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One of the main goals of this book is to introduce the theoretical methods necessary
to study (strongly) correlated quantum systems. This chapter is devoted to a class of
fermion systems – known as Landau Fermi liquids or merely Fermi liquids – that can
be understood without resorting to sophisticated many-body techniques. The Fermi-
liquid paradigm describes not only the low-energy behavior of electrons in metals but
also Fermi systems such as He3, nuclear matter, or ultracold fermion gases.

In a Fermi liquid, the elementary excitations (quasi-particles and quasi-holes) are
in direct correspondence with the (particle or hole) excitations of the ideal Fermi gas;
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286 Chapter 4. Fermi-liquid theory

they carry the same quantum numbers and satisfy the Fermi-Dirac statistics.1,2 This
correspondence can be made explicit by means of an adiabatic switching-on of the
interactions. The quasi-particles and quasi-holes determine both the low-temperature
thermodynamics and the response of the system to macroscopic perturbations. In a
very elegant phenomenological theory [1–3], Landau has shown that the low-energy
behavior of the system can be expressed in terms of a few unknown parameters (the
Landau parameters) that depend on the interactions between quasi-particles.

In the first part of the chapter (Secs. 4.1, 4.2 and 4.3), we review the main aspects
of Landau Fermi-liquid theory starting from the quasi-particle concept. We mainly
consider neutral Fermi liquids.3 In the second part (Sec. 4.4), we discuss the micro-
scopic underpinning of Fermi-liquid theory. We conclude the chapter by a discussion
of Fermi-liquid theory in the framework of the renormalization group (Sec. 4.5).

4.1 The quasi-particle concept

Landau Fermi-liquid theory relies on the assumption that the low-lying eigenstates
of the ideal Fermi gas continuously evolve into eigenstates of the real system as the
interaction is adiabatically switched on. The quasi-particle concept, which is the
starting point of Fermi-liquid theory, is a direct consequence of this assumption.

Before discussing this concept in detail, it should be noted that the adiabatic
continuity assumption is quite restrictive and there are a number of cases where it is
obviously violated. For instance, in a superconductor – and more generally whenever
an instability of the Fermi surface leads to a broken symmetry state – the ground
state is not related in any direct way to any one state of the free Fermi gas but
rather to a coherent superposition of a large number of states. Fermi-liquid theory
can also break down without the occurrence of a broken symmetry state as in the 1D
interacting fermion gas (chapter 15).

The ideal Fermi gas

Let us start with the ideal Fermi gas and for simplicity consider a three-dimensional
isotropic system. The eigenstates are antisymmetric combinations of plane waves,
and a state of the system is fully determined by the momentum distribution function
nkσ giving the number of particles with momentum k and spin σ. The ground state
corresponds to the distribution function n0

k = Θ(kF−|k|) where the Fermi momentum
kF is related to the mean particle density

n =
1

V

∑

k,σ

Θ(kF − |k|) = 2

ˆ
d3k

(2π)3
Θ(kF − |k|) =

k3
F

3π2
(4.1)

1Generally, the term “quasi-particles” refers to the elementary excitations whatever their relation
to the bare particles. In the Fermi-liquid theory context, it has a narrower sense as explained in
section 4.1.

2The Fermi-liquid theory elucidates the success of the ideal Fermi gas model in explaining some
physical properties of electrons in metals despite the importance of the Coulomb interaction at
metallic densities (this latter point is discussed in detail in chapter 5).

3The electromagnetic response of charged systems was the subject of section 3.4. The electron
liquid will be studied in chapter 5 within the framework of the random-phase approximation.
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4.1 The quasi-particle concept 287

(the sum over σ gives a factor of 2). The ground state energy is given by

E0 =
∑

k,σ
|k|≤kF

ε0k =
3

5
nε0FV, (4.2)

where ε0k = k2/2m is the free fermion dispersion and ε0F = k2
F /2m = µ(T = 0) the

Fermi energy.

Low-lying excited states are defined by their distribution function

nkσ = n0
k + δnkσ. (4.3)

The change in the total energy corresponding to δnkσ is

δE[δn] = E[n]− E0 =
∑

k,σ

ε0kδnkσ. (4.4)

We denote by n ≡ {nkσ} the momentum distribution function (not to be confused
with the mean particle density). The particle energy can be defined as the functional
derivative of the total energy with respect to the momentum distribution function
nkσ,

ε0k =
δE[n]

δnkσ
. (4.5)

The particle group velocity and the Fermi velocity are obtained from

vk = ∇kε
0
k, vF = |vk|kF =

∂ε0k
∂|k|

∣∣∣∣
kF

=
kF
m
, (4.6)

respectively. Near the Fermi surface |k| = kF , one can therefore write the dispersion
law as

ε0k = ε0F + vF (|k| − kF ) +O
(
(|k| − kF )2

)
. (4.7)

An elementary excitation corresponds to a particle added to or removed from the
ground state. Any excited eigenstate of the system can be constructed by creating
a certain number of these elementary particle or hole excitations. Since the latter
are non-interacting, the total energy δE of the excited state is simply the sum of the
particle and hole excitation energies [Eq. (4.4)].

The interacting Fermi liquid

According to the central hypothesis of Landau Fermi-liquid theory, any state of the
ideal Fermi gas, characterized by a momentum distribution function nkσ = n0

k +δnkσ,
generates an eigenstate of the interacting system as the interactions are switched on.
This eigenstate can therefore be labeled by the distribution function nkσ. For reasons
given below, this distribution function is referred to as the quasi-particle distribution
function of the interacting Fermi liquid. As we shall see in section 4.4.1, it differs
from – and should not be confused with – the momentum distribution 〈ψ̂†σ(k)ψ̂σ(k)〉
of the interacting system.
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288 Chapter 4. Fermi-liquid theory

For reasons of symmetry, the Fermi surface of the interacting (isotropic) system
is spherical.4 Basic to Fermi-liquid theory is the fact that the volume of the Fermi
surface is not changed by interactions (Luttinger theorem, derived in section 4.4.6)
so that the Fermi momentum kF of the interacting system is the same as that of the
ideal gas. The ground state of the interacting system is then generated adiabatically
from that of the ideal gas.5

Let us now add a particle with momentum k (|k| > kF ) and spin σ to the ground
state of the ideal gas. According to the adiabatic continuity assumption, as the
interaction is slowly turned on we generate an (excited) eigenstate of the interacting
system. However, because of the interactions the state under study is damped and
acquires a finite life-time. Central to Fermi-liquid theory is the fact that the life-time
becomes larger and larger at low energy (|k| → kF ). This property is a consequence
of the Pauli principle which makes interactions ineffective near the Fermi surface
(Sec. 4.4.1).6 Thus, the state obtained by adding a low-lying (|k| & kF ) particle
to the non-interacting Fermi sea evolves into a quasi-eigenstate of the interacting
system, which is referred to as a quasi-particle. Similarly, one can define a quasi-hole
by removing a particle with momentum |k| . kF from the non-interacting Fermi sea.
Since the total momentum and spin are conserved, quasi-particles and quasi-holes can
be labeled by the same quantum numbers as in the non-interacting case, namely the
momentum k and the spin projection σ along a given axis. As the bare particles, they
carry charge e < 0 (quasi-particles) and −e > 0 (quasi-holes).

Near the Fermi surface, the quasi-particle dispersion can be expanded as

εk = εkF + v∗F (|k| − kF ) +O
(
(|k| − kF )2

)
, v∗F =

kF
m∗

, (4.8)

which defines the (renormalized) Fermi velocity v∗F and the effective mass m∗. εF =
µ(T = 0) is the Fermi energy. The quasi-particle group velocity is defined by

v∗k = ∇kεk → v∗F k̂ for |k| → kF . (4.9)

At the Fermi level, the density of quasi-particle states (per spin)N∗(ξ) = V −1
∑

k δ(ξ−
ξk) takes the value

N∗(0) =
m∗kF
2π2

. (4.10)

The only difference with the case of the ideal Fermi gas is that the mass is replaced
by the effective mass.

A generic low-lying excited state of the ideal Fermi gas, defined by its momentum
distribution function nkσ 6= n0

k, can be constructed by combining particle and hole

4Note that at this stage we have not rigorously defined the Fermi surface of an interacting system;
this will be done in section 4.4.1.

5This is not true in anisotropic systems, where in general interactions deform the Fermi surface.
The ground state then follows adiabatically from an excited state of the non-interacting system.

6This result can be obtained from a simple phase space argument. Consider the process where a
particle above the Fermi sea (|k| > kF ) is scattered into the state k + q (|k + q| > kF ) by creating
a particle-hole pair (k′,k′ − q) (|k′| < kF and |k′ − q| > kF ). Because of energy conservation,
ω = εk+q−εk = −εk′−q+εk′ < 0, the phase phase available for this scattering process is proportional

to (|k|−kF )2. This result can be seen by evaluating the integral
´
d3k′d3qδ(εk+q + εk′−q− εk + εk′ )

where the momenta satisfied the above mentioned constraints. Higher-order processes, involving
multi-pair excitations, are more strongly suppressed as the corresponding phase space is smaller.
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4.1 The quasi-particle concept 289

excitations. As the interaction is switched on, it evolves into a quasi-eigenstate of the
interacting system characterized by the quasi-particle distribution function nkσ.7,8

Because of the one-to-one correspondence between particle (or hole) excitations in
the ideal Fermi gas and quasi-particle excitations in the Fermi liquid, quasi-particles
follow the Fermi-Dirac statistics. Since the concept of quasi-particles refers only to
low-lying excited states, δnkσ = nkσ − n0

k should be appreciable only in the vicinity
of the Fermi surface.

More precisely, for the notion of quasi-particles (or quasi-holes) to make sense,
their life-time τk and excitation energy ξk = εk − µ should satisfy

1

τk
� |ξk|, (4.11)

since 1/|ξk| is the minimum time required to observe (or create with an external
field) the quasi-particle. We shall see in section 4.4.1 that in a three-dimensional
Fermi liquid6

1

τk
= O

(
(|k| − kF )2

)
(4.12)

at zero temperature, so that the condition (4.11) is satisfied in the vicinity of the
Fermi surface (recall that ξk = O(|k|−kF )). Suppose that the interaction is switched
on within a characteristic time η−1: Ĥint(t) = Ĥint(t = 0)eηt. Quasi-particles can be
observed if their life-time is larger than η−1 and 1/|ξk| smaller than η−1, i.e.

1

τk
� η � |ξk|. (4.13)

When condition (4.11) is fulfilled, it is possible to satisfy the inequality (4.13).

It should be emphasized that quasi-particle and quasi-hole excitations are not
necessarily the only elementary excitations in the interacting system. The adiabatic
continuity hypothesis does not exclude the possibility of other elementary excitations
of the real system which disappear when the interaction is reduced to zero. These
states correspond to collective excitations and emerge naturally in Landau Fermi-
liquid theory (Sec. 4.3).

4.1.1 Landau energy functional E[n]

In the interacting Fermi liquid, the change in energy due a change δn = n−n0 in the
distribution function reads

δE[δn] =
∑

k,σ

εkδnkσ (4.14)

to first order in δn. Here εk is the energy of a single quasi-particle added to the
ground state of the system (as defined in the preceding section by (4.8)). According

7Note that the term “quasi-particle” often refers both to quasi-particles and/or quasi-holes. We
shall explicitely distinguish between quasi-particles (|k| > kF ) and quasi-holes (|k| < kF ) only when
necessary.

8If the system is anisotropic in spin space and the spin projection not a good quantum number,
the quasi-particle distribution function nkσσ′ becomes a matrix in spin space.
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290 Chapter 4. Fermi-liquid theory

to (4.14), there is no interaction between quasi-particles or quasi-holes, since the total
energy is simply additive. This suggests to push (4.14) one step further,

δE[δn] =
∑

k,σ

εkδnkσ +
1

2V

∑

k,k′,σ,σ′

fσσ′(k,k
′)δnkσδnk′σ′ . (4.15)

The quadratic term in (4.15) is due to the interactions between quasi-particles. The
Landau function f is defined as the second-order functional derivative of the total
energy,

1

V
fσσ′(k,k

′) =
δ(2)E[n]

δnkσδnk′σ′

∣∣∣∣
n=n0

, (4.16)

and is therefore symmetric under the exchange (k, σ)↔ (k′, σ′).

In the grand-canonical ensemble at T = 0, the relevant thermodynamic potential
is Ω(T = 0) = E − µN , where N =

∑
k,σ nkσ is the total number of quasi-

particles (see below). Its variation is given by

δE[δn]−µδN [δn] =
∑
k,σ

(εk−µ)δnkσ+
1

2V

∑
k,k′,σ,σ′

fσσ′(k,k
′)δnkσδnk′σ′ . (4.17)

Suppose that δnkσ is appreciable only for ||k| − kF | . δ. Then both terms in
(4.17) are of order δ2, which shows the need to push the expansion in δn to
second order.

The quasi-particle energy ε̃k is defined as the variation of the total energy of the
system due to the introduction of this quasi-particle. Mathematically, this means
that ε̃k is given by the functional derivative of E[n] with respect to the distribution
function nkσ,

ε̃k =
δE[n]

δnkσ
= εk +

1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′ . (4.18)

Thus the quasi-particle energy ε̃k ≡ ε̃k[δn] depends on the distribution δnkσ = nkσ −
n0

k of quasi-particles present in the system; it coincides with εk only when δn = 0.
In an isotropic liquid, spin rotation invariance ensures that ε̃k is independent of σ.
Equation (4.18) gives the quasi-particle energy change coming from the average field
due to the other quasi-particles. This mean-field-like description is characteristic of
Landau Fermi-liquid theory. It also shows up in the random-phase-approximation
form of the response functions (Sec. 4.3.4).

Landau parameters

The Landau function f plays a crucial role in Fermi-liquid theory. Spin rotation
invariance implies that it can be written in terms of a spin symmetric and a spin
anti-symmetric part,

fσσ′(k,k
′) = fs(k,k′) + σσ′fa(k,k′). (4.19)

Furthermore, for states near the Fermi surface one can set |k| = |k′| = kF so that

fσσ′(k,k
′) depends only on the angle θ between kF = kF k̂ and k′F = kF k̂′,

fσσ′(k,k
′) = fσσ′(kF ,k

′
F ) = fs(θ) + σσ′fa(θ), (4.20)
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4.1 The quasi-particle concept 291

where the functions fs(θ) and fa(θ) can be expanded in Legendre polynomials,

fs,a(θ) =

∞∑

l=0

fs,al Pl(cos θ), fs,al = (2l + 1)

ˆ π

0

dΩ

4π
fs,a(θ)Pl(cos θ) (4.21)

(dΩ = dϕdθ sin θ denotes the elementary solid angle in the direction (ϕ, θ)). It is
convenient to introduce dimensionless parameters – the Landau parameters – by mul-
tiplying fs,al by the density of states at the Fermi level,

F s,al = 2N∗(0)fs,al (4.22)

(recall that N∗(ξ) is the quasi-particle density of states per spin and 2N∗(ξ) the total
density of states).

Entropy and thermodynamic potential

Since quasi-particles obey the Fermi-Dirac statistics, their entropy takes the form

S[n] = −
∑

k,σ

[nkσ lnnkσ + (1− nkσ) ln(1− nkσ)] . (4.23)

The thermodynamic potential is given by

Ω[n] = E[n]− µN [n]− TS[n], (4.24)

where N [n] =
∑

k,σ nkσ is the total quasi-particle number. The equilibrium distribu-
tion function n̄ ≡ {n̄kσ} is obtained from the stationarity condition δΩ[n]/δnkσ = 0,

n̄kσ = nF (ξ̃k), (4.25)

where

ε̃k =
δE[n]

δnkσ

∣∣∣∣
n̄

= εk +
1

V

∑

k′,σ′

fσσ′(k,k
′)
(
n̄k′σ′ − n0

k′σ′
)

(4.26)

is the quasi-particle energy corresponding to the equilibrium distribution n̄. If we
expand Ω[n] about its equilibrium value, we obtain9

Ω[n̄+ δn]− Ω[n̄] =
1

2

∑

k,k′,σ,σ′

[
−δσ,σ′δk,k′

n′F (ξ̃k)
+

1

V
fσσ′(k,k

′)

]
δnkσδnk′σ′ (4.27)

to lowest order in δn. There is no linear term since Ω[n] is stationary for n = n̄.
Equation (4.27) shows that the f function can also be defined from the thermodynamic
potential,

1

V
fσσ′(k,k

′) =
δσ,σ′δk,k′

n′F (ξ̃k)
+

δ(2)Ω[n]

δnkσδnk′σ′

∣∣∣∣
n̄

. (4.28)

This relation will be used in section 4.4.2 to obtain a microscopic definition of the
Landau function.

9The first term in the rhs of (4.27) comes from
δ(2)S[n]

δnkσδnk′σ′

∣∣∣
n̄

= − δk,k′δσ,σ′
n̄kσ(1−n̄kσ)

=

δk,k′δσ,σ′β/n
′
F (ξ̃k).
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292 Chapter 4. Fermi-liquid theory

4.1.2 Stability of the ground state

Because of the thermal factor 1/n′F (ξ̃k) in (4.27), small variations of the thermody-
namic potential are due to quasi-particle excitations lying in the thermal broadening
of the Fermi surface (|ξ̃k| . T ). When T → 0, these excitations have vanishing ener-
gies and can be viewed as resulting from a displacement (that can depend on spin) of

the Fermi surface. Suppose that in the direction k̂, the Fermi momentum kF varies
by an infinitesimal amount uσ(k̂) for spin-σ particles. This induces a change

δnkσ = lim
uσ(k̂)→0

{
nF [ξ̃k − v∗Fuσ(k̂)]− nF (ξ̃k)

}

= −v∗Fn′F (ξ̃k)uσ(k̂) = v∗F δ(ξk)uσ(k̂) (T → 0) (4.29)

in the distribution function. We have used ε̃k → εk and n′F (x)→ −δ(x) when T → 0.
The corresponding variation of the thermodynamic potential reads

δΩ[u] = V
v∗F

2N∗(0)

2

∑

σ,σ′

{
δσ,σ′

ˆ
dΩk̂

4π
u2
σ(k̂)

+
1

2

ˆ
dΩk̂

4π

dΩk̂′

4π
Fσσ′(kF ,k

′
F )uσ(k̂)uσ′(k̂

′)

}
(4.30)

in the limit T → 0. dΩk̂ denotes the elementary solid angle in the direction of k̂. To

proceed further, we expand uσ(k̂) in spherical harmonics,

uσ(k̂) = us(k̂) + σua(k̂) =

∞∑

l=0

l∑

m=−l
(uslm + σualm)Y ml (k̂), (4.31)

where us,al,−m = (−1)mus,alm
∗ since uσ(k̂) is real. Using the addition theorem and other

standard properties of spherical harmonics, we obtain

δΩ[u] = V
v∗F

2N∗(0)

4π

∞∑

l=0

l∑

m=−l

[
|uslm|2

(
1 +

F sl
2l + 1

)
+ |ualm|2

(
1 +

F al
2l + 1

)]
. (4.32)

The stability of the spherical Fermi surface requires δΩ[u] to be positive for any

deformation uσ(k̂), i.e.

F sl > −2l − 1, F al > −2l − 1. (4.33)

The instabilities occurring when the conditions (4.33) are violated are known as
Pomeranchuk instabilities.

4.1.3 Effective mass

The current carried by a quasi-particle, as well as its effective mass, can be obtained
by considering the system from a reference frame moving at a velocity v = q/m with
respect to the laboratory frame. In the moving frame, the Hamiltonian is

Ĥ ′ = Ĥ −P · v +O(v2), (4.34)

c© N. Dupuis, 2020



4.1 The quasi-particle concept 293

where M is the total mass, and P the total momentum measured with respect to the
laboratory frame (Sec. 2.2.5). Since the momentum coincides with the current in a
translation invariant system,

J =
P

m
= − 1

m

∂E

∂v

∣∣∣∣
v=0

= −∂E
∂q

∣∣∣∣
q=0

, (4.35)

where E is the energy in the moving frame.
Let us consider the state corresponding to a quasi-particle of momentum k (in the

laboratory frame) added to the ground state. The current in that state is simply

jk =
k

m
. (4.36)

The current can also be calculated by considering the same physical state in the
moving frame, where the quasi-particle has momentum k − q and the ground state
is a shifted Fermi sea: nk = n0

k+q. Since equation (4.15) is valid in any Galilean

reference frame, the quasi-particle energy in the moving frame reads10

ε̃k−q = εk−q +
1

V

∑

k′,σ′

fσσ′(k,k
′)[n0

k′+q − n0
k′ ], (4.37)

so that the current jk – measured in the laboratory frame – carried by a quasi-particle
of momentum k is

jk = −∂ε̃k−q

∂q

∣∣∣∣
q=0

= ∇kεk −
1

V

∑

k′,σ′

fσσ′(k,k
′)∇k′n

0
k′

= v∗k +
1

V

∑

k′,σ′

fσσ′(k,k
′)v∗k′δ(ξk′). (4.38)

The first term in (4.38) can be seen as the contribution of a localized wave packet
containing one extra particle and moving with the group velocity v∗k (in a picture
where we see the quasi-particle as a localized excitation). The second term is a
drag current that comes from the interaction of the moving wave packet with the
surrounding fluid.

Near the Fermi surface, where ξk ' v∗F (|k| − kF ) and v∗k ' v∗F k̂, equation (4.38)
gives

jk = v∗F k̂
[
1 + 2N∗(0)

ˆ
dΩk′

4π
fs(θ) cos θ

]
= v∗F k̂

(
1 +

F s1
3

)
. (4.39)

By comparing (4.36) and (4.39), we obtain

m∗

m
= 1 +

F s1
3
. (4.40)

Depending on the sign of F s1 , the effective mass can be larger or smaller than the bare
mass. When F s1 < −3, the effective mass is negative and the system unstable since
quasi-particle excitations across the Fermi surface are energetically favorable. This is
a special case of Pomeranchuk instabilities [Eqs. (4.33)].

10Note that k should not be shifted in the Landau function since the interaction between particles
is velocity independent.
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294 Chapter 4. Fermi-liquid theory

4.2 Thermodynamics

In this section, we show how to obtain the thermodynamics quantities from the Lan-
dau energy functional E[n].

4.2.1 Specific heat

The specific heat is defined by

CV =
∂E

∂T

∣∣∣∣
V,N

, (4.41)

where

E = E(T = 0) +
∑

k,σ

εkδnkσ +
1

2V

∑

k,k′
σ,σ′

fσσ′(k,k
′)δnkσδnk′σ′ (4.42)

and δnkσ = nF (ε̃k)− n0
k. If we neglect the interactions between quasi-particles, then

CV = V
2π2

3
N∗(0)T = V

m∗kF
3

T (4.43)

(T → 0) is simply the specific heat of non-interacting fermions with mass m∗. The in-
teraction term in (4.42) is O(T 4), since

´
d|k|k2δnkσ = O(T 2) in the grand-canonical

ensemble, and can be neglected. Clearly, this conclusion will not change if we con-
sider the O(T 2) shift of the chemical potential necessary to keep the total number of
particles constant.11

4.2.2 Compressibility

The isothermal compressibility is defined as

κ = − 1

V

∂V

∂P

∣∣∣∣
T,N

=
1

n2

∂n

∂µ

∣∣∣∣
T

(4.44)

(Sec. 3.3), so that what we need to calculate is ∂n/∂µ. A variation in the density n =
k3
F /3π

2 is equivalent to a variation of the Fermi momentum kF : ∂kF /∂n = π2/k2
F .

When kF varies, the quasi-particle distribution also varies, so that the change in the
chemical potential µ = εkF is given by

∂µ

∂n
=
∂εkF
∂kF

∂kF
∂n

+
1

V

∑

k′,σ′

fσσ′(kF ,k
′)
∂nk′σ′

∂kF

∂kF
∂n

. (4.45)

Using ∂εkF /∂kF = v∗F = kF /m
∗ and ∂nkσ/∂kF = δ(kF − |k|) (T = 0), we obtain

∂µ

∂n
=
π2

k2
F

[
v∗F +

∑

σ′

ˆ
d3k′

(2π)3
fσσ′(kF ,k

′)δ(kF − |k′|)
]

=
π2

k2
F

[v∗F + 2N∗(0)v∗F f
s
0 ] =

1 + F s0
2N∗(0)

, (4.46)

11If we approximate fσσ′ (k,k
′) by fσσ′ (kF ,k

′
F ), then the interacting term in (4.42) vanishes in

the canonical ensemble (N fixed) where 1
V

∑
k δnkσ = (2π2)−1

´
d|k|k2δnkσ = 0.
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and in turn

n2κ =
2N∗(0)

1 + F s0
. (4.47)

The interactions between quasi-particles lead to a renormalization by a factor 1/(1 +
F s0 ) of the naive result 2N∗(0) obtained from the compressibility of the ideal Fermi
gas by the mere replacement m→ m∗. Again, we note that the stability of the system
requires F s0 > −1 in agreement with (4.33).

Equation (4.47) yields the macroscopic sound velocity

cs =
1√
κnm

=
vF√

3

(
1 + F s0

1 + F s1 /3

)1/2

=
v∗F√

3

[
(1 + F s0 )

(
1 +

F s1
3

)]1/2

(4.48)

(see Eq. (3.108)). In the absence of interaction, we recover the sound velocity vF /
√

3
of the ideal Fermi gas.

4.2.3 Spin susceptibility

In the presence of a magnetic field B = Bẑ, the energy εkσ is shifted by σ
2 gµBB,

where µB is the Bohr magneton. A spin-σ quasi-particle being an eigenstate of Ŝz
with eigenvalue σ/2, the Landé factor g = 2 coincides with that of the bare particle.
Since the field displaces the Fermi surface and changes the quasi-particle distribution,
the quasi-particle energy becomes

ε̃kσ = εk +
σ

2
gµBB +

1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′ . (4.49)

The new (spin-dependent) Fermi surface is defined by ε̃kF↑,↑ = ε̃kF↓,↓ = µ,12 i.e.

εkF↑ +
gµBB

2
+

1

V

∑

k′,σ′

f↑σ′(kF ,k
′)δnk′σ′

= εkF↓ −
gµBB

2
+

1

V

∑

k′,σ′

f↓σ′(kF ,k
′)δnk′σ′ , (4.50)

where
δnkσ = Θ(kF + δkFσ − |k|)−Θ(kF − |k|) = δkFσv

∗
F δ(ξk) (4.51)

(δkFσ = kFσ−kF ) to leading order in B. Using εkFσ = εkF +v∗F δkFσ, equation (4.50)
gives

v∗F (δkF↑ − δkF↓) = − gµBB

1 + F a0
. (4.52)

The magnetization per unit volume is given by

M = − 1

2V
gµB

∑

k

(δnk↑ − δnk↓) = −1

2
gµBN

∗(0)v∗F (δkF↑ − δkF↓)

=
(gµB

2

)2 2N∗(0)

1 + F a0
B. (4.53)

12Since δµ cannot depend on the direction of B, it is at least of order B2 and the chemical potential
is constant to leading order in B.
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This yields the spin susceptibility

χ =
∂M

∂B
=
(gµB

2

)2 2N∗(0)

1 + F a0
. (4.54)

Stability against ferromagnetism requires F a0 > −1.

4.3 Non-equilibrium properties

The Landau energy function δE[δn] enables to compute the thermodynamic properties
of the Fermi liquid but does not contain any information about the quasi-particle dy-
namics. To study the latter, one has to extend the definition of δE to non-equilibrium
states. When physical properties vary only on macroscopic scales (� k−1

F ), one can
adopt a semiclassical description and define a local quasi-particle distribution function
nkσ(r, t) giving the density of quasi-particles with momentum k and spin σ in the
vicinity of point r at time t. By analogy with (4.15), we define the time-dependent
functional

δE[δn, t] =
∑

k,σ

ˆ
d3rεkδnkσ(r, t)

+
1

2V

∑

k,k′,σ,σ′

ˆ
d3rd3r′fσσ′(k,k

′; r− r′)δnkσ(r, t)δnk′σ′(r
′, t). (4.55)

For a homogeneous system, εk is independent of the spin σ and position r of the quasi-
particle. The interaction is assumed to be instantaneous in time and short-range in
space. fσσ′(k,k

′; r − r′) then decreases rapidly in space and we can approximate
δnk′σ′(r

′, t) by δnk′σ′(r, t) in (4.55). This leads to

δE[δn, t] =
∑

k,σ

ˆ
d3rεkδnkσ(x)

+
1

2V

∑

k,k′,σ,σ′

ˆ
d3rfσσ′(k,k

′)δnkσ(x)δnk′σ′(x), (4.56)

where fσσ′(k,k
′) =

´
d3r′fσσ′(k,k′; r− r′) and x = (r, t).

4.3.1 Kinetic equation

To obtain the equation governing the quasi-particle dynamics, we consider the time-
dependent quasi-particle energy

ε̃kσ(x) =
δE[n, t]

δnkσ(x)
= εk +

1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′(x) (4.57)

as a quasi-classical Hamiltonian. This assumption leads to the equations of motion

∂tr = ∇kε̃kσ(x), ∂tk = −∇rε̃kσ(x). (4.58)
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The time evolution of the quasi-particle distribution is then governed by the usual
Boltzmann equation13

dnkσ(x)

dt
= ∂tnkσ(x)−∇knkσ(x) ·∇rε̃kσ(x)

+∇rnkσ(x) ·∇kε̃kσ(x) = I[nkσ(x)], (4.59)

where the “collision integral” I[nkσ(x)] = ∂tnkσ(x)|coll takes into account the colli-
sions between particles. To first order in δnkσ(x) = nkσ(x)− n0

k,

∂tδnkσ(x)−∇kn
0
k ·∇rε̃kσ(x) + ∇rδnkσ(x) ·∇kεk = I[nkσ(x)], (4.60)

so that we finally obtain

∂tδnkσ(x) + v∗k ·∇rδnkσ(x)

+
1

V

∑

k′,σ′

fσσ′(k,k
′)∇rδnk′σ′(x) · v∗kδ(ξk) = I[nkσ(x)]. (4.61)

Note that this equation involves only states near the Fermi surface where the quasi-
particle concept is valid.

4.3.2 Conservation laws

Particle number conservation

Since the collisions conserve the total number of particles,

∑

k,σ

dnkσ(x)

dt
=
∑

k,σ

I[nkσ(x)] = 0. (4.62)

Making use of (4.59), this equation can be written as the continuity equation ∂tn(x)+
∇ · j(x) = 0, where

n(x) =
1

V

∑

k,σ

nkσ(x) (4.63)

is the particle density at point r and time t and

j(x) =
1

V

∑

k,σ

nkσ(x)∇kε̃kσ(x) (4.64)

the current density. To linear order in δn, we obtain

j(x) =
1

V

∑

k,σ

δnkσ(x)
[
v∗k +

1

V

∑

k′,σ′

fσσ′(k,k
′)v∗k′δ(ξk′)

]

=
1

V

∑

k,σ

δnkσ(x)jk, (4.65)

where jk is the current carried by a quasi-particle of momentum k [Eqs. (4.36,4.38)].

13See, for instance, N. W. Ashcroft and N. D. Mermin, Solid State Physics, chapter 16 (Saunders
College Publishing, 1976).
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Momentum conservation

Similarly, by multiplying (4.59) by ki and summing over k and σ, we obtain

∂tgi(x) +
1

V

∑

k,σ,j

ki

[
∂

∂rj

(
nkσ(x)

∂ε̃kσ(x)

∂kj

)
− ∂

∂kj

(
nkσ(x)

∂ε̃kσ(x)

∂rj

)]
= 0, (4.66)

where

g(x) =
1

V

∑

k,σ

knkσ(x) (4.67)

is the momentum density. Again, from momentum conservation in collisions, the
collision term does not appear in (4.66). By integrating by part, we rewrite the last
term of (4.66) as

1

V

∑

k,σ

nkσ(x)
∂ε̃kσ(x)

∂ri
=

1

V

∑

k,σ

[
∂

∂ri

(
nkσ(x)ε̃kσ(x)

)
− ∂nkσ(x)

∂ri
ε̃kσ(x)

]

=
1

V

∑

k,σ

∂

∂ri
[nkσ(x)ε̃kσ(x)]− 1

V

∂E

∂ri
, (4.68)

where we have used (4.18). From (4.66,4.68), we deduce the equation

∂tgi(x) +
∑

j

∇rjΠij(x) = 0, (4.69)

where

Πij(x) =
1

V

∑

k,σ

kinkσ(x)
∂ε̃kσ(x)

∂kj
+ δi,j

[
1

V

∑

k,σ

nkσ(x)ε̃kσ(x)− E

V

]
(4.70)

is the momentum-current tensor. To linear order in δn,

Πij(x) =
1

V

∑

k,σ

ki

[
δnkσ(x) + δ(ξk)

1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′(x)

]
v∗kj . (4.71)

Energy conservation

Last, we obtain the expression of the energy current by multiplying (4.59) by ε̃kσ and
summing over k and σ,

∂tE +
1

V

∑

k,σ,i

ε̃kσ(x)

[
∂

∂ri

(
nkσ(x)

∂ε̃kσ(x)

∂ki

)
− ∂

∂ki

(
nkσ(x)

∂ε̃kσ(x)

∂ri

)]
= 0, (4.72)

where

∂tE =
1

V

∑

k,σ

δE

δnkσ(x)
∂tnkσ(x) =

1

V

∑

k,σ

ε̃kσ(x)∂tnkσ(x). (4.73)

is the time derivative of the energy. Integrating by part the last term in (4.72), we
obtain

∂tE + ∇ · jE(x) = 0, (4.74)
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where the energy current is given by

jE(x) =
1

V

∑

k,σ

ε̃kσ(x)nkσ(x)∇kε̃kσ(x). (4.75)

To linear order in δn,

jE(x) =
1

V

∑

k,σ

εk

[
δnkσ(x) + δ(ξk)

1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′(x)

]
v∗k. (4.76)

4.3.3 Collective modes

A collective mode with momentum q and frequency ω is a coherent superposition of
quasi-particle–quasi-hole pair excitations. When q → 0, the quasi-particles (holes)
excitations have vanishing energy and the collective mode can be seen as a time-
dependent displacement uσ(k̂)ei(q·r−ωt) + c.c. of the Fermi surface. Generalizing
(4.29), we therefore consider

δnkσ(x) = v∗F δ(ξk)uσ(k̂)ei(q·r−ωt) + c.c. (4.77)

(Note that uσ(k̂) is now complex.) As before we expand uσ(k̂) in spherical harmonics
[Eq. (4.31)] and choose q as the polar axis. Since δnkσ(x) satisfies the kinetic equation
(4.61), we have

(cos θ − s)uν(k̂) + cos θ

ˆ
dΩk̂′

4π
F ν(k,k′)uν(k̂′) = I[u] (4.78)

(ν = s, a), where s = ω/v∗F |q| and θ is the angle between k and q. Using standard
properties of the spherical harmonics, we obtain

(cos θ − s)
∞∑

l=0

l∑

m=−l
uνlmY

m
l (k̂) + cos θ

∞∑

l=0

F νl
2l + 1

l∑

m=−l
uνlmY

m
l (k̂) = I[u]. (4.79)

A set of equations for the uνlm’s can be obtained multiplying (4.79) by
´
dΩk̂Y

m
l (k̂)∗.

One readily sees that m is a good quantum number (but l is not) if one ignores the
collision term.

The “longitudinal” mode m = 0 is particular as it is the only one to involve density
fluctuations. Indeed, we have

δn(x) = 2N∗(0)v∗F

ˆ
dΩk̂

4π
us(k̂)ei(q·r−ωt) + c.c.

= N∗(0)v∗F
us00√
π
ei(q·r−ωt) + c.c.

=
k2
F

2π5/2
us00e

i(q·r−ωt) + c.c. (4.80)
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Figure 4.1: Dispersion ω = c0|q| of an undamped zero-sound mode (c0 > v∗F ). The
shaded area shows the continuum of particle-hole excitations.

After straightforward manipulations, one finds that in the mode m = 0 the current is
longitudinal and takes the form

j(x) = q̂N∗(0)v∗F
2 u

s
10√
3π

(
1 +

F s1
3

)
ei(q·r−ωt) + c.c.

= q̂
k3
F

2
√

3π5/2m
us10e

i(q·r−ωt) + c.c. (4.81)

Zero sound

Let us consider the longitudinal mode m = 0 in the frequency range ωτ � 1 where
the collision term I[nkσ] ∼ −δnkσ/τ can be neglected with respect to ∂tδnkσ(x). τ is
a characteristic quasi-particle collision time. We shall see later that τ ∼ 1/T 2 at low
temperatures (Sec. 4.4.1). We further assume that fσσ′(k,k

′) = fs0 . For a solution
where both spin states oscillate in phase (sound mode: ua = 0), equation (4.78) gives

(cos θ − s)us(k̂) + F s0 cos θ

ˆ
dΩk̂′

4π
us(k̂′) = 0, (4.82)

the solution of which is

us(k̂) = const× cos θ

s+ iη − cos θ
,

1

F s0
=

ˆ
dΩ

4π

cos θ

s+ iη − cos θ
= −1 +

s

2
ln

(
s+ iη + 1

s+ iη − 1

)
. (4.83)

We have added to the real frequency s an infinitesimal imaginary part iη = i0+,
which amounts to switching the collective fluctuations adiabatically. This makes the
logarithm in (4.83) well defined even when |s| ≤ 1. As when considering a retarded
response function (Sec. 3.2.3), one can allow s to take complex values and interpret
the imaginary part of ω as the inverse life-time of the collective mode.

For a repulsive interaction F s0 > 0, s is real and larger then unity. The limiting
cases are

s → 1 + 2e−2/F s0−2 for F s0 → 0,
s → (F s0 /3)1/2 for F s0 →∞.

(4.84)
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Figure 4.2: Fermi surface deformations in the zero-sound and first-sound modes for a
constant interaction fσσ′(k,k

′) = fs0 . The dashed lines show the equilibrium Fermi
surface. In the first-sound mode, the Fermi surface keeps its spherical shape.

The solution corresponds to an undamped mode – known as the zero-sound mode
– propagating at the velocity c0 = ω/|q| = sv∗F larger than v∗F (Fig. 4.1). The
corresponding Fermi surface deformation is shown in figure 4.2. In practice, the
collisions between particles will give a finite life-time to the zero-sound mode. In the
limit ωτ � 1, this effect is however negligible and the main source of damping comes
from multi-pair excitations (Sec. 4.3.5).

For moderate attractive interactions, −1 < F s0 < 0, one can numerically verify
that s is complex and satisfies |<(s)| < 1 and =(s) < 0, corresponding to a damped
zero-sound mode. From (4.83), it is clear that the imaginary part of s is due to
the interaction of the collective mode with quasi-hole–quasi-particle pair excitations.
When ω = εk+q − εk ' v∗F |q| cos θ, the interaction is resonant and gives rise to a
damping of the collective mode (known as Landau damping). The collective mode
has then a short life-time and does not represent a well-defined excitation of the
system.

Last, for F s0 < −1, there are two purely imaginary solutions. Substituting s = iα
into (4.83), one finds

1

F s0
= −1 +

i

2
α ln

(
1 + iα

iα− 1

)
= −1− α

(
γ − π

2

)
, (4.85)

where γ ∈]− π, π] is defined by 1 + iα =
√

1 + α2eiγ and −1 + iα =
√

1 + α2ei(π−γ).
Since tan γ = α, we eventually obtain

1

F s0
= −1− α

(
arctanα− π

2

)
= −1 + α arctan

(
1

α

)
. (4.86)

For F s0 < −1, this equation possesses two real solutions of opposite signs. One of
these (α > 0, i.e. =(ω) > 0) corresponds to an unstable collective mode. This insta-
bility, characterized by divergent density fluctuations, also shows up in the negative
compressibility [Eq. (4.47)].

It should be noted that the zero-sound mode exists only in neutral Fermi liquids.
In a charged system, it is replaced by a plasmon mode as discussed in section 3.4.1.
We shall come back to this point in section 4.3.4.
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Figure 4.3: Velocities of the zero- and first-sound modes when fσσ′(k,k
′) = fs0 . For

F s0 →∞, cs ' c0 ' v∗F (F s0 /3)1/2.

First sound

Since the Fermi surface relaxes towards its equilibrium position within a characteris-
tic time τ , in the hydrodynamic regime ωτ � 1 the displacement uσ(k̂) of the Fermi
surface is expected to be extremely small. In fact, this is true of all components uslm
except us00 and us10 whose fluctuations (and return to equilibrium) are constrained
by the conservation of particle number [Eqs. (4.80,4.81)]. Thus, the sound propaga-
tion in the hydrodynamic regime can be studied by retaining only the hydrodynamic
components us00 and us10 (which are not affected by the collisions).

With Y 0
0 (k̂) = 1/2

√
π and Y 0

1 (k̂) = cos θ
√

3Y 0
0 (k̂), the kinetic equation then

becomes

(cos θ − s)
(
us00 + us10

√
3 cos θ

)
+ cos θ

(
F s0u

s
00 +

F s1√
3
us10 cos θ

)
= 0. (4.87)

Multiplying this equation by
´
dΩk̂Y

0
0 (k̂) and

´
dΩk̂Y

0
1 (k̂), we deduce

sus00 −
us10√

3

(
1 +

F s1
3

)
= 0,

us00 (1 + F s0 )− s
√

3us10 = 0.

(4.88)

The first of these equations is nothing else but the continuity equation ∂tn(x) + ∇ ·
j(x) = 0 in the longitudinal mode m = 0 [Eqs. (4.80,4.81)]. The second one can be
identified with (4.69).14 They admit a solution if

s2 =
ω2

(v∗Fq)2
=

1

3
(1 + F s0 )

(
1 +

F s1
3

)1/2

, (4.89)

which agrees with the macroscopic sound velocity cs obtained from the compressibility
by the usual hydrodynamic arguments [Eq. (4.48)]. The solution reads

us(k̂) =
us00

2
√
π

[
1 +
√

3

(
1 + F s0

1 + F s1 /3

)1/2

cos θ

]
. (4.90)

14In the hydrodynamic mode m = 0 (where only us00 and us10 are considered), the momentum

current tensor Πij = δi,jΠ is diagonal with Π(x) = 1
3
√
π
N∗(0)kF v

∗
F

2us00(1 + F s0 )ei(q·r−ωt) + c.c.

The second of equations (4.88) can be rewritten as m∂tj(x) + ∇Π(x) = 0.
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The Fermi surface keeps its spherical shape but its center oscillates about the origin
in momentum space (hence the cos θ term in (4.90)).

It is instructive to compare the zero- and first-sound modes within the simple
model where fσσ′(k,k

′) = fs0 . In the limit F s0 → ∞, the sound velocity of the
two modes tend to the same value v∗F (F s0 /3)1/2 (Fig. 4.3), while the Fermi surface

deformation takes the simple form us(k̂) ∝ cos θ.

An example of transverse mode

Let us consider the transverse mode m = 1 where

uσ(k̂) =

∞∑

l=1

usl,m=1Y
1
l (k̂) ≡ us(θ)eiϕ. (4.91)

There are no density fluctuations in this mode. Making use of (4.65), one easily finds
that the current is transverse (recall that q ‖ ẑ defines the polar axis) and circularly
polarized,

j(x) = j0[x̂ cos(q · r− ωt)− ŷ sin(q · r− ωt)], (4.92)

with j0 a constant depending on us(θ) and F s(θ).
In the collisionless regime, the kinetic equation (4.78) then gives

(cos θ − s)us(θ)eiϕ + cos θ

ˆ
dΩ′

4π
F s(Ω,Ω′)us(θ′)eiϕ

′
= 0. (4.93)

In the following, we assume that only F s0 and F s1 are non-zero, i.e. F s(α) = F s0 +
F s1 cosα (α is the angle between Ω and Ω′). Using cosα = cos θ cos θ′+sin θ sin θ′ cos(ϕ−
ϕ′), we obtain

(cos θ − s)us(θ) +
F s1
4

cos θ sin θ

ˆ π

0

dθ′ sin2(θ′)us(θ′) = 0, (4.94)

so that

us(θ, ϕ) = const× cos θ sin θ

s+ iη − cos θ
eiϕ, (4.95)

4

F s1
=

ˆ π

0

dθ
sin3 θ cos θ

s+ iη − cos θ
= −4

3
+ 2s2 + s(1− s2) ln

(
s+ iη + 1

s+ iη − 1

)
. (4.96)

As previously, we have added an infinitesimal imaginary part to the frequency ω. A
real solution must satisfy |s| > 1. Since the rhs of (4.96) is maximum at |s| = 1 where
it takes the value 2/3, a real solution is possible only if F s1 > 6. The interaction
between quasi-particles must be quite strong for the mode m = 1 to propagate. For
F s1 ≤ 6, the collective mode mixes with quasi-particle–quasi-hole pair excitations and
is not a well-defined excitation of the system any more.

Spin-wave modes

Until now we have only considered spin symmetric solutions (ua = 0) corresponding
to density oscillations (sound modes). We could repeat the same discussion for spin
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antisymmetric solutions (ua 6= 0) corresponding to spin density oscillations. The
spin collective modes are similar to their charge counterparts but involve the spin
antisymmetric Landau parameters F a instead of F s. For instance, for F a0 > 0, one
finds a “spin zero-sound” mode analogous to the (charge) zero-sound mode.

4.3.4 Response functions

In this section, we compute the density-density and current-current response functions
in the long-wavelength low-energy limit. To this end we consider the quasi-classical
Hamiltonian

ε̃kσ(x) + φ(x)− e k

m
·A(x). (4.97)

For a neutral Fermi liquid, φ and eA should be considered as fictitious external
fields introduced in order to derive the response functions; in a charged system they
correspond to the usual scalar and vector potential. The linearized kinetic equation
now reads

∂tδnkσ(x) + v∗k ·∇rδnkσ(x) +
1

V

∑

k′,σ′

fσσ′(k,k
′)∇rδnk′σ′(x) · v∗kδ(ξk)

+ δ(ξk)v∗k ·∇
[
φ(x)− e

m
k ·A(x)

]
= I[nkσ(x)]. (4.98)

Following the analysis of section 4.3.2, we can verify that the conservation of
particle number implies the continuity equation ∂tn(x) + ∇ · J(x) = 0, where the
current

J(x) = j(x)− ne

m
A(x), j(x) =

1

V

∑

k,σ

k

m
δnkσ(x) (4.99)

includes the usual diamagnetic part.

Density-density response function in the collisionless regime

We first consider the response to a scalar potential potential

φ(x) = φ(q, ω)ei[q·r−(ω+iη)t] + c.c. (4.100)

in the regime ωτ � 1 where collisions can be neglected. We use (4.77) – valid for
q→ 0 – and write the induced density as

δn(x) =
1

V

∑

k,σ

δnkσ(x) = δn(q, ω)ei[q·r−(ω+iη)t] + c.c.,

δn(q, ω) =
1

V

∑

k,σ

v∗F δ(ξk)uσ(k̂) = 2N∗(0)v∗F

ˆ
dΩk̂

4π
us(k̂).

(4.101)

As shown in section 3.3, the linear response to the external field is determined by the
density-density response function,

δn(q, ω) = −χRnn(q, ω)φ(q, ω) (4.102)
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(note the minus sign).
Without the collision terms, the kinetic equation gives

(ω+ iη−v∗k ·q)uσ(k̂)−v∗k ·q
1

V

∑

k′,σ′

fσσ′(k,k
′)δ(ξk′)uσ′(k̂

′) = v∗k ·q
φ(q, ω)

v∗F
. (4.103)

In the absence of interactions, equation (4.103) gives δn(q, ω) = −χ0R
nn(q, ω)φ(q, ω),

where

χ0R
nn(q, ω) = − 2

V

∑

k

v∗k · q
ω + iη − v∗k · q

δ(ξk)

= 2N∗(0)

[
1− s

2
ln

(
s+ iη + 1

s+ iη − 1

)]
(4.104)

(s = ω/v∗F |q|) is the non-interacting density-density response function. Equation
(4.104) agrees with the direct evaluation of the density-density correlation function
of the ideal Fermi gas in the limit q→ 0 [Eq. (3.73)].

It is difficult to solve (4.103) in the general case. Assuming that fσσ′(k,k
′) = fs0 ,

we find

χRnn(q, ω) =
χ0R
nn(q, ω)

1 + fs0χ
0R
nn(q, ω)

. (4.105)

The density-density response function possesses a pole for 1+fs0χ
0R
nn(q, ω) = 0, which

is precisely the equation determining the zero-sound frequency obtained previously
[Eq. (4.83)]. Such a pole (for ω real) exists only for a repulsive interaction (fs0 > 0).
More generally, the density excitation spectrum can be obtained from the imaginary
part of the response function or, equivalently, the structure factor Snn(q, ω;T = 0) =
2Θ(ω)=[χRnn(q, ω)] = 2Θ(ω)χ′′nn(q, ω) (Sec. 3.2.5). In the non-interacting case

S0
nn(q, ω) =





2πN(0)
ω

vF |q|
=
m2

π

ω

|q| if 0 ≤ ω ≤ vF |q|,
0 otherwise.

(4.106)

In the interacting case, there are two contributions to the structure factor

Snn(q, ω) = 2Θ(ω)
χ0
nn
′′(q, ω)

(
1 + fs0<[χ0R

nn(q, ω)]
)2

+
(
fs0χ

0
nn
′′(q, ω)

)2 . (4.107)

The first one is due to a non-vanishing χ0
nn
′′ and comes from the quasi-particle–quasi-

hole excitations. These are quite similar to the particle-hole excitations of the non-
interacting system and give a continuous excitation spectrum for |ω| ≤ v∗F |q|.15 When
fs0 > 0, there is a second contribution due to the pole of χRnn(q, ω) at the (real) zero-
sound frequency ω = c0|q|. For ω near c0|q|,

χRnn(q, ω) ' 1

ω + iη − c0|q|
1

fs0
2∂ωχ0R

nn(q, ω)|ω=c0|q|
,

χ′′nn(q, ω) = − π

fs0
2∂ωχ0R

nn(q, ω)|ω=c0|q|
δ(ω − c0|q|).

(4.108)

15Note that m∗ = m and v∗F = vF in the simple model (fσσ′ (k,k
′) = fs0 ) we are considering here.
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Figure 4.4: Structure factors S0
nn(q, ω) and Snn(q, ω) obtained within the Landau

Fermi-liquid theory for fs(k,k′) = fs0 and |q| � kF .

Thus the zero-sound mode gives a delta peak contribution to the structure factor
Snn(q, ω) (Fig. 4.4). When −1 < F s0 < 0, the zero-sound mode strongly couples
to the quasi-particle–quasi-hole pair excitations (Landau damping) and is not a well
defined excitation of the interacting Fermi liquid; it appears as a pole of χRnn(q, ω) at
a complex frequency. In the structure factor Snn(q, ω), it manifests itself as a broad
resonance, characteristic of a damped collective mode, located at the frequency ω
defined by 1 + fs0<[χ0R

nn(q, ω)] = 0 (ω < v∗F |q|).
We have already pointed out that the zero-sound mode exists only in a neutral

Fermi liquid. In the presence of long-range Coulomb interactions, it is convenient to
write the density-density response function as in (3.120). Its poles then appear as
zeros of the longitudinal dielectric function

εR‖ (q, ω) = 1 +
e2

ε0q2
ΠR
nn(q, ω), (4.109)

where ΠR
nn is the irreducible part of the density-density response function (Sec. 3.4.1).

The simplest approximation amounts to approximating Πnn by the density-density
response function of the neutral (i.e. without the long-range Coulomb interaction)
system. Making use of

χRnn(q, ω) ' χ0R
nn(q, ω) ' −2N∗(0)v∗F

2q2

3ω2
= − nq2

mω2
for ω � v∗F |q|, (4.110)

where χnn denotes the density-density response function of the neutral system [Eq. (4.105)],
we obtain

εR‖ (q, ω) ' 1− ω2
p

ω2
for ω � v∗F |q|, (4.111)

where ωp = (ne2/ε0m)1/2 is the plasma frequency (Sec. 3.4). εR‖ (q, ω) possesses a
pole at ω = ωp. We conclude that the zero-sound mode of the neutral Fermi liquid
has been replaced by the plasmon mode of the charged Fermi liquid.

Density-density response function in the hydrodynamic regime

We have shown earlier that in the regime ωτ � 1, the effect of collisions is to suppress
all components uslm except the “hydrodynamic” variables us00 and us10. The kinetic
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equation (4.103) then reduces to

(ω + iη − v∗k · q)
[
us00Y

0
0 (k̂) + us10Y

0
1 (k̂)

]

− v∗k · q
[
F s0u

s
00Y

0
0 (k̂) +

F s1
3
Y 0

1 (k̂)

]
=

v∗k · q
v∗F

φ(q, ω). (4.112)

Multiplying this equation by
´
dΩk̂Y

0
0 (k̂) and

´
dΩk̂Y

0
1 (k̂), we obtain

(ω + iη)us00 − v∗F |q|
us10√

3

(
1 +

F s1
3

)
= 0,

v∗F |q|us00(1 + F s0 )− (ω + iη)
√

3us10 = −2
√
π|q|φ(q, ω).

(4.113)

From (4.101), δn(q, ω) = π−1/2N∗(0)v∗Fu
s
00, we deduce

χRnn(q, ω) = − nq2/m

(ω + iη)2 − c2sq2
(4.114)

and
Snn(q, ω) = Θ(ω)

πn

mcs
|q|δ(ω − cs|q|). (4.115)

The structure factor exhibits a single delta peak at the first-sound frequency cs|q|.
The quasi-particle–quasi-hole pair excitations have been washed out by collisions.
Remarkably, the structure factor (4.115) satisfies the f -sum rule (3.103) and the
compressibility sum rule (3.108), namely

ˆ ∞
0

dω

π
ωSnn(q, ω) =

nq2

m
,

ˆ ∞
0

dω

π

Snn(q, ω)

ω
=

n

mc2s
.

(4.116)

This shows that the Landau theory, in spite of being a low-energy theory, describes
all excitations of the system in the hydrodynamic regime.

At finite temperature, one should in principle include the coupling between mass
and energy density fluctuations. The latter give rise to a thermal diffusive mode
ω = −iDTq2 (DT is the thermal diffusion coefficient), which contributes a term
proportional to

=
[

DTq2

−iω +DTq2

]
=

ωDTq2

ω2 +D2
Tq4

(4.117)

to the structure factor. Since its spectral weight extends to infinity, the diffusive
mode broadens the first-sound delta peak at ω = cs|q|. It can be shown that the
weight of the diffusive part is of order 1 − Cp/Cv and is therefore negligible at very
low temperatures [4].

Current-current response function

In this section, we compute the transverse current-current response function and the
conductivity in the collisionless regime. We take

A(x) = A(q, ω)ei[q·r−(ω+iη)t] + c.c. (4.118)
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and q ‖ ẑ. We write the induced paramagnetic current as

j(x) =
1

V

∑

k,σ

k

m
δnkσ(x) = j(q, ω)ei[q·r−(ω+iη)t] + c.c.

j(q, ω) =
1

V

∑

k,σ

k

m
v∗F δ(ξk)uσ(k̂) =

3n

m

ˆ
dΩk̂

4π
k̂us(k̂).

(4.119)

The linear response to the potential is given by the current-current response function,

Jµ(q, ω) =
∑

µ′

[
χRjµjµ′ (q, ω) +

n

m
δµ,µ′

]
eAµ′(q, ω) (4.120)

(see Sec. 3.4.4).

Without the collision term, the kinetic equation gives

(ω + iη − v∗k · q)uσ(k̂)− v∗k · q
1

V

∑

k′,σ′

fσσ′(k,k
′)δ(ξk′)uσ′(k̂

′)

= − e

mv∗F
(v∗k · q)k ·A(q, ω). (4.121)

In the absence of interaction, equation (4.121) gives jµ(q, ω) =
∑
µ′ χ

0R
jµjµ′

(q, ω)Aµ′(q, ω)

where

χ0R
jµjµ′

(q, ω) = − 2

V

∑

k

δ(ξk)
v∗k · q

ω + iη − v∗k · q
kµkµ′

m2
(4.122)

is the non-interacting (paramagnetic) current-current response function. To evaluate
the transverse response, we take µ = µ′ = x,

χ0R
⊥ (q, ω) = − 2

V

∑

k

δ(ξk)
v∗k · q

ω + iη − v∗k · q
k2
x

m2
= −3

4

nm∗

m2
I(s+ iη), (4.123)

where s = ω/v∗F |q| and

I(x) =

ˆ π

0

dθ
sin3 θ cos θ

x− cos θ
= −4

3
+ 2x2 + x(1− x2) ln

(
x+ 1

x− 1

)
. (4.124)

In order to solve (4.121) in the interacting case, we assume that fσσ(k,k′) =
fs0 + fs1 cos(α) (α is the angle between k and k′). After some algebra, one finds

χR⊥(q, ω) =
χ0R
⊥ (q, ω)

1 +
F s1

3+F s1

m
n χ

0R
⊥ (q, ω)

=
χ0R
⊥ (q, ω)

1− F s1
4 I(s+ iη)

. (4.125)

The transverse current-current correlation function possesses a pole for 1 − F s1
4 I(s +

iη) = 0. We recover the equation (4.96) determining the frequency of the transverse
mode m = 1.
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The preceding results enable us to calculate the response to the (local) electro-
magnetic field in a charged Fermi liquid.16 The transverse conductivity is defined
by

σ⊥(q, ω) =
e2

i(ω + iη)

[
χR⊥(q, ω)− n

m

]
(4.126)

(see Sec. 3.4.4). Using χ0R
⊥ (0, ω) = 0, we obtain

σ⊥(0, ω) ≡ σ(0, ω) =
i

ω + iη

ne2

m
, (4.127)

which is the expected result for a translation invariant system (Sec. 3.4.4). Making
use of

χ0R
⊥ (q, ω) =

n

m∗

(
1 + i

3

4
πs

)
+O(s2), (4.128)

we obtain the static transverse conductivity

σ⊥(q, 0) =
3π

4

ne2

kF |q|
, (4.129)

a result that does not depend on the mass of the particles.
The transverse mode m = 1 which appears as a pole of χR⊥(q, ω) when F s1 > 6

[Eq. (4.96)] is modified by the coupling to the electromagnetic field. The dispersion
of the transverse modes of the electron system coupled to the electromagnetic field is
obtained from (3.159). Solving this equation together with (4.125), one finds that the
transverse excitations of the neutral system – that appear as a pole of χR⊥ – are little
affected by the coupling to the electromagnetic field for |q| � ωp/cl (cl is the velocity
of light). But at low frequency, when |q| . ωp/cl, the transverse mode disappears
in the continuum of particle-hole excitations (see figure 3.9 and the discussion in
section 3.4.2).

4.3.5 Multi-pair excitations

The preceeding study of the response functions χRnn(q, ω) and χR⊥(q, ω) shows that
the Landau theory describes single-pair excitations and collective modes but does not
take into account multi-pair excitations. In an interacting Fermi liquid, a single quasi-
particle–quasi-hole pair excitation can decay into multiple excited pairs. In other
words – focusing on the density-density response function – the density operator n̂(q)
couples the ground state to excited states with an arbitrary number of quasi-particle–
quasi-hole pairs. In this section, we briefly discuss to what extent the multi-pair
excitations are expected to affect the structure factor Snn(q, ω). For a thorough
analysis, we refer to Refs. [4, 5].

When |q| � kF , the excitation energy ω = εk+q− εk of a single pair is necessarily
small since the Pauli principle requires |k| < kF and |k + q| > kF (Fig. 4.5). Energy
conservation imposes εk and εk+q to be within ω of the Fermi surface. The density

16The Landau theory gives a transverse current-current response function χR(q, 0) ≡
limq→0 χR⊥(q, 0) which is independent of q; χR⊥(q, 0) is obtained from (4.123) and (4.125) with
s = 0. As a result, the Landau theory does not describe the orbital diamagnetism of the charged
Fermi liquid (Sec. 3.4.5).
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Figure 4.5: Single-pair vs 2-pair excitations (∆k1 +∆k2 = q). The shaded areas show
the allowed regions for the hole wave vectors ki.

Figure 4.6: Structure factor Snn(q, ω) of a Fermi liquid when multi-pair excitations
are taken into account. The zero-sound mode is broadened due to the coupling to
multi-pair excitations. (After Ref. [4].)

per unit energy ρ(1)(ω) of the single-pair excitations is proportional to ω at small
energy. In the ideal gas, S0

nn(q, ω) is directly given by ρ(1)(ω) since the matrix
element 〈0|n̂(q)|m〉 is equal to unity when the transition is allowed by momentum
conservation.17

Matters are otherwise for the multi-pair excitations. Since only the total mo-
mentum q is fixed, the excitation energy can extend up to infinity. An example of
a two-pair excitation is given in figure 4.5. Multi-pair excitations are therefore ex-
pected to contribute a broad spectrum to the structure factor Snn(q, ω). For a n-pair
excitation, the excitation energy is determined by ω =

∑n
i=1(εki+∆ki − εki) with

|ki| < kF , |ki+ ∆ki| > kF and q =
∑n
i=1 ∆ki. Energy conservation requires that the

2n quasi-particles and quasi-holes lie within ω of the Fermi surface. The density per
unit energy ρ(n)(ω) of the n-pair excitations is therefore of order ω2n−1 for ω → 0.
At low energies, multi-pair excitations are therefore negligible with respect to single-
pair excitations. Their main effect is to produce a continuous excitation spectrum
extended up to very high energies and leading to a small damping of the zero-sound
mode (Fig. 4.6).

It can also be shown that multi-pair excitations are negligible in the limit q→ 0

17Recall that the T = 0 structure factor reads Snn(q, ω) = 2π
∑
m 6=0 |〈0|n̂(q)|m〉|2δ(ω + ε0 − εm)

[see Eq. (3.37)].
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regardless of the value of the energy ω. The reason is that the matrix element
〈m|n̂(q)|0〉 is of order q2 (in a translation invariant system) for a multi-pair
excited state |m〉. (|0〉 denotes the ground state.) By contrast, 〈m|n̂(q)|0〉 is
O(1) for single-pair excitations (as in the ideal Fermi gas) and O(

√
|q|) for

the zero-sound mode. The suppression of multi-pair excitations in the long-
wavelength limit is a direct consequence of translation invariance. The latter
implies [Ĥ, ̂(q = 0)] = 0, so that we expect [Ĥ, ̂(q)] = O(q). Let us now
consider the continuity equation

∂tn̂(q) + iq · ̂(q) = i[Ĥ, n̂(q)] + iq · ̂(q) = 0. (4.130)

It implies

0 = 〈m|[Ĥ, n̂(q)]|0〉+ q · 〈m|̂(q)|0〉
= (εm − ε0)〈m|n̂(q)|0〉+ q · 〈m|̂(q)|0〉. (4.131)

Since the excitation energy εm−ε0 remains finite as q→ 0, 〈m|n̂(q)|0〉 = O(q2).

4.4 Microscopic basis of Fermi-liquid theory

The main goal of a microscopic approach to Fermi-liquid theory is to show how the
quasi-particle concept emerges from the single-particle Green function. But it should
also give a microscopic interpretation of the Landau functional E[n] and the Landau
parameters, reproduce the collective modes and response to macroscopic perturba-
tions as obtained in Landau theory, and prove Luttinger theorem. Before discussing
these points in more detail, let us summarize the characteristic features of a Fermi
liquid that emerge from a microscopic theory:

• The central (and often taken as the defining) property of a Fermi liquid is that
the self-energy satisfies

=[ΣR(k, ω)] ∝ −(ω2 + π2T 2) (4.132)

at low energies and temperatures. Equation (4.132) implies that the T = 0
scattering rate 1/τk ∼ −=[ΣR(k, ξk)] ∝ (|k| − kF )2 vanishes faster than ξk as
one approaches the Fermi surface – a necessary condition for the existence of
quasi-particles.

• Another (and related) fundamental property is that

∂

∂ω
<[ΣR(k, ω)]

∣∣∣
ω=ξk

≤ 0. (4.133)

This equation implies that the “quasi-particle weight”

zk =
1

1− ∂ω<[ΣR(k, ω)]

∣∣∣∣
ω=ξk

, (4.134)

which measures the overlap between a particle excitation ψ̂†σ(k)|0〉 and a quasi-
particle state is finite (0 < zk ≤ 1). zk also determines the discontinuity at kF in

the momentum distribution 〈ψ̂†σ(k)ψ̂σ(k)〉. The existence of such a discontinuity
is a characteristic property of a Fermi liquid.
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• The Landau energy functional E[n] – or, equivalently, the thermodynamic po-
tential Ω[n] – can be obtained as a suitably defined Legendre transform of the
grand potential −T lnZ. The Landau f function is related in a simple way to
the particle-hole vertex Γph.

• The volume of the Fermi surface is independent of the interactions (Luttinger
theorem).

4.4.1 Quasi-particles

Spectral function of the ideal Fermi gas

We start by considering an ideal Fermi gas with (grand-canonical) Hamiltonian

Ĥ0 =
∑

k,σ

ξ0
kψ̂
†
σ(k)ψ̂σ(k), ξ0

k = ε0k − µ, (4.135)

where µ is the chemical potential (µ(T = 0) = ε0F ). The ground state reads

|0〉 =
∏

k,σ
|k|≤kF

ψ̂†σ(k)|vac〉, (4.136)

and its (grand-canonical) energy is E0 − µN (E0 is given by (4.2)).

The state ψ̂†σ(k)|0〉 with an additional particle of momentum k (|k| > kF ) and
spin σ has an energy E0 − µN + ξ0

k and evolves in time according to

exp
(
−iĤ0t

)
ψ̂†σ(k)|0〉 = exp[−i(E0 − µN + ξ0

k)t]ψ̂†σ(k)|0〉. (4.137)

The purely oscillating time dependence is due to the fact that ψ̂†σ(k)|0〉 is an exact
eigenstate. This property also shows up in the retarded Green function (which will
turn out to be the quantity of interest in the interacting case)

GR0 (k, t) =

ˆ ∞
−∞

dω

2π

e−iωt

ω + iη − ξ0
k

= −iΘ(t) exp(−iξ0
kt) (4.138)

and the spectral function

A0(k, ω) = − 1

π
=[GR0 (k, ω)] = δ(ω − ξ0

k), (4.139)

where the exact excited state appears as a Dirac peak. A similar reasoning can be
made for a hole excitation [ψ̂σ(k)|0〉 with |k| < kF ].

Spectral function of the interacting Fermi liquid

In the interacting system, the retarded Green function and the spectral function,

GR(k, ω) =
1

ω + iη − ξ0
k − ΣR(k, ω)

,

A(k, ω) = − 1

π

=[ΣR(k, ω)]
(
ω − ξ0

k −<[ΣR(k, ω)]
)2

+
(
=[ΣR(k, ω)]

)2
(4.140)
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Figure 4.7: Spectral function in an ideal Fermi gas and in a Fermi liquid. The dark
shaded area shows the quasi-particle peak (spectral weight zk) and the light shaded
one the incoherent part of the spectrum (spectral weight 1− zk). The width 1/τk of
the quasi-particle peak goes to zero faster than |ξk| when |k| → kF .

can be expressed in terms of the retarded self-energy ΣR(k, ω). Equation (4.140)
holds for =[ΣR(k, ω)] 6= 0; when =[ΣR(k, ω)] = 0, A(k, ω) = δ(ω− ξ0

k −ΣR(k, ω)). A
Fermi liquid is defined by a spectral function A(k, ω) which, for k in the vicinity of
the Fermi surface, exhibits a sharp peak at an energy ξk with a width 1/2τk which
goes to zero faster than ξk when |k| → kF (Fig. 4.7). As we shall see, such a peak is
the signature of a quasi-particle (|k| > kF ) or quasi-hole (|k| < kF ) excitation.

If =[ΣR(k, ω)] varies weakly for ω ≈ ξk, then the position of the maximum is
determined by

ξk − ξ0
k −<[ΣR(k, ξk)] = 0 (4.141)

(using ∂ω=[ΣR(k, ω)] = 0 for ω ' ξk). This equation determines the energy of a
quasi-particle with momentum k. In particular, the Fermi momentum kF is obtained
from ξkF = 0, i.e.

ξ0
kF + ΣR(kF , 0) = 0. (4.142)

Here we have used the fact that ΣR(kF , 0) is real at zero temperature (see Eq. (4.171)
below). Note that in general µ differs from ε0F = k2

F /2m in the interacting system
so that ξ0

kF
6= 0. We shall see in section 4.4.6 that kF (for a given density n) is not

changed by the interactions (Luttinger theorem) and therefore given by (4.1).18 For
ω near ξk, we have

ω − ξ0
k −<[ΣR(k, ω)] ' ω − ξ0

k −<[ΣR(k, ξk)]− (ω − ξk)∂ω<[ΣR(k, ω)]
∣∣
ω=ξk

=
ω − ξk
zk

, (4.143)

where zk, defined in (4.134), is referred to as the quasi-particle weight (for reasons
that will be explained below). We deduce that the spectral function can be written
as

A(k, ω) =
zk
π

1/2τk
(ω − ξk)2 + (1/2τk)2

+Ainc(k, ω), (4.144)

18More generally, in anisotropic systems Luttinger theorem states that the volume of the Fermi
surface is not affected by the interactions, but of course its shape is likely to depend on the interac-
tions.
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where
1

τk
= −2zk=[ΣR(k, ξk)] (4.145)

is, as we shall see later, the inverse quasi-particle life-time. The first term in the rhs
of (4.144) – the “quasi-particle peak” – follows from (4.143) and determines A(k, ω)
near the maximum at ω = ξk. It corresponds to a Lorentzian peak of width ∼ 1/τk
and spectral weight (defined as the area under the peak) zk. Since A(k, ω) ≥ 0 and´∞
−∞ dωA(k, ω) = 1, one has 0 ≤ zk ≤ 1 and in turn (4.133). Ainc(k, ω) denotes

the “incoherent” part of the spectral function. It typically corresponds to a broad
(featureless) excitation spectrum extending up to very high energies. In order for the
total spectral weight to be unity, its weight should be equal to 1− zk. From (4.144)
and the spectral representation ???, we deduce that the retarded Green function takes
the form

GR(k, ω) =

ˆ ∞
−∞

dω′
A(k, ω′)

ω + iη − ω′ =
zk

ω − ξk + i
2τk

+GRinc(k, ω). (4.146)

The quasi-particle peak gives rise to a pole at the complex energy ξk − i/2τk with a
residue determined by the quasi-particle weight zk. In time space, equation (4.146)
gives

GR(k, t) = −izkΘ(t) exp

(
−iξkt−

t

2τk

)
+GRinc(k, t). (4.147)

Because Ainc(k, ω) has no sharp structure in the variable ω, the incoherent part
GRinc(k, t) of the Green function decays quickly in time, and the long-time behavior
of GR(k, t) is dominated by the quasi-particle pole. Thus, for 1/|ξk| � t � τk –
which requires 1/τk � ξk – one observes the oscillating behavior characteristic of an
eigenstate of the Hamiltonian. Equation (4.147) confirms the interpretation of τk as
the life-time of the quasi-particle. The oscillating part of the Green function (4.147) is
reduced by a factor zk in the interacting system. Thus, zk is a measure of the overlap
between the state ψ̂†σ(k)|0〉 and the quasi-particle state with momentum k and spin
σ; it can be seen as the fraction of bare particle contained in the quasi-particle.19

Momentum distribution

The existence of quasi-particles with reduced spectral weight has an important con-
sequence for the momentum distribution function of the bare particles,

〈ψ̂†σ(k)ψ̂σ(k)〉 = G(k, τ = 0−) =
1

β

∑

ωn

eiωnηG(k, iωn)

=
1

β

∑

ωn

eiωnη
ˆ ∞
−∞

dω
A(k, ω)

iωn − ω
=

ˆ ∞
−∞

dωnF (ω)A(k, ω)

=

ˆ 0

−∞
dωA(k, ω), (4.148)

19Recall that the GR(k, t) essentially measures the probability amplitude for a bare particle (or
hole) with momentum k created at t = 0 to be in the same quantum state at time t.
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Figure 4.8: Momentum distribution 〈ψ̂†σ(k)ψ̂σ(k)〉 in a Fermi liquid.

where the last result holds at zero temperature. Here G(k, τ) is the imaginary time
Green function. When 1/τk � ξk, the quasi-particle peak in A(k, ω) becomes sharper
and sharper as we approach the Fermi surface and tends to zkF δ(ω − ξk) for ξk →
0. Since the incoherent part of the spectral function varies smoothly with k, it is
continuous across the Fermi level ξk = 0. We then deduce

[
lim
|k|→k+

F

− lim
|k|→k−F

]
〈ψ̂†σ(k)ψ̂σ(k)〉 =

[
lim
|k|→k+

F

− lim
|k|→k−F

] ˆ 0

−∞
dωzkF δ(ω − ξk), (4.149)

where k±F = kF±0+. Since ξk+
F
> 0 whereas ξk−F

< 0, we conclude that the momentum

distribution function exhibits a jump

[
lim
|k|→k+

F

− lim
|k|→k−F

]
〈ψ̂†σ(k)ψ̂σ(k)〉 = −zkF (4.150)

across the Fermi level (Fig. 4.8). The existence of quasi-particles requiring zkF > 0,

the discontinuity in the momentum distribution function 〈ψ̂†σ(k)ψ̂σ(k)〉 of the bare
particles is an important characteristics of a Fermi liquid. This momentum dis-
tribution should not be confused with the quasi-particle momentum distribution
n0

k = Θ(kF − |k|) introduced in section 4.1.

Effective mass

The quasi-particle group velocity is defined by

v∗k = ∇ξk. (4.151)

Using (4.141), we obtain

v∗k = ∇{ξ0
k + <[ΣR(k, ξk)]}

= vk +

(
∂

∂k
<[ΣR(k, ω)] +

∂

∂ω
<[ΣR(k, ω)]∇ξk

)

ω=ξk

= zk

(
vk +

∂

∂k
<[ΣR(k, ω)]

∣∣∣
ω=ξk

)
. (4.152)
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For symmetry reasons, v∗k = v∗kk̂ and ΣR(k, ω) is a function of |k|. From (4.152), we
then obtain

v∗k = zk

( |k|
m

+
∂

∂|k|<[ΣR(k, ω)]
∣∣∣
ω=ξk

)
. (4.153)

From the definition (4.8) of the effective mass, we finally deduce

m

m∗
= zkF

(
1 +

m

kF

∂

∂|k|<[ΣR(k, ω)]
∣∣∣
|k|=kF ,ω=0

)
. (4.154)

When the self-energy is momentum independent, the effective mass is simply deter-
mined by m∗ = m/zkF and is larger than the bare mass. More generally however,
∂|k|<[ΣR(k, ω)]||k|=kF ,ω=0 can have either sign and the effective mass can be larger or
smaller than the bare mass.20 The same conclusion was reached in the phenomeno-
logical approach (Sec. 4.1.3). In section 4.4.4 we shall show, using the Ward identities
and the microscopic definition of the Landau f function, that equation (4.154) agrees
with (4.40).

Quasi-particle operators

We can formally define quasi-particle operators (or fields) as follows [8]. In a first step,
one eliminates the incoherent part of the spectral function A(k, ω) by filtering out
Ainc(k, ω). The retarded Green function then exhibits a purely propagating behavior
−izkΘ(t)e−iξkt for t � τk. Let us suppose that this step can be seen as a change

ψ̂σ(k) → ψ̂′σ(k) of the fermion operator. In a second step, one introduces rescaled

operators ˆ̄ψσ(k) = z
−1/2
k ψ̂′σ(k) in order to recover a spectral function normalized to

unity (Fig. 4.9),

Ā(k, ω) =
1

π

1/2τk
(ω − ξk)2 + (1/2τk)2

. (4.155)

The quasi-particle retarded Green function then reads

ḠR(k, ω) =
1

ω − ξk + i
2τk

(4.156)

and is related to the fermion Green function by

GR(k, ω) = zkḠ
R(k, ω) +Ginc(k, ω). (4.157)

The corresponding distribution function 〈 ˆ̄ψ†σ(k) ˆ̄ψσ(k)〉 = ḠR(k, τ = 0−) takes the
quasi-particle form n0

k = Θ(kF − |k|). In section 4.5 we shall see that the quasi-

particle operators ˆ̄ψ arise very naturally in the renormalization group framework.

Quasi-particle life-time

The divergence of the quasi-particle life-time near the Fermi surface is a consequence of
the reduced phase space available for a decay process of an incoming particle induced
by the excitation of a single or many quasi-particle–quasi-hole pairs (see footnote 6

20For instance, the effective mass in a metal at high density is expected to be smaller than the
bare mass (chapter 5).
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Figure 4.9: Quasi-particle spectral function Ā(k, ω) obtained by filtering out the
incoherent part of A(k, ω) and rescaling in order to have a total spectral weight
normalized to unity.

page 288). Thus this essential property of the Fermi liquid does not depend on the
strength of the interactions.

In this section, we want to substantiate the phase space argument by computing
explicitly the second-order self-energy

Σ(k) =
1

βV

∑

q

v2
qχ0(q)G0(k + q) (4.158)

shown in figure 4.10, where

χ0(q) = − 2

βV

∑

k

G0(k)G0(k + q) (4.159)

is the bare particle-hole response function. To calculate the sum over ων in (4.158),
we consider the integral

˛
(C)

dz

2iπ
nB(z)χ0(q, z)G0(k + q, iωn + z) (4.160)

where (C) is the contour shown in figure 4.11. Using the residue theorem and noting
that the part of the contour at infinity does not contribute, we obtain

1

β

∑

ων 6=0

χ0(q)G0(k + q) + nB(−iωn + ξ0
k)χ0(q, ξ0

k − iωn)

= P
ˆ ∞
−∞

dω

2iπ
nB(ω)

χ0(q, ω + iη)− χ0(q, ω − iη)

iωn + ω − ξ0
k

− 1

β
χ0(q, 0)G0(k + q, iωn), (4.161)
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Figure 4.10: Second-order contribution to the self-energy.

Figure 4.11: Contour (C) used in equation (4.158). The black dots indicate the
position of the bosonic Matsubara frequencies iων as well as −iωn + ξ0

k.

where the last term comes from the part of the contour near the origin. Thus we have

1

β

∑

ων

χ0(q)G0(k + q) = nF (ξ0
k)χ0(q, ξ0

k − iωn) + P
ˆ ∞
−∞

dω

π
nB(ω)

χ′′0(q, ω)

iωn + ω − ξ0
k

= P
ˆ ∞
−∞

dω

π

χ′′0(q, ω)

iωn + ω − ξ0
k

[
nB(ω) + nF (ξ0

k)
]

(4.162)

(χ′′0(q, ω) = =[χ0(q, ω + iη)]) making use of the spectral representation (3.33) of
χ0(q, ξ0

k − iωn). This gives

Σ(k) =
1

V

∑

q

v2
q P

ˆ ∞
−∞

dω

π

χ′′0(q, ω)

iωn + ω − ξ0
k+q

[
nB(ω) + nF (ξ0

k+q)
]
. (4.163)

To obtain the quasi-particle life-time, we need to calculate the imaginary part of
the retarded self-energy,

=[ΣR(k, ω)] = − 1

V

∑

q

v2
q

ˆ ∞
−∞

dω′χ′′0(q, ω′)δ(ω + ω′ − ξ0
k+q)

×
[
nB(ω′) + nF (ξ0

k+q)
]

= −
ˆ ∞

0

d|q|
2π2

q2v2
q

ˆ
dΩq̂

4π

ˆ ∞
−∞

dω′χ′′0(q, ω′)δ(ω + ω′ − ξ0
k+q)

× [nB(ω′) + nF (ω + ω′)] . (4.164)

The last line holds for a three-dimensional system. Since χ′′0(q, ω) = χ′′0(|q|, ω), we
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can carry out the angular integration,

ˆ
dΩq̂

4π
δ

(
ω + ω′ − ξ0

k −
q2

2m
− q · k

m

)

=
1

2

ˆ π

0

dθ sin θδ

(
ω + ω′ − ξ0

k −
q2

2m
− |q||k| cos θ

m

)

=
m

2|k||q|Θ
(

1− |ω + ω′ − ξ0
k − q2/2m|

|k||q|/m

)
. (4.165)

From (4.164,4.165), we deduce

=[ΣR(k, ω)] = − m

2|k|

ˆ ∞
0

d|q|
2π2
|q|

ˆ ∞
−∞

dω′χ′′0(q, ω′)v2
q [nB(ω′) + nF (ω + ω′)]

×Θ

(
1− |ω + ω′ − ξ0

k − q2/2m|
|k||q|/m

)
. (4.166)

Because of the Bose and Fermi functions, the relevant part of the integration over ω′

corresponds to |ω′| . max(|ω|, T ). Since we are interested in the low-energy behavior
of the self-energy where |ω|, |ξ0

k|, T � ε0F , we have |ω′| � ε0F ,

Θ

(
1− |ω + ω′ − ξ0

k − q2/2m|
|k||q|/m

)
' Θ

(
1− |q|

2kF

)
, (4.167)

and

=[ΣR(k, ω)] = − m

4π2kF

ˆ 2kF

0

v2
q|q|d|q|

ˆ ∞
−∞

dω′χ′′0(q, ω′) [nB(ω′) + nF (ω′ + ω)] .

(4.168)
For |q| ≤ 2kF , χ′′0(q, ω) is given by

χ′′0(q, ω) = πN(0)
ω

vF |q|
=

m2ω

2π|q| for |ω| ≤ ω− = vF |q| −
q2

2m
(4.169)

(the function χ′′0(q, ω) is studied in detail in section 5.3.1). Since |ω′| � ε0F in (4.168),
we can use the low-energy expression (4.169), which gives21

=[ΣR(k, ω)] = − m3

8π3kF

ˆ 2kF

0

d|q|v2
q

ˆ ∞
−∞

dω′ω′ [nB(ω′) + nF (ω′ + ω)]

= − m3

16π3kF

ˆ 2kF

0

d|q|v2
q

(
ω2 + π2T 2

)
. (4.170)

From (4.170), we finally obtain the quasi-particle life-time

1

τk
= −2zk=[ΣR(k, ξk)] = zk

m3

8π3kF

(
ξ2
k + π2T 2

) ˆ 2kF

0

d|q|v2
q. (4.171)

At zero temperature, 1/τk ∼ (|k| − kF )2 when approaching the Fermi surface.

21The frequency integral is done using
´∞
−∞ dy y−x

(1−ey−x)(1+e−y)
= 1

2
x2+π2

1+e−x
.
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Similarly, one also could calculate higher-order self-energy diagrams. One would
find that they give weaker contributions (i.e. ∼ ωn, Tn with n > 2) than the second-
order one. The reason is that the phase space available for multi-pair excitations (i.e.
the density per unit energy of the multi-pair excitations) is very small at low energies
(Sec. 4.3.5).

Consistency of the Fermi-liquid picture

The result obtained above,

=[ΣR(kF , ω)] = −γω2 +O(ω4) (4.172)

(T = 0) with γ a positive constant, can also be derived from the assumption that
ΣR(k, ω) is an analytic function of ω near ω = 0. Since =[ΣR(kF , ω)] ≤ 0 (as required
by the analyticity of GR(k, ω) in the upper half complex plane), the additional con-
dition =[ΣR(kF , 0)] = 0 is sufficient to obtain (4.172). The Kramers-Kronig relations
then give

lim
ω→0
<[ΣR(kF , ω)]−<[ΣR(kF ,∞)]

= lim
ω→0
P
ˆ ∞
−∞

dω′

π

=[ΣR(kF , ω
′)]

ω′ − ω

= P
ˆ ∞
−∞

dω′

π

=[ΣR(k, ω′)]
ω′

+ ωP
ˆ ∞
−∞

dω′

π

=[ΣR(k, ω′)]
ω′2

+O(ω2) (4.173)

(see Sec. 3.2.4), i.e.

∂

∂ω
<[ΣR(kF , ω)]

∣∣∣
ω=0

= P
ˆ ∞
−∞

dω′

π

=[ΣR(kF , ω
′)]

ω′2
. (4.174)

Using (4.172), one sees that the integral in (4.174) exists (assuming that the high-
energy part does not cause any trouble) and is negative, in agreement with the re-
quirement 0 < zk ≤ 1 [Eq. (4.133)]. Thus, the assumption (4.172) appears to be
consistent with the existence of quasi-particles.

The quasi-particle picture in the Matsubara formalism

In the Matsubara formalism, the quasi-particle propagator naturally emerges if one
assumes that Σ(k, z) is analytic near z = 0,

Σ(k, iωn) = Σ(k, 0) + iωn
∂Σ(k, z)

∂z

∣∣∣∣
z=0

+O(ω2
n). (4.175)

Making use of (4.175) and keeping track of the incoherent part of the Green function,
we obtain

G(k, iωn) =
zk

iωn − ξk
+Ginc(k, iωn) ≡ zkḠ(k, iωn) +Ginc(k, iωn), (4.176)

where

zk =

(
1− ∂Σ(k, z)

∂z

∣∣∣∣
z=0

)−1

, ξk = zk[ξ0
k + Σ(k, 0)]. (4.177)
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These two equations can also be deduced from (4.141) and (4.134) by expanding
ΣR(k, ξk) about ΣR(k, 0) = Σ(k, z = 0). The finite quasi-particle life-time is not
taken into account in the simple expansion (4.175). For many purposes, however, this
expression is sufficient at low energies. In the following we will often approximate the
quasi-particle weight zk by its value at the Fermi level zkF ≡ z.

4.4.2 Thermodynamic potential Ω[n]

In this section, we derive the thermodynamic potential Ω[n] introduced in Landau
Fermi-liquid theory (Sec. 4.1.1) and obtain a microscopic definition of the Landau f
function. We then relate f to the particle-hole vertex Γph.

Microscopic definitions of Ω[n] and the Landau f function

We consider the partition function

Z[h] =

ˆ
D[ψ∗, ψ] exp

{
−S[ψ∗, ψ] +

∑

k,σ

hkσ

ˆ β

0

dτn̂kσ(τ)
}

(4.178)

in the presence of a static external field that couples to the quasi-particle number
operator

n̂kσ(τ) = ψ̄∗σ(k, τ)ψ̄σ(k, τ). (4.179)

Note that n̂kσ is defined as a function of the quasi-particle field ψ̄ which differs from
the (bare) fermion field ψ. The quasi-particle occupation number is then obtained
from a functional derivative of the partition function,

nkσ = 〈n̂kσ(τ)〉 =
1

β

δ lnZ[h]

δhkσ
. (4.180)

In order to write the grand potential Ω[n] as a function of a the quasi-particle distri-
bution function n ≡ {nkσ}, we consider the Legendre transform

Ω[n] = − 1

β
lnZ[h] +

∑

k,σ

hkσnkσ, (4.181)

where hkσ ≡ hkσ[n] is obtained by inverting (4.180). Ω[n] satisfies the equation of
state

δΩ[n]

δnkσ
= hkσ. (4.182)

At equilibrium (h = 0), it is stationary with respect to variations of the quasi-particle
distribution.

For a non-interaction system, the calculation of Ω[n] is straightforward. In that
case, the quasi-particles coincide with the bare fermions (ψ̄ = ψ) so that

Z[h] =

ˆ
D[ψ∗, ψ] exp

{ ∑

k,σ,ωn

ψ∗σ(k, iωn)(iωn − ξk + hkσ)ψσ(k, iωn)

}

=
∏

k,σ

[
1 + e−β(ξk−hkσ)

]
. (4.183)
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This gives nkσ = nF (ξk − hkσ) and

Ω[n] =
∑

k,σ

ξknkσ +
1

β

∑

k,σ

[nkσ lnnkσ + (1− nkσ) ln(1− nkσ)] , (4.184)

which is the expected result for non-interacting fermions.
For interacting fermions, it is not possible to calculate exactly the grand potential.

However, we do need require the whole knowledge of Ω[n], but only its variation δΩ
when the quasi-particle distribution n varies from its equilibrium value n̄ = n|h=0

by δn. For T → 0, the case we are interested in, n̄kσ = Θ(kF − |k|). Expanding
δΩ[δn] = Ω[n+ δn]− Ω[n] to second-order in δn, we obtain

δΩ[δn] =
1

2

∑

k,k′,σ,σ′

δ(2)Ω[n]

δnkσδnk′σ′

∣∣∣∣
n=n̄

δnkσδnk′σ′ . (4.185)

There is no linear term since we expand about the stationary (equilibrium) state.
Taking the functional derivative of the equation of state (4.182), one easily obtains

1

β

∑

k3,σ3

δ(2)Ω[n]

δnk1σ1
δnk3σ3

δ(2) lnZ[h]

δhk3σ3
δhk2σ2

= δk1,k2δσ1,σ2 . (4.186)

This allows us to rewrite δΩ as

δΩ[δn] =
1

2

∑

k,k′,σ,σ′

χ̄−1
σσ′(k,k

′)δnkσδnk′σ′ , (4.187)

where χ̄−1 is the inverse (in a matrix sense) of the correlation function

χ̄σσ′(k,k
′) =

1

β

δ(2) lnZ[h]

δhkσδhk′σ′

∣∣∣∣
h=0

=
1

β

ˆ β

0

dτdτ ′〈n̂kσ(τ)n̂k′σ′(τ
′)〉. (4.188)

Note that χ̄ is nothing but the linear response function to the external field h. Com-
paring (4.187) and (4.28), we obtain the following microscopic definition of the Landau
f function,

1

V
fσσ′(k,k

′) =
δσ,σ′δk,k′

n′F (ξk)
+ χ̄−1

σσ′(k,k
′). (4.189)

Since we are interested in the limit T → 0, we have taken ξ̃k = ξk in (4.28).
Thus the calculation of the Landau f function reduces to that of the response

function χ̄. In the following, we show that f can be identified to the irreducible (2PI)
quasi-particle–quasi-hole vertex. This will enable us to related f to the particle-hole
vertex.

Relation between f and the particle-hole vertex Γph

Let us introduce the correlation functions

χ̄σσ′(k, k
′; q) = 〈ψ̄∗σ(k)ψ̄σ(k + q)ψ̄∗σ′(k

′ + q)ψ̄σ′(k
′)〉

− 〈ψ̄∗σ(k)ψ̄σ(k + q)〉〈ψ̄∗σ′(k′ + q)ψ̄σ′(k
′)〉,

χ̄σσ′(k,k
′; q) =

1

β

∑

ωn,ωn′

χ̄σσ′(k, k
′; q).

(4.190)
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χ̄

k, σ

k + q, σ

k′, σ′

k′ + q, σ′

Γ̄irr χ̄+=

Figure 4.12: Diagrammatic representation of the Bethe-Salpeter equation satisfied by
χ̄σσ′(k, k

′; q).

The function χ̄σσ′(k,k
′), which is related to the Landau f function by (4.189), cor-

responds to the q → 0 limit of χ̄σσ′(k,k
′; q). We shall see below that this limit is ill

defined, since the limits q→ 0 and iων → 0 do not commute. At zero temperature, it
is not possible to create a quasi-particle–quasi-hole pair with a finite total energy and
a vanishing total momentum because of the Pauli principle.22 Thus for the external
field hkσ to modify the quasi-particle distribution function, it should be understood
as

hkσ

ˆ β

0

dτψ̄∗σ(k, τ)ψ̄σ(k, τ) = hkσ

∑

ωn

ψ̄∗σ(k)ψ̄σ(k)

≡ hkσ lim
q→0

[
lim
ων→0

∑

ωn

ψ̄∗σ(k)ψ̄σ(k + q)

]
. (4.191)

This leads us to define χ̄σσ′(k,k
′) as

χ̄σσ′(k,k
′) = lim

q→0

[
lim
ων→0

χ̄σσ′(k,k
′; q)

]
. (4.192)

It is customary to refer to the limits (iων → 0,q = 0) and (iων = 0,q→ 0) as the ω-
and q-limits, respectively.

The two-particle Green function χ̄σσ′(k, k
′; q) satisfies the Bethe-Salpeter equation

(Fig. 4.12)

χ̄σσ′(k, k
′; q) = Π̄σσ′(k, k

′; q)

− 1

βV

∑

k1,k2,σ1,σ2

Π̄σσ1
(k, k1; q)Γ̄irr

σ1σ2
(k1, k2; q)χ̄σ2σ′(k2, k

′; q) (4.193)

where
Γ̄irr
σσ′(k, k

′; q) = Γ̄irr
ph,σσσ′σ′(k + q, k; k′, k′ + q) (4.194)

is the irreducible (2PI) vertex in the particle-hole channel, and

Π̄σσ′(k, k
′; q) = −δσ,σ′δk,k′Ḡ(k)Ḡ(k + q) (4.195)

the quasi-particle–quasi-hole pair propagator. The quasi-particle propagator Ḡ is
defined by (4.176). In the following we approximate zk by its value zkF ≡ z at the
Fermi level.

22Technically, this means that the equation ω = εk+q− εk, together with the constraints |k| < kF
and |k + q| > kF , has no solution for ω finite and q→ 0.
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(BCS)

k′′ + k − k′

k′ + q

k k′′ k′

k′′ + qk + q k′ + q

k + q k′ + q

k′′ k′′−k′′ + q

+k + k′

(ZS)

k k′

k′
k

k + q

(ZS′)

Figure 4.13: First-order (one-loop) corrections to the response function χ̄ (or, without
the external legs, the particle-hole vertex Γ̄). The line denotes the quasi-particle
propagator Ḡ and the dot the interaction.

The quasi-particle–quasi-hole propagator Π̄ is singular in the limit q → 0. To see
this, we consider

Π̄σσ′(k,k
′; q) =

1

β

∑

ωn,ωn′

Π̄σσ′(k, k
′; q) = −δσ,σ′δk,k′

1

β

∑

ωn

Ḡ(k)Ḡ(k + q)

= δσ,σ′δk,k′
nF (ξk+q)− nF (ξk)

iων − ξk+q + ξk

' −δσ,σ′δk,k′
v∗k · q

iων − v∗k · q
δ(ξk) (4.196)

in the limit q → 0 and T → 0. Thus for q → 0, we obtain 0 if |q|/ων → 0, and
δσ,σ′δk,k′δ(ξk) if ων/|q| → 0. In Fermi-liquid theory, one assumes that only the quasi-
particle–quasi-hole pair propagator Π̄ leads to singularities when q → 0. This can
be checked in perturbation theory, at least to lowest order. The one-loop corrections
to χ̄ (or Γ̄) are shown in figure 4.13. The Feynman diagrams are labeled according
to the type of fluctuations they describe. The zero-sound (ZS) channel corresponds
to propagation of particle-hole pairs with a small total frequency-momentum. The
crossed particle-hole channel is referred to as (ZS’), while the BCS channel involves
particle-particle pair propagation. One readily sees that only the zero-sound channel
leads to a singularity in the q → 0 limit; the ZS’ and BCS loops (after summation
over the internal frequency-momentum) are not singular in that limit.23

Since the irreducible vertex Γ̄irr does not contain the ZS loop (the latter being
two-particle reducible), it has a well-defined limit when q → 0. We can therefore set
q = 0 in Γ̄irr. Furthermore, since the singularity of Π̄ is due to states near the Fermi
surface [Eq. (4.196)], we can ignore the |k| and ωn dependence of Γ̄irr which then

becomes a function Γ̄irr
σσ′(kF ,k

′
F ) of kF = kF k̂ and k′F = kF k̂′. This enables us to

carry out the frequency sum in the equation (4.193) satisfied by χ̄σσ′(k, k
′; q), so that

23For k→ k′, the ZS’ channel also becomes singular since the total frequency-momentum k− k′

in the ZS’ loop vanishes (Fig. 4.13). For k→ k′, both the ZS and ZS’ channels should therefore be
taken into account. In particular, this is necessary for a correct description of the Pauli principle.
But for most physical properties, the ZS’ channel can be safely discarded. This issue is discussed in
detail in Ref. [13].
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we eventually obtain

χ̄σσ′(k,k
′; q) = Π̄σσ′(k,k

′; q)

− 1

V

∑

k1,k2,σ1,σ2

Π̄σσ1
(k,k1; q)Γ̄irr

σ1σ2
(kF1,kF2)χ̄σ2σ′(k2,k

′; q). (4.197)

This equation can be rewritten in a matrix form as

χ̄ = Π̄− 1

V
Π̄Γ̄irrχ̄, i.e. χ̄−1 = Π̄−1 +

1

V
Γ̄irr. (4.198)

In the limit q-limit, this gives

χ̄−1
σσ′(k,k

′) = −δσ,σ′δk,k′
n′F (ξk)

+
1

V
Γ̄irr
σσ′(kF ,k

′
F ). (4.199)

Comparing this result with (4.189), we deduce

fσσ′(k,k
′) = Γ̄irr

σσ′(kF ,k
′
F ). (4.200)

One can proceed one step further by relating the irreducible (2PI) vertex Γ̄irr to
the full (1PI) vertex Γ̄ ≡ Γ̄ph. The latter satisfies the Bethe-Salpeter equation

Γ̄σσ′(k, k
′; q) = Γ̄irr

σσ′(k, k
′)

− 1

βV

∑

k1,k2,σ1,σ2

Γ̄irr
σσ1

(k, k1)Π̄σ1σ2
(k1, k2; q)Γ̄σ2σ′(k2, k

′; q), (4.201)

where again we set q = 0 in Γ̄irr. Since the frequency dependence of Γ̄, as that of Γ̄irr,
can be neglected, we can carry out the frequency sum,

Γ̄σσ′(k,k
′; q) = Γ̄irr

σσ′(k,k
′)

− 1

V

∑

k1,k2,σ1,σ2

Γ̄irr
σσ1

(k,k1)Π̄σ1σ2
(k1,k2; q)Γ̄σ2σ′(k2,k

′; q). (4.202)

Π̄ vanishing in the ω-limit,

Γ̄irr
σσ′(kF ,k

′
F ) = lim

ων→0

[
lim
q→0

Γ̄σσ′(kF ,k
′
F ; q)

]
≡ Γ̄ωσσ′(kF ,k

′
F ). (4.203)

Equations (4.200) and (4.203) relate the Landau f function to Γ̄ω.
The final step is to relate the quasi-particle–quasi-hole vertex Γ̄ω to the particle-

hole vertex Γ. Let us introduce the correlation function

χσσ′(k, k
′; q) = 〈ψ∗σ(k)ψσ(k + q)ψ∗σ′(k

′ + q)ψσ′(k
′)〉

− 〈ψ∗σ(k)ψσ(k + q)〉〈ψ∗σ′(k′ + q)ψσ′(k
′)〉. (4.204)

χ satisfies the equation

χσσ′(k, k
′; q) = Πσσ′(k, k

′; q)

− 1

βV

∑

k1,k2,σ1,σ2

Πσσ1
(k, k1; q)Γσ1σ2

(k1, k2; q)Πσ2σ′(k2, k
′; q), (4.205)
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where

Πσσ′(k, k
′; q) = −δσ,σ′δk,k′G(k)G(k + q)

= −δσ,σ′δk,k′
[
z2Ḡ(k)Ḡ(k + q) + ϕ(k)

]
(4.206)

is the particle-hole pair propagator. We have separated the coherent part z2ḠḠ = z2Π̄
from the incoherent one (ϕ) using (4.176). Since ϕ is non-singular in the q → 0 limit,
it is evaluated at q = 0. Retaining only the quasi-particle (coherent) part in (4.205),
we obtain

χ
∣∣
coh

= z2Π̄− z2Π̄Γz2Π̄ (4.207)

(with matrix notations). Since χ̄ = Π̄ − Π̄Γ̄Π̄, we conclude that χ
∣∣
coh

= z2χ̄ with

Γ̄ = z2Γ. This yields our final expression for the Landau f function,

fσσ′(k,k
′) = z2Γωσσ′(kF ,k

′
F ). (4.208)

4.4.3 Quantum Boltzmann equation

The preceding analysis can easily be extended to non-equilibrium cases. Instead of
the quasi-particle distribution function we should consider the quasi-particle Wigner
distribution function

nkσ(r, τ) =

ˆ
d3r′e−ik·r

′
〈
ψ̄∗σ
(
r− r′

2
, τ
)
ψ̄σ

(
r +

r′

2
, τ
)〉

(4.209)

and its Fourier transform

nkσ(q) =
1

βV

ˆ β

0

dτ

ˆ
d3r e−i(q·r−ωντ)nkσ(r, τ) =

1

β

∑

ωn

〈ψ̄∗σ(k)ψ̄σ(k + q)〉. (4.210)

The Wigner distribution function is the quantum analog of the semiclassical distri-
bution function considered in the phenomenological Fermi-liquid theory (Sec. 4.3).
Although it is not positive definite and therefore not a true distribution function,
as far as its moments are concerned it generally behaves similarly to a distribution
function [18,19].

We consider the system in the presence of a source field hkσ(q) = h∗kσ(−q) that
couples to the quasi-particle operator

n̂kσ(q) =
1

β

∑

ωn

ψ̄∗σ(k)ψ̄σ(k + q). (4.211)

The source term in the action reads

Sh = −β
∑

k,σ,q

hkσ(−q)n̂kσ(q) (4.212)

and the Wigner distribution function is given by

nkσ(q) = 〈n̂kσ(q)〉 =
1

β

δ lnZ[h]

δhkσ(−q) . (4.213)
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We are now in a position to introduce a functional of the Wigner distribution
function – analog to the grand potential Ω[n] in the equilibrium case – by means of a
Legendre transform,

Ω[n] = − 1

β
lnZ[h] +

∑

k,σ,q

hkσ(−q)nkσ(q). (4.214)

The “equation of state” reads

δΩ[n]

δnkσ(q)
= hkσ(−q). (4.215)

Even for non-interacting fermions, Ω[n] cannot be calculated exactly. We shall there-
fore consider only small fluctuations about the equilibrium state,

nkσ(q) = δq,0n̄k + δnkσ(q). (4.216)

To lowest order in δn,

δΩ[δn] =
1

2

∑

k,k′,σ,σ′,q,q′

δ(2)Ω[n]

δnkσ(−q)δnk′σ′(q′)

∣∣∣∣
n=n̄

δnkσ(−q)δnk′σ′(q
′). (4.217)

Equation (4.186) can easily be generalized into

δ(2)Ω[n]

δnkσ(−q)δnk′σ′(q′)

∣∣∣∣
n=n̄

= δq,q′ χ̄
−1
σσ′(k,k

′; q), (4.218)

where χ̄σσ′(k,k
′; q) is the correlation function defined in (4.190). The Kronecker sym-

bol in (4.218) results from translation invariance. Making use of (4.196,4.198,4.200)
we find

δΩ[δn] =
1

2

∑

k,k′,σ,σ′,q

χ̄−1
σσ′(k,k

′; q)δnkσ(−q)δnk′σ′(q)

=
1

2

∑

k,k′,σ,σ′,q

{
δσ,σ′δk,k′

n′F (ξk)

iων − v∗k · q
v∗k · q

+
1

V
fσσ′(k,k

′)

}
δnkσ(−q)δnk′σ′(q). (4.219)

In the absence of a source field, the stationary condition (4.215) gives the quantum
Boltzmann equation

(iων − v∗k · q)δnkσ(q)− δ(ξk)v∗k · q
1

V

∑

k′,σ′

fσσ′(k,k
′)δnk′σ′(q) = 0 (4.220)

satisfied by the Wigner distribution function nkσ(q). (As usual, the real-time formal-
ism can be recovered from the analytic continuation iων → ω + iη.) This equation
is identical to the semiclassical kinetic equation obtained in section 4.3. Its solution
can be written as

δnkσ(q) = v∗F δ(ξk)uσ(k̂, q) (4.221)

c© N. Dupuis, 2020



328 Chapter 4. Fermi-liquid theory

where uσ(k̂, q) is the displacement of the Fermi surface in the direction k̂. The
functional δΩ can be expressed in terms of u,

δΩ[u] =
V

2
N∗(0)v∗F

2
∑

q,σ,σ′

{
δσ,σ′

ˆ
dΩk̂

4π

v∗F k̂ · q
v∗Fk · q− iων

uσ(k̂,−q)uσ(k̂, q)

+
1

2

ˆ
dΩk̂

4π

dΩk̂′

4π
Fσσ′(kF ,k

′
F )uσ(k̂,−q)uσ′(k̂′, q)

}
. (4.222)

This equation generalizes (4.30) – to which it reduces in the q-limit – to dynamic
fluctuations of the Fermi surface. It can be used as the starting point for the calcu-
lation of both the static (thermodynamics) and dynamic (collective modes, response
functions) properties of the Fermi liquid.

4.4.4 Ward identities for the Fermi liquid

In section 4.4.1, we have seen that the quasi-particle properties – velocity, effective
mass, life-time – are related to the self-energy of the single-particle Green function.
In section 4.4.2, we have obtained a relation between the Landau f function and the
particle-hole vertex Γ. To complete the microscopic description of the Fermi liquid,
we should also consider the relations between the self-energy and the particle-hole
vertex that follow from the symmetries of the physical system.

Symmetries and their consequences were discussed in chapter 2. Each symmetry
of the action implies a set of relations (known as Ward identities) between vertices.
Gauge and Galilean invariances imply

Σ(k)− Σ(k + q) =
1

βV

∑

k′,σ′

[G−1
0 (k′ + q)−G−1

0 (k′)]

×G(k′)G(k′ + q)Γσσ′(k, k
′; q),

(k + q)Σ(k)− kΣ(k + q) =
1

βV

∑

k′,σ′

[k′G−1
0 (k′ + q)− (k′ + q)G−1

0 (k′)]

×G(k′)G(k′ + q)Γσσ′(k, k
′; q) (4.223)

(see Eqs. (2.170,2.179)). Considering the first identity both in the ω- and q-limits
and the second one in the ω-limit, we obtain

∂Σ(k)

∂iω
= − 1

βV

∑

k′,σ′

{
G(k′)2

}
ω

Γωσσ′(k, k
′), (4.224)

∇kΣ(k) =
1

βV

∑

k′,σ′

∇k′ξ
0
k′
{
G(k′)2

}
q

Γq
σσ′(k, k

′) (4.225)

k
∂Σ(iω)

∂iω
= − 1

βV

∑

k′,σ′

k′
{
G(k′)2

}
ω

Γωσσ′(k, k
′), (4.226)
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where

{
G(k)2

}
ω

= lim
ων→0

[
lim
q→0

G(k)G(k + q)
]
,

{
G(k)2

}
q

= lim
q→0

[
lim
ων→0

G(k)G(k + q)
]
.

(4.227)

We consider the T → 0 limit where the Matsubara frequency iωn ≡ iω becomes a
continuous variable and 1

β

∑
ωn
≡
´
dω
2π .

These three Ward identities should be supplemented by the relation between Γω

and Γq. The particle-hole vertex satisfies the Bethe-Salpeter equation (4.201) with
Γ̄irr and Π̄ replaced by Γirr and Π, i.e.

Γ = Γirr − ΓirrΠΓ (4.228)

in matrix form. Writing the particle-hole pair propagator as in (4.206),

Π = z2Π̄ + ϕ, (4.229)

we have

Γ = Γirr − Γirr(z2Π̄ + ϕ)Γ. (4.230)

Since the coherent part z2Π̄ of the pair propagator does not contribute in the ω limit,

Γω = Γirr − ΓirrϕΓω, i.e. Γω = (1 + Γirrϕ)−1Γirr. (4.231)

From (4.228,4.231), we deduce Γ = Γω − z2ΓωΠ̄Γ, i.e.

Γσσ′(k, k
′; q) = Γωσσ′(k, k

′)

− 1

βV

∑

k1,k2,σ1,σ2

z2Γωσσ1
(k, k1)Π̄σ1σ2

(k1, k2; q)Γσ2σ′(k2, k
′; q) (4.232)

and, taking the q-limit,

Γq
σσ′(k, k

′) = Γωσσ′(k, k
′) +

1

βV

∑

k′′,σ′′

z2Γωσσ′′(k, k
′′)
{
Ḡ(k′′)2

}
q

Γq
σ′′σ′(k

′′, k′)

= Γωσσ′(k, k
′)− z2N∗(0)

∑

σ′′

ˆ
dΩk̂′′

4π
Γωσσ′′(k,k

′′
F )Γq

σ′′σ′(k
′′
F , k

′). (4.233)

To obtain the last line, we have carried out the Matsubara sum and used

1

β

∑

ωn

{
Ḡ(k)2

}
q

= −δ(ξk), (4.234)

and the fact that Γω,q(k, k′) depends only on kF and k′F for k and k′ near the Fermi
surface.
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Quasi-particle current and effective mass

We are now in a position to compute the current carried by a quasi-particle and the
quasi-particle effective mass. From (4.225) and (4.233), we obtain

∇kΣ(k) =
1

βV

∑

k′,σ′

vk′
{
G(k′)2

}
q

Γωσσ′(k, k
′)

− 1

βV

∑

k′,σ′

z2N∗(0)vk′
{
G(k′)2

}
q

∑

σ′′

ˆ
dΩk̂′′

4π
Γωσσ′′(k,k

′′
F )Γq

σ′′σ′(k
′′
F , k

′), (4.235)

where vk = ∇kξ
0
k = k/m. The second line can be simplified using again (4.225) and

(4.229),

∇kΣ(k) =
1

βV

∑

k′,σ′

vk′

[{
G(k′)2

}
ω

+ z2
{
Ḡ(k′)2

}
q

]
Γωσσ′(k, k

′)

− z2N∗(0)
∑

σ′

ˆ
dΩk̂′

4π
Γωσσ′(k,k

′
F )∇k′Σ(k′)||k′|=kF . (4.236)

The first term in the rhs simplifies using the Ward identity (4.226), which leads to

∇kΣ(k) = − k

m

∂Σ(k)

∂iω

− z2N∗(0)
∑

σ′

ˆ
dΩk̂′

4π

[
vk′F

+ ∇k′Σ(k′)||k′|=k′F

]
Γωσσ′(k,k

′
F ). (4.237)

For iω → 0 and |k| → kF , using

∂Σ(k)

∂iω
→ 1− 1

z
, ∇kΣ(k)→ v∗k

z
− vk, (4.238)

we finally obtain

vk = v∗k + z2N∗(0)
∑

σ′

ˆ
dΩk̂′

4π
v∗k′F Γωσσ′(kF ,k

′
F )

= v∗k +N∗(0)
∑

σ′

ˆ
dΩk̂′

4π
v∗k′F fσσ

′(kF ,k
′
F )

= v∗F k̂

(
1 +

F s1
3

)
. (4.239)

This reproduces the expression for the quasi-particle current jk = vk obtained within
Landau Fermi-liquid theory [Eq. (4.38)]. Equation (4.239) implies that the quasi-
particle effective mass is determined by (4.40)

4.4.5 Response to external fields

In Landau Fermi-liquid theory, one calculates the quasi-particle response to an exter-
nal field assuming that the latter couples to the quasi-particles in the standard way.
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+ Γirr Γirr Γirr + · · ·+

k + q

λµ(k, q)

k

Figure 4.14: Diagrammatic representation of the renormalization of the coupling be-
tween the fermions and the external field.

λµ(k, q) Γirr Γirr Γirr

√
zψ̄σ(k + q)

√
zψ̄∗

σ(k)

Figure 4.15: Diagrammatic representation of the coupling of the external field to
the quasi-particles. The solid lines represent the incoherent part of the particle-hole
propagator (i.e. ϕ in (4.229)), and the dashed ones the coherent part zḠ of the
single-particle Green function G.

That this assumption is correct is by no means obvious. In this section, we show
that the absence of renormalization of the coupling between quasi-particles and the
external field is a consequence of the Ward identities discussed in the previous section.

An external field contributes to the action a term

Sext[ψ
∗, ψ] =

ˆ β

0

dτ

ˆ
d3r [φ(r, τ)n(r, τ)− j(r, τ) ·A(r, τ)]

= −
∑

µ=0,x,y,z

∑

k,q,σ

Aµ(−q)λµ(k, q)ψ∗σ(k)ψσ(k + q), (4.240)

where φ and A are the scalar and vector potentials, respectively. In the second line
of (4.240), we have introduced a compact notation with A0 = −φ and

λ0(k, q) = 1, λµ6=0(k, q) =
1

m

(
kµ +

qµ
2

)
. (4.241)

The interaction renormalizes the coupling of the field to the particles as shown in
figure 4.14. The renormalized vertex satisfies the equation

Λµ(k, q) = λµ(k, q) +
1

βV

∑

k′,σ′

Λµ(k′, q)G(k′)G(k′ + q)Γirr
σ′σ(k′, k). (4.242)

Let us now try to formulate the perturbation theory in terms of the quasi-particles
only. The effective coupling between the external field and the quasi-particles is then
represented by diagrams of the type shown in figure 4.15 where only the incoher-
ent part of the particle-hole pair propagator is involved. It can be obtained from
Λµ(k, q) by considering the ω-limit where no quasi-particle propagation is possible
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λµ(k, q) Γ̄irr λµ′(k
′,−q)Γ̄irr Γ̄irr

Figure 4.16: A typical diagram contributing to the quasi-particle response function
χ̄µµ′(q). The solid lines denote the quasi-particle propagator Ḡ.

(since z2Ḡ(k)Ḡ(k + q) does not contribute in that limit),

Λωµ(k, q) = λµ(k, q) +
1

βV

∑

k′,σ′

Λωµ(k′, q)
{
G(k′)2

}
ω

Γirr
σ′σ(k′, k)

= λµ(k, q) +
1

βV

∑

k′,σ′

λµ(k′, q)
{
G(k′)2

}
ω

Γωσ′σ(k′, k). (4.243)

Using the Ward identities (4.224) and (4.226), we obtain the very simple result

Λωµ(k, q) =
λµ(k, q)

z
. (4.244)

The effective coupling between the external field and the quasi-particles is therefore
described by the action

Sext,eff [ψ̄∗, ψ̄] = −
∑

µ=0,x,y,z

∑

k,q,σ

Aµ(−q)Λωµ(k, q)
√
zψ̄∗σ(k)

√
zψ̄σ(k + q)

= −
∑

µ=0,x,y,z

∑

k,q,σ

Aµ(−q)λµ(k, q)ψ̄∗σ(k)ψ̄σ(k + q). (4.245)

The renormalization of the coupling cancels the rescaling introduced in the definition
of the quasi-particle field ψ̄. This explains why the response functions do not depend
on the quasi-particle weight z. In order for Fermi liquid theory to be valid we need
z to be finite, but its precise value does not influence the physical properties of the
system that can be measured experimentally.24

The response functions χµµ′(q) are defined by

〈jµ(q)〉 =
∑

µ′

χµµ′(q)Aµ′(q) =
∑

µ′

[
χinc
µµ′(q) + χ̄µµ′(q)

]
Aµ′(q), (4.246)

where χinc denotes the purely incoherent response function and χ̄ the one due to the
quasi-particles. χ̄ is computed using

χ̄µµ′(q) =
1

V

∑

k,k′,σ,σ′

λµ(k, q)χ̄σσ′(k,k
′; q)λµ′(k

′,−q), (4.247)

where χ̄σσ′(k,k
′; q) satisfies the Bethe-Salpeter equation (4.197). A typical diagram

contributing to χ̄µµ′(q) is shown in figure 4.16. We leave it to the reader to show that
(4.197) and (4.247) reproduce the results obtained in section 4.3.4.

24From a diagrammatic point of view, this is a very clear exemple of the importance of vertex
corrections when calculating response functions. A mere renormalization of the one-particle propa-
gator (G0 → zG) in the perturbation expansion would violate the Ward identities and give response
functions that depend on z.
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4.4.6 Luttinger theorem

At zero temperature, the density n = N/V is given by

n = 2

ˆ
ddk

(2π)d

ˆ ∞
−∞

dω

2π
eiωηG(k, iω)

= 2

ˆ
ddk

(2π)d

ˆ ∞
−∞

dω

2π
eiωη

{
∂

∂iω
ln[−iωn + ξk + Σ(k, iω)] +G(k, iω)

∂Σ(k, iω)

∂iω

}
.

(4.248)

In this section, we do not make any assumption on the dispersion ξk of the non-
interacting fermions and consider a d-dimensional system.

Let us first show that the last term in the rhs of (4.248) vanishes. Integrating by
part, we find

ˆ ∞
−∞

dω

2π
G(k, iω)

∂Σ(k, iω)

∂iω
= −

ˆ ∞
−∞

dω

2π
Σ(k, iω)

∂G(k, iω)

∂iω
. (4.249)

Here we have used lim|ω|→∞G(k, iω) = 1/iω and lim|ω|→∞Σ(k, iω) = const. The
self-energy Σ(k, iω) can be expressed as the functional derivative of the Luttinger-
Ward functional Φ[G] with respect to the Green function G(k, iω) (chapter 1). This
functional is given by the sum of skeleton diagrams; it is clearly invariant if we shift
all Matsubara frequencies iω in the propagators of these diagrams by an infinitesimal
amount iε,

0 =

ˆ
ddk

(2π)d

ˆ ∞
−∞

dω

2π

δΦ[G]

δG(k, iω)

∂G(k, iω)

∂iω

=

ˆ
ddk

(2π)d

ˆ ∞
−∞

dω

2π
Σ(k, iω)

∂G(k, iω)

∂iω
. (4.250)

Equations (4.249) and (4.250) prove our assertion.
We therefore have

n = −2

ˆ
ddk

(2π)d

ˆ i∞

−i∞

dz

2iπ
ezη

∂

∂z
ln[−G(k, z)]. (4.251)

G(k, z) is an analytic function of the complex variable z except possibly on the real
axis. For =(z) > 0 (< 0) it coincides with GR(k, z) (GA(k, z)). Furthermore, Σ(k, z)
being analytic for =(z) 6= 0 (Sec. 3.5), G(k, z) has no zero for =(z) 6= 0. The con-
vergence factor ezη then enables us to change the contour of integration as shown in
figure 4.17,

n = −2

ˆ
ddk

(2π)d

{ˆ 0

−∞

dω

2iπ
eωη

∂

∂ω
ln[−G(k, ω − iη)]

+

ˆ −∞
0

dω

2iπ
eωη

∂

∂ω
ln[−G(k, ω + iη)]

}

= − i
π

ˆ
ddk

(2π)d

ˆ 0

−∞
dω

∂

∂ω
ln
GR(k, ω)

GA(k, ω)
(4.252)
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Figure 4.17: Contour of integration used in equation (4.252).

(we have dropped the convergence factor which is not necessary anymore). Denoting
the phase of GR(k, ω) = [ω + iη − ξk − ΣR(k, ω)]−1 by ϕ(k, ω), we obtain

n =
2

π

ˆ
ddk

(2π)d

ˆ 0

−∞
dω

∂

∂ω
ϕ(k, ω). (4.253)

GR(k,−∞) being real and negative (with an infinitesimal negative imaginary part),
ϕ(k,−∞) = −π. Since =[ΣR(k, ω)] is always negative (Sec. 3.5), GR(k, ω) remains
in the lower complex plane and its phase ϕ(k, ω) can only vary between −π and 0.
There is therefore no winding of the phase ϕ(k, ω) as ω varies between −∞ and 0,
and

n =
2

π

ˆ
ddk

(2π)d
[ϕ(k, 0)− ϕ(k,−∞)] =

2

π

ˆ
ddk

(2π)d
[ϕ(k, 0) + π]. (4.254)

Given that =[Σ(k, 0)] = 0 in a Fermi liquid (Sec. 4.4.1), the phase ϕ(k, 0) is either 0
or −π depending on the sign of GR(k, 0). We finally obtain

n = 2

ˆ
ddk

(2π)d
Θ[GR(k, 0)]. (4.255)

In a Fermi liquid, the region GR(k, 0) > 0, i.e. ξk + ΣR(k, 0) < 0, is bounded by
the Fermi surface defined by ξk + ΣR(k, 0) = 0. Equation (4.255) then states that for
a given density the volume of the Fermi surface in k space is the same as that of the
non-interacting Fermi system.

4.5 Fermi-liquid theory and renormalization group

c© N. Dupuis, 2020



4.5 Fermi-liquid theory and renormalization group 335

Guide to the bibliography

• Besides Landau’s original papers [1–3], there are excellent textbooks on Landau
Fermi-liquid theory [4–7]. sections 4.1, 4.2 and 4.3 rely heavily on Refs. [4, 5].

• The microscopic foundations of Fermi-liquid theory are discussed in Refs. [3,6–
8].

• The derivation of the thermodynamic potential Ω[n] and the quantum Boltz-
mann equation follows Ref. [9]. Similar ideas were discussed in the context of
the so-called statistical Fermi-liquid theory [10–12]. A direct derivation of E[n]
can be found in Ref. [7].

• Ward identities for the Fermi liquid are discussed in Refs. [6, 8, 14].

• The Luttinger theorem [15] is discussed in Refs. [6, 7]. For a discussion of the
validity of possible extensions of this theorem, see Refs. [16, 17].
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