3.15) 

giving the difference in the rotation at  points P, Q must be independent 
of the path joining them. The curl of the integrand must be zero, that is we 
must have 

s i j  = 0 (3.16) 
where I 

& j ( e p q )  = - eikmejznekz,mn. (3.17) 

It is shown directly in works on the theory of elasticity that the vanishing 
of Si, in a region is the necessary and sufficient condition for the existence 
of a displacement there. 

Consider a narrow tube in the unstraked material with its axis 
parallel to the 2 3  axis. In the strained state ij3,3dx3 is the relative rotation 
of two of its cross sections separated by dx3, while &l, 6 3 , ~  are its curva- 
tures about the x1 and x2 axes. We may call G , , j  the curvature tensor. 

It will be convenient to summarize here some elementary theorems 
and manipulations which will be needed later. 

If ( u i , e i j , p i j )  and ( u i , e i / , p i / )  are two sets of quantities, each related by 
(3.5), (3.7), and satisfying (3.9), we obviously have 

Q a(&) - &(p) = - /p Ezijeki . jdXk 

p i j  e . '  ri = p i / e . .  $2 - - P~;u,,/ = P. . 'u .  $3 w = ( p i j ~ i ' ) , ,  = ( p i / ~ i ) , j .  (3.18) 

Thus the vector 

has zero divergence, and so by Gauss's theorem 

~j = p i j ~ i  - pi3)ui (3.19) 

(3.20) 

for any two surfaces Z1, & which can be deformed into one another with- 
out encountering singularities of vj .  (We use d S j  as an abbreviation for 
n3dS, where nj is the normal to the surface and dX is the surface element.) 
In particular if B contains no singularities of v,, 

J Z V j d S j  = 0. (3.21) 

If the material is homogeneous ( ~ i ~ k l , ~  = 0), the difference between the 
elastic field u;, pi/ and the same field advanced bodily a short distance 
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along the XL axis satisfies the elastic equations. Thus in (3.19), (3.20), 
(3.21) we may replace uil, pi; by ui.ll, piJ,l’. 

If pij, pij’ satisfy (3.10) instead of (3.9), we have 

/z (pijuil - pij’ui)dsj = / (f lu+ - fiuil)dv 

(Betti’s reciprocal theorem‘a~14). 
We also have 

Spijeij’dv = Jpij%i,j’dv = $ {  (pi;ui’),j + fiui’jdv = Jpi,widS, + $f,aidv 

provided only that 

pij,j + fi = 0 and eij’ = &(ui,jl + ~ , , j ’ ) .  (3.22) 

Here pij and eij’ need satisfy no other conditions and need not be related 
in any way. In particular they need not be possible stress and strain 
tensors in the same material. With u( = xi, (3.22) gives 

/ piidtl = Jz PijXidSj + J fixidv. (3.23) 

In a homogeneous isotropic or cubic medium, pii = 3Kec, where K is the 
bulk modulus. We have then the expression 

A V = -  r . T d S + -  r-fdv 
3K ‘s 3K ‘ S  (3.24) 

for the volume change produced by a body force density f and surface 
tractions T. If f and T are zero, AV = 0 even if the body is in a state of 
self-stress in which pij does not vanish throughout the interior. 

We shall also need Stokes’s theorem in the relatively unfamiliar form 

/z w...j,ldsj = Jz w . . . m , m d s ,  (3.25) 

for a closed surface. This follows by applying Stokes’s theorem in its usual 
form to the quantity c l i p . .  .%, or by applying Gauss’s theorem to the body 
generated by giving the surface a small displacement parallel to the xz 
axis (see Fig. 7). 

4. SPECIFICATION OF INTERNAL STRESS 

a. Somigliana Dislocations 

To pass from the crystal lattice with defects to its elastic analog, we 
must be able to associate with each type of defect a suitable state of 
l3  A. E. H. Love, “Mathematical Theory of Elasticity.” Cambridge U. P., London, 

1952. 
l4 S. Timoshenko and J. N. Goodier, “Theory of Elasticity.” McGraw-Hill, New 

York, 1951. 
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internal stress in the continuum. For brevity we shall refer to these states 
of internal stress as “singularities.” 

Most of the singularities of physical interest are particular cases of a 
general type of dislocation described by Somigliana.l6 To construct a 
Somigliana dislocation, mark out in the elastic body a surface C bounded 
by a curve c and make a cut coinciding with C. Give each pair of points 
adjacent to one another on opposite sides of the cut a relative displace- 
ment d (Fig. 3), scraping away material where there would be inter- 
penetration. Fill in the remaining gaps with additional material and 
cement together. This evidently leaves the material in a state of internal 
stress. The stress pijn, (where n, is the normal to C) is continuous across 

6== 
FIG. 3. A Somigliana dislocation. 

the surface of discontinuity, but the various components of stress and 
strain pii, eij in general are not. It is physically obvious, and can be proved 
mathematically16,16 that a knowledge of d as a function of position over 
C ,  together with the boundary conditions at  the surface of the body, com- 
pletely determines the resulting state of internal stress. If d is a reasonably 
smooth function, stress and strain will be finite everywhere except 
possibly at  c. 

If d has a constant value, we have the usual dislocations of solid state 
theory, the dislocations of types 1,2, 3, of Volterra.11 If d = r X a, where 
r is the position vector and o a constant, we have Volterra’s dislocations 
of types 4, 5, 6. Physically we may take them to represent twist and 
tilt boundaries made up of an array of dislocations which, in the spirit 
of the continuum approximation, have been replaced by a continuous 
distribution of infinitesimal dislocations. 

To make a model of a point defect, we take for C a small sphere with 
a suitable distribution of d over the surface. If we let the radius of the 
sphere tend to zero and, a t  the same time, increase d in such a way that 
the displacement a t  a fixed distance from the sphere remains finite, we 
obtain a point singularity in the mathematical sense. For many purposes 
it is an adequate representation of a physical point defect. 

As a simple example we might take d constant inlmagnitude and 
directed radially. Somigliana’s recipe is then equivalent to the following. 
l6 C. Somigliana, Atti accad. nazl. Lincei Rend. Classe sci. fis. mat. e nut. 23(l) 463 

(1914); 24(1) 655 (1915). 
l6 M. Gebbia, Ann. Mat. Pum Appl .  7 ,  141 (1902). 

V. Volterra, Ann. Bc. Norm. Sup. 24, 400 (1907). 
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Cut a sphere out of the matrix, alter its radius by adding or removing 
material, and reinsert in the matrix. This is just the familiar misfitting- 
sphere model for a substitutional or interstitial atom. 

It is convenient to divide the elastic field of the singularity into two 
parts, u p  and piJm, the value it would have in an infinite medium and an 
‘(image field” u?, pi,’ chosen so that up  + u,”, pij“ + p i t  satisfy the 
conditions imposed at  the surface of the actual finite body containing the 
singularity. Then if we give Somigliana’s surface of discontinuity a dis- 
placement t ,  the elastic field will change from 

ui = uim(3k) + u,’(x~), 
to 

pij = Pijm(zk) + pij’($h) 

pij = pijw(zk - f k )  + ~ i J ’ ( ~ k , f k )  

(4.1) 

(4.2) ui = uim(zk - &) + ~ i ’ ( ~ k , E k ) ,  

The field undergoes a rigid displacement, but the image field changes in 
a more complicated way which can only be found by solving a boundary- 
value problem. The exact form of up”, p i p  can be fixed by requiring that 
pijm shall approach zero at  large distances, a t  least as in three-dimen- 
sional problems and at  least as r-’ in two dimensions. 

b. The Incompatibility Tensor 

The way in which we introduced the stress field associated with a 
given defect is analogous to a development of electrostatics which begins 
by postulating that the field of a point-charge is er/ra. Electrostatics may 
alternately be developed starting from the concept of a charge density 
which is the (‘source” of the field and determines it by way of Poisson’s 
equation. The field of a point charge is then found by specializing the 
density to have the form of a delta function. Something analogous can 
be done in the elastic case. We start with a body in a state of internal 
stress and find a “source function of internal stress” which, when pre- 
scribed, determines the internal stress if suitable boundary conditions are 
given. 

In  engineering practice, the state of internal stress of a body is in- 
vestigated by cutting a piece off and seeing how it or the remainder 
deforms. We may idealize this process as follo~s.l4-~ Let a small cubical 
element be marked out in the body and then cut out of it. Its shape and 
size will alter; in other words, it will spontaneously undergo a certain 
strain, say eij .  By repeating this process for every point we obtain a field 
ej(xk) which serves to specify the state of internal strain. (Evidently this 
Cj is minus the strain derived from the internal stress using Hooke’s law.) 
Unlike a strain field arising from external forces, e+ will not, in general, 
satisfy the compatibility conditions (3.16). We can see this most clearly 
by reversing the foregoing argument. Cut a stress-free body into elemen- 
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tary cubes and give each one a permanent strain eij* so that the field 
eij*(xk) has continuous first and second derivatives but is otherwise 
arbitrary. Then, in general, &(em,*) # 0. Now pull the elements back to 
their original cubical form and size by suitable forces applied to their 
surfaces and cement them together. Then remove the distribution of body 
forces resulting from the building-in of these surface forces. This induces 
in the body an additional strain eij’ for which Sij(e,,’> = 0. The internal 
stresses are now those derived from eij* + eij’ by Hooke’s law. If now the 
body is redissected, each element will undergo a spontaneous strain 
eij = ei3* + eij’ for which Sij(emn) = &(em,*) # 0. 

Evidently if to the internal strain there is added a strain produced by 
external forces, and therefore derivable from a displacement, the value of 
Sij is unaltered. Thus in a sense the ‘(incompatibility tensor” Sij separates 
the internal from the external strain. I t  is in fact a suitable source function 
for internal stress. In  other words, given Sij(r) as a function of position, 
we can in principle solve the relation 

if Sij, or less restrictively its normal component Sijnj, vanishes at the 
boundary of the body. (This follows from the solution of a similar problem 
in the general theory of relativity.18) If this boundary condition is not 
satisfied, less elegant solutions are still possible. 

To any such solution we can add the general solution of Szj = 0, 
namely eijo = +(ui,jo + uj,io) with arbitrary uio. The complete determina- 
tion of the state of internal stress when Sij(r) is prescribed thus goes as 
follows. Find any solution ei5 of (4.3). With the aid of Hooke’s law, find 
the stresses pij and hence the body-forces fi = -pij,j and surface tractions 
pijnj necessary to maintain them. By standard elastic theory determine 
the compatible strain eijo arising from equal and opposite forces. Then the 
stress in the body is that derived from eij + ei,O by Hooke’s law. 

Such calculations are simplified by introducing a stress function 
xij = xji related to pij in the same way as eij is to Sij: 

P’ .  a3 - - --e. akmejZnXkZ.mn. 

Clearly for any x k z  we have pij,j = 0. Southwelllg and Kuzmin20 have 
18 A. S. Eddington, “Mathematical Theory of Relativity,” p. 128. Cambridge U. P., 

19 R. V. Southwell, Phil. Mag. [7] 30, 253 (1940). 
a0 R. 0. Kuzmin, Compt. rend. acad. sci. U.R.S.S. 49, 326 (1945). 

(4.4) 

New York, 1923. 
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shown directly that any symmetric tensor with vanishing divergence can, 
conversely, be represented in the form (4.4), and indeed with one or other 
of the restrictions xlz = X Z 3  = X3l = 0 (Maxwell’s form) or 

x11 = x z z  = x 3 3  = 0 

(Morera’s form).I3 Kroner2I has reduced the problem to manageable form 
for the isotropic case and obtains the direct relation 

between incompatibility tensor and stress function. He has also discussed 
the anisotropic case.22 The elastic energy of a self-stressed body can be 
expressed in the form 

plus certain surface terms which vanish if S,nj vanishes a t  its s u r f a ~ e . ~ ~ ~ ~ ~  
From a given atate of incompatible strain, eij, we can construct a 

tensor 

‘8 ..x..&) 
2 Xu 23 

(4.5) g.. - 6.. + 2%. 

on the pattern of (3.2). If we take the gij as a metric tensor associated with 
our ordinary Euclidean coordinate system, we thereby define a geometry 
which is in general not Euclidean but Riemannian. The test for this is 
whether the Riemann tensor formed from the gij vanishes or not. In three 
dimensions, where the four-suffixed Riemann tensor Rprst has only six 
independed components, we may equally well use the two-component 
tensor Sij = eiprejjstRprst24 which, with (4.5), can be shown to be identical 
with the 8 ,  of (3.17). EckartZ6 has shown that this Riemannian geometry 
has a simple physical meaning. The non-Euclidean arc length 

$3 - $1 

s = 1. (gijdxidxj)* (4.6) 

along any curve c drawn in the body is the actual length of a thin curved 
rod with c as axis when it has been cut out and allowed to relax its internal 
stresses. If we take a rectangular closed path ABCD (Fig. 4a) and calcu- 
late (4.6) along each of the four sides we shall find in general that SAB # 
SCD, SBC # S D A .  Thus when a flamentary loop enclosing ABCD is cut out, 

21 E. Kroner, 2. Physik 139, 175 (1954). 
22 E. Kroner, 2. Physik 141, 386 (1955). 
23 R. V. Southwell, Proc. Roy. SOC. A164, 4 (1936). 
24 A. J. McConnell, “Applications of the Absolute Differential Calculus,” p, 154. 

$6 C. Eckart, Phys. Rev. 73, 373 (1948). 
Blackie, London, 1936. 
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it must be cut through (say at  A )  in order to relax its stresses completely. 
Moreover, the cut will define the two ends of a vector AA’ (Fig. 4b). We 
may relate this to Frank’s26 discussion of the Burgers circuit in a dis- 
located crystal. We traverse a circuit in a region of ((good” crystal sur- 
rounding “bad” crystal. For each interatomic step we make in the real 
crystal, we make a corresponding step in a perfect “comparison” crystal. 
When we have come back to the starting point in the real crystal, we are 
still a certain vector distance (closure failure) from the starting point in 
the comparison crystal. If we desire, we may dispense with a separate 
comparison crystal and have the work of traversing the comparison 
circuit done for us automatically. Dissect out a thin loop enclosing the 
circuit in the real crystal and cut through the loop. We are left with a 
perfect crystal, admittedly with an odd shape, which can serve as n 

D 

C 

a b 
FIG. 4. To illustrate Section 4b. 

comparison crystal, in which the Burgers circuit is already marked out 
and the closure failure is directly indicated by the gap AA’. 

The physical significance of Sij can be seen as follows. Equation (3.15) 
gives the difference of the rotation at  the ends of a path drawn in a region 
where Sij = 0. Consider a closed path c embracing a region where Sij # 0. 
The integral will not in general vanish. In fact Stokes’s theorem and 
(3.17) give for its value 

A61 = - / , S I , ~ S ~  

where C is any cap bounded by c. Consider first a state of plane strain 
where 533 is the only nonvanishing component of Sij, and let Saa vanish 
everywhere except in a small patch near the origin, so that we may write 
Saa = oS(x~)S(z , ) .  Then 

A63 = - Jc SaadSa = -0. 

This describes the state of internal strain resulting from cutting out a 
wedge of material of angle o and cementing the faces of the cut together 

*OF. C .  Frank, PhiZ. Mag. [7] 42, 809 (1951). 
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(Fig. 5a). In physical terms, this represents a tilt grain boundary of angle 
w terminating at  the origin. Thus 533 is a measure of the number of 
terminations of tilt boundaries per unit area. More generally, Sij measures 
the flux of Volterra dislocations of types 4, 5, 6 or, in other words, the 
number of tilt and twist boundaries which terminate in unit area. The 
exact relation can be developed in detail, but it is evident that Sij is not 
an adequate measure of the density of physical dislocations which give 
rise to  a discontinuity of displacement, not of rotation. The Bianchi 
identity Sij,j = 0 expresses the fact that a Volterra dislocation of general 
type cannot end in the medium. 

a b 
FIG. 5. Relation between edge and "wedge" dislocations. 

An edge dislocation can be made by cutting out a parallel-sided 
fissure and closing the gap. This can be done by removing a wedge and 
inserting a wedge of the same angle at  an adjacent point (Fig. 5b). Thus 
to  describe an edge dislocation at  the origin we should have to take 
8 3 3  = const a {  8(s1)6(z~)} /aa2.  More generally, if we take Volterra tilt 
and twist dislocations to be analogous to current-carrying wires, edge and 
screw dislocations are analogous to  closely-spaced wires carrying opposite 
 current^.^' We shall treat the description of internal stress in terms of 
dislocations in Section 9d. 

5. ELASTIC INTERACTION ENERGIES 

a. Interaction Energies between Stress Sys tems  

Suppose that in the body whose surface is Zo we have one system of 
internal stress S whose sources lie entirely within the surface Z (Fig. 6) 
and another system T whose sources lie entirely outside 2. If Es and ET 
are the values of the total elastic energy when S or T alone exists in the 
body, we may write the total energy when they coexist in the form 
Es + ET + Eint(S,T). Here 

Eint(S, 2') = +J(p&ijT + pijTeijS)dv 

is, by definition, the interaction energy between S and T. According to 
E. Kroner, Proc. Phye. Soe. (London) A421, 55 (1956). 
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(3.18) the two terms in the integral are equal. The volume integral can be 
reduced to a surface integral if we note that one or other of the strains can 
be written in terms of displacements inside and outside I;. In fact ei,S can 

FIG. 6. To illustrate Section 5. 

be written as +(ui,js + u ~ , ~ S )  in region I1 and eijT as +(ui,jT + Uj, iT)  in 
region I, but not conversely. Hence we have 

Eint(S,T) = /I pijSU<.jTdv + hI PijTUi,jSdV. 

Because of the equilibrium equations (3.9) pijSui,jT = (piisuiT) ,j. Gauss's 
theorem converts the first term into 

I2 PijSUiTdSj .  

Similarly the second term becomes 

lz0 PijTUiSdSj - l2 pijTuisdSj. 

The minus sign is correct if in dSj = njdS, nj is supposed to be the out- 
ward normal to I;. The integral over Zo vanishes since pijTnj = 0 on 20. 
Thus we have an expressione 

Eint(S,T) = l2 ( P i j s U i ~  - Pi jTUiS)dS j  (5.1) 

for the interaction energy between S and T in the form of an integral over 
a surface separating them. From the derivation it is clear that the choice 
of 2 is arbitrary so long as it lies in a region where both uis and uiT exist; 
analytically, the divergence of the integrand vanishes in the region be- 
tween two such surfaces. 

Now let pijT and uiT be the stress and displacement produced by sur- 
face tractions pij'nj instead of by a source of internal stress; uiT exists 



THE CONTINUUM THEORY OF LATTICE DEFECTS 97 

throughout the body. Thus for the interaction term in the elastic energy 
we have 

This vanishes however, since pijsnj = 0 at  the surface of the body. Thus 

the interaction term in the elastic energy between a system 
of internal stress and a system of external stress is  zero. (5.2) 

The response of a body to external forces can be derived from its 
elastic energy by Castigliano's and related theorems.14 Hence (5.2) says 
physically that the response of a body to external forces is the same 
whether it is self-stressed or not.28 

This does not, of course, mean that there is no interaction energy 
between the internal and external stresses, since we must include the 
potential energy of the external mechanism giving rise to the latter. We 
can in fact show that (5.1) is still a good measure of the interaction energy 
when T refers to an external stress. The requirement that Z separate S 
from T evidently means now that Z shall lie within Bo but outside the 
sources of S. In particular we may put Z = Bo. Then 

Ei,,t(S,T) = - /zo pijTuiSdSj. 

To be a sensible interaction energy Eint(X,T) must have the following 
property: Ein,(S",T) - Eint(S',T) is the difference of the energy of the 
whole system for two different states of internal stress S" and S' and the 
same external stress T, insofar as it depends on cross terms between S" 
and T or S' and T. The energy of the system is made up of the elastic 
energy of the body and the potential energy of the mechanism producing 
the surface traction. We have just seen that the former makes no con- 
tribution to the interaction energy. The change of the potential energy is 
the negative of the work done by the external forces in passing from S' 
to X". that is 

This is just Eint(S",T) - Eint(S',T) as calculated from (5.1). Hence, quite 
generally, (5.1) gives the interaction energy between X and an elastic field 
produced by internal or external stress, or, by an easy generalization, a 
combination of both. In place of (5.1) we may write 

Eint(S,T) = /z { (pijs + pijU)uiT - pij'(~i" + ui"))dSj 

28 R. V. Southwell, "Theory of Elasticity." Oxford Univ. Press, London and New York, 
1936. 
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where uiU, piju is any elastic field free of singularities within 2, for, by 
(3.21), the additional terms give no contribution. In other words, in place 
of uiS we can use any “wrong” elastic field which has the same singu- 
larities inside 2. In particular we may put, u,iu = - l i i I  and obtain 
the result 

E,,+(S,T) = l2 (pijmuiT - pijTui”)dS, (5.3) 

which is the most generally useful. Here uim and uir are the displacement 
in an infinite medium and the image displacement discussed in Section 4. 

It may happen that a fictitious distribution of body force fis inside 2 
can be found which produces the same stress on and outside 2 as does the 
actual source of internal stress within 2. Then Gauss’s theorem reduces 
(5.1) to the volume integral 

EiPt(S,T) = - JfS - UTdV (5.4) 

taken over the interior of 2. 
These results are closely connected with the Green’s function for the 

boundary-value problems of ela~ticity.’~ Suppose that for some point 
singularity at  P we can evaluate the interaction energy explicitly in the 
form 

Ei,,(S,T) = q(uiT,pijT a t  P) .  (5.5) 

Combining this with (5.1) we have a formula for evaluating Q a t  P from 
the applied surface tractions. Evidently uis is the appropriate Green’s 
function. Similarly, combining (5.5) with (5.3) we see that merely with the 
help of the “Green’s function for an infinite medium,” up, we can find Q 

only if we know both surface traction and displacement. Thus, for 
example, the result (8.9) gives: M~Dougal l ’s~~ formula for dilatation 
in terms of surface traction, ,while the interaction energy for an 
infinitesimal dislocation loop (see Section 9a) gives effectively Lauri- 
ce11a’d3 relation for determining shear stress in terms of surface data. 

b. The Force on a Singularity 

From the foregoing we can easily find an expression for the force on the 
singularity S due to another stress system T ,  in the sense explained in 
Section 2. Evidently the force in the xl direction is 

Fl = lim e-’(Eint(S’,T) - Eint(S,T) 

where S’ stands for the singularity S after it has been advanced a distance 
E along the XL axis. To find the elastic field of S’, we may shift the field 
of S bodily and make an adjustment to ensure that the boundary condi- 

-0 



THE CONTINUUM THEORY OF LATTICE DEFECTS 99 

tions are still satisfied. Thus 

UiSl = uis - €Ui,lS + Ui’ 

p..a’ = p..s 23 - cpij.P f pi/- 13 

The field uil, pi,’ is free of singularities wit,hin 8, and, by (3.21), makes no 
contribution to Eint(S,T). Thus from (5.1) we have at  once 

(5.6) 

or, splitting this into 00 field and image field terms and applying (3.21) 
to the latter, we obtain 

F I  = Jz (pij,t*ui~ - PijTUi,lS)dSj. (5.7) 

These results are still true if the affixes S,  T or 00, T are interchanged: 

by (3.25) and (3.18). (We have assumed that uis is single-valued on 8; the 
case where this is not so is discussed in reference 6.) Equation (5.9) follows 
from (5.8) on rejecting the image field as before. Any of these expressions 
for Ft give the image force if uiT, pijT are replaced by the image field 
ui*, pi{.  This follows by a rather tedious extension of the present argu- 
menta or more simply from the results of Section 7. 

6. INTERACTION ENERGIES BETWEEN STRESSES AND INHOMOGENEITIES 

Suppose that a body is subject to prescribed surface tractions over its 
surface 20 and that t’he elastic constants cijel are functions of position. 
Let the elastic constants change to some other function of position cijet‘ 

and let the new values of the elastic quantities be distinguished by primes, 
the prescribed surface tractions remaining unaltered. The increase of 
elistic energy is 

6Eel = +J(pij’eij’ - pijeij)dv (6.1) 

(6.2) =:+ IZo Pij(Uil - Ui)dSj. 
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The work done by the external forces during the alteration, -6E,,, is 
clearly just twice (6.2). Thus 

6(Ee1 + Eext)  = -6Ee1 = 6 S E e x t .  (6.3) 

Of the work done by the external forces, half disappears and half goes to 
increase the internal energy of the body. 

Equation (6.1) can be written in the form 

6Ee1 = &J(pijeij’ - pij’etj)dv = 6J(cijam’ - cijkm)eijlekmdv (6.4) 

for the difference between (6.1) and (6.4) can be transformed by (3.18) 
into 

which vanishes in view of the boundary condition pi;ni = pij’nj. We may 
also write 

6E.1 = *J(Sijkm’ - Sijkm)Pi{pkmdv (6.5) 

where the coefficients are those giving eil in terms of pij, eij = Sijkmpkm. 
The x1 component of the effective force on the elastic inhomogeneity 

is evidently given by taking Cijkm’(X1,%2,X3) = Cijkm(Z1 - E ,  ZZ,Z~)  Cab- 
lating (6.4), dividing by - E ,  and letting E tend to zero. Thus 

Fz = &$Cijkm.zeijekmdV = *J { (Cijkmeijekm) , z  - 2cijkmeijplekm 1 dv 
= J(W,Z - Pijeij,z)dv 

where W is the elastic energy-density. The second term may be written 
as -piJ-i.,z = ’ - (pijui,z),j since pij,j = 0. Gauss’s theorem then gives6 

~i = Lo (wail - Pijui,t)dSj. (6.6) 

It follows from the discussion in Section 7 that (6.8) also gives the 
force on an inhomogeneity due t o  a system of internal stress provided 20 
is taken to be a surface separating the inhomogeneity from the source of 
internal stress. 

According to the discussion in Section 2, Eq. (6.3) states that in an 
adiabatic change the changes of enthalpy and internal energy are equal 
and opposite, or that in an isothermal change the changes of the Gibbs and 
Helmholtz free energies are equal and opposite. For a thermodynamic 
system in which the deformation is described sufficiently by giving the 
specific volume V ,  there is the adiabatic relation 

H = E - V(BE/BV), 
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between enthalpy H and internal energy E and the isothermal relation 

G = F - V ( a F / a V ) y  

between Gibbs free energy G and Helmholtz free energy F .  If E or F is a 
quadratic function of V we have H = -El G = -F. Equation (6.3) is 
just the generalization of this to the more complex elastic case. It depends 
on the energy density being quadratic in the strains. 

7. THK ENERGY-MOMENTUM TENSOR OF THE ELASTIC FIELD 

It is possible to develop a general expressiona for the force on an elastic 
singularity or inhomogeneity which embraces the foregoing results and 
which, moreover, is valid for finite strain and an arbitrary stress-strain 
relation. If the latter is t o  be true, we must use the total displacement and 
stress throughout, since, in a nonlinear system, the division of elastic 
quantities into parts due to image terms, internal and external stress 
systems and the like no longer has any meaning. 

We begin with the simple case of a body whose free surface 2 0  is sub- 
ject to  surface tractions and which contains some singularity s, that is, a 
source of internal stress or an elastic inhomogeneity. For the moment, we 
suppose that the displacements are infinitesimal. 

We first find the change in the elastic energy of the body Eel on moving 
S a small distance B in the direction of the positive x1 axis. We can do this 
in two stages: (i) a t  each point (Z1,xZ1x3) we replace the value p ( x ~ , x ~ , x ~ )  
of m y  quantity associated with the elastic field by p(xl - B,  x2,x3), and 
(ii) we adjust the surface values of p, as thus changed, so that they again 
conform with the boundary conditions. In stage (i) 
energy evidently is 

e l  

the change of elastic 

(7.1) 

where W is the energy density. If we suppose that for some reason W or its 
derivative cannot be defined throughout the interior of Zo, we may 
evaluate 6E,l(i) by keeping the cp fixed and shifting 20 by B in the direction 
of the negative x1 axis. Evidently 6EelCi) is the volume integral of W over 
the unshaded area of Fig. 7 with due regard for sign; this again gives (7.1). 
The figure also makes it clear that the shaded area contributes nothing. 
Thus, in the case of singularities for which W becomes formally infinite, 
we have managed to “subtract out the infinities.” 

If the displacement a t  the surface is ui before stage (i), it will be 
ui - E U ~ , I  + 0 ( e 2 )  at its conclusion. Let its value a t  the conclusion of stage 
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(ii) be UP’. Similarly, if the surface traction is initially, it wil l  be 
(pij  - epij,l)nj + 0(e2 )  at the end of stage (i). During the course of stage 
(ii), it will be (pij - EPij,l)nj + pij’ni, where pi,’ will vary during the 
adjustment in a way depending on the degree of “hardness” of the ex- 
ternal mechanism. In any case it will be of order E. Thus the energy 
entering the body during stage (ii) is 

ui + €Ui,l)dSj + O(E2). (7.2) 

Consider next the change of ESxt. The surface traction has changed from 

FIG. 7. To illustrate Section 7. 

piinj to piJnj + O ( E )  and the surface has moved through a distance 
Uifinsl - ui (of order E) a t  each point. Thus 

6EeXt = - La p i i (uP1  - Ui)dSj + O(e2) (7.3) 

and so 

b(EeI + Eext) = E La (pijui,l - W6G)dSj + O(e2). 

Fortunately the expression uPal - ui which is generally incalculable and 
which would contribute non-negligible terms of order E to (7.2) and (7.3), 
disappears from their sum. For the force in the x1 direction we thus have 

F~ = - lim E - * ~ ( E ~ ~  + E ~ ~ ~ )  = Jzo ( ~ 6 ~  - p i ,a i , l )d~ i .  
z-+ 0 

We could, of course, equally well have displaced the singularity parallel to 
the 2 2  or x3 axis. Thus 

taking for Z the surface 20 of the body. By expressing W and pij in terms 
of c i jk l  and UkJ,  it is easy to show that the divergence of the integrand, 
W,Z - (pt,ui,z),j vanishes wherever c ~ ~ ~ ~ , ~  = 0, that is wherever the material 
is homogeneous. Thus the integral (7.4) can be taken over any surface 
Z into which ZO can be deformed without entering a region in which ui 
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cannot be defined or where the elastic constants vary with position. Thus 
Z can be any surface embracing, but not cutting, inhomogeneities or 
sources of internal stress. 

The extension to  the case where there is a force on S arising from 
sources of internal stress which are outside Z (Fig. 6), in addition to or 
instead of those arising from surface tractions, is immediate. No difference 
is made in Eql + Eext if we redefine Eel to be the elastic energy within Z 
and re-define Bort to be the sum of the elastic energy between Z and ZO 
and the energy of the external mechanism. We can then repeat the 
previous calculation, now taking Z as the surface of the “body” and 
regarding everything outside Z as the mechanism producing surface trac- 
tions on 2.  This is quite legitimate since we were careful, in the original 
derivation of (7.4), to impose no limitation on the external mechanism, 
beyond the continuity requirement that a change of order E in any one of 
the quantities pijnj, ui, EeXt involve a change of the same order in the other 
two. Evidently we arrive at  (7.4) again, with Z being any surface sepa- 
rating the singularity S from the surface tractions and the sources of 
internal stress which we regard as exerting a force on it. 

When there is no source of internal stress outside Z and E,,, vanishes, 
(7.4) gives the image force on S arising from the imposed boundary condi- 
tions and any inhomogeneities in I1 (Fig. 6 ) ,  since nothing in the argument 
excludes the latter. Boundary conditions for which EeXt = 0 are: surface 
traction zero over some regions of Zo, displacement constant over the 
remainder. When the boundary condition is pi,nj = 0 all over ZO, (7.4) 
reduces to 

and we may say that the energy change in a small displacement simply 
arises from the movement of the peripheral elastic field of S into and out 
of Zo in stage (i) (Fig. 7). The adjustment in stage (ii) makes no further 
contribution. 

In  stage (i) the whole elastic field was supposed to be shifted. This 
means, in particular, that the elastic contents underwent the change 
c i j k l ( ~ ~ , n , ~ ~ )  --f c i j k l ( z l  - el 22,~~). Thus even if there are no sources of 
internal stress within 2, F Z  will not be zero if there are elastic inhomo- 
geneities within I;o Eq. (7.4) then gives the force on them in agreement 
with (6.6). When there are both sources of internal stress and inhomo- 
geneities within Z, Fl gives the combined force on them. There is no way 
of separating the two contributions. 

Equation (7.4) is also valid for finite strain and for an arbitrary stress- 
strain relation if the xi are interpreted as the Lagrangian xi of Section 3 
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and Ui ,  pij are the finite displacement and Boussinesq stress components 
there defined. dSj  is to be taken as the surface element before deformation. 
The proof is the same word for word except that the vanishing of the 
divergence of the integrand of (7.4) now follows from the relation 

which is valid wherever W depends only on the ui,j and not explicitly on 
the xi. 

To sum up, the integral 

with 

gives the force on all sources of stress and elastic inhomogeneities in I 
(Fig. 6) arising from surface stresses on Zo, from sources of internal stress 
in I1 and from the image effects associated with the boundary conditions 
and elastic inhomogeneities in 11. 

In the linear infinitesimal case, we may split the elastic field into terms 
relating to S in an infinite medium (a), the corresponding image term 
(I), the field arising from other sources of internal stress ( T )  and from 
external forces ( E )  : 

u, = up + UiI + UiT + U p ,  p . .  z3 = p." $3 + p..' $1 + p..T 13 + p . 3 .  13 

Then 

where 
Fz = Fc' + FzT f PiE 

Fix = I2 (uixpij,za - p..X 23 U,,Z . 00 )dSj ,  X = I, 3, T- 

To see this one need only verify with the help of (3.18) and (3.25) that 
a typical cross term in ( 7 4 ,  say 

is equal to ( Y , X )  and t o  

This expression vanishes by (3.21) unless one or other of the quantities 
X ,  Y stands for w . The term ( w  , co ) vanishes in view of the limitations 
imposed on up. in Section 4. We have thus recovered the results of Section 
5 with the extension to the case of the image force, as promised there. 
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The spatial part of the canonical energy-momentum tensor of the 
time-independent elastic field is Pjl. It is interesting to set up the complete 
four-dimensional tensor for the general time-dependent field. The equa- 
tion of motion in the embedded coordinates of Fig. 2a is found by re- 
placing the force fi by fi - piii in (3.3). With (3.4) this gives 

aW + - a p& =fi. 

a~~ aui,j at 

This is the equation of motion derived from the Lagrangian density 

L = +pu2 - W(Ui,j) 

for the free elastic field together with an external force density fi not taken 
account of in the Lagrangian. The methods of field theory29 enable US to 
derive an energy-momentum tensor 

T,A = (aL/aui,,)ui,A - L~,A 
(q,X = 1, 2, 3, 4; 2 4  = 2; u4 = 0). 

Its  components are 

Tjl = Pjz - +pU26jl, T44 = W + +pU2 
g2 = T ~ z  = ptiiUi,l. 

(7.7) 
~j = Tj4 = -piJUi, 

If the medium is homogeneous, there is the conservation law 

8Tjz/8xi + dg&t = fiu+ (7.8) 

Here T44 is the energy density and sj the energy flux vector.l8 The “field 
momentum” density gi differs from the true momentum density GZ = p&. 

We may give the following formal interpretation. Consider an imaginary 
particle able to move through the medium, and take for its generalized 
coordinates zi(t) the values of xl, x2 ,  2 3  associated with the point of the 
embedded coordinate net of Fig. 2a with which it coincides at time t.  
(The shape of the coordinate net changes, of course, with time.) Its equa- 
tion of motion will be 

where T(x;,Xi) is its kinetic energy and QZ is the generalized force acting on 
it. In particular, we can identify the particle with a small element of the 
elastic medium, say the elementary mesh of Fig. 2b. Throughout its 
motion x l  = 0. This does not mean, however, that its generalized mo- 
mentum aT(zi,$i)/d& vanishes. In  fact the momentum is easily shown to 
be e3p(ziz + tiiui,~), that is, e8(Gz + 92). Thus the field momentum density 
29 G. Wenzel, “Quantum Theory of Fields.” Interscience, New York, 1949. 
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is the difference between the true momentum and the generalized mo- 
mentum per unit mesh when the motion of the medium is referred to the 
coordinate system deforming with it. Equation (7.8) becomes, term for 
term 

eaa(Gi + gi)/at - eapQnun,j = ea( fn  + p n j , j ] [ h  + ~ n , i l .  (7.10) 

The e S {  } are the Cartesian components of the force on the element, 
made up of the applied force and the force exerted on it by its neighbors. 
The factor [ 3 converts this to the generalized force. Equation (7.10) can 
be transformed into 

which is just the result of adding (7.6) and (7.8). If there is a region v 
outside which the disturbance is zero, integration gives 

that is, the rate of change of true plus field momentum is equal to the sum 
of the generalized external forces acting on all the elementary meshes. 
This takes a more interesting form if f,, is derivable from a potential 
depending only on the absolute position of the element (and on time), so 
that f n  = dV/a(xi + ui). The integrand on the right of (7.10) is simply 
dV/axi and hence the integral vanishes if V vanishes outside v. Thus if the 
elastic field is varying as a result of an interaction with, say, electrified 
particles which move within it, changes in momentum may be calculated 
correctly by assuming a fictitious momentum density -9; in place of the 
true Gi.ao 

A number of points in the theory of fields receive a simple interpreta- 
tion in the case of the elastic field when it is realized that the xi are em- 
bedded (Lagrangian) coordinates. In other words, the ui have the dual 
role of field variables and components of an actual displacement of the 
material. Thus, for example, the fact that certain “spin” terms have to 
be introduced to obtain conservation of angular momentum is closely 
related to the circumstance that xi + ui and not xi is the appropriate 
lever arm for taking moments. 

These results refer to a homogeneous medium where L does not 
depend explicitly on xi. I n  a medium with internal stress and elastic 
inhomogeneities, we have 

pj1.j = aW(xk,Ui.d/axl (7.12) 

10 W. Brenig, 2. Physik 143, 168 (1955). 



THE CONTINUUM THEORY OF LATTICE DEFECTS 107 

for the static case in the absence of body forces. The right-hand side 
denotes the explicit dependence on xz when W is regarded as a function of 
the independent variables x k  and the u i , k .  Equation (7.11) is closely 
related to our derivation of (7.4). However, there are certain difficulties 
connected with the direct use of (7.12) which our method by-passes. In 
the simplest cases it is possible to extend the methods of the present 
section to dynamical problems (see Section 9c). 

111. Applications 

8. POINT DEFECTS 

a. Distortion of Crystals 

As the simplest elastic model of a substitutional or interstitial atom 
we take a sphere (“inclusion”) forced into a spherical hole of slightly 
different size in an infinite block (“matrix”) of elastic material. 

It is clear that urn must be spherically symmetric and must not increase 
with distance outside the inclusion. In fact 

urn = cr/ra = - c  grad (l/r) (8.1) 

where the constant c is a measure of the “strength” of the defect. Equa- 
tion (8.1) is of the same form as the field around a charged particle. Thus 
div urn = 0, V2um = 0 and (3.11) is obviously satisfied with f = 0. A 
second solution u = const * r also satisfies (3.11) since div u is constant 
and V2u = 0. The sum of these solutions is the general solution of the 
second-order equation in r to which (3.11) reduces for spherical sym- 
metry. Hence (8.1) is the only solution which satisfies our conditions. 
The corresponding stress is simply 

p -  SJ = 2/.Lu<,ja. (8.2) 

This follows from (3.8) and the fact that both the divergence and curl of 
the displacement vanish. When a defect is introduced at any point within 
a closed surface Zo in the infinite matrix, a surface element dS with normal 
n moves and sweeps out a volume urn - ndS. The volume enclosed by Zo 
increases by 

c 

the integral being simply the total solid angle subtended by Zo a t  the 
defect. We note that there is a volume change even though div urn is zero 
in the matrix. 

Consider (8.1) for a moment as a solution of the elastic equations 
valid for all r, even though in our application it does not hold inside the 
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inclusion. Formally we have 

divum = -cvz(l/r) = 47rc6(r) 
and 

V2um = -c  grad V2(l /r)  = 47rc grad 6(r). 

Then (3.11) shows that um can be produced by a density of body force 

f = - 4 7 4  + 2 p )  grad 6(r). (8.4) 

In Cartesian coordinates, grad 6(r) has components 

and (8.4) formally represents three equal "double forces without mo- 
ment"13 at right angles (Fig. 8a). 

If we wish Zo to be a free surface, we must add to urn the image dis- 
placement u' produced by surface tractions -pi,"nj distributed over 20. 
A complete solution is possible only in the simplest cases, but we can 
always find the volume change A V I  due to u'. According to (3.24) and 
(8.2) 

Since u k m  is homogeneous of degree -2, the integral 
the integral in (8.3) and 

2(1 - 2u) 
l t u  

A V I  = 47rc 

(g is Poisson's ratio). The total volume change is 

A V  = A v m  + A v r  = hrcr 
where 

1 - u  - 3 K + 4 p *  r = 3 - -  
l + u  3K 

(8.5) 

in (8.5) is -2  times 

We may also find AT' directly from (3.24), inserting the body forces (8.4) 
and zero surface tractions and using the result 

r . {grad G(r))dv = J 
Here AT'' is quite a substantial fraction of AVm, being one-half if u is 9, 6 
if is t. Unlike AVm, it arises from an actual dilatation of the matrix, al- 
though we cannot, in general, calculate how this dilatation is distributed. 
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The interaction energy of the point defect with another system of 
internal or external stress T may be found by using any of the results in 
Section 5 .  For example, noting that (8.4) may be written 

. f  = -AVK grad 6(r) 
(5.2) gives 

Eint = AVKJuT * grad G(r)dv = -AVKJG(r) div uTdv 
= AVpT (8.9) 

where pT is the hydrostatic pressure produced at  the defect by the field T. 
In  particular two point defects of the type considered here interact only 
through their image fields, since div urn = O.$' 

If there are N defects in the body, its volume change will be 4nycN. 
We can also say something about the change of shape of a body containing 
a large number of defects if we are prepared to admit a lack of rigor of the 
kind involved in the transition from the theory of a set of point charges 
to the electrostatics of a continuous charge di~tribution.3~ Let the defects 
be uniformly scattered throughout the body with a mean density of n 
defects per unit volume. 

Consider first a sphere. The following results are almost obvious from 
the foregoing discussion and considerations of symmetry. If the sphere 
forms part of an infinite medium, introduction of the defects increases its 
volume by a fraction 4,rcn and leaves its surface a sphere, apart from small 
ripples whose scale is set by the mean distance between defects, namely 
about n-t. The dilatation is zero between the defects. When the sphere is 
cut out of its matrix it undergoes an additional fractional change of 
volume 4ncn(y - l ) ,  associated this time with a uniform dilatation of the 
material. Its surface remains a sphere, again apart from ripples. We may 
summarize these results thus: 

(i) urn alone or u* alone produces a change of size without change of 
shape. (8.10) 
(ii) urn and u' together produce a change of size without change of 

(iii) Between the defects there is a uniform dilatation h c ( y  - l)n, 
which is less by a factor (y - l)/y than that suggested by the change 
in the volume enclosed by the surface of the body. (8.12) 

We now try to show that (ii) and (iii) remain valid for a body of arbi- 
trary shape, but that (i) does not. If the body whose surface is 2 0  is 

s1 F. Bitter, Phys. Rev. 37, 1526 (1931). 
32 J. D. Eshelby, J .  AppE. Phys. 26, 255 (1954). 

shape. The fractional change in volume is 4ncyn. (8.11) 
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embedded in an infinite matrix we have 

(8.13) 

At a point outside 20, and sufficiently far from Zo for the distance to the 
nearest defect to be large compared with the mean distance between 
defects, the displacement is approximately 

iim(r) = cn ~ dv . s Ir r - r ’  - r’1* 
(8.14) 

In accordance with the spirit of the usual discrete-to-continuous transi- 
tion, we shall suppose that this is valid right up to 20. Equation (8.14) 
has the same form as the electric field due to a uniform change density 
k c n  filling 20, so that the deformation of Zo on introducing the defects is 
certainly not a uniform expansion. A direct calculation of the image 
traction -pi,%j a t  each point of Zo, followed by a calculation of the field 
it would produce in the body with Zo as free surface evidently is impos- 
sible. Thus we shall use an indirect approach. According to (8.4), (8.1) 
may be written 

m 

where U,(r) is the value of ui(r) when a unit point force acts at  the origin 
parallel to the xj axis. Thus 

= 4mmK jz0 U,(r - r’)njdS. 

This shows that outside Zo iim can be considered to be caused by a layer of 
body force on each element dS of Zo of amount 41rycnKdS and directed 
along its normal. 

We now carry out the following sequence of operations: 

(i) Mark out the surface 20 of the proposed body in an infinite 
medium. 
(ii) Introduce the distribution of defects inside 20. A change of size 
and shape is undergone by 2 0 .  

(iii) Apply a body force -4qcnKndS to each element of 20. Now 
Zo is restored to its size and shape in stage (i) and the displacement 
in the matrix is everywhere zero. 
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(iv) Cut away this unstrained matrix, scraping right up to the layer 
of body force, but not removing it. Nothing is altered within 20. Now 
ZO is the actual surface of the body, but is subject to a hydrostatic 
pressure hycnK, since the layer of-body force has now become a 
surface traction; Zo still has the shape and size it had in stage (i). 
(v) Remove the hydrostatic pressure. The body undergoes a uniform 
dilatation hycn. 

The displacement due to the layer of body force is clearly given by 
-iim inside Zo as well as in the matrix. The displacement after stage (iii) 
or (iv) is thus urn - tim and is urn + u’ after stage (v). Since these differ by 
a uniform expansion u = bycnr, we have 

ur = bycnr - tirn (8.15) 

showing that ur is not uniform. Its dilatation, however, is constant, for 
8“ is - grad Q, where Q is the potential of a uniform charge density en 
filling 20. Thus div am = -V2p = 4rcn and div ur = 4rcn(y - 1). The 
expression (8.14) also provides a reasonable value for the “macroscopic” 
displacement (excluding the image term) for points within the body. We 
define the macroscopic displacement a t  a point as the actual microscopic 
displacement averaged over a sphere of radius R large compared with the 
distance between defects. From the fact that (8.14) is a potential function, 
it is easy to that the macroscopic displacement so defined is 

where r, is the position vector from the point we are interested in to the 
defect. When R is large enough, the first term, being proportional to the 
position vector of the center of gravity of a large number of points taken 
at  random in a sphere, should approach zero. The second term may be 
replaced by an integral, since the distance between the defects is small 
compared with any of the r,. This integral is just (8.14) with the sphere 
R omitted from the volume of integration; however, the omitted part of 
the integral is proportional to the gravitational attraction at the center of 
a homogeneous sphere, that is, zero. Thus for points within the body, 
(8.14) gives the macroscopic displacement omitting image terms. 

Since the image displacement defined by (8.15) is derived from the 
smoothed i i m ,  it needs no averaging to give its macroscopic value. Indeed 
we can go further. If we were to deduce the image traction - pipnj from the 
exact (8.13) instead of the smoothed (8.14), the results would differ only 
by terms fluctuating on the scale of the interdefect’distance. According to 
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St. Venant's principle this difference would make itself felt only to  a depth 
of the same order; the smoothed and unsmoothed u' would agree in the 
bulk of the material. 

Adding the macroscopic image and CQ displacements and using (8.15), 
we have finally, for the total macroscopic displacement, the uniform 
expansion 

0 = i i m  + UI = bycnr. (8.16) 

Thus we have verified that for shapes other than spherical (8.11) and 
(8.12) remain true, although (8.10) does not. 

The more general case in which the density of defects is a non-uniform 
function of position n(r) is now easily disposed of. Let the body be dis- 
sected into elementary cubes in each of which n is nearly constant. Each 
will undergo a uniform dilatation 4?rycn(r). In  the undissected body these 
expansions are inhibited and lead to distortion and internal stress. The 
problem is thus identical with the determination of the elastic state of a 
nonuniformly heated body if we identify the temperature T with n and 
the linear coefficient of thermal expansion a with one-third of the volume 
change produced by one defect. Thus 

T(r) = n(r), a = h y c .  

For particular problems, we can draw on the methods already developed 
for calculating thermal stress.14 Here we consider a simple problem of some 
physical intere~t.~3 Suppose that a thin surface layer of a massive body 
has been filled with defects (for example by irradiation), so that n is a 
function of depth which has fallen effectively to zero in a distance small 
compared with the dimensions of the body. Let n have the value n, a t  the 
surface. The expansion of an element a t  the surface is unhindered per- 
pendicular to the surface, but cannot take place parallel to  it. Thus the 
free expansion ell = e22 = e33 = hycn, must be supplemented by an 
additional deformation eij' in which ell' = e22' = -e33 and p33' = 0. (We 
take the x3 axis along the normal to the surface.) An easy calculation gives 
a total expansion perpendicular to the surface 

e 3 3  + e d  = e d 1  + u) / ( l  - u) 
and a stress (compressive if c > 0) of magnitude 4~ycn,E/3(1 - u) 
across any plane perpendicular to the surface ( E  is Young's modulus). 
Thus an x-ray determination of the spacing of lattice planes parallel to 
the surface would give (1 + u)/(l  - u) - 2 times the change of lattice 
constant that would be observed for a body uniformly filled with n, 
defects per unit volume. If the x-ray beam penetrates to a depth where 

33 D. Binder and W. J. Sturm, Phys. Rev. 96, 1519 (1954). 
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n(r) departs appreciably from n,, or if the defects are distributed down to 
a depth which is not small compared with the dimensions of the body, a 
detailed calculation using the theories of thermal stress and x-ray diffrac- 
tion is necessary. For a cylinder in which n depends only on distance from 
the axis or for a plate in which n depends only on depth and is symmetric 
about the midplane, we have 

(8.17) e, 1 + -an, 2-a 
z l - u i i  1 - - a  
- = __- - -. 

Here e,  is the expansion normal to the surface at  the surface, 67 is the frac- 
tional change of radius or thickness, n, is the concentration of defects at 
the surface, and Ti is the average concentration of defects. The ratio (8.17) 
has the value deduced above for n, >> ii and approaches unity as ns 
approaches ii. 

b. E$ect on X-Ray Diflraction 

In  Section 8a we took it as obvious that the change of x-ray lattice 
parameter in a crystal uniformly expanded by lattice defects would be 
just what one would infer from its change of macroscopic dimensions. 
Doubt was thrown on this34 a t  one time but apparently the intuitive 
result is tr~e.*b,3’J~*~ This is confirmed by Huang’s3’ results. He considered 
a spherical crystal containing a uniform random distribution of defects 
and took the expression (8.13) for the displacement of the lattice points. 
He found a change in the positions of x-ray reflections consistent with a 
volume change equal to the AV- of (8.3) per defect. Huang omitted image 
effects, but his results may be taken to apply to a sphere subjected to a 
uniform hydrostatic pressure just sufficient to annul the image terms, 
which for a sphere are equivalent to a uniform hydrostatic tension. 
Removal of this pressure evidently would affect the change of x-ray lattice 
constant and the geometrical dimensions in the same way; both would be 
multiplied by a factor y. For a shape of crystal other than spherical, the 
conditionally convergent sums of the type (8.13) involved in Huang’s 
calculation are dependent on the shape of the crystal, and omission of the 
image terms would involve more complex errors than the mere omission 
of a factor y. His method cannot be extended easily to the general case, 
since it rests on the fact that the displacement of the atom at  r, arising 
from the defect a t  r, depends only on r, - r,. This is no longer true when 

3 4  P. H. Miller, Jr. and B. R. Russell, J. A p p l .  Phys. 23, 1163 (1952). 
36 P. H. Miller, Jr. and B. R. Russell, J. A p p l .  Phys. 24, 1248 (1953). 
36 J. Teltow, Ann. Physik: 12, 111 (1953). 

K. Huang, Proc. Roy. Soe. A190, 102 (1947). 
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image terms are included. We shall give an alternative argument based 
on a result of Miller and Russell.34 

Suppose that the base vectors of the perfect crystal lattice are al, az, a3 
and that those of the corresponding reciprocal lattice are b l ,  bz, b3. The 
atoms of the crystal are taken to be situated a t  the points r = Liai with 
integral L;, and the maxima of scattering power in reciprocal space are 
at  the points k = kb,  with integral h+. If the crystal is distorted, the 
lattice points move to the neighboring points (Li + ALi)ai, while the 
maxima of scattering power move to (hi + Ahi)bi. Miller and Russell 
derive the following relation between Ahi and ALi, 

Ahi2LiLj + hiZALJj = 0 (8.18) 

valid for small integral hi. The summations are over all points of the 
crystal lattice and the origin of coordinates is at  the center of gravity of 
the crystal. If we assume that we may take the macroscopic displacement 
(8.16) for the displacement of the lattice points, we have 

ALi = +lrycnL+ 

Equation (8.18) shows a t  once that the reciprocal lattice undergoes a 
uniform contraction equal and opposite to the uniform dilatation of the 
crystal lattice; in other words the fractional change of lattice constant 
is in fact equal to the fractional change in the linear dimensions of the 
crystal. The replacement of sums by integrals involved in using (8.14) in 
place of (8.13) seems justified in this particular application. It would be 
inadequate in calculating the influence of the defects on line profiles or 
the scattering power between the points of the reciprocal lattice. Omission 
of the image terms would lead to a nonuniform deformation of the 
reciprocal lattice. There would not be a simple relation between the 
change of x-ray lattice constant and macroscopic deformation. Their 
retention, here as elsewhere, in addition to being physically correct, makes 
the solution much simpler. 

If a spherical crystal of radius R contains one defect a t  a distance 
E from its center, it can be shown32 that 

AVxm = g(l - t2/R2)AV@ 

where A V 8  is the geometrical change of volume and A V X ~  is the change 
that would be inferred from x-ray measurements. To avoid an awkward 
elastic calculation, image effects are neglected. When 5 = 0, 

AVxw = 2.5AV#. 

Miller and Russell based their original argument on this result. However, 
if the defect is more than about three-quaders of the way from the center 
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to the surface of the sphere, A V p  is less than AV@. In fact if t2  is given 
its mean value over the sphere, #R2, we have AVxw = Avom. Hence a 
uniform density of defects in the sphere would give equal x-ray and 
geometrical expansions. Clearly the equality will not be affected by 
reintroducing the image terms. 

c. Solid Solutions 

So far we have been able to  treat a point defect simply as a center of 
dilatation. To discuss solid solutions we must relate the strength c of the 
center of dilatation to the details of the sphere-in-hole model. This is 
simple when the sphere and matrix have the same elastic constants. Let 
Vmi. = Vi - Vh be the excess of the volume of the sphere Vi over the 
volume of the hole v h  before the one is inserted in the other. It is easier to  
visualize the state of affairs if Vmi. is negative, for then we may start by 
putting the sphere loosely into the hole. We can take this configuration 
as an unstrained body to which (3.24) may be applied. When we draw the 
surfaces of sphere and hole together and cement them we have the same 
body in a state of internal stress. According to (3.24), however, the 
volume of material is unchanged. Hence the empty volume eliminated, 
Vmi., must be balanced by an equal decrease in the volume enclosed by the 
bounding surface of the m a t r i ~ . 1 ~ ~ ~ ~  Thus when inclusion and matrix have 
the same elastic constants we have simply 

AV = Vmis, c = Vmi,/4~y. 

When the matrix and inclusion are of different materials, (3.23) tells 
us only that the volume integral of the hydrostatic pressure is zero in the 
assembled system, and a more explicit calculation is necessary. We could 
solve the general elastic equations, matching surface traction and dis- 
placement at  the boundary between matrix and inclusion. The following 
method is less tedious, however, and also gives directly the information 
we shall need below concerning the elastic energy of a defect. 

When the inclusion is put into the hole, their common boundary will 
evidently take up some intermediate position. Let AVh, AVi be the 
changes of volume of hole and inclusion. The inclusion will evidently be 
subject to a uniform hydrostatic pressure; its elastic energy will be 

Ei = &Ki(AVi)2/Vd. (8.19) 

In the infinite matrix the displacement will be given by (8.1). A direct 
calculation using (8.2), (3.8), (3.6) shows that the energy density at  
distance r is 

peijeij = 6pc2/rs .  

** F. Seitz, Revs. Mod. Phys. 18, 384 (1946). 
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Hence, by integration, the energy exterior to a sphere of volume T’h is 
Em = 32U2C2/3Vh. But AVh is just the AVm associated with c by Eq. (8.3). 
Hence 

Em = QFm(AVh)2/Vh. (8.20) 

We may imagine the hole to have been blown up by an internal pressure. 
Comparison of (8.19) and (8.20) shows that the change of volume of the 
hole and the internal pressure are related just as are the change of volume 
and external pressure for a solid sphere, provided the “effective bulk 
modulus for expanding a hole” is taken to  be & L ~ . ~ ~  Since the internal 
pressure in the hole must equal the external pressure on the inclusion, 
we have 

QpmA T’h/ Vh = - KiA Vi/ Vi 

or, to the first order, simply 

QpmAvh + KiAvi = 0. 

However, we also have the relation AVh - AVi = Vmlu, whence 

(8.21) 

y’ = 3Ki + 4pm 
3Ki 

is formed on the pattern of (8.7) but from the bulk modulus of the inclu- 
sion and the shear modulus of the matrix. We shall suppose that the 
relation (8.6) is not affected appreciably by the presence of the inhomo- 
geneous inclusion. Then (8.21) gives 

AT‘ = yVmis/y’. 

From (8.19) and (8.20) we find for the total energy of the defect 

E, = Ei + Em = +/.Lrny’(4?rc)’/Vh. (8.22) 

We shall refer to E, as the “self-energy” of the defect to distinguish i t  
from its interaction energy with any other stress system, in particular that 
arising from other defects. 

Consider a dilute substitutional solid solution of a metal M1 in a metal 
M z .  Let Q1, Qz be their atomic volumes. If we take a crystal containing 
N M z  atoms and replace CN of them by Ml atoms, the volume of the 
crystal becomes NOz + CNAV where AV is the volume expansion due to 
one M1 atom. Thus the mean volume per atom a t  a (small) atomic con- 

3 B  C. Zener, Phys. Rev. 74, 639 (1948). 
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centration C of solute atoms is, on our elastic model, 

8(C) = nz + C(Vi - V,) 

provided y = y’ (identical elastic constants for solvent and solute). If MI 
and Mz have the same crystal structure, it seems reasonable to put 

n1 = kVi, Q z  = kV,. (8.23) 
Then 

Q(C) = Cai + (1 - C)az + ( k  - l)(Q, - Q2)C. (8.24) 

The question of determining k really lies outside the scope of the con- 
tinuum theory. The choice k = 1 leads to the law of additivity of atomic 
volumes 

Q(C) = cn, + (1 - C)OZ 

or, on the linear approximation, equally well to the law of additivity of 
atomic radii (Vegard’s law) 

r(C) = Cr1 + (1 - C)rz. (8.25) 

To the same approximation, the fractional rate of change of lattice con- 
stant (dr /dC) /r  has the constant value 

= (f-1 - f-z)/f-1= (f-1 - rz)/rz 

right across the composition diagram. 
There seems to be no compelling reason to take k = 1. We might be 

tempted, for example, to take the radius of the hole or inclusion equal to 
the nearest neighbor distance in the appropriate metal. For face-centered 
cubic this would give k = (3 .\/2)/~ and upset the agreement with (8.25). 
We shall take the approximate validity of Vegard’s law as a justification 
for putting k = 1 in the discussion of the energy of alloys. 

When the solute and solvent have different elastic constants, we have 
by (8.21) 

With k = 1 this gives 

where 

Q(C) = a2 + YC(Vi - Vh) /Y ’ .  

r(C> = Crl + (1 - C)T? + pc 

p = p.ccz ( l )  (TI - T z ) .  3y‘ rz - K1 
Thus the actual value of r (C)  should lie above or below the value pre- 
dicted by Vegard’s law according to whether p is positive or negat i~e.~O~~l  
4oB. J. Pines, J .  Phys. U.S.S.R. 3, 308 (1940). 
4 1  J. Friedel, Phil. Mag. [7] 46, 514 (1955). 
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Friede141 has shown that this is qualitatively correct and has discussed the 
quantitative agreement. 

Consider next the elastic energy of the alloy. Each successive solute 
atom added contributes E, (8.22) and an interaction energy with the 
image field of all its predecessors. The image hydrostatic pressure is 
- KAV* times the number of defects per unit volume. Since the image 
pressure builds up linearly with composition, the mean image interaction 
per solute atom is 3KAVAV’. If we put lc = 1 in (8.23), the energy per 
atom of alloy is easily found to be 

(8.26) 

The free energy per atom is 

F ( C )  = E(C) - TSmix 

where Xmix is the configurational entropy of mixing. The entropy - aF/aT 
is made up of Xmix and an additional term 

A S  = --dE(C)/aT 

where A S  may be estimated by assuming that E depends on T only 
through the variation with temperature of the elastic constants in 
(8.26) .42,420 Friede142 finds good agreement between the theoretical and 
experimental values of E and A S  for AuNi alloys. 

If the solvent and solute are nearly alike elastically, we may put 
y = 7’ in (8.26). Moreover, E,  will be the same for the insertion of an 
MI atom into an M Z  matrix or conversely. Then the formula 

GEL !2 E(C)  = -E’C(~  - C) 
Y 

(8.27) 

is valid for both C << 1 and (1 - C )  << 1, and we may perhaps take it as a 
reasonable interpolation for intermediate compositions. Equation (8.27) 
has the simple parabolic dependence on composition predicted by the 
chemical theory of alloys. The constant involved depends only on the 
elastic constants, the atomic volume and the misfit constant E, equal to 
the fractional rate of change of lattice parameter with composition. 

From (8.27) we can give a formal derivation of Hume-Rothery’s rule 
that if 161 exceeds 15%, solubility is severely limited. According to the 
chemical theory of alloys,43 there is a dome-shaped two-phase region 
on the temperature-composition diagram with a maximum for C = 3 at  
42 J. Friedel, Advances in Phys. 3, 446 (1954). 
420 E. S. Machlin, Trans. Am. Inst. Mining Met. Engrs. 200, 592 (1954). 
43 A. H. Cottrell, “Theoretical Structural Metallurgy.” Edward Arnold, London, 1954. 
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a temperature T such that kT is half the coefficient of C(l - C) in (8.27) 
(k is Boltzmann’s constant). If there is to be no miscibility gap, T must 
be less than the melting-point T, of the alloy. This gives 

Reasonable values for the constants give about 15% for the limiting 
misfit.4a More elegantly we may use Leibfr ied’~~~ theory of melting; it 
gives directly kTJpS2 = 0.042. Or again, this quantity may be written 
as R T m / p V ~  where R is the gas constant and V M  the volume per mole. 
In this form we may relate Hume-Rothery’s rule to two other empirical 
rules. Richard’s rule46 states that the entropy of melting is nearly R, so 
that k T , / p Q  may be equated to the latent heat of melting per unit volume 
divided by the shear modulus. Bragg46 has noted that this is nearly 0.034 
for many metals. With y = 1.5 these two values for kT,/pQ give 14.5 and 
1397, for Ie l ,  respectively. 

d. Point Defects in Anisotropic Media 

Two of the point defects discussed in Section 8a do not interact with 
one another except indirectly via their image fields. This behavior depends 

a b 
FIG. 8. Crossed double forces. 

on the satisfaction of two rather special conditions: (i) the interaction 
energy is proportional to the dilatation produced at  one defect by the 
other; (ii) the dilatation produced by either defect (omitting image terms) 
is zero. 

Condition (i) can be upset by choosing a less symmetrical defect. 
In  the sphere-in-hole model we may replace the misfitting sphere by an 
ellipsoid, or, more manageably, we can replace the equal double forces of 
44 G. Leibfried, Z. Physik 127, 344 (1949). 
45L. S. Darken and R. W. Gurry, “Physical Chemistry of Metals.” McGraw-Hill, 

46 W. L. Bragg, “Symposium on Internal Stresses,” p. 221. Institute of Metals, 
New York, 1953. 

London, 1947. 
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Fig. 8a by unequal double forces (Fig. 8b). With the horizontal doublets 
of equal magnitude, Fig. 8b is a model for an interstitial carbon atom in 
ir0n.3~ For this case we may write in place of (8.4) 

d 
,fi = - aij - 6(r). 

d X j  

A repetition of the argument leading from (8.8) to (8.9) now gives 

E. LUb = -a..u $3 2 4  .T = - a,ieijT. (8.28) 

The last step follows from the fact that the force density fi must produce 
no twisting moment. This requires that aij be symmetric. The interaction 
no longer depends on the dilatation but on a more general linear combina- 
tion of the strain or stress components of the field T with which the defect 
is interacting. 

Again, if we drop the limitation to an isotropic medium, condition (ii) 
is no longer satisfied even if we take the symmetrical force system of 
Fig. 8a. 

We consider in more detail a cubic material containing a point defect 
with a cubically symmetric elastic field. The equilibrium equations are 

de d2Ul 
c44v2u1 + (CIZ + ~ 4 4 )  - + d a~.12 + f i  = 0 axl 

(8.29) 

and two similar equations. The cij are the elastic constants ciikl  in the usual 
abbreviated notation.? The quantity 

d = C I ~  - C ~ Z  - 2C44 

vanishes for isotropy. To define the field of the defect we may require the 
displacement to fall off with distance and to have cubic symmetry, or 
equivalently we may solve (8.29) with fi given by (8.4). If we take the 
latter point of view, we see at  once that the interaction energy with a stress 
system T is given by (8.9), the transition from (8.8) to (8.9) being equally 
valid for the cubic case. That the coefficient AT‘ in (8.8) is still the total 
volume change produced by the defect follows from (3.24), which is also 
true in the cubic case. (The bulk modulus is K = c11 + 2~12.) 

We could find the field of the defect merely by differentiation if we 
knew the displacement arising from a point force in a cubic medium. 
Unfortunately the elastic field caused by a point-force in any medium 
other than an isotropic or hexagonal one cannot be given expli~itly,~’,~8 
a fact which considerably hinders the solution of any but trivial three- 

47 I. M. Lifshitz and L. N. Roseneweig, Zhur. Eksptl. i Teorl. Fiz. 17, 783 (1947). 
48 E. Kroner, 2. Physik 136, 402 (1953). 
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dimensional elastic problems in an anisotropic medium. We have to be 
content, therefore, with an approximate solution. 

Write cij = cijo + cij’ where cilo satisfies the condition for isotropy, 
cll0 - c1z0 - 2c44O = 0. If we treat the cq’ as small, we may solve (8.29), 
(8.8) by successive approximation. To the second order the dilatation is 
found to be49 

15 d x14 + xz4 + 2 3 4  - ’ 
KT ) (8.30) 

r7 
e m ( r )  = ~ (6(r) + - 

C11° 87r c11 

The value of cllo depends on how we split off an isotropic component from 
the cij. Lifshitz and Rosenzweig47 limit themselves to “weak anisotropy ” 
and in effect take cl10 = cll. Leibfried’sKO method of averaging gives 

CllO = Q(c11 + 2c12 + 4c44). 

For many materials there seems to be no way of arranging that the cij’ 

shall be convincingly smaller than the ciio. It should be a fair approxima- 
tion to replace cl10 in (8.30) by h + 2p ,  where A, p are the Lam6 constants 
for the bulk material in polycrystalline form. 

The value of AVm is found by integrating (8.30) over all space: it is 
thus the coefficient of 6(r). (The second term is zero when averaged over 
all directions.) The relation between AV, AVm, and AVI is easily shown 
to be the same as in (8.6) with y = K/cllo, that is, the value calculated 
from the averaged isotropic constants. 

The interaction energy between two such defects for which AV = AVI, 
AV = AVz is from (8.30) and (8.9) 

with 
r = l4 + m4 + n4 -: 

where r is the distance between them and (l,m,n) are the direction cosines 
of the line joining them. As a function of angle, I’ has a maximum in the 
100 direction, a minimum in the 111 direction, and a saddle-point in the 
110 direction. Thus whatever the signs of AVl, AV2, d may be, there is a 
direction for which the interaction is attractive. 

By an extension of the argument of Section 8a it may be shown that 
a uniform distribution of these defects gives a uniform macroscopic 
dilatation. It will no longer be exactly true that there is a uniform dilata- 
tion between the defects, because of the second term in (8.30). Since this 
term averages to zero over angles, however, the results obtained for the 

4 @  J. D. Eshelby, Acta Netallurgica 3, 487 (1955). 
so G. Leibfried, 2. Physik 136, 23 (1953). 
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energy of an alloy should not be affected unless the solute atoms take up 
ordered positions relative to one another. 

e. Point  Defects as Inhomogeneities 

When calculating the “strength” of a point defect in Section 8c in 
terms of the sphere-in-hole model, we considered the general case in which 
the sphere had different elastic constants from its surroundings. On this 
model the defect is both a source of internal stress and an elastic inhomo- 
geneity in the sense of Section 6. So far we have neglected its interaction 
as an inhomogeneity. On the linear theory this can be treated separately 
from its effect as a source of stress, so that we consider a perfectly fitting 
sphere with elastic constants XI, p1 embedded in a medium with constants 
X, p. Let surface forces produce a uniform strain eiiT in the homogeneous 
medium. When the sphere is introduced, the change of total energy is 

according to (6.4). The integral is taken only over the sphere (since the 
elastic constants do not change outside it), and eij’ is the strain in the 
inclusion. It can be shown49 that eij’ is uniform. It is a linear function of 
the ei,T, and by symmetry it must be an isotropic function, say 

e,j’ = AeT& + 2BeSjT (8.31) 
so that 

E. = - .kD(A(eT)2 + 2Mei,TeijT} (8.32) 

where D is a volume which, in applications, may conveniently be the 
volume per atom; A and M have the dimensions of elastic constants and 
can be calculated. Their ratio is a definite function of X, p, A’, pl,  but it 
would be taking the model too seriously to suppose that this relation will 
be satisfied if, for example, we apply (8.32) to the interaction of a vacant 
lattice site with a stress field. It is better to regard them as independent 
constants which may, in principle, be found from the macroscopic elastic 
constants of a material containing a large number of defects. In  fact, 
according to (6.3), with constant external loading, the normal elastic 
energy density +A(eT)2 + pei,Tei,T of the medium is increased by -nEint  
when n defects per unit volume are introduced. The apparent elastic con- 
stants are thus 

A,,, = X + CA, pap, = p + CM 

if C is the atomic concentrat.ion of defects. 
We have supposed that eijT is uniform, but we may take (8.32) to 

apply also to a nonuniform field, provided it varies little over a distance 
of the order of the size of the inclusion. Thus the force exerted on the 
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inhomogeneity by a stress field T is 

Fl = O(heT6i j  + 2MesjT)eij,tT. (8.33) 

Although we have derived this for the particular case where eijT is pro- 
duced by externally applied forces, it must hold also when eijT is an 
internal stress, for the expression (6.6), from which in effect we derived 
(8.33),  is the same as the general expression (7.4) which covers all cases. 

Equation (8.32) is just the same as (8.28) with aij a linear function of 
eijT. Calculation shows that, whereas the perturbation eijl - eijT produced 
by the presence of the inhomogeneous sphere has a uniform value given by 
(8.31) inside the sphere, it has the form of the stress field produced by the 
forces of Fig. 8b outside the sphere. Thus we may say that the applied 
field “induces” a complex point defect in the inhomogeneity and then 
exerts a force on it. 

For two point defects 1 and 2 a distance r apart, we have from (8.32),  
(8.2) 1 (8.6) 

E,nt = -60(M1AVzz + M2AVl2)/r6 

in an obvious notation, and, by differentiation, a radially directed force 

F = -36O(M1AVZ2 + M2AVl2)/r7. (8.34) 

Had we found the force by evaluating (6.6) over a surface surrounding 
defect 1, we might have expected to get only the first term in (8.33). 
However, a detailed calculation shows that the second term appears as 
the image force on 1 due to the inhomogeneous sphere 2, so that (8.34) is 
correct. 

9. DISLOCATIONS 

a. Interaction Energy 

To carry out a formal calculation of the interaction energy of the stress 
field S of a dislocation loop with another stress field T without using 
explicit expressions for the field of the dislocation, it seems to be necessary 
to make the three following assumptions: 

(i) The displacement changes by a constant vector b on traversing 
any circuit c embracing the dislocation line: 

ui,jsdxj = bi. 

(ii) If r is the position vector from any fixed point on the dislocation 
line then 

lim ruiS(r) = 0. 
r-0 
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(iii) The integral 

vanishes even when taken over the surface bounding a volume which 
is traversed by the dislocation line. 

The essential character of the dislocation is expressed by (i). Assumption 
(ii) excludes other line singularities, e.g. a line of dilatationla coinciding 
with the dislocation line, whereas (iii) excludes the possibility of distribu- 
tions of body force along the dislocation line. Assumption (ii) ensures that 
the integral in (iii) will converge even though the stresses become infinite 
where the dislocation cuts the surface. 

Jpij'dSj 

Fro. 9. To illustrate Section 9a. 

Let C be any cap bounded by the dislocation line. We use (5.1) and 
take for 2 a surface, closely enveloping C ,  made up of surfaces 2 1  and 22 
parallel to C and joined by a tube T whose axis is the dislocation line 
(Fig. 9). As the radius of T approaches zero, the second term in (5.1) 
vanishes because of (ii), since p i j T  is supposed to be continuous in the 
neighborhood of the tube. If we divide the tube into many small segments, 
we see that the first term in (5.1) also vanishes as the tube contracts, in 
virtue of (iii) and the continuity of u?. We are left with the contributions 
of Z1 and 2 2 .  The contributions from the first term of (5.1) cancel and the 
remaining term gives 

Eint(S,T) = /zl+zz (-pijTuis)dSj = bi J pijTdSj (9.1) 

since uis has a discontinuity bi across C .  
Let the shape of the loop be altered by giving a short segment of it 

having length I and direction s a small displacement t. This adds to C a 
new surface element and Is X ( is the product of its area and normal 
vector, The change in (9.1) is 

GEint(S,T) = l b i p i j T ~ j k t ~ ~ & .  

We may thus regard 

as the force per unit length on the dislocation.61*62 
51 M. 0. Peach and J. S. Koehler, Phys. Rev. 80, 436 (1950). 
s2 F. R. N. Nabarro, Phil. Mag. 171 42, 213 (1951). 

Fl = ekj lb<pi jTSa 
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For an  infinite edge or screw dislocation along the x 3  axis, (9.2) gives 
the well-known results 

F1 = b p J ,  Fz = -bpllT (edge) (9.3) 
F1 = b p d ,  F B  = -bplaT (screw). (9.4) 

Koehler’s63 pioneer calculation gave an incorrect numerical factor for F1 
in (9.3) which, of course, causes no trouble if we are only interested in 
equilibrium with F1 = 0. His method was equivalent to evaluating (7.5) 
with the term pijui.1 omitted. The result then depends on the shape of 2. 
Read and Shockley’sS4 method is equivalent to  evaluating the same 
expression with the term W6ij omitted. The result again depends on the 
choice of 2, but for their choice (a pair of parallel planes above and below 
the slip plane) gives the correct result. Leibfried66 first clearly stated that 
the interaction term in the internal energy between an  internal and an 
external stress system is zero. His results appeared to show that (5.1) gave 
correctly the force exerted on a dislocation by surface tractions or another 
dislocation, but not by a point defect. This difficulty has been resolved.s,6 

Detailed discussion of the interaction between various configurations 
of dislocations may be found in references 9 and 10. BlinS6 has given an 
expression for the interaction energy between two dislocation loops in the 
form of a line integral. 

NabarroS7 constructed a solution of the Peierls-Nabarro equation 
representing two edge dislocations and a uniform external stress and 
verified that the latter was just what was required by (9.3) to give zero 
total force on either dislocation. Since this is one of the few cases where 
direct contact can be made between the elastic theory and an  approximate 
atomic theory it seems worthwhile to sketch the solution of the corre- 
sponding problem for screw dislocations, where the analysis is quite 
simple. 

The displacement around a screw dislocation in an infinite isotropic 
medium is everywhere parallel to the dislocation line (which we choose as 
z axis) and of magnitude 

in Cartesian or polar coordinates. The Peierls-Nabarro condition requires 
that the stress and displacement at the atom plane adjacent to the slip 

6 3  J. S. Koehler, Phys. Rev. 60, 397 (1941). 
h4 W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950). 
66 G. Leibfried, 2. Physik 126, 781 (1949). 
66 J. Blin, Acta Metullurgica 3,  199 (1955). 
K T  F. R. N. Nabarro, Proc. Phys. SOC. (London) 69, 256 (1947). 
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plane shall satisfy the relation 
. 4lrw 

pz, = - - p b  sin-, 
2lra b 

where a is the spacing of atom planes parallel to the slip plane. 

(9.6). In fact we have 
It is well known that the purely elastic solution (9.5) itself satisfies 

aw p b  cos 8 - Pb p z , = p - =  - % ? -  --sin28 
aY h Y  

which satisfies (9.6) with y = +u. 
According to (9.4)) two screw dislocations separated by a distance 21 

exert a force pb2/h1 on one another. They should be kept apart, therefore, 
by an applied stress -pb/4lrl. Let the dislocation be situated a t  the 
vertices A(l,O), B(  -Z,O) of the triangle ABC, C(s,y) being any arbitrary 
point. From the properties of the triangle, the displacement and stress a t  
C arising from the two dislocations and the applied stress are easily seen 
to be 

Pb 

h Y  
pzsl(x,y) = - (sin 2A + sin 2B) - 

where wo is an arbitrary constant. We shall show that this purely elastic 
solution satisfies (9.6) with only trivial modifications. To do this we 
evidently need a relation between the sines of 2A, 2B, 2C for a fixed value 
of y. Join the vertices of ABC to the center of its circumscribed circle to 
form three isosceles triangles whose equal sides are, in each case, radii 
R = I csc C of the circle and which embrace angles 2A, 2B, 2C. Their 
areas must add up to ly, the area of ABC. This gives a t  once 

sin 2A + sin 2B + sin 2C = 2yZ/R2 = (y/Z)(l - cos 2C) 

y-'(sin 2A + sin 2B) - I-' = - [ (Y-~  + k2)*] sin 2 (  C + tan-' (y/Z) 1. 
When y = +a/(  1 - ( ~ / 2 1 ) ~ } +  E yo, the factor [ ] is 2/a, so that (9.3) and 
(9.4) satisfy (9.6) on the plane y = yo (instead of on the required plane 
y = +u), provided we give to w o  the value -G(tan-l (yo/I) + yo/Z] in the 
upper half-plane and, to preserve the antisymmetry, an equal and opposite 
value in the lower half-plane. Thus the Peierls solution is derived from the 
elastic solution merely by removing the slab between y = f yo, narrowing 
the gap to a, and giving a certain constant shift to the upper and lower 
half-planes. Thus, within the limits of the Peierls-Nabarro approximation, 

or 
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we have found a state of affairs in which each atom is in equilibrium 
under the action of the same applied stress as is required by the elastic 
theory to maintain the dislocations in equilibrium on the continuum 
approximation. 

b. Image Effects 

The discussion of the interaction of dislocations with free surfaces 
usually involves rather lengthy calculations. We take up first the problem 
of a screw dislocation.in a cylinder. The calculation is simple, but the 
result is rather unexpected. It turns out, in fact, that the image force need 

Y 

t 

W 
t 

FIG. 10. Behavior of a screw dislocation in a cylinder. 

not always tend to  make a source of internal stress move towards the 
surface. 

As may easily be verified, the displacement about a screw dislocation 
a t  the point x = f ,  y = 0 (Fig. 10a) in an isotropic infinite cylinder whose 
surface x 2  + y2 = R2 is free of stress has the form 

if we stipulate a state of antiplane strain. Equation (9.9) is made up of an 
expression like (9.5), centered a t  ( f ,O) ,  and a similar expression of opposite 
sign centered at  (R2/&0) .  The “image displacement’’ in this case is just 
that produced by an image dislocation a t  the image point in the sense of 
electrostatics. The image force is directed radially outwards and is in- 
versely proportional to the dislocation-image distance. It is convenient 
to write 

F ,  = -aw/ag (9.10) 
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with 
W = (pb2/4?r) In (R2 - t2 ) .  (9.11) 

Equation (9.11) is sketched in Fig. lob; evidently the dislocation is in 
unstable equilibrium when E = 0 and will tend to leave the cylinder if 
disturbed. 

A calculation like this, which assumes an infinite rod and a state of 
antiplane strain, is, however, unrealistic. On any cross section of the 
cylinder there are tractions which have zero resultant but give a twisting 
moment about the axis of the cylinder whose magnitude can easily be 
shown to be68 

M = $pb(R2 - E2).  (9.12) 

Thus for a finite rod cut from the infinite cylinder, the displacement will 
only retain the form (9.9) if suitable tractions are distributed over the 
ends,sg and (9.10) is really the sum of the image force and the force due 
to these tractions. To find the true image force in a cylinder free of all 
surface tractions we must get rid of these end couples. Their removal gives 
a twist per unit length 

a(.$) = M/&p7rR4 = (b/7rR2)(1 - .$'/R2) (9.13) 

to the rod, together with certain end corrections which we may neglect if 
the length of the cylinder is many times its diameter. The production of 
twist b y  a screw dislocation in a cylinder (or rather the converse) may 
easily be verified by slitting a length of thick-walled rubber tubing along 
a radial plane. Twisting the tube produces an obvious screw dislocation, 
which can be made permanent by coating the cut with rubber solution. 

The total elastic field is found by superimposing (9.9) and the field 
arising from the twist (9.13). From it the true image force may be calcu- 
lated. It is easily found that (9.11) must be replaced by 

W = (pb2/4?r)[ln (R2  - tz) - ( R 2  - f2)22/R4]. (9.14) 

As f' increases, the elastic energy for the case in which twist is prevented 
decreases and the part of this energy which is released by allowing twist 
to take place also decreases, initially rather rapidly. The upshot is that 
W first increases and then decreases (Fig. 1Oc). The dislocation is now 
bound to the center of the rod by the image forces. Only if it is somehow 
displaced about half (more precisely 0.54) the distance to the surface, do 
the image forces tend to pull it out of the rod. 

68 J. D. Eshelby, J .  A p p l .  Phys. 24, 176 (1953). 
6 9 E .  H. Mann, Proc. Roy. SOC. A199, 376 (1949). 



T H E  CONTINUUM THEORY O F  LATTICE DEFECTS 129 

These results may have some application in the study of metallic 
“whiskers.” Present theories60s61-62 suggest that whiskers which grow a t  
the tip may depend for their growth on an axial screw dislocation, while 
those which grow a t  the root may be free of dislocations. Figure 1Oc 
assures us that an axial screw dislocation, if present, will be stable against 
quite large displacements from the axis. Equation (9.13) suggests that 
there should be an easily observable rotation of the crystal lattice as 
we move along the whisker. For example with ( = 0, b = 3.10-* cm, 
R = 

It is a simple matter to find out how much the whisker must be bent 
or twisted in order to dislodge the dislocation. For example, an external 
couple M’ produces a shear stress proportional to  the distance from the 
axis, and hence a force on the dislocation proportional to .$. This can be 
taken into account by adding a term M’bF2/nR4 to  (9.14). For small M’ 
this blunts the maxima in Fig. 1Oc and moves them nearer the center. For 

em, the twist is about 50 degrees per centimeter. 

M’ = +p;UbR2 (9.15) 

the maxima coalesce a t  the origin (Fig. 10d). For greater values of M’ the 
center becomes an unstable position and the dislocation should be ejected 
from the rod. What has just been said applies when the sign of M‘ is such 
as to produce a twist tending to undo the twist arising from the dislocation 
itself. (We see from (9.12) and (9.15) that M’ need annul only half the 
twist caused by the dislocation.) A couple of the opposite sign would 
merely deepen the well in Fig. 1Oc and bind the dislocation more tightly 
to  the axis. The torsional stress-strain curve for a whisker containing a 
screw dislocation should thus ideally have the form of Fig. 10e. The 
horizontal portion represents the disappearance of the twist (9.13) when 
5: suddenly changes from 0 to R as the dislocation leaves the whisker. The 
behavior of the dislocation under other types of external loading may also 
be discussed. * 

The problem of a screw dislocation along the axis of a finite cylinder, 
with end effects included, has been solved.e3 For a long cylinder (rod) the 
unimportance of the end effects is confirmed, whilst for a very short 
cylinder (disk) the image field is, so to  speak, all end effect. The stress 

* The writer is indebted to Professor F. X. Eder for pointing out an error in the version 
of Fig. 10e in reference 58. He also points out that a factor 2 is missing from the 
right-hand side of Eq. (4) of the same reference: this leads to errors of 2 or in some 
subsequent formulas. 

Bo I?. C. Frank, Phil. Mag. 171 44, 854 (1953). 
61.1. D. Ekhelby, Phys. Rev. 91, 755 (1953). 
62 G. W. Sears, Acta Metallurgica 3, 361 (1955). 
63 J. D. Eshelby and A. N. Stroh, Phil. Mug. [7] 42, 1401 (1951). 
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Components p,, and p,, become nearly zero at  distances from the disloca- 
tion greater than the thickness of the disk. Consequently two screw dis- 
locations in a plate interact with a short-range force, in contrast to the 
inverse first power law interaction in an infinite medium. 

Koehler63 has considered the problem of an edge dislocation parallel 
to the axis of a circular cylinder. Let Fig. 10a now refer to an edge dis- 
location with its Burgers vector along the x axis. His results show that 

d2 1 
2 ~ ( l  - U )  R2/E - f F ,  = (9.16) 

This is just the force arising from an edge dislocation at  the image point, 
although the image field is in fact more complex. 

Koehler actually solved the problem of a dislocation in an infinite 
cylinder in a state of plane strain. As in the case of the screw dislocation, 
there will be nonzero tractions on the ends of a finite rod cut from the 
cylinder, and we might suppose that their removal would modify F,. They 
have, however, no resultant or moment, and so, according to St. Venant’s 
principle, removing them gives rise only to small end effects. Apart from 
these, the elastic state of an edge dislocation in a long cylinder coincides 
with the state derived on the assumption of plane strain, and (9.16) gives 
correctly the image force per unit length. There is nothing analogous to 
the odd behavior of the screw dislocation; an edge dislocation in a rod will 
always tend to leave it. Evidently a mixed dislocation will be attracted to 
or repelled from the axis of a whisker according to the relative strength of 
its screw and edge components. 

Head64.66 has given an extensive discussion of the interaction of dis- 
locations with plane boundaries. The boundary may be a free or clamped 
surface, a surface where tangential but not normal displacement is allowed 
(slipping surface), or the boundary between regions of differing elastic 
constants. 

c .  Dislocations in Motion 

At one time it appeared that the dynamical behavior of dislocations 
might play an important role in the theory of plasticity. Roughly we may 
say that a moving dislocation exhibits dynamical behavior when the 
kinetic energy of the disturbance caused by its passage is comparable with 
its elastic strain energy. It now seems likely that frictional forces on a dis- 
location prevent this condition being realized in practice. 

6 4  A. K. Head, Phil. Mug. (71 44, 92 (1953). 
6s A. K. Head, Proc. Phys. SOC. (London) B66, 793 (1953). 
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A number of writers have discussed dislocations in uniform m~tion.~~-’ l  
The case of a screw dislocation in an isotropic medium is particularly 
simple. The displacement w in a state of antiplane strain satisfies 

(9.17) 

when w is independent of time and 

when it is not. For an elastic field moving uniformly parallel to the x axis 
with velocity v, the displacement w = cp(x - vt,y) satisfies 

Thus if 

satisfies (9.17), then 
u: = w(r,y) 

w = w(T, x - vt y) 

(9.18) 

(9.19) 

(9.20) 

satisfies (9.18). If we take for (9.19) the expression (9.5), the correspond- 
ing relation (9.20) still has the property characteristic of a screw disloca- 
tion, namely that w increases by b on encircling the point x = vt. The field 
of the moving dislocation is derived from the field of the static dislocation 
by giving it a “ Lorentz contraction.” The contracted field continues to 
satisfy the Peierls condition (9.6). Leibfried and Dietzee9 considered a 
screw dislocation moving in the midplane of a plate with free surfaces. 
They established the “relativistic ” relation 

Ev = EkinV + Eelv + Epotv = E0/P (9.21) 

for the total energy at  velocity v, made up of contributions from the 
kinetic and elastic energy of the continuum and the potential energy of 
the atomic forces maintaining the law (9.6) a t  the slip plane. 

These results may be generalized. If a static dislocation satisfies any 
generalization of the law (9.6), say pZu(x, +*a) = f[w(x,ia) - w(x,-~)], 
its contracted moving version satisfies the same relation. Equation (9.21) 
6 6  F. C. Frank, Rept. C‘onf. on Strength of Solids Univ. Bristol p. 48, 1947. 
87 F. C. Frank, Proc. Phys. SOC. (London) A62, 131 (1949). 
s8 J. D. Eshelby, Proc. Phys. SOC. (London) A62, 307 (1949). 
69 G. Leibfried and H. D. Dietze, Z. Physik 126, 790 (1949). 
70 R. Bullough and B. A. Bilby, Proc. Phys. SOC. (London) B67, 615 (1954). 

A. W. Sdenz, J. Rat. Mech. Analysis 2, 83 (1953). 
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continues to hold for this more general law, even if the slip plane does not 
lie at the center of the plate, and if the surfaces of the plate are either 
free (dw/ay = 0) or clamped (w = 0). The proofs are simple and do not 
require a knowledge of the explicit form of w (x, y) . Let the point (x = X ,  y) 
in the static solution w = w(x,y) and the point (x = pX,y) in the moving 
solution w = w(x/P,y) be called corresponding. (We take t to  be zero.) 
Then a t  corresponding points the following pairs of quantities are 
evidently equal : 

(i) (ii) (iii) (iv) (v) (vi) 
aw aw 

aY a x  
- - static W (grad w) dY ax 

dx -. aw 1 aw w 2  (grad w ) ~  - 7 
dy P moving W aY p a z  

The line elements in (v), (vi) are supposed to be bounded by correspond- 
ing points. Column (iv) expresses the “relativistic” invariance of the 
Lagrangian density, and follows from (ii), (iii), since w = -uaw/ax. 

Columns (i), (ii) show that the two solutions satisfy either of the 
boundary conditions w = 0 or dw/ay = 0 together at the surfaces of the 
plate and that along the slip plane p,, is the same function of w in the two 
cases; thus, if a certain law of force holds the static field together, i t  will 
hold its Lorentz-contracted version together. The potential energy per 
unit length of the slip plane depends only on the difference in w across the 
slip plane and so from (i) and (vi) EPotv = PEpoto. The total energy is thus 

Ev = il{p(grad w ) ~  + pw2)dxdy + pEpoto 

where the integral extends over the elastic region. The integral can be 
rearranged with an eye to making use of column (iv), and we easily find 

where the integral is evaluated for the static case. By integration by parts 
and use of (9.17), the integral can be converted to 

But by an argument of Foreman and Nabarro (reference 9, p. 360: put 
u = 0 for antiplane strain), this is just -EpotO, which establishes (9.21). 
If a approaches zero, Epoto becomes negligible compared with Eel0 and we 
recover a formal result of Frank67 for the purely elastic case. 

The behavior of an edge dislocation in an isotropic medium or of any 
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dislocation in an anisotropic medium is “relativistic with complica- 
t i o n ~ , ” ~ ~  owing to the existence of several velocities of sound. 

We turn now to the properties of dislocations in nonuniform motion. 
N a b a r r ~ ~ ~  has given a general method for calculating the elastic field of 
a dislocation loop which is changing its shape in an arbitrary way. The 
result takes a relatively simple form for the two-dimensional problem of 
a screw dislocation whose center moves in an arbitrary manner.6,73 If the 
position of its center a t  time T is z = [ (T ) ,  y = v(T), the displacement is 

where s2 = c2(t  - T ) ~  - (z - o2 - (y - v ) ~  and T O  is the root of s2 = 0 
which is less than t .  Such an arbitrary motion will require an external 
stress system varying suitably in space and time to maintain it. For 
simple cases this field can be calculated by imposing suitable conditions 
a t  the center of the dislocation. For example, we may require that the 
Peierls-Nabarro condition be satisfied there,74,T* or we may, in effect, 
require that the force which the dislocation exerts on itself balance the 
force due to the external field.73 At any moment the field a t  a point on 
the dislocation is made up of the applied field and contributions from all 
other points of the dislocation. Because of the finite time of propagation 
of elastic disturbances, the present motion depends on the previous 
history of the motion extending back over a time of the order of the 
maximum dimension of the dislocation loop divided by the velocity of 
sound. As a result, the equation of motion of the dislocation takes the 
form of an integral equation giving the external field required to maintain 
the prescribed motion. The more interesting problems of finding the 
motion in a prescribed applied elastic field requires the inversion of this 
integral equation. It can be carried out approximately in simple cases.73 
Roughly speaking, the rectilinear motion of an infinite screw dislocation 
is the same as that of a Newtonian particle of mass (pb2 /4?r )  In ( R / a )  acted 
on by a force F = bp,,, where p,, is the applied stress; R is a distance of 
the order of the dimensions of the disturbed region surrounding the dis- 
location. For motion which starts from rest a t  t = 0 and in which the 
distance of the dislocation from the starting point increases mono- 
tonically, R - ct. Thus, for example, a dislocation which is started by an 
impulsive force and then runs freely will slow down as its effective mass 
increases. For oscillatory motion with frequency w, R - c/w. 

In  discussing a screw dislocation, we can make u8e of an electro- 
‘*F. R. N. Nabarro, Phil. Mag. [7] 42, 1224 (1951). 
78 J. D. Eshelby, Phys. Rev. 90, 298 (1953). 
74F. R. N. Nabarro, Proc. Roy. Soc. A209, 278 (1951). 
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magnetic a n a l ~ g y . ~ ~ , ~ ~  If the dislocation is parallel to the z axis, the only 
nonzero elastic quantities are the z component w of the displacement and 
the stresses p,,, pZu. Consider an electromagnetic field in which 

E, = H ,  = H ,  = 0 

and all quantities are independent of z .  Make the identification 

a w l a t  = HJp', p2, = -E,/P*, P,, = EZ/p' .  

Here p and p are the shear modulus and density. We identify the velocity 
of shear waves c = ( p / p ) *  with the velocity of light and use Heaviside 
units for the electromagnetic field. The electromagnetic energy and 
Poynting vector translate into the sum of the elastic and kinetic energy 
densities and the elastic energy-flux vector. The analog of a dislocation 

- 
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FIG. 11. Lorents force on a procession of dislocations. 

with Burgers vector b is a line charge of b /p*  units per unit length. The 
force on a stationary charge translates correctly into the force on a 
stationary dislocation. The Lorentz force on a moving charge translates 
into a force perpendicular to the direction of motion of the dislocation of 
magnitude 

F = p b v V  (9.22) 

where v is the speed of the dislocation and V is the velocity of the medium 
along the z axis "at the center of the dislocation" (to avoid the singularity 
a t  the dislocation, we may take V to be the average of w over a small 
circle centered on the dislocation). Nabarro74 has elucidated the physical 
meaning of the Lorentz force. The following is a crude illustration. 

Let a closely spaced procession of n screw dislocations per unit length 
move with velocity v in a plate of unit thickness (Fig. 11). Their motion 
makes the blocks above and below the slip plane slide over each other in a 
direction perpendicular to the paper with relative velocity 

Ira - Vb = bnv. (9.23) 

The effective velocity of the medium a t  the slip plane is V = &(Va + Vt,) ; 
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we can give this any value, while still maintaining the relation (9.23). 
The kinetic energy per unit length and depth of the plate is 

If we raise the height of the procession by 6x, maintaining v and V con- 
stant, some external source must do work 6T = pbvnV6x and we may say 
that there is a force F = pbvVn on the n dislocations (or a force (9.22) on 
each) resisting vertical motion. 

Replace the screw dislocations by a procession of edge dislocations. 
The blocks now move with velocities Val VP, parallel to the slip direction: 
otherwise the argument is word for word the same as before and we obtain 
a Lorentz force (9.22) on an edge dislocation. Now V is the velocity of the 
medium in the slip-direction and F is still perpendicular to the slip plane. 
This Lorentz force on a procession of edge or screw dislocations agrees 
with what one gets by integrating the energy-momentum tensor (7.7) over 
a loop embracing unit length of the procession. 

An aerofoil moving relative to a fluid generates a dislocation in it. 
To see this, suppose that the aerofoil is at rest with the fluid streaming 
past it. Consider a particle upstream straddling the critical streamline 
which divides a t  the nose of the aerofoil. The particle is split into two 
parts which traverse the upper and lower surfaces of the aerofoil and leave 
the trailing edge at  different times, so that downstream they both lie on 
the critical streamline, but are separated by a certain distance, the 
“Burgers vector.” This Burgers vector can be shown to be equal to the 
ratio of circulation and stream velocity, and so the lift is equal to 
the Lorentz force (9.22). The lift is a “real” force: if we remove the aero- 
foil, leaving a free vortex with the same circulation, the force takes on the 
“fictitious” character of the force on a dislocation. 

By a very general arg~rnent,’~ it may be shown that an electron 
moving with velocity v through an isotropic flux of electromagnetic waves 
experiences a retarding force 

F = -  ffuWv/c (9.24) 

where W is the energy density of the electromagnetic field, u is the 
Thompson scattering cross section, and a = Q. If we take u to be a pre- 
scribed constant, we can apply the same argument to a line charge moving 
in a flux of electromagnetic waves isotropic in the xy plane, and, hence, 
to the related dislocation problem. We should obtain (9.24) again, where 
now F is the retarding force per unit length of line charge or dislocation, 
u is the scattering area of unit length, and a is changed from Q to 3 by the 

7SL. Landau and E. Lifshita, “The Classical Theory of Fields.” Addison-Wesley, 1951. 
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transition from three to  two dimensions. The same expression shouId be 
valid for a screw dislocation in a three-dimensional flux of sound waves 
if we reduce the value of a! t o  allow for the fact that the “antiplane” 
sound waves contribute only a part of the total energy density W .  Leib- 
fried44 has considered the corresponding problem for an edge dislocation. 
He obtains (9.24) with Q = &. By taking u t o  be of the order of b and 
identifying W with the energy of thermal vibrations, he finds a retarding 
force which is sufficient to keep v a small fraction of c for any reasonable 
applied stress. 

Nabarro74 has given a critical discussion of Leibfried’s theory. The 
scattering cross section of a screw dislocation for an elastic wave need not 
be assumed, but can be found from the electromagnetic analogy. Unlike 
the cross section for an electron it is not independent of the wave length 
of the scattered wave, but very nearly proportional to  it. The arguments 
leading to (9.24) thus need modification. The result is found to be that F 
vanishes a t  least to order v/c. The electromagnetic analogy assumes that 
Hooke’s law is valid even for infinite strains and neglects the atomic struc- 
ture. In fact the disturbed region a t  the center of the dislocation may well 
act as a scatterer with a cross section of the order of b for waves near the 
top of the Debye spectrum, but smaller for long waves. This would lead 
to a force of the form (9.24) with an Q presumably less than Leibfried’s 
value. According to Granato and L u ~ k e , ’ ~  damping experiments enable 
the limits 0.015 < a < 0.12 to be set for dislocations in germanium. 

d .  Continuous Distributions of Dislocations 

Having replaced the dislocations of a crystal lattice by their con- 
tinuum analogs, it may be convenient to go a stage further and regard a 
body containing a large number of dislocations as being flled with a con- 
tinuous distribution of dislocations. Following Nye?? we may define a 
tensor aij whose i j  element gives the sum of the xi components of the 
Burgers vectors of all the dislocations threading unit area perpendicular 
to the xj axis. The total Burgers vector of the dislocations threading a 
circuit c will be 

(9.25) 

where C is a cap bounded by c. So far aij merely provides a convenient 
description of the distribution of dislocations; we need to  relate it to the 
deformation of the lattice and the state of internal stress. Since the 

7 6  A. Granato and I(. Lucke, Technical Report, Contract No: DA-36-039 SC-52623 

77 J. F. Nye, Acta Metallurgica 1, 153 (1953). 
Part 11. Brown University, 1955. 
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internal stress is, in principle, adequately described by the incompatibility 
tensor, we should be able to express Sir in terms of aij. Kroner’s has made 
the necessary connection. On the other hand, the Riemannian geometry 
associated with Sij is not adequate for description of a continuous distri- 
bdtion of dislocations. K o n d ~ ’ ~  and Bilby and co-workerssO have given 
an elegant interpretation in terms of non-Riemannian geometry. We give 
a rather over-simplified sketch of this work, basing it directly on the idea 
of the Burgers circuit. 

Let the comparison crystal be simple cubic with a unit cell defined by 
the vectors eil, €in, eia in the notation of Section 3 (e need not be infini- 
tesimal). The possibility of carrying out associated circuits in the real and 
comparison crystals implies that for every vector step eii we take in the 
comparison crystal we can pick out a step, say eei(P), at  the corresponding 
point P in the real crystal. We may express ei(P) in terms of the ii: 

ei(P) = Dij(P)ij 
and conversely 

(9.26) 

ii = Eij(P)ej(P) with DijEjk = b i k .  (9.27) 

When there is a descrete distribution of dislocations, the Burgers circuit 
is drawn in ((good” crystal which by definition is a region where the 
identification (9.26) can be made by inspection. If we pass to the case of 
a continuous distribution of dislocations, there is no ((good” crystal, nor 
indeed any crystal lattice. Then (9.26) becomes a direct specification of 
the particular vector triplet ej at  a point of one continuum (representing 
the real crystal) which corresponds with the triplet ij a t  the corresponding 
point of a second continuum (representing the comparison crystal). For 
ease of description, we shall adopt the hybrid point of view that the eej 
are lattice vectors of the real crystal, but that e is small enough in com- 
parison with the dimensions of the Burgers circuit for sums of lattice steps 
to be replaced by integrals. 

Draw a closed circuit c in the real crystal. The element of path joining 
xi to xi + dxi is the vector idxi and the sum 

is zero. We can exhibit this explicitly as a sum of lattice steps in the real 
crystal by expressing ii in terms of ei: 

78 E. Kroner, Z. Physik 142, 463 (1955). 
79 K. Kondo, Proc. 2nd Japan Natl. Congr. Appl. Mech. 1962, p. 41 (1953). 
80 B. A. Bilby, R. Bullough, and E. Smith, Proc. Roy. Soc. A231,263 (1966). 
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The sum of the corresponding steps in the comparison lattice is found by 
replacing e3 by its associated vector ij in the comparison lattice. Thus the 
Burgers vector of the circuit is 

b = Eij(P)ijdzi .  

By Stokes’s theorem, this becomes the surface integral 

b = i j  IC eik&,zdSk 

taken over a cap C bounded by c. Comparison with (9.25) gives 

a i k  = eik&sj, l .  

The divergence a j k , k  vanishes, so that the choice of the cap c is arbitrary. 
This is the continuum analog of the rule that a dislocation cannot end in 
the material. The Burgers vector associated with a surface element dSk is 

db = aikijdSk. 

The local Burgers vector is, by definition, the vector in the real lattice 
which corresponds to the Burgers vector in the comparison lattice. It is 
found by replacing i j  by ej = Djpip: 

db’ = a3kD3hdSk;. 

If we choose to take the surface element in the form of an antisymmetric 
tensor dSm,, where dSk = -+ekmndSmn the components of db’ are easily 
found to be 

where 
db,’ = T,,,,PdSmn 

TmnP = 3 D j p ( E m j , n  - E n j , m ]  * (9.28) 

For simplicity we now suppose that ei and ii differ only infinitesimally 
from one another and write 

Dij = S,i 4- Uji 

in analogy with (3.1). Then Eij = Sji - Uji andsoa 

a. .  23 = - e m i p U i m , p .  (9.29) 

We may still define a rotation in terms of the ei and ii by means of (3.13). 
This gives 

If we regard eel, cez, ee3 as the edges of a distorted unit cell in the real 

80a B. A. Bilby, Rept. Conf. Defects Crystalline Solids, Univ. Bristol, p. 124, 1955. 

&j = +(Utj - U3i) or = - ~ k i j U i j .  
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crystal, i t  is reasonable to call 

e . .  a3 = i(ei * ej - 6,) = + ( U i j  + U3i) (9.30) 

the strain components. This is the point of view of Kroner,78 who supposes 
there exists in a crystal with a continuous distribution of dislocations a 
“nonsysmmetric state of strain” given by U i j  (replacing the ui,j of the 
compatible case), from which one can derive a symmetrical strain and a 
rotation which are no longer connected by (3.14). We have, rather, 

K . .  3a = - ”. -3,; = ai3 - &rnm6ij - ejrnpeirn., .  (9.31) 

(Write Uirn = eirn + ijim in (9.29), express ijim as a vector, and note that 
amm = -2Gmrn.) The incompatibility tensor corresponding to the strain 
(9.30) is easily found by operating on (9.31) with e a k q a / d x q ;  we find 

s k j  = t i k q ( a i j  - + f f r n m 6 i j ) , q -  

Kroner7* gave the explicitly symmetric form 

s k i  = k k q a i j , q  + & i j q f f i k , q .  

The two expressions can be shown to be identical because of the relation 
f f i k , k  = 0. When a i j  is known, S i j  can be found, and hence the stresses are 
determined, if we assume with Kroner that they are derived from (9.30) 
by Hooke’s law. Evidently if there is a uniform distribution of dislocations 
( a i j , k  = 0) ,  there is no stress. 

The quantity (9.31) gives the rate of rotation of the triplet el, e2, e3 
as we follow it about the lattice, just as in the compatible case. It is 
Nye”s77 curvature tensor. Nye gave (9.31) for cases where the term in 
emi could be neglected. Kroner78 gave the complete form, but with a slight 
difference in interpretation. When aij = 0, and consequently Sij = 0, 
(9.31) reduces to the ordinary compatible relation (3.14) giving the 
gradient of the rotation. Thus, in general, (9.31) gives the lattice rotation 
arising from dislocations and any compatible strain caused by body and 
surface forces. Kroner assumes, on the other hand, that the strain may 
be divided into a compatible and an incompatible part, and that the last 
term in (9.31) refers to only the latter. Thus ~j~ vanishes in his formula- 
tion if aij = 0 and is a measure of the rotations due to the dislocations 
alone. 

It is clear that aij - +arnmLiij is a measure of the failure to satisfy the 
condition (3.14) for compatibility between strain and rotation, just as 
Sij is a measure of the failure to satisfy the more rigorous strain com- 
patibility conditions. We may give the following physical interpretation. 
Mark out a thin straight rod in the material and cut it out. It becomes 
a rod with curvature and torsion specified by Kji’  = ernjpema,p  owing to 
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relaxation of internal stress. If we annihilate the dislocations contained 
in it, it undergoes a further curvature and torsion specified by 

K.. ' f  3% = - (crij - 4crmmSij). 

The connection with non-Riemannian geometry comes about as 
follows. (We no longer assume that Dij differs only slightly from Sij.) In 
an obvious sense, the vectors e,(P) and el(&) a t  points P ,  Q are "equiva- 
lent." More generally, we can say that A(P)  = ai(P)ei(P)  and 

A(&) = ai(Q>ei(Q) 

are equivalent if al(P) = al(Q),  a2(P)  = a2(Q) ,  a,(P) = a3(Q).  Evidently 
A(P)  and A(&) are generated by the transformation (9.26) from equal 
vectors in the comparison crystal. Let A have rectangular coordinates 
A i ;  then 

A = A i .  % a  = aiei = aiDtjij 

and Ak = aiDik or, multiplying by E k j  and using (9.27)) ai = AkEkj. The 
condition a@) = ai(Q) is thus 

Ak(P)Ekj(P) = Ak(Q)Ekj(Q). 

If P,  Q are neighboring points xi, xi + dxi and we put 

(9.32) 

In the language of differential geometry, a relation like (9.32) prescribing 
which vectors a t  neighboring points of a coordinate network (manifold) 
are to be considered equivalent is known as a linear connection with coefi- 
cients L k l m .  In  a Riemannian geometry, Lklm is symmetric in k and 1. (In 
the geometry of Section 4, L k l m  = e im,k  4- emk,i - eki ,m to the first order.) 
The geometry associated with the dislocated lattice is more complex 
since Lklm is not symmetric. In fact, its antisymmetric part (torsion 
tensor) !&?&" - L l k m )  is just the local Burgers vector density in the form 
(9.28). 

10. SURFACE AND VOLUME DEFECTS 
We saw in Section 6 that when the elastic constants of a body are 

changed from one function of position to another under constant external 
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loading, half the work done by the external forces goes to  increase the 
internal elastic energy. Since the calculation rests on a comparison of 
the equilibrium states before and after the change, it cannot tell us what 
happens to the missing half of the energy. It may be dissipated or i t  may 
reappear, for example, as kinetic or surface energy. Apart from its applica- 
tion to point defects (Section 8e), this result has a bearing on the behavior 
of grosser inhomogeneities of the lattice, in particular of cracks and of 
boundaries across which the orientation of the crystal changes. 

A crack may be regarded as a narrow zone where the elastic constants 
are zero; the extension of a crack qualifies as a change in the distribution 
of elastic constants of the type we are considering. In  the Griffith criterion 
for the spread of a crack, the energy made available in a small extension 
of the crack must be equal to the resulting increase of surface energy. 
According to (6.3), this means that a t  constant load the increase of surface 
energy must be equal to the increase of elastic energy. On the other hand, 
suppose that the body is strained by giving parts of its surface fixed 
displacements and leaving the rest free of traction. Then 6E,,, is zero in 
any change and the criterion for spread of the crack is that the increase 
of surface energy shall be equal to the decrease of elastic energy.81082 

There is a force on a grain boundary or twin boundary in virtue of the 
fact that it represents an array of dislocations.1° There is also a less 
obvious contribution arising from the fact that it is effectively a junction 
between regions with different elastic constants, even though the material 
is homogeneous. As we cross the boundary, the orientation of the crystal 
axes changes and so does the array of elastic coefficients c i j k l .  In  this wider 
sense, the material is elastically inhomogeneous. 

The force which a stress-field exerts on an element of the boundary, 
regarded as an array of dislocations, can be found by applying (9.2) to the 
dislocations it contains. In  simple cases it can be found directly. Figure 
12a illustrates schematically the experiment of Parker and Washburns3 
on the movement of small-angle grain boundaries. A beam is loaded at  
one end and contains a tilt boundary A B  of angle w. If the boundary 
moves a distance dx to the left, the load descends a distance wdx and loses 
potential energy Wwdx. Thus the force on the boundary has magnitude 
Ww and is directed to the left. If the load were upward, the force would be 
directed to the right. 

Contrast Fig, 12a with the rather artificial situation shown in Fig. 12b. 
Here A B  marks not a grain boundary but the junction between regions 

8 1  A. A. Griffith, Phil. Trans. Roy. SOC. A221, 163 (1920). 
82 E. Orowan, Welding J .  34, 157s, 1955. 
*3E. R. Parker and J. Washburn, Trans Am. Znst. Mining Met. Engrs. 194, 1076 
(1952). 
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with different elastic constants. Suppose that the Young's modulus E' 
on the right is less than the Young's modulus E on the left. Per unit 
length, the beam is more flexible on the right than on the left. If the 
junction is moved to the left the beam as a whole becomes more flexible 
and the load descends, losing potential energy. If the load were directed 
upward instead of downward, moving the boundary to the left would 
make the tip of the beam move further upward, so that the potential 
energy of the load would again decrease. Thus there is a force on the 

LIp --- --- -,I 

i*- 

- X -  

+ 
w 

FIG. 12. To illustrate Section 10. 

boundary in Fig. 12b which (unlike the force on the boundary in Fig. 12a) 
does not reverse when the load is reversed. According to (6.3), its magni- 
tude is 

d I d  
dx 2 ax F = - - (Eel + E,,,) = - -- E,,,. (10.1) 

Elementary beam theory gives the deflection of the load as a function of x 
and leads to 

where M is the bending moment a t  x, and I is the moment of inertia of 
the cross section. (Strictly the boundary conditions necessary for (6.3) to 
hold are not exactly satisfied a t  the clamped end, but this makes no 
difference within the limits of elementary beam theory.) 

Again, suppose that instead of the load W there is an external couple 
M twisting the beam about its axis. The twist per unit length in the two 
sections is M / D p  or M/Dp' ,  where D is the torsional rigidity when p = 1. 
The total twist a t  the load end is thus 
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Here E,,,is -MB + const. Thus (10.1) gives for the effective force on the 
junction 

(10.2) 

These results may be applied to the more realistic case where the array 
of elastic coefficients c&l differs on opposite sides of a grain boundary by 
taking El E', p, p' to be effective moduli for the bending or twisting of 
anisotropic beams cut with slightly different orientations from the same 
crystal. 

Generally, then, an element of a grain or twin boundary will experience 
two forces, namely F D  because it is an array of dislocations (or equiva- 
lently, because its movement alters the form of the crystal) and F R  
because it is the junction of two regions in which-the crystal axes are 
rotated with respect to one another. Apart from questions of relative 
magnitude, there is the qualitative distinction that when the applied 
stresses are reversed F D  reverses but F R  does not. 

Usually we may expect F R  to be swamped by FD.  However, in Thomas 
and W o ~ s t e r ' s ~ ~  phenomenon of piezocrescence F R  comes into its own. If a 
quartz crystal transforms into its Dauphin6 (or electrical) twin, its 
external form is unaltered, but its internal crystal structure is rotated 180" 
about the pseudo-hexad axis. Thus, if a region inside a crystal changes 
to its Dauphin6 twin, it will constitute a region of elastic inhomogeneity 
unaccompanied by internal stress. 

Thomas and Wooster carried out what in effect is the analog for F R  
of the Washburn-Parker experiment for FD.  They found that a Dauphin6 
boundary in a quartz rod twisted by an applied couple moved (at high 
enough temperatures) in a direction determined by the sign of (p-l - 
p'-l) in (10.2) but independent of the sign of the applied couple. (p-' - 
p'-l) may be positive or negative according to the orientation of the 
crystal axes in the rod. 

They have also given what in effect is a calculation of the force per 
unit area on an inhomogeneity boundary in an arbitrary stress field. 
Following them, we neglect both the possible discontinuity in the stress 
components across the boundary and the fact that moving the boundary 
will itself upset the applied stress distribution. Then (6.5) may be 
rewritten as 

6Ee1 = *$(sijkm' - S i j k m ) P i j p k m d u  

omitting the prime on p k m .  If a surface element of the boundary is dis- 
placed a distance 6 t  in the xz direction, it sweeps out a volume dv = dSGtnl 

s4L. A. Thomas and W. A. Wooster, Proc. Roy. SOC. A208 (1951). 
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where nl is the normal to dS.  Then 6Ee1 is dVASzjkmPijpkm, where Asijkm is the 
value of Sijkm on the side of the positive normal minus its value on the 
negative side. The force on the boundary per unit area is thus a normal 
pressure 

(10.3) 

The coefficient of nz in (10.3) has the form of an energy density derived 
from fictitious elastic constants Asijkm. Unlike a true energy density, i t  
may be positive a t  some points and negative a t  others. I n  equilibrium 
the twin boundary must coincide with the surface separating positive 
from negative regions, for there F I R  = 0. 

Thomas and Wooster verified this experimentally for a quartz plate 
in a complex state of stress. I n  their theory they correctly maximized the 
elastic energy, invoking Le Chatelier's principle. StepanovS5 in similar 
work minimized the energy. This gives the shape of the boundary cor- 
rectly but interchanges the twinned and untwinned regions. 

It is interesting to compare the magnitudes of F D  and F R  for a grain 
or twin boundary in a metal. Let w be the misorientation, p a typical 
stress component, and s a typical component of sijk;z. The fractional change 
of s on crossing the boundary is of order w .  Then F D  - wp and from (10.3) 
F R  - wp2s - w p 2 / p  where 1.1 is some elastic modulus. Hence F R / F D  is of 
the order of the usually small quantity p / k .  

s 6  A. V. Stepanov, Zhur. Ekspt l .  i Teort. Fiz.  20, 438 (1950). 




