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Abstract 

It is shown that many center excitations are responsible for the universal low energy spectral properties in an arbitrary 
ensemble of defect centers with an internal degree of freedom. Universality means a quasiuniform distribution of the energy 
and the logarithm of the tunneling amplitude together with a disappearance of the dependence on the primary defect 
parameters. 

PACS: 61.43.F~; 77.22.Ch; 75.50.Lk 

1. The anomalous low-temperature properties of 
quite different amorphous solids demonstrate a re- 

markable universal behaviour. These properties are 
well described by the known tunneling model [l] 
based on an ensemble of two level systems (TLS) 
randomly distributed. The assumptions of the uni- 
form TLS distribution of the level shifts A and the 
logarithm of the tunneling amplitude A,, were deci- 
sive. The first assumption seems quite natural. How- 
ever the uniform distribution of ln( A,) in the broad 
interval of the change of this parameter has no strong 

grounds in the general case. The quantitative resem- 
blance of the properties observed in glasses also 
needs to be explained. 

We believe that the universality of the low energy 
spectral properties of the amorphous solids results 
from the many body interaction of the defect centers 
with an internal degree of freedom. An inevitable 
appearance of these centers is linked to the local 

breakdown of the spatial degeneracy. This leads to 
the arising of a primary system of double-well cen- 
ters which, in general, should not manifest the uni- 
versal spectral properties. 

The analysis of the low energy spectral properties 
of amorphous solids caused by the interaction of the 
primary defect centers and the clusters of these 

centers is the purpose of this Letter. It will be shown 
that the role of many center excitations (MCE) in- 
creases with decreasing energy. The spectral proper- 
ties of these MCE are independent of primary defect 

parameters and demonstrate practically the uniform 
distribution of A and ln( A,). 

It will be important that the interaction between 
defect centers falls off with distance as 1/R3. This 
interaction law is known both in amorphous insula- 
tors and metals. One should notice that recently Yu 
and Leggett [2] put forward the hypothesis that the 
l/R3 law for the interaction between defects can be 
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responsible for the universality of the amorphous (it is conventionally assumed that in the ground state 
solid properties. However the question about the S’, = i>. For MCE including n centers the stability 
nature of excitations remained open. conditions are reduced to the inequalities 

2. Consider an amorphous medium with double- 
well centers distributed randomly in space and hav- 

ing an arbitrary distribution of parameters. This sys- 

tem can be described by the standard pseudospin 

Hamiltonian 

‘i,,i, ,.... 1 n = i: Ail - 4 k Vi,,, > 0. 
k= I kl 

(4) 

i ij i 

Here oi is a level shift of the isolated defect center 

i, which is distributed in the interval ( - W/2, W/2). 
The interaction between the centers is defined as 

Ulj = u,~/R~,. We suppose that the constants uij are 

uncorrelated for different pairs of centers, and their 
average value is zero. The average modulus ( 1 uij 1) 
= U, gives the characteristic interaction parameter. 

The tunneling amplitudes of the primary centers 
have the scale A, .+. Let us assume that 

A,, cc U,n <SW, (2) 

where n is the density of centers and therefore CJ,n 
is the interaction between centers on an average 
distance. This hierarchy of energies allows us to 

investigate the excitation spectrum of the Hamilto- 
nian (1) neglecting first the tunneling. Then the 
tunneling will be included in the framework of the 
perturbation theory in A, * /W. 

We start with the consideration of the density of 
states P(A) neglecting the last term in Eq. (1). At 
zero temperature the system should be in the ground 
state. This means that the energies of all MCE 
should be positive. Such a stability requirement in- 
troduces a system of limitations which can essen- 
tially influence the density of the low energy excita- 
tions in the case of a long-range interaction. This 
was first demonstrated in the analysis of the Coulomb 
gap problem in doped semiconductors [3,4]. 

For the Coulomb interaction those requirements 
lead to the Coulomb gap in doped semiconductors 
131. For the interaction l/R3 the stability conditions 
turn out to be significant and they should be taken 
into account [4,2]. 

For the single particle excitations the stability 
requirements have the form 

Ai = w, + c U,,Sj > 0 (3) 

3. Let us at first restrict the range of the interac- 
tion domain by the radius R,, limited enough to 

consider the intercenter interaction effectively as a 

weak perturbation, and calculate the decrease of the 

density of the single particle excitations (3) caused 
by the stability requirements for pair excitations (4), 

P,(A)=~~(F(A-Ai)no(Aij)). (5) 

I i 

Here J2 is the system volume. Replacing @(A,) by 
1 - O( - Aij> and taking into account that this ex- 
pression is not equal to unity ordy in a small part of 
the phase space one can get 

P,(A) N P, 1 - &,j- d&j- d A, 
( 

X(@(u/R;, - A, - A)luO(Rcl -R,,) 7 
1 

(6) 

where (. . .>, denotes averaging over U. It was 
assumed here that the density of states for primary 
centers P(A) has no a singularity at A = 0. This 
allows one to replace P( A,) with P, = P(O) = n/W 
because the main contribution to the integral (6) 

comes from small values of A, < CJ,,/Rf,. 
We are interested in the density of states at the 

low energy 

A < i&/R; -et W, (7) 

where P, proves to be independent of energy with 
logarithmic accuracy. Taking into account that in Eq. 
(6) u > 0 we find 

P,(A) =P,(l -2x5). (8) 

x= n-P,U,,, t=ln( RJR,,,) z=- 1. (9) 
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We assume with logarithmic accuracy that R,,, is tance where an arbitrary cluster finds another one to 

defined as lJ,/Ri,, = W. form a more complex cluster. 

The decrease of the density of single particle 

excitations (8) is accompanied by the growth of the 
density of many center excitations. For example, a 

pair excitation with low energy may arise for two 

centers with energy A,, = -\; + A, - Uij -=s A,, A, = 
U,,. This is already the excitation of a coupled pair 

cluster with only two available states which are the 

ground state Si; = S,” = + and the excited state S, = 
SC = - 4. Let us find the contribution of pair excita- 

ti/ons to the low energy density of states. In the 
leading approximation (as in Eq. (8)) we have 

P.,(J) = +Pg?/ dR,,/ dA,/ dd, 

Let us assume that the interaction domain is 
limited by the radius R, F+ R,,,,. Consider the evolu- 

tion of rhe density of states when increasing the 

cutoff radius up to R,, obeying the inequality 1 -=x 

RJR, Ke’/\. Then 6t=,y@=x In(Rl/R,)* 1 
and the probability to form new coupled clusters is 

small (cf. Eq. (I 111. New coupled clusters statisti- 
cally occur at distances R z+ R,. This allows us to 

consider the clusters as point-like objects. The shift 

of energy to the interval A - .!J,/R; predetermines 
that the energies of the collective excitations of 

coupling clusters should be of the same order. Since 
other intra-cluster excitations in reality have energies 

A B I/,,/R:, these clusters enter more complex for- 
mations as single objects. The probability of the 

appearance of a coupled cluster from three or more 
clusters will be a factor x ln( RI/R,) smaller than 

two-cluster formation. Therefore. when calculating 
P,,( A, R, ) - P,,( A. R2 1 we consider only pair unifi- 
cations. 

x 6 
(i 

@(R, - Rjj). 

(10) 
Taking into account condition (7) we find 

P?(A) =P,x5. (11) 

From the results (8) and (11) one can easily conclude 
that the parameter of the perturbation theory is the 
product I = ~5. The contribution of the primary 
centers decreases with increasing t and pair excita- 
tions (and, generally, MCE with P,, - I”- ’ ) become 
significant. 

4. Assuming that the inequality (21 is valid we 
have x -=x 1. At the same time the effective interac- 
tion constant increases logarithmically with R,. If 
the system size is large enough then the interaction 
becomes strong at least at T + 0. This is the direct 
consequence of the interaction law l/R3. Under 
these conditions the renormalization group approach. 
based on the subsequent increase of the interaction 
range (R,) can be used to define the density of states 
P,,( A\, R,) (for n-clusters, containing n initial defect 

centers). This approach is analogous to the one 
developed by Levitov [S] who analyzed the localiza- 

tion problem in the case of dipole-dipole interaction. 
Suppose first that T = 0. The appearance with 

large probability of many-center excitations requires 
the condition f - 1. Since x -=K 1 the corresponding 
size of the interaction range R* is exponentially 
large; R = R,,,i,e . ‘lx This is the scale of the dis- 

P, decreases with increasing interaction radius, 
because the number of unstable configurations in- 
creases (cf. Eq. (8)). On the other hand, P,, increases 
due to the unification of pairs of smaller clusters. 
The structure of both contributions is analogous to 

Eqs. (5) and (10) respectively and the general equa- 
tion reads 

P,,(J? R,) 

= P,,( A, R,) n’@( A, + A - u,,,/R;) 
x.j > 

!I- I 

+i c C’(6(A-A,-d,,_,+~r,.,,_,/R:)). 
k=I , 

( 12) 

Here A, is the excitation energy for the kth cluster; 
ue,,, is the coupling constant of the interaction be- 

tween clusters k and nz. The prime in the sum and 
the product over j means the limitation R, < Rj < 
R,. For a small excitation energy 3 < I/,/R: the 
r.h.s. in Eq. (12) can be calculated in the limit 
A --f 0. Taking into account the small difference 
between x ln(R,) and x ln(R,) (6ra 1) we can 
use the substitution P,(O, R) + P,(O. R, ) in the r.h.s. 
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of Eq. (12). Then making transformations analogous 
to those made for transitions from Eqs. (5) and (10) 
to Eqs. (8) and ( 111, respectively, we find 

Pn(O, R2) 

= P&L R,) - 27rP,(O, R,) 

x :(I UknI)Pk(oy h) 1n(R2/Rl) 

k= 1 

n-1 

+ 7T c ( 1 ‘k,n-k I)pk(o, RdPn-k(o* h)> 

k= 1 

WWRd. (13) 

Since the density of states P, changes insignificantly 
for the transition from R, to R, we can proceed to 
the differential form of this equation 

aE 

at 
- -2Pn e b,,p;, + n~‘bk,_k~k&_k. (14) 

k= I k= 1 

Here we introduced the following notations: Pm = 
Pn(O, R)/P,; b,, =(l$,,,])/&; r=xt(R); t(R) 
= ln(R/Rmi”). Eq. (14) has the integral of motion 

I, = g &(r) = 1 (15) 
n= 1 

(at t= 0, Fn = a,,>. 
Eventually, we have to find the solution of Eq. 

(14) at R = R,,,. The limiting radius R,,, is the 
maximal size of the space domain where a cluster 
can find another one to form the new entity. At finite 
temperature R,,, = R, and R, is defined as U,/R: 
= T (at larger distances the interaction between clus- 
ters is less than T and their excitations are indepen- 
dent). When A < T the functions P,, do not depend 
on A. In the opposite case, R,,, effectively reduces 
to R,, which can be found from the relation (/,/Ri 
- A. Thus the final solution with a logarithmic 
accuracy takes the form &,n(t,J, 

t,,, = x ln( R,,,/R,in), R,, = min( R,, RA) . 
(16) 

Here we make a remark. If one omits in Eq. (14) all 
clusters with n > 1 then the equation obtains the 
form 

a& 
- = -23, 
at 

with the simple solution 

P, 
Pl( Fmx) = + 

m 

PO 

= 1 + 25-U, PO ln( Rmax/Rmin) * 

This solution coincides at T= 0 with the result 
obtained earlier for the single particle density of 
states (see Ref. [4]). In a simple model when the 
coefficients ukn = const = (I, the solution of Eq. 
(14) can be found directly. In the limit t X- 1 it reads 

P,(Rnl,X) = :exp( -n/t,). 
m 

We see the decisive role of the many-center excita- 
tions. 

5. The interaction between clusters, in general, 
depends on the number of centers in clusters. This 
interaction is defined by the sum of pair interactions 
between centers in different clusters. Since the dis- 
tance between clusters is much larger than the size of 
clusters then uk,,, = Ci, k jE ,,,uij. If constants uij are 
non-correlated for different pairs and ( uij) = 0, then 

(1 ukm I) = Uok’/2m’/2. (17) 

Such a situation takes place particularly in amor- 
phous metals. Actually, the indirect interaction be- 
tween centers (RKKY interaction) changes sign al- 
ready over a distance of the order of the interatomic 
scale a, while the distance between the centers in 
clusters is much larger than a. In amorphous di- 
electrics the validity of Eq. (17) needs a special 
analysis. However, it can be approximately justified 
by the large number (in general z = 6) of indepen- 
dent components of the stress tensor for each pri- 
mary center which defines the coupling between 
centers. 

Consider the asymptotic solution of Eq. (14) with 
coefficients (17) at t >> 1. It is easy to show that 
both P”, and the total density F(t) = C, pk,(t> de- 
crease with increasing “time” t. However the func- 
tions &(O) = 0 at n > 1. They increase at small t as 
t"- ‘. Therefore the function p,Jt) at some t,(n) 
goes through a maximum and then decreases with 
increasing t. The inverse function n .+ (t> describes 
the position of the wavefront, rapidly spreading to a 
large n with increasing t. 
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The analysis of Eq. (14) with coupling constants 

(17) (details will be published elsewhere) leads to a 
solution having the form 

P,(f) =4X 10-‘-&ln(nr”), a-0.4, n<n,. 

(18) 

It should be noted that the nonlinearity of Eq. (14) 
makes it possible to define the numerical coefficient 

in Eq. (18). 
The conservation law of the first moment (15) can 

be used to estimate the wavefront position n *(t). 

Substituting the solution (18) into Eq. (15) and tak- 
ing n * (r) as the upper limit in the integral form of 

(15) we obtain with logarithmic accuracy 

n*(t) -exp(J50t). (19) 

The numerical solution of Eq. (14) with coefficients 
(17) demonstrates clearly the exponential increasing 
of the wavefront position simultaneously with the 
dependence P,(r) on n close to Eq. (181. 

6. Let us now include into our consideration the 
intracenter tunneling in a primary set of defects (the 
last term in Eq. (1)). Suppose first that I < 1. Con- 
sider the dynamic properties of pairs of centers. The 
coherent amplitude connecting the excited state of a 
pair with its ground state is equal to 

’ 'Oi'Oj 
A”;, = - ~ 

2 A;Aj 
I uij( ‘) I, A0i.j < Ai,j* (20) 

The distribution function of the parameters A and 
A, which is the generalization of Eq. (10) can be 
written as 

P( A, A,) = 1 dn P,,(tm)S( A, - WenL*) 

P*( A, A,) 

p,z =- 2 j dAG’(A,,)j dA,,P’(A,,)jdA, 

Xj dA,j dR,,(S(A-A,,)S(Ao-A,,,)),, 

(21) 

PO VW/A, * ) 1 
=4x lo-*- 

I,,, ln2(W/A,) d,’ 

t, = x ln( Rm,,/Rmi”) + (24) 

Here R,,, is defined according to Eq. (16) with the 

substitution A + E = li, A, + A . The condition t > 1 

requires inequality (22) not only for A,, but for A 
and T as well. 

where ?(A,) is the distribution of the tunneling 7. The obtained distribution does not noticeably 
amplitudes of the primary centers normalized to deviate from the uniform distribution of In( A,). Since 
unity; the pair excitation energy Ajj is defined by x/P, does not depend on the distribution of primary 

EQ. (4). The integration in Eq. (21) gives P,(A, A,> centers we come to the important conclusion that the 
= P,,/3A0. The tunneling amplitude of pairs A, in resulting distribution function is not dependent on 

this expression is defined in the interval Ai * /W < the primary centers density. This demonstrates an- 

A,<A,,, where do* is the characteristic scale for 

the distribution P’( A,). Thus pair excitations already 
possess a uniform distribution of ln( A,) at arbitrary 
P’( A,). We will suppose that 

do.+ < WeCq’“. q= 1. (22) 

In this case at t,, _ 1 the tunneling amplitudes for 

pairs appears to be less than the effective interaction 

&/R&, . 
In general, each n-cluster has the definite coher- 

ent transition amplitude A,,. If this cluster results 

from the coupling of k and n - k clusters then A,, 
is defined by Eq. (20) with the replacement of 

Aoi/Ai and A,,/A, with A,,/A, and Ac,,_k/A,_k, 
respectively. 

Analysis of Eq. (21) shows that the region A, - 

An-k - / u~,~_~ l/R3 gives the main contribution to 

the integral. This allows us to write L,, = L, + L,_, 
+ 3tR, where L, = Id A,,/W ). Continuing an anal- 
ogous procedure for L, and L,_ k we can approxi- 
mately represent L,, through the primary defect tun- 
neling amplitudes 

L, =nL, + 3n/~, L, = ln( A,*/W). (23) 

According to inequality (22) the second term in Eq. 
(23) can be neglected in comparison with the first 

one. Then using Eq. (181 and proceeding from the 
summation over n (n > 1) to the integration we find 
the general distribution function at t,, 2 I. 
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other significant aspect of the universality. It is 

interesting that the numerical factor in Eq. (24) 
predetermines also the quantitative scale of the dis- 

tribution. 
If one introduces the notation P( A, A,) = P/A,, 

then it is known that the dimensionless parameter 

(Y = P’U, has a rather universal value for quite 

different glasses (see Refs. [6,2]). It is remarkable 
that Eq. (24) predicts for this parameter a logarithmi- 

cally weak dependence on the parameters of system 

and a numerical value close to the experimental 

value - lo-3. 

Thus the low energy spectral properties of MCE 

caused by the l/R3 law for the interaction between 
defect centers demonstrate a rather wide picture of 

universality: a quasiuniform distribution of In A, 
and A; the absence of the influence of the density 
and distribution of primary centers on the final distri- 

bution function; a quantitative relevance to the ex- 
perimental data. The obtained results are in a favour 

of the hypothesis proposed in Ref. [2] about the 
principal role of the l/R3 interaction for the expla- 

nation of the universal properties of amorphous 
solids. 
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