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Electrodynamics of amorphous media at low temperatures
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(Received 29 April 2005; in final form 15 August 2005)

Amorphous solids exhibit intrinsic, local structural transitions, which give rise to the
well-known quantum-mechanical two-level systems at low temperatures. We explain the
microscopic origin of the electric dipole moment of these two-level systems: the dipole emerges
as a result of polarization fluctuations between near degenerate local configurations, which
have nearly frozen in at the glass transition. An estimate of the dipole’s magnitude, based on
the random first-order transition theory, is obtained and is found to be consistent with
experiment. The interaction between the dipoles is estimated and is shown to contribute
significantly to the Grüneisen parameter anomaly in low T glasses. In completely amorphous
media, the dipole moments are expected to be modest in size despite their collective origin.
In partially crystalline materials, however, very large dipoles may arise, possibly explaining
the findings of Bauer and Kador [J. Chem. Phys., 118, 9069 (2003)].

1. Introduction

Glasses are frozen liquids and thus lack long-range
order, yet the differences in material properties between
amorphous materials and crystals are often rather
subtle. Crystalline samples themselves are rarely flawless
and thus contain a number of imperfections such as
point defects, dislocations or grain boundaries of
various sorts. These tend to further mask the difference.
The size of defects in crystals ranges over many scales,
while in glasses, the static heterogeneity in the atomic
arrangement appears comparable to the molecular
size itself. Simple molecular glasses thus seem perfect
candidates for description as isotropic continuum, at
long enough wavelengths. For instance at cryogenic
temperatures, when the de Broglie wavelength of a
thermal phonon at s1K exceeds the lattice spacing
by three orders of magnitude or so, continuum theory
would be thought to hold to high accuracy. Yet surpri-
singly, there clearly exist degrees of freedom numbering
in great excess of the Debye density of states, leading
to extra heat capacity and phonon scattering in all
amorphous materials [1]. Here, we examine the electro-
dynamics of these degrees of freedom.

Since Rayleigh scattering is too weak to account
for the observed magnitude of sound attenuation in
glasses, internal resonances must be invoked, in the
form of anharmonic structural rearrangments, in order
to explain the data. The well-known, empirical two-
level system (TLS) theory presumes such resonances
exist [2, 3]. Simply postulating a flat energy spectrum
and a frequency independent coupling to the phonons
accounts for all the gross features of the low T ano-
malies (for reviews, see [4–6]). Direct microscopic
evidence of the two-level nature of such entities comes
both from the phonon echo experiments [7] and,
relatively recently, from single-molecule experiments at
cryogenic temperatures (see e.g. [8]). At these tempera-
tures, the TLS picture is internally consistent in so far
as the structural transitions (ST) can be defined as local,
and thus, tautologically, sufficiently weakly interacting.
One may therefore speak of a multilevel system at the
location of each transition whose behaviour reduces to
a TLS behaviour at low enough T. We may call this a
tunnelling centre (TC). In 1986, Freeman and Anderson
[9] showed that the magnitude of the TLS density
of states is apparently correlated with the phonon
coupling. This results in a universality of the ratio of
the phonon mean free path lmfp to its wavelength
�: lmfp=� � 150, for all insulating glasses at T. 1K.
This universality seems hardly coincidental [10],
however understanding the origin of the universality
requires a microscopic picture of molecular motions
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in glasses. (The large size of the factor s150, too, was
a puzzle [10]).
The random first-order transition (RFOT) theory of

the glass transition [11–15] provides an appropriate
microscopic picture of the motions in glass. Most
commercial and laboratory glasses are made by quench-
ing supercooled melts. In the deeply supercooled regime,
most liquid motions are activated transitions between
distinct aperiodic states of comparable energy, during
which the current structural arrangement in a local
region is replaced by another, quite different arrange-
ment that nevertheless fits its environment. The size of
the reconfigurable region, �, grows with decreasing
temperature, and reaches about 5–6 molecular units
across by Tg, i.e. the glass transition temperature
corresponding to the 1 h time scale. This size is predicted
to be universal, within logarithmic accuracy, for all
substances. At any point in time, above Tg, the liquid
can be thought of as a mosaic of such cooperative
regions [14], most of nearly the same size, but otherwise
with distributed barrier heights and transition energies.
Upon freezing, a particular mosaic pattern sets in and
undergoes relatively slow changes, called aging. The
aging speed depends on the quench depth [16]. A
sufficient fraction of the structural transitions have small
enough energy change and barriers so that when they
occur, they can account for the cryogenic anomalies,
some of which were mentioned above: the density of
states and the universality of phonon scattering [17], the
Boson peak [18], but also the anomalous Grüneisen
parameter, the so-called ‘fast’ TLS systems and more
[19, 20]. According to the RFOT theory, the universality
of the lmfp=� ratio directly follows from the universal
cooperative region size ð�=aÞ3 � 200 at the glass transi-
tion temperature Tg, where a is the molecular length
scale. During a structural transition, a relatively large,
�200, compact set of small units moves in a stage-wise
fashion. This corresponds to the motion of the domain
wall, which separates the two alternative arrangements,
through the compact region. At cryogenic temperatures,
these motions occur by tunnelling. Despite their
collective nature, such tunnelling events are possible
because of the enormous multiplicity of alternative
structural states and of low-barrier paths connecting
pairs of states: an amorphous sample actually resides in
a high energy density state, well above its lowest energy,
perfect crystalline state. Consistent with the facility of
tunnelling is the smallness of individual atomic dis-
placements during each transition. Their amplitude is
roughly equal to the Lindemann length dL. This length is
typically one tenth of the characteristic lattice spacing a
and is nearly the same for all substances. The precise
identity of the ‘molecular unit’, or ‘bead’ depends on
the specific substance, but usually corresponds to a

few atoms. (See [15] for a detailed discussion). The
experimental evidence of the validity of the RFOT
microscopic picture is overwhelming (for a review, see
e.g. [20]). On the other hand, direct experimental verifica-
tion of the multiparticle nature of the tunnelling events
at cryogenic temperatures is difficult. For example, most
scattering spectroscopies are largely insensitive to the
length scale of dynamic heterogeneities, while nonlinear
experiments are hard to realize at these temperatures.
Computer modelling [21] unambiguously confirms the
collective character of the tunnelling transition.

In this article, we use the microscopic picture of
the two-level systems provided by the RFOT theory to
estimate the coupling of the transitions to external
electric fields. Clearly, such a coupling must be present
because individual molecular bonds, that possess electric
dipoles, rotate during transitions. Since these couplings
directly enter into spectral hole-burning experiments
[22] and can also be directly probed in single molecule
experiments [8], it is important to know how such
collective excitations interact electrodynamically with
probes and external electric fields.

2. Interaction of a single tunnelling centre with

external field

2.1. Many-body origin of the transition-induced
dipole moment

To set the stage, let us briefly review the assumptions
of the traditional molecular models of dielectric
response of insulating media. One often assigns an
electric dipole value to an individual molecule, or to
a molecular bond connecting distinct atoms in a
condensed phase. In a dilute liquid made up of polar
molecules, the medium polarizes in a field since the
dipoles prefer to orient along the field’s direction at the
cost of losing their rotational freedom. Even without
permanent electric dipoles, a dielectric response occurs
due to polarizability: an external field mixes in higher
energy molecular orbitals, which generally lack inver-
sion symmetry. Classically, this quantum mechanical
response can be imitated as two harmonically bound
opposite charges that separate after a field is turned on.
In a polar substance, this polarizability also changes the
length or orientation of the permanent dipoles.

While in a fluid the dipoles can freely reorient, during
a structural transition (ST) in glass, the dipole is
restrained: each individual bead within a tunnelling
centre, or ‘domain’, moves only about the Lindemann
length dL, as illustrated in figure 1. Suppose, for the sake
of argument, one can break up the set of all the beads
within the domain into distinct pairs. (There is no loss of
generality here, as will be pointed out at the end of
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this subsection.) During a transition, each such pair—
and hence the corresponding ‘bond’—rotates about
dL=a � 0:1 rad. The amorphous lattice generally exhibits
no symmetry. There is, therefore, typically some excess
charge, however small, on each atom. Assume the
effective individual charges remain the same during such
a transition. One can thus unambiguously assign a
permanent, point-like electric dipole to each ‘bond’
introduced above. As schematically shown in figure 1,
a total dipole moment, lT ¼

P
i �li, may be generated

during a structural transition, that would couple to
an external electric field E with energy �lTE.
In molecular glasses, the bond dipoles are fairly easy

to assign. Generally, the assignment of point-like dipole
moments to individual bonds is, strictly speaking, non-
unique. It would be rather difficult in the case of a
highly networked, covalently bonded substance, such as
amorphous silica, but as we shall see, other arguments
for such systems give similar results. These arguments
use the measurable piezoelectric properties of corre-
sponding crystals to unambiguously extract the coup-
ling to fields. In weakly bonded molecular glasses held
together by van der Waals forces, the point-like dipole
view is already a good approximation.
With this in mind, an order of magnitude estimate of

the dipole moment of a tunnelling centre can be made:
the Coulomb charge on a bead does not exceed a
fraction � < 1 of an elementary charge q, which is close
in magnitude to the electron charge e: q � e. An
individual electric dipole change is therefore �� �

��molðdL=aÞ, where ðdL=aÞ is the rotation angle, as
already discussed, and �mol � �qa is the elemental dipole
magnitude associated with each bond. The number of

pairs that reorient in a structural transition is Nd ¼

ð�=aÞ3=2. The lT distribution is, of course, centred at the
origin. Since the dipole forces are a small part of the
energetics of the glass transition, the dipole motions are
expected to be only weakly connected with each other.
Therefore the individual dipoles �li make up a ‘random
walk’ of Nd steps (in 3D). As a result, the generic value
of dipole change for the transition is given by the width
of the total displacements during such a walk:

�T ’ �ðqaÞ½ð�=aÞ3=2�1=2ðdL=aÞ: ð1Þ

If the elementary dipole rotations are correlated, one
may introduce an additional factor—like the Kirkwood
g factor of liquid theory [23]. g is typically of order 2. At
first we might imagine a great deal of variability for the
quantity ½ð�=aÞ3=2�1=2ðdL=aÞ but in fact it is nearly uni-
versally (!) equal to unity for all substances. a is typically
a couple of angstroms, implying qa corresponds to �10
Debye. (e Å$ 4.8Debye). � is expected to be well less
than unity, with 0.1 or less being a reasonable generic
estimate. We thus obtain that �T is of the order 1Debye
or less, consistent with experiment. Note the magnitude
of �T is rather modest—only of the order of the size of
a typical individual dipole moment—despite the large
number of particles constituting a domain. The relative
smallness of the two-level system dipole moment is due
to the small deflection angle �0:1, and the apparent
smallness of the partial charge �q. There are deep
reasons for both: the former stems from the particular
magnitude of atomic displacements during a transition:
it is equal to the typical thermal displacement at the
mechanical stability edge, i.e. the Lindemann length
[14]. The latter is probably related to the intrinsic
difficulty of making ionically bonded aperiodic
structures, which imposes an upper bound on the
value of �; this will be discussed in due time.

The sublinear scaling of the dipole moment with the
domain volume �3, in equation (1), is worth noting: the
tunnelling transition dipole moment is not a bulk res-
ponse, and its relation to the material’s average bulk
dielectric properties, as encoded, e.g. in the substance’s
dielectric susceptibility �ð!Þ in the fluid phase, is not
immediately obvious. While it is ultimately the deflec-
tions of the same elemental dipoles that both give rise
to �ð!Þ and the dipole moment, the causes of the
deflections differ. In contrast with the bulk polariz-
ability, where the deflection magnitude is proportional
to the field, the transition-induced deflections are intri-
nsic and correspond to distinct local structural states.
(To illustrate this distinction further, we point out that a
transition can be induced by things other than an AC (!)
electromagnetic field—a thermal phonon for instance).

∆µmol
µmol

(in)

µmol
(f)

−ζq

+ζq

ξ

d L

a

Figure 1. Shown on the left is a fragment of the mosaic of
cooperatively reconfiguring regions in the supercooled liquid,
with a denoting the lattice spacing (more precisely ‘bead’
spacing). � is the cooperative region size; dL is the typical bead
displacement during a transition. (The shown magnitude of �
corresponds to a temperature near Tg on 1 h scale). The two
sets of circles—solid and dashed ones—denote two alternative
structural states. The expanded portion shows how rotation of
a bond leads to generating an elemental dipole change during a
transition, where the partial charges on the two beads are ��q.
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Above Tg, the distinct structural states, that evolve into
TLS at cryogenic temperatures, are transient metastable
structures that live typically as long as the �-relaxation
time [14]. The transient structures are (transiently)
frozen-in elastic fluctuations. Analogously, the intrinsic
generated dipole moment may be thought of as due to
frozen-in electric fields—at Tg. (A formal connection
between generated electric field and mechanical stress is
discussed in the following subsection). We can use this
line of thought to relate the dipole moment to the bulk
dielectric properties of the material near Tg. Suppose the
frozen-in field is along the z direction. The correspond-
ing dipole moment is related to this field via an
appropriate (frequency dependent) dielectric constant
�TLSð!Þ, but also through the fluctuation-dissipation
theorem. A self-consistent closure of this relationship
gives for a spherical region of volume �3 [24]:

�
1

kBTg

Z 1

0

exp ð�i!tÞ
d

dt
�T, zð0Þ�T, zðtÞ
� �

dt

¼
½�TLSð!Þ � 1�½2�extð!Þ þ 1�

4p½2�extð!Þ þ �TLSð!Þ�
�3, ð2Þ

where �extð!Þ is the dielectric susceptibility outside the
domain. The dielectric constant inside, �TLSð!Þ, contains
both the usual (high frequency) polarizability of the
material and the polarization due to the dipolar dis-
placements accompanying the transition. Even though
the interior and exterior of the domain are chemically
identical, it is necessary to regard the two �’s as distinct,
since we know a transition occurs within the volume �3.
A similar relation can be written for the volume occu-
pied by a single elemental dipole, with �extð!Þ ¼ �TLSð!Þ:

�
1

kBTg

dL
a

� �2Z 1

0

exp ð�i!tÞ
d

dt
�i, zð0Þ�i, zðtÞ
� �

dt

¼
½�TLSð!Þ � 1�½2�TLSð!Þ þ 1�

4p½3�TLSð!Þ�
ð2a3Þ, ð3Þ

where the factor ðdL=aÞ
2 on the left reflects that the

elemental change in polarization, ��i, is related to the
full elemental dipole �i by the rotation angle ðdL=aÞ,
see figure 1. The volume 2a3 on the right corresponds to
the volume occupied by a pair of beads, as before. One
gets, as a result, a frequency dependent generalization
of equation (1):

�ð2Þ
T ð!Þ

D E
¼ �ð2Þ

i ð!Þ
D E

½ð�=aÞ3=2�
dL
a

� �2

�
½2�extð!Þ þ 1�3�TLSð!Þ

½2�TLSð!Þ þ 1�½2�extð!Þ þ �TLSð!Þ�
, ð4Þ

where the two-point correlation functions are the t
integrals above. Note h�ð2Þ

T ð0Þi ¼ h�2
Ti and h�ð2Þ

i ð0Þi ¼
h�2

i i. Finally, �i ’ �ðqaÞ � �mol, as before.
Note that two adjacent regions are statistically

unlikely to undergo a structural transition at the same
time. The physically preferable choice for the external
dielectric susceptibility �extð!Þ is therefore the high
frequency, electronic component of the full dielectric
response, which we call �1. With this, equation (4)
becomes

�ð2Þ
T ð!Þ

D E
¼ �ð2Þ

i ð!Þ
D E

½ð�=aÞ3=2�
dL
a

� �2

�
½2�1 þ 1�3�TLSð!Þ

½2�TLSð!Þ þ 1�½2�1 þ �TLSð!Þ�
, ð5Þ

Furthermore, the two-level systems that are active at
low temperatures correspond to the low barrier side of
the barrier distribution. This implies one should use
the �TLSð! ! 1Þ value with regard to the cryogenic
phenomena and, therefore, no extra frequency depen-
dence appears in the coupling of the TLS to electric
field. As a result, we find no significant reaction field
correction to our earlier argument and obtain

�2
T

� �
’ �2

mol½ð�=aÞ
3=2�ðdL=aÞ

2, ð6Þ

cf. equation (1).
Finally, we point out that expression (1), for the

transition dipole moment, is quite general in that it does
not actually require invoking rigid dipoles, but only
an overall electric neutrality of the domain. Moreover,
equation (1) is asymptotically exact in the long
wavelength limit and in the limit of small individual
molecular displacements during a transition. Indeed,
one may recall the standard expansion of the energy
of a collection of charges in an external potential
[25]: U ¼ �0

P
i qi þ J�0

P
i qiri þ

1
2

P
i qixi,�xi, �@

2�0=@x�
@x� þ � � � , where qi are the individual charges and ri
are their locations relative to some reference point
labelled here with the naught. The transition dipole
energy is given by the potential change during the
transition, of course. The zeroth order term drops out
because of neutrality. The first-order term scales with
ðkdLÞ (k being the wave-vector) and yields equation (1),
with the same assumption on the randomness of the
individual displacements. The second-order term is
proportional to ðkdLÞ

2 and may be neglected for the
relevant light wavelengths.

2.2. Piezoelectric view

To treat covalent network glasses, where the assignment
of local dipoles or changes is difficult, we now turn

1328 V. Lubchenko et al.
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to a different way to relate the dielectric response, within
a domain, to frozen mechanical stress. First consider
a strictly periodic lattice that lacks parity symmetry.
Generally, the lattice strain induces internal electric
fields giving rise to piezoelectric behaviour. In such
a piezoeletric, the energetics of the strain, in the
lowest order, are described by the free energy density
(see e.g. [26])

eF ¼
1

2
�ik, lmuikulm �

1

8p
�ikEiEk þ �i, klEiukl: ð7Þ

Here uik is the standard strain tensor [27], �ik, lm and
�ik are the stiffness tensor and the dielectric tensor,
respectively, and �i, kl is a piezoelectric tensor. (Note,
various sign conventions and free energies have been
used in the literature.) The double index summation
convention is implied throughout, with the exception of
letters x, y and z, which will be obvious in the context.
Finally, the elastic constant � is related to the material’s
mass density 	 and the speed of sound cs:

� � 	c2s : ð8Þ

In the absence of external field, D ¼ �4pð@eF=@EÞ ¼ 0,
the internal electric field is simply proportional to the
strain itself:

Ei ¼ 4p��1
ik �k, lmulm: ð9Þ

(Note, the � tensor has the dimensions of electric field.)
If expressed in terms of strain only, the free energy
density reads, in the absence of external electric field:

eF ¼
1

2
�0ij, kluijukl , ð10Þ

�0ij, kl � �ij, kl þ 4p��1
mn�m, ij�n, kl: ð11Þ

The total, apparent stiffness, �0, can be decomposed
thereby into a purely ‘covalent’ and a ‘Coulomb’, i.e.
electrostatic, component. The latter contribution is
ordinarily quite small, owing to the smallness of
the charges induced by lattice distortions. Consider
�-quartz, for example. Here, only �x, xx ¼ 5:2� 104 esu
and �x, yz ¼ �x, zy ¼ ð1=2Þ1:2� 104 esu are non-zero [28].
As a result, the ‘Coulomb’ contribution to the (xx, xx)
component of the apparent stiffness tensor is only
about one percent of the covalent counterpart:
�xx, xx ¼ 8:8� 1011 dyne cm�2 and ð4p=�T1 Þ�

2
x, xx ¼ 7:4�

109 dyne cm�2. (Here, we used �T1 ¼ 4:58 [29]). The
relative size of the � versus � magnitudes can be

understood as follows: � reflects the energy (density) of
the elastic restoring force. It is essentially the second
derivative of an individual atomic potential, with respect
to the (dimensionless) strain u. Interatomic bonding, be
it Coulombic or covalent in character, is ultimately of
electrostatic origin. One may therefore associate � with
the quantity ð1=a3Þ½@2=@ðr=aÞ2�ðq2=rÞjr¼a ¼ ðq=a2Þ2, where
q is the effective charge giving rise to the bond, and the
1/a3 factor in front provides for energy density. (The
total first derivative of the (full quantum) potential
energy is zero, of course). By virtue of being an electric
field, � roughly corresponds to the quantity q0=a2, where
q0 would be the partial charge introduced in the previous
subsection. The ratio q0=q corresponds, within the
present framework, to the earlier introduced quantity
�. It follows that in �-quartz, the partial atomic charge
is indeed about one tenth the elementary charge,
since the quantity

�2 ¼ ðq0=qÞ2 ’ �2=� ð12Þ

is approximately equal to 1/100 in silica, as we just saw.
Now suppose for a moment that a relation similar

to equation (9) exists between the bead displacements
within a domain and the internal electric field changes
generated during a transition. (We stress, in an amor-
phous sample such generated field changes are zero,
upon spatial average, but here we refer to local fields at
a particular, generally non-centrosymmetric site). Since
deF ¼ �D dE=4pþ . . . , the free energy change in the
presence of a (small) external field Dext during the
transition is given by

R
V dV�eF ¼ �Dext

R
V dV�E=4p,

in the lowest order in Dext. (Here we have volume-
integrated over the reconfiguring domain that corre-
sponds with the two-level dynamics; Dext obviously
varies sufficiently slowly within the domain for realistic
frequencies of light, and can be taken out of the
integral). The relation of the field Dext to the external
field proper depends, of course, on the experiment’s
geometry. We will use an electric field EextðrÞ ¼

��1DextðrÞ, where � is the average bulk dielectric suscepti-
bility (which, of course, is uniform and isotropic in
an amorphous material). The coupling to this field Eext

is consequently given by

lT ¼
�

4p

Z
V

dV�EðrÞ , ð13Þ

i.e. the generated internal field difference during the
transition, integrated over the domain. Equation (13),
among other things, demonstrates that one may indeed
unambiguously assign a collection of point-like dipoles
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to the bead set within a TC, namely by virtue of the rela-
tion EðrÞ ¼ 4pc1lðrÞnðrÞ, where nðrÞ is the (coordinate-
dependent) dipole concentration and the constant
c1 � 100 should be chosen depending on a specific way
to incorporate the already mentioned cavity effects. In
what follows, we will outline the microscopic picture of
interaction of a transition with elastic strain, which will
naturally lead us to the formula above and the ability
to estimate the electric moment via a material’s piezo-
electric properties.
Since individual displacements di during tunnelling

transitions are only one-tenth of the lattice spacing, one
can indeed describe the corresponding additional elastic
energy variations, due to the presence of a phonon, by
a quadratic form of the type from equation (7) or (10).
Further, here one computes relative displacements, not
the absolute atomic coordinates which are generally
difficult to calculate. Define �ik as the strain tensor due
to a (long-wave) lattice distortion of a stable lattice. In
addition, define dik as the ‘strain’ tensor corresponding
to the set of the tunnelling displacements fdig. The full
elastic energy within the domain, given a particular
domain boundary configuration (call it �b) can be
written as

eF ¼
1

2
�0ij, kl½ð�ij þ dijÞð�kl þ dklÞ � dijdkl� þ Hðfdijg,�bÞ,

ð14Þ

where the energy functional Hðfdijg,�bÞ includes all the
nonlinear, many-body interactions giving rise to the
existence of the many metastable structural minima
within the domain. The construction of a library of the
states corresponding to these minima was described in
[16]. The full multiplicity of the local states reveals itself
directly in calorimetric measurements above the glass
transition. Here, we are only concerned with the two
lowest energy states of a region of the otherwise
undisturbed lattice. The two correspond to the two
lowest minima of Hðfdijg,�bÞ. The size of the domain is,
as we have seen, chosen so that one is guaranteed to
have at least one alternative structural state of nearly the
same energy, and was found to be only slightly larger
than the cooperative region size at Tg [17]. Note, by
construction, the boundary state �b is independent of
the phonon field �ik. The effect of an external mechanical
stress on the internal displacements within a local,
compact region is passed on through the boundary,
and so the interaction of the region with the stress
can be expressed through a displacement integral over
the region surface [17, 20]. The cross �ij, kl�ijdkl term in
equation (10) gives the amount by which the energy of
a tunnelling transition is modified by the presence of a
phonon. This therefore gives the TLS–phonon coupling.

The latter coupling was estimated in this way in [17, 20].
A direct computation of the �ij-field-induced change of
the transition energy gives: �Eð�ijÞ ¼ �0ij, kl�ij

R
V dVdkl,

where we have integrated over the domain volume and
taken advantage of the elastic strain being �ij nearly
constant throughout the domain (�0 in the latter
equation is the domain-averaged value of the atomic
force-constant). The coefficient at the �ij gives a
(tensorial) coupling of a transition to strain according to

HTLS, ph ¼ gij�ij
z, ð15Þ

where 
z ¼ �1 is the usual Pauli matrix and

gij ¼
1

2
�0ij, kl

Z
V

dVdkl: ð16Þ

This expression is consistent with the early microscopic
estimates of the TLS–phonon coupling by Heuer and
Silbey [30]. Now, the volume integral above indeed
reduces to a surface integral of the tunnelling displace-
ments. Consider for example, the term

R
V dVdxy ¼R

Sðdx dxþ dy dyÞdz etc. The coupling to the longitudinal
phonons has the most vivid form, since dii is the
divergence of a vector field, i.e. d. One gets gii ’
�
R
S d dS. The atomic displacements at Tg are typically

near the Lindemann length: d ’ dL, but can also be
expressed in terms of the elastic constants, since the
amount of elastic energy contained in a unit cell is
determined by the temperature itself: a3�ðd=aÞ2 � Tg.
(This is by virtue of the fluctuation-dissipation theorem).
Estimating the surface integral [17, 20] introduces
additional numerical factors and gives, within a factor
of two or so:

g ’ Tg	c
2
sa

3
� �1=2

, ð17Þ

where we have used equation (8). The result above is
easy to rationalize on general grounds: any atomic
motions in a dense liquid (at Tg and otherwise) are either
a vibration or an anharmonic motion that is part of
a structural transition. The two excitations must coexist
and thus be marginally stable against each other, in
order for both to be present. Such a marginal stability
criterion gives 
zgij�ij

� �
’ �ij, kl�ij�kl

� �
, as follows from

optimizing equation (15) together with the elastic
energy 1

2 �ij, kl�ij�kl with respect to �ij, multiplying by
�ij and thermally averaging (at T ¼ Tg). Owing to

z�ij

� �
’ j�ijj

� �
, equation (17) follows.

In the same way that the elastic fluctuations interact
with the atomic displacements, polarization waves and
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external electric sources will interact with the internal
electric fields generated in the domain during a tran-
sition. As we have seen, the mechanical response
characteristics of a transition arise in response to stress
fluctuations at Tg. Analogously we can say, the electric
moments of the two-level system arise in response to the
electric field fluctuations at Tg. In full analogy with
the fluctuation-dissipation theorem context, the TLS
dipole moment will interact with an external field
source just as it did with the internal electric fields at
the moment of freezing. We may thus compute the
dipole moment by substituting the generated electric
field from equation (9) into equation (13), bearing in
mind that the local lattice and the corresponding tensors
are no longer subject to any particular symmetry. Still,
since the lattice locally resembles a crystalline lattice,
one may choose coordinates, again locally, in such a
way that the � tensor is maximally close to a crystalline
one. (Clearly, the m, n sum in equation (11) is inde-
pendent of the coordinate choice). Therefore, the latter
sum will give a comparable result to that for a crystal.
Summing over the displacement tensor dij (contracted
with the � tensor) is quite analogous to the argument
leading to equation (1). As a result one obtains the
following qualitative estimate:

�T ’ ð ��a3Þ½ð�=aÞ3=2�1=2ðdL=aÞ, ð18Þ

where �� is the local value of the piezoelectric coupling.
(We remind the reader that glasses are on average
isotropic and thus cannot have bulk piezoelectric
properties. It is only in the frozen state that parity is
locally broken). The simple relation

�qa ’ ��a3 ð19Þ

establishes the connection between the ‘molecular
dipole’ view of the previous subsection and the ‘piezo-
electric’ analysis in this subsection, cf. equation (12).
Using the quartz parameters above, one obtains that �T

is, again, of the order Debye. Note that formula (18)
uses quantities that can be measured independently
for substances which have a crystalline counterpart.
The bead size a can be determined from the fusion
entropy [15]. The piezoelectric constants are measurable
too. The two views—one based on molecular moments,
the other on local piezoelectricity—are somewhat
distinct but are highly overlapping. Since the local
hybridization pattern on individual atoms is intrinsi-
cally asymmetric in amorphous lattices, partial atomic
charges, however small, are always expected to be
present in glasses, giving rise to both local permanent

dipoles and local piezoelectricity. Mixing in a dipolar
species would enhance both effects. According to
[31], the two-level systems’s dipole magnitude is very
correlated—nearly proportional—to the OH� ion con-
centration, in amorphous silica with OH� impurities.
Yet extrapolation to small ion concentrations shows
TLS in silica exhibit an intrinsic dipole moment, as was
later confirmed by an electric dipole echo study [32].

2.3. Electrodynamics and electroacoustics: connection
with experiment

In order to discuss experiments of two-level systems in
glasses, involving external fields, let us first recapitulate
a few aspects of the traditional phenomenological des-
cription, along with the microscopic explanation. The
Hamiltonian of an isolated two-level system, as usually
written in the low T glass context, is

HTLS ¼
1

2
�
z þ

1

2
�
x þ gij�ij
z, ð20Þ

where � is the transition energy and � is the tunnelling
matrix element. (The phonon part of the full
Hamiltonian is given in equation (10)). According to
[17, 18], the TLS that are thermally active at cryogenic
temperatures have their splitting � distributed accor-
ding to a simple Boltzmann-like law nð�Þ ¼ ð1=TgÞ

exp ð��=TgÞ. This roughly defines the density of states
of the tunnelling transitions. The density of states, as
seen by calorimetry, is time dependent, because the
tunnelling matrix elements � are widely distributed.
According to the semi-classical analysis in [17, 18], the
distribution is Pð�Þ / 1=�1þc, where c � 1 is a small
constant (c / �h!D=kBTg). This distribution is close to,
but not precisely the same as the inverse distribution
/ 1=� postulated by the phenomenological TLS model.
Including quantum effects reveals that the low splitting
two-level systems, i.e. those with � � �, are special in
the following sense. In such regions, the excess strain
energy of the glass is concentrated in the domain wall
itself, while the barrier separating the two alternative
structural states is not high enough to keep the domain
in any of the classical structural states as defined in
terms of the classical atomic coordinates. Such TLS,
with depinned domain walls, give rise to an extra piece
in the combined Pð�,�Þ distribution [20]. They corre-
spond to the so-called ‘fast’ two-level systems, intro-
duced early on phenomenologically [33] in order to
rationalize certain quantitative shortcomings of the
original TLS model. The quantum depinning of the
domain wall has been also called ‘quantum mixing’ [20].
Finally, we note the Hamiltonian in equation (20) leads
to rich relaxational behaviour, due to both interaction
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with phonons and the phonon-mediated interaction with
other TLSs. This has been discussed in detail previously
[3, 5, 34].
The effects of the interaction of the dipole moment

with a static electric field are actually quite difficult to
observe under routine laboratory conditions (see e.g.
[35]). The upper limit for the field is given by the dielec-
tric breakdown value and is generically 106 V cm�1.
For the typical dipole moment of 0.5Debye, this implies
an interaction energy of only 10�3 eV � 10K. The con-
stant field strength normally employed is actually an
order of magnitude weaker, or less. In a field Eext,
the transition energy is modified according to � !
ð�� lTEÞ. Typically, jlTEj < 1K. This is clearly inferior
to the characteristic energy scale of the TLS spectrum,
namely the glass transition temperature Tg [17]. The
effect of a constant field thus turns out to be very generic
because of the intrinsic flatness of the energy distribu-
tion: the angular part of lTEext is, obviously, uniformly
distributed resulting, again, in a flat distribution of the
field-modified transition energy. In order to discern such
a small energy variation, a resonance technique must be
employed. Just such an experiment was performed by
Maier et al. [22], who took advantage of the possibility
to burn very narrow holes—only a few MHz—in
the chromophore’s inhomogeneous spectrum. These
authors turn on the field immediately after burning the
hole and observe the (time-dependent) hole broadening,
whose overall magnitude depends quadratically on the
field strength. Maier et al. report the value of �T ¼ 0:4D
for a PMMA matrix.
It follows from our theory that light and sound couple

to the two-level system transitions in a very similar way,
save the dipole character of the TC–photon interaction
distinct from the tensorial coupling of the transitions to
the phonons. Indeed, the temperature dependence of
the speed of light in vitreous silica, as obtained early on
by von Schickfus et al. [36], nearly coincides with the
corresponding ultrasonic data [5]. This strongly sug-
gested, at the time, that both the electromagnetic and
acoustic anomalies had the same origin. That the
coincidence is not purely circumstantial was shown
soon afterwards in a number of elegant electro-acoustic
experiments: increasing the AC electromagnetic field
leads to saturation of the structural transitions and a
decrease in ultrasonic attenuation [37, 38]. In addition,
exposure to the AC field affects the acoustic impedance
of a glass [38]. Again, the sufficient sensitivity of these
experiments is due to the interaction with the AC field
being resonant. Finally we mention yet another venue in
investigating the TLS coupling to electric fields, namely
the electric dipolar echo, see e.g. [32, 39].
The dipole moment magnitudes, reported in all these

experiments on the respective substances, are all of the

order 1Debye, although more recent measurements
seem to be converging on a fraction of a Debye.
Unfortunately, the extracted dipole values do not
completely agree between different experiments. So,
for example, Kharlamov et al. [40] give relatively low
values of 0.2 and 0.1D for PMMA and PS, respectively,
based on their field induced spectral diffusion data.
The degree of the quantitative discrepancy is, of course,
subject to the detailed assumptions on the distribu-
tion of the individual TLS parameters, various angular
averagings etc.

3. Dipole–dipole interaction

The idea of local structural transitions is internally
consistent in that the transitions are indeed distinct,
weakly interacting entities. This is easy to understand by
considering the moment of vitrification, when a parti-
cular pattern of mobile regions sets in: a transition will
be found locally, upon freezing, if at Tg it was of
marginal stability with respect to external mechanical
perturbation, as delivered by stress waves to the given
local region. It does not matter, of course, whether
the source of these waves is thermal elastic fluctuations
or the other structural transitions. Now, upon having
estimated the energy spectrum of the TLS and their
coupling to the phonons [17], one may check the
magnitude of the resultant TLS–TLS interaction,
mediated by the acoustic waves in the frozen lattice.
Such interaction self-consistently turns out to be small
[20]. We are aware of several observable consequences of
the interaction. For one thing, this interaction tends to
quench the spontaneous echo generation [7, 33], by
virtue of dephasing each TLS’s motion when the TLS
precesses about its local field. Another, remarkable
effect from the interaction is that it gives rise to a
negative thermal expansion coefficient in some glasses,
at low enough temperatures [20]: the fluctuating entities
in the lattice attract in the van der Waals fashion, via
exchanging phonons. This attraction, counterbalanced
by the material’s stiffness, acts to partially contract the
sample. The number of thermally excited transitions
increases with the temperature and thereby enhances the
degree of contraction. The effect is small, about 10�6,
but nevertheless observable. The often employed
dimensionless parameter characterizing lattice non-
linearity—the Grüneisen parameter—is usually positive
and of the order unity in crystals. It was found to be
large and negative in many glasses at cryogenic
temperatures, see e.g. [41].

The direct phonon mediated TLS–TLS interaction
goes as 1/r3, just like the usual dipole–dipole interaction,
but is somewhat complicated by the tensorial form of
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the coupling (see e.g. [33] for a discussion). If, however,
the transverse and longitudinal speeds of sound were
equal, the interaction would be strictly dipole–dipole. It
is therefore often convenient to assume the elastic
interaction is indeed purely dipole–dipole resulting in
a small quantitative error. With this simplification,
a ‘scalar’ phononic Hamiltonian can be used:
1
2 �ij, kl�ij�kl !

1
2 	c

2
s ðr�Þ

2, where � is a scalar displace-
ment field polarized in a single direction. The coupling
will become gij�ij
z ! ðgr�Þ
z. (The tensorial character
of the interaction may actually be important in the
Grüneisen parameter context, see [20] and below). The
presence of an electric component to each transition
dipole moment clearly leads to another contribution to
the total interaction. Since a detailed discussion of the
interaction effects has already been given elsewhere [20],
here we simply estimate the strength of the electric
dipole–dipole coupling relative to the purely elastic
counterpart and the rest follows in a straightforward
fashion.
The elastic dipole–dipole interaction is given by a

simple formula, see e.g. [10, 20]:

Helast ’
g2

	c2s

1

r3
’ Tg

a

r

� �3
, ð21Þ

where, for the sake of clarity, we eschew some numerical
constants (these could be found in [20]) and have used
equation (17). The electric dipole–dipole interaction,
by equations (12) and (19), is, on the other hand,

Helect ’ �2	c2sa
3 a

r

� �3
: ð22Þ

What is the relative value of the two interactions? A
useful rule of thumb is that g ’ ðTg	c

2
sa

3Þ
1=2 is of the

order eV for all substances. In silica, for instance, 	c2sa
3

is several eV, the Rydberg scale being a convenient (and
physically justified) landmark. The Tg of silica is 1500K,
i.e. slightly larger than 0.1 eV. We therefore make an
interesting observation that the electric dipole–dipole
interaction can be comparable in magnitude to the
elastic counterpart for polar enough substances. This is
despite the relatively weak contribution (1% or less)
of the Coulombic forces to the apparent mechanical
stiffness. We will speculate on the physical significance
of this observation in the final section of the article,
while for now, we limit ourselves to a formal notion: the
elastic dipole–dipole interaction is disadvantaged, com-
pared to the electric counterpart, due to the large 	c2s
term in the denominator of equation (21): phonons are
not true gauge particles.

Leggett has emphasized [42] that the dimensionless
Grüneisen parameter varies ‘wildly’ between different
amorphous substances, in contrast with the nearly
universal lmfp=� ratio. Lubchenko and Wolynes have
argued [20] this stems from the van der Waals attraction
between the tunnelling centres, which is strongly
enhanced by ‘Boson peak’ excitations. The total
attractive interaction consists of several contributions,
is temperature dependent, and is expressed in terms of
various combinations of the temperature, Tg and the
Debye temperature. While it may be argued that there
is an intrinsic upper bound on the value of � (see below),
there otherwise seems to be little intrinsic connection
between the polar and structural characteristics of
glasses, in general. As a result, the electrostatic
interaction from equation (22) is expected also to
contribute to the non-universality of the Grüneisen
parameter. This notion is consistent with the sensitivity
of the Grüneisen parameter in silica to the concentration
of polar impurities [41]. Further, the magnitude of the
negative thermal expansivity is indeed larger in more
polar mixtures according to [41].

3.1. Symmetry versus transient piezoelectricity

We have so far focused on the dipole moment of one of
the structural states relative to the other, namelyP

i �li ¼ �T, since it is what determines the coupling
of the transition to the external field. We next inquire
whether there is a correlation between the degree of
polarity of a state with its absolute energy. For example,
suppose for a moment that the lower energy state is
completely non-polar, so that the two-level system
dipole moment is completely due to the excited state.
Such a situation could be exploited experimentally: one
could supercool a liquid just enough so that it does not
crystallize readily (the way glassblowers do), then expose
the sample to a strong electric field for a sufficient while,
and then quench the sample below its Tg. After that,
remove the field. Clearly, the number of dipole moments
along and opposite to the field direction will differ. In
other words, a number of dipoles will be actually lined
up in a preferred direction, leading to a (weak) ferro-
electric order. As a consequence of this, removal of the
field in the procedure above should lead to the sample’s
contraction (which is the sample’s way of minimizing
the ferroelectric energy). Some residual polarization
will appear as well. If the field is removed sufficiently
fast, the sample will also heat up some. (This, in a
sense, represents an antithesis to adiabatic demagneti-
zation). Such polarization will not take place if the
degree of polarity is uncorrelated with the energy of a
structural state, at least within the relevant energy range.
Conversely, since this relevant energy range (1K or less)
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is quite small relative to the glass transition temperature,
anisotropy effects, if any, are expected to be small. (See
a related discussion of the Phillips’ thermal contraction
mechanism in [20]).
While we cannot, at present, rule out a priori the

‘pyroelectric’ scenario above, it seems rather unlikely for
the following reason. An amorphous sample, at least at
long enough times, should have inversion symmetry, on
average. With this symmetry present, no piezoelectricity,
let alone pyroelectricity, can take place [26]. The
question therefore is whether an external field breaks
the inversion symmetry (locally) without inducing
crystallization. Perhaps it will, on short enough time
scales, before considerable aging takes place. An experi-
mental study would settle this issue. At any rate, even
if present, ferroelectric order would not affect the
thermal expansion properties at low temperatures (cf.
the discussion of the Grüneisen parameter in [20]). This
attraction mechanism is temperature independent and
simply contributes to the effective molecular field at
each TLS site.

4. Closing remarks

In this article, we have outlined the microscopic origin
of the coupling of the intrinsic structural transitions in
amorphous solids to electric fields. The coupling stems
from rotation of the molecular bonds, within the region
encompassing the transition, which generates a net
electric dipole. The molecular constituents of a glass,
even if intrinsically non-polar, are strained due to
disorder. Therefore, small partial charges on each
atom are expected leading to the presence of electric
dipole moments associated with individual bonds.
A local structural transition occurs by moving a

domain wall through the region. The domain wall is
a mechanically strained region separating alternative
structural states. Such strained regions are frozen-in
thermal fluctuations of the lattice. (Above Tg, the
lifetime of such a frozen-in structure would not exceed
the typical �-relaxation time in the liquid). In an
analogous fashion, the dipole moment can be thought
of as frozen-in polarization fluctuations, or as the local
piezoelectric response to local strains.
The glass transition is driven by steric, i.e. mechanical

interactions, not primarily by electrical ones, which is
reflected in the smallness of the partial charge on a bead,
given in the theory by the dimensionless quantity �. So,
for example, the elastic modulus can be represented as
	c2s ð1þ �2Þ, where �2 . 0:01 is the contribution of the
ionic forces to the overall material stiffness. (Here, we
discriminate between ionic (or hydrogen) bonds, as in
NaCl or H2O, and covalent bonds, as in diamond).

In spite of its apparent small contribution to the
material’s structural integrity, the Coulomb component
could actually be comparable to the elastic component
of the interaction between distinct transitions. Note such
interactions are unimportant as far as the identity of
each transition is concerned, because the corresponding
regions are statistically far apart [20]. Nevertheless,
this weak interaction may be viewed, loosely, as the
successful attempt of the system to have avoided
entropically costly local ferroelastic order. With this in
mind, and the relatively strong Coulomb interaction of
structural fluctuations, the apparent smallness of the
partial charges on a bead bears the following con-
sequences: the glassforming ability of a mixture of ionic
components crucially depends on their mutual stoichio-
metry. There has to be a way to make a weakly charged
bead out of the strongly charged atoms. (We remind the
reader that a bead usually consists of several atoms).
This in fact is realized in amorphous silica, germania, or
zinc dichloride, where the cation is surrounded by four
anions, in a nearly tetrahedral fashion. The tetrahedra
are known to be quite rigid and move as a whole during
transitions (see e.g. [43]). As a result, the glass bead must
be a significant fraction, volumetrically, of the tetra-
hedron. Note that the estimates of the bead volume by
Lubchenko and Wolynes in [15, 17], which turns out to
be about a half of that of the SiO4 unit, reproduce the
experimental heat capacity and are indeed consistent
with the bead being only slightly charged. On the other
hand, an arrangement that minimizes a bead charge is
difficult to achive in equi-valent mixtures, such as NaCl,
or water, because of the strong anisotropy of the
hydrogen bond. These materials do not vitrify readily
but instead, form low density lattices. (Note, ice does
amorphize under high pressure, see e.g. [44]). To
summarize, the requirement of the amorphous lattice
stability, with respect to purely Coulombic interactions,
imposes an upper bound on the �2 value.

Consider now equation (11). In order for the lattice to
be stable, the �0 matrix (with an ij pair considered a
single index) should be positive definite. This means, if
a particular � is negative, the corresponding � could be,
in principle, quite large. This would imply large induced
dipole moments. As just argued, the Coulomb compo-
nent is likely to be small in a glass, because the latter is
rather homogeneous. Defects in crystals, however, can
be more extended and can be highly anisotropic. In this
regard, we wish to mention the single chromophore
studies of spectral drift in a Shpolskii matrix, by Bauer
and Kador [45]. These authors have seen a transition
(presumably due to a structural defect) that generated
a remarkably large dipole moment of 8Debye. Note,
the Shpolskii matrix is polycrystalline, not strictly
amorphous.
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Finally, we remark there is more to electrodynamics
of amorphous solids than what could realistically be
discussed in this article. Here, we have analysed only the
case of good electric insulators. Distinct, interesting
phenomena take place in semiconductors and metallic
glasses. As an example, let us mention an old experi-
ment of Claytor and Sladek [46], who found enhanced
ultrasonic attenuation in As2S3 glass upon removal of
electric field. This extra attenuation was greatly reduced
by infrared radiation, which suggested that there is, we
quote, ‘atomic relaxation accompanying electronic
transition in gap states where injected carriers have
been trapped’. We leave this for future work.
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