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Density of states and screening near the mobility edge
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Perturbation in the interaction strength is performed in the vicinity of the fixed point in
the Anderson-localization problem. Logarithmic corrections to the single-particle density
of states are found for all dimensionality d & 2. We also comment on the screening process
near the mobility edge.

I. INTRODUCTION &o

1+dXidE ' (2.1)

The past few years have seen impressive progress
ii. our understanding of the Anderson localization
problem' as well as of the effects of electron-
electron interaction in weakly disordered metals. '

For noninteracting electrons the scaling description
of the localization problem predicts a metal-
insulator transition for dimensionality d &2. How-
ever, interaction effects are expected to play impor-
tant roles in the vicinity of the transition. McMil-
lan developed a description of the transition region
based on extrapolation of the results of Ref. 1 —4 to
the critical region. However, a quantitative theory
of the metal-insulation transition does not exist. As
a first step towards the construction of such a
theory, we explore in this paper the perturbation ex-
pansion in the interaction strength in the vicinity of
the localization fixed point. We also comment on
the treatment of screening by McMillan and em-

phasize the distinction between the single-particle
density of states and the thermodynamic density of
states dnldp which enters in the Thomas-Fermi
screening expression. We point out several possible
scenarios which the theory could take. Our discus-
sion is heuristic and serves in the interim until a
quantitative scaling theory is available for the in-

teracting disordered problem

yu(r —r '), (2.2)

where

F'(E,E', r, r')= g [5(E—E )5(E'—E„)+*(r)
m, n

&(%„*(r')qi (r ')4'„(r)],„(2.3)

and the square brackets with subscript "av" denote
impurity averaging. Quite generally, F can be relat-
ed to the density-density response function

A (q, co ) = f dt d r d r ' e'"'e' q ' '

by

X ([p(r, &),p(r ', 0)])

A (q, co ) =co f F(co,r )e' q ' d r,

(2.4)

(2.5)

so that

where No is the noninteracting density of states. In
the formulation in terms of exact eigenstates %'~(r )

of the disordered system, the self-energy is given to
lowest order in u(q ) by

X(E)= g [5(E E)X ]—,„1

m

0f dE'dr dr'F(E, E', r, r')—Oo

II. DENSITY OF STATES
NEAR THE MOBILITY EDGE

dX 1 f u(q)A(q co)

dE X. dq (2.6)

In this section we study a model problem of Fer-
mions in a disordered medium interacting via a
short-range, static potential u(q). The question of
screening in a Coulomb system will be discussed in
the next section. The single-particle density of
states at energy E measured relative to the Fermi
energy is given by

In an earlier work A(q, co) was computed in the
weak-impurity-scattering limit, so that

A(q, co) = (2.7)
dp 2+(Dq2)2

and inca and co
' corrections to the density of states

were found in two and three dimensions, respective-
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ly. ' We now extend this treatment to the strongly
disordered region by assuming that the noninteract-

ing disordered system is describable by a one-
parameter scaling theory. ' In a one-parameter
theory there is only one critical exponent v for the
correlation length g,

(2.8)

where t=g ' and the dimensionless scaling vari-
able is

g=G/(e /I), (2.9)

which is the conductance G in units of e /A'. This
means that all physical quantities scale according to
their natural dimensions and the critical exponent q
becomes trival, i.e., ' '

g 2 8 0 (2.10)

(Unfortunately, our r) has a different meaning from
McMillan's r) as well as from the r) of Gefen and
Imry. )

Accordingly, even in the critical region the
density-density correlation function can be written
as

dn coD(q, a) )q

dp c0 +[D(q,co)q')~
(2.11)

where the diffusion constant becomes q and co

dependent. The full scaling behavior of D(q, co) is
discussed in detail elsewhere. ' " Here we just
present a heuristic discussion on the limiting cases.
It is convenient to introduce

0(q, co) = D(q, co) .de

Gp
(2.12)

0(q, co ) =g*g F(x,y ), (2.13)

where g' is the fixed-point conductance and F is a

In the q,co~0 limit this is the Einstein relation.
Note that what enters in Eq. (2.12) is the thermo-
dynamic density of states dn/dp and not the
single-particle density of states N~. This is clear
from considering cr and D as the current response to
a potential and density gradient, respectively. This
distinction is important when interaction is taken
into account, because Xi contains a singularity near
the Fermi energy whereas dn/dp is a smooth func-
tion of density or disorder. Gefen and Imry have
written down Eq. (2.12) with N„whi hIcbelieve to
be in error.

The assumption of one-parameter scaling implies
that o(q, co ) obeys the following scaling relation:

dimensionless function of two dimensionless vari-
ables,

and

dn dX =lCO
dp

(2.14)

(2.15)

For x,y smaller than unity we are outside of the
critical region and F=1. This gives the by now
familiar result

g4$2 —d (2.16)

For y »1, i.e., on a length scale L ~~(, we are in
the critical region. The conductivity or diffusion
constant is scale dependent, ' 0-g'L ". We now
consider the static limit of Eq. (2.13) where F is a
function of y only. In the critical region g~ 00 and
0 must be independent of g. This implies that
E-y" and

0 (q, 0)=Ag'q (2.17}

where A is a numerical constant that cannot be
determined by the scaling arguments. The q depen-
dence of Eq. (2.17) conforms with the conventional
definition of g in terms of the density-density
response function and agrees with Eq. (2.10}.

We are now ready to evaluate dX IdE using Eqs.
(2.6) and (2.11). We note that the important region
of integration is

D(q, r0)q &co, (2.18)

D~ (dn/dp) 'g'g2—— (2.20)

is simply a restatement of Eq. (2.16) and where

a =Ag'/(dn/dp) . (2.21)

The integral in Eq. (2.6} can be evaluated approx-
imately by decomposition into two sections:

dX =I1+I2

where
2

o +2+(D 2)2

and

(2.22)

(2.23)

which is the static limit. D is a function of q only
and we have the following limits:

Dgq, g' (( I (2.19a)

aq", qg »1, (2.19b)

where
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I,=S„J,dqq'-' U(0)a d

E +(aqd)2
(2.24)

2
SqI =U(0)1 (2.27)

The factor Sd=2n. "/ /I (d/2) is the angular in-
tegration constant and we have used the fact that
for the noninteracting system dn/dp=Np W. e
have also taken the q~0 limit in U(q} because the
singularity of the intergrand occurs for small q.
Evaluation of Eq. (2.24) gives

which is negligible compared with I& in this limit.
For E «E we obtain

(E (d —2)/2 E(d —2)/2)
U(0)Sd

(d 2)Dd/2
(2.28)

U(0) Sd 1Ij——— —ln
a d 2

E
al "

'2 ' ' —2d
For d =3 this is the old E'/2 result, but with D re-
placed by D~.

To summarize, in lowest order in U(0) the density
of states is given by

E=a/ (2.26)

We now evaluate I~ in two limits. For E&&E we
obtain

(2.25}

The most interesting feature of this result is that we
obtain logarithmic singular for all dimensions
greater than 2.

It is useful to introduce the crossover frequency

N) ——Np 1 — ln(Er )
U(0) Sd

a (2.29)

for E»E. We have used the fact that for kFl =1,
al =akp 'l '= vol

up to a numerical constant, where ~ is the elastic
scattering time. For E «E, we have in three di-
mensions

N) =Np/I 1+U(0)Sd[D~ (E ' E' ) a—'ln(l/p—)]I (2.30)

III. SCREENING

For Coulomb interaction, the screened potential
in three dimensions is given in the weak-scattering
limit as6

4me Dq —ico
U, (q, W)=

Dk —EN

where

(3.1)

k =4ne dn/dp (3.2)

is the Thomas-Fermi screening constant. For
noninteracting systems Eq. (3.1) continues to hold
near the mobility edge, as long as D is replaced by
D(q, co). The crossover from static to dynamic
screening is given by

Thus for small E the correction initially begins as
E'/ and changes over to lnE for E &E. Further-
more, E approaches zero near the mobility edge and
N~ goes to zero at the mobility edge in all dimen-
sions greater than two. Clearly we only have the
first term in the perturbation theory in U and Eqs.
(2.29) and (2.30) are valid only when the corrections
are small. However, the perturbation theory should
provide the correct qualitative features.

ep =D(q, cp)q (3.3)

Near the mobility edge D approaches zero and the
region of static screening shrinks to zero. However,
in the static limit the screening length is still given
by Eq. (3.2). We expect Eq. (3.2) to continue to
hold even for interacting system, because in the
static limit the electron density has time to readjust
and screen in the Thomas-Fermi manner. Note that
it is dn/dp, that enters Eq. (3.2) and not the single-
particle density of states N(. We note that dn/dp
does not contain any singularity; singularities such
as those in X~ are tied to the Fermi energy.
McMillian has used Eq. (3.1) and (3.2) to describe

screening, but he used N) instead of dn/dp in Eq.
(3.2}. The vanishing of N) at the mobility edge
then leads to a divergence of the screening length.
The same approach was adopted recently by Gefen
and Imry. We believe that the use of N~ in Eq.
(3.2) is in error and the development that follows
from that is suspect. Along the same line the rela-
tion between the conductivity and diffusion con-
stant o = (dn /d p, )D follows from very general
grounds by considering current responses to density
or potential gradients. The single-particle density
of states N~ should not replace dn/dp in the static
limit in the way it was done in Ref. 9. Our conjec-
ture that Eqs. (3.1) and (3.2) continue to hold for an
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interacting system can be tested by perturbation
theory in U(q). This calculation is in progress.

Without the use of Ni in Eq. (3.2) the scaling
equations for the conductance g and for the interac-
tion constant decouple. Thus no conclusion can be
drawn about the nature of the new fixed point. Our
first-order perturbation calculation in v(q) shows
that the interaction is a marginal variable in all di-
mensions d g2 in that it produces a logarithmic
correction. Three possibilities remain: (i) The
noninteracting fixed point is stable, (ii} a new stable
fixed point emerges, and (iii) we have a line of fixed
points with variable exponents. Possibility (i) seems
unlikely while possibility (iii) is most intriguing.
These possibilities can be distinguished only by go-
ing to higher order in U(q). Presumably the loga-

rithmic series in Eq. (2.29) will exponentiate and

N) ~E~ (3.4)

for E »E. If a new stable fixed point arises [case
(ii)], y will be a universal constant whereas for a line
of fixed points [case (iii}], y will depend on v(0).
Hopefully these possibilities can be distinguished by
detailed calculations.
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