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Abstract

We consider low-temperature behavior of weakly interacting electrons in disordered conductors
in the regime when all single-particle eigenstates are localized by the quenched disorder. We prove
that in the absence of coupling of the electrons to any external bath dc electrical conductivity exactly
vanishes as long as the temperature T does not exceed some finite value Tc. At the same time, it can
be also proven that at high enough T the conductivity is finite. These two statements imply that the
system undergoes a finite temperature metal-to-insulator transition, which can be viewed as Ander-
son-like localization of many-body wave functions in the Fock space. Metallic and insulating states
are not different from each other by any spatial or discrete symmetries. We formulate the effective
Hamiltonian description of the system at low energies (of the order of the level spacing in the
single-particle localization volume). In the metallic phase quantum Boltzmann equation is valid,
allowing to find the kinetic coefficients. In the insulating phase, T < Tc, we use Feynmann diagram
technique to determine the probability distribution function for quantum-mechanical transition
rates. The probability of an escape rate from a given quantum state to be finite turns out to vanish
in every order of the perturbation theory in electron–electron interaction. Thus, electron–electron
interaction alone is unable to cause the relaxation and establish the thermal equilibrium. As soon
as some weak coupling to a bath is turned on, conductivity becomes finite even in the insulating
phase. Moreover, in the vicinity of the transition temperature it is much larger than phonon-induced
hopping conductivity of non-interacting electrons. The reason for this enhancement is that the
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stability of the insulating state is gradually decreasing as the transition point is approached. As a
result, a single phonon can cause a whole cascade of electronic hops.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Transport properties of conducting materials at low temperature T are determined by
an interplay between the interaction of the itinerant electrons with each other and the
quenched disorder which creates a random potential acting on these electrons. In the
absence of the electron–electron interaction all physics is dominated by the phenomenon
of Anderson localization [1]—e.g., dc electrical conductivity r can be qualitatively different
depending on whether one-particle wave functions of the electrons are localized or not. In
the latter case r (T) has a finite zero-temperature limit, while in the former case r (T) van-
ishes when T fi 0. Therefore, Anderson localization of electronic states leads to the metal-
to-insulator transition at zero temperature.

When speaking about zero temperature, we need to consider only localization of the
electronic states close to their Fermi level. The conductivity becomes finite at any finite
temperature provided that extended states exist somewhere above the Fermi level. It is
commonly accepted now that localized and extended states in a random potential can
not be mixed in the one-electron spectrum and thus this spectrum in a very general case
is a combination of bands of extended states and bands of localized states. A border
between a localized and an extended band is called mobility edge. If the Fermi level
is located inside a localized band and inelastic scattering of the electrons are completely
absent, the conductivity should follow Arrhenius law r (T) / exp(�Ec/T), where Ec is
the distance from the Fermi level to the closest mobility edge. Another common belief
following from the scaling theory of Anderson localization [2,3], is that in low dimen-
sionality d, namely at d = 1,2 all states are localized in an arbitrarly small disorder,
while for free electrons (no periodic potential) Ec > 0 is finite at d = 3 (for d = 1 this
statement was proven rigorously both for thin [4,5] and thick [6,7] disordered wires).
It means that without inelastic processes rd=1, 2 (T) = 0, while for rd=3 (T) one should
expect the Arrhenius law. Note that for electrons in a crystal within a given conduction
band the latter conclusion could become incorrect—strong enough disorder can localize
the whole band.

Situation becomes more complicated when the inelastic processes are taken into
account. In particular, electron–phonon interaction leads to the mechanism of conductiv-
ity known as hopping conductivity [8,9]—with an assistance of phonons electrons hop
between the localized states without being activated above the mobility edge. As a result,
r (T) turns out to be finite (although it can be very small) at any finite T even when all one-
electron states are localized.

Can interaction between electrons play the same role and cause the hopping conductiv-
ity? This question was discussed in literature for a long time [10–14] and no definite con-
clusion was achieved. The problem is that although the electric noise exists inside the
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material with a finite ac conductivity1 the ‘‘photons’’ in contrast with phonons become
localized together with electrons.

In this paper, we demonstrate that electron–electron interaction alone cannot cause
finite conductivity even when temperature is finite, but small enough. In the absence of
phonons and extended one-electron states a system of interacting electrons has exactly
zero conductivity below some temperature Tc. This critical temperature is infinite if the
distance between the electrons exceeds the localization lengths of all electronic states. In
the opposite case Tc turns out to be finite and depends on the typical number of electrons
within the localization volume as well as on the strengths of the electron–electron interac-
tion. We also argue that at high temperatures T > Tc the conductivity r (T) is finite. It
means that at T = Tc the system of interacting electrons subject to a random potential
undergoes a genuine phase transition that manifests itself by the emerging of a finite
conductivity!

This transition can be thought of as many-body localization—it applies to many-body
eigenstates of the whole system. This localization occurs not in the real space, but rather in
the Fock space. This fact does not affect the validity of the concept of mobility edge. In
fact, the existence of the ‘‘metallic’’ state at T > Tc implies that the many-body states with
energies E above Ec are extended. One can estimate the difference between Ec and the ener-
gy of the many-body ground state E0 as Ec � E0 � TN ðT Þ, where N ðT Þ is the total number
of one-particle states in the energy strip of the width T. Note that the existence of the
extended many-body states above the mobility edge does not contradict the fact that
below Tc there is no conductivity—in contrast with the case of one-particle localization
there is no Arrhenius regime since Ec � E0 turns out to be proportional to the volume
of the system, i.e., is macroscopically large (see Section 2.1.2 below for more details).

To avoid possible misunderstanding we would like to emphasize at the very beginning
that throughout this paper we will be focused only on the inelastic collisions between the
electrons, i.e., on creation or annihilation of real electron–hole pairs. There are other
effects of electron–electron interactions—they can be understood as renormalization of
the one-particle random potential by the interaction. This renormalization is temperature
dependent and thus leads to a number of interesting effects, for example, the interaction
corrections to the density of states and conductivity in disordered metals [15]. On the insu-
lating side of the one-particle localization transition similar effects cause the well-known
Coulomb gap [9] which suppresses hopping conductivity. On the other hand, this is still
a time-independent correction to the time-independent random potential. As such, it
can maybe shift the position of the many-body metal-to-insulator transition, i.e., renor-
malize Tc, but is unable to destabilize the insulating or metallic phases. From now on
we will simply neglect all elastic (Hartree–Fock) effects and concentrate on the real inelas-
tic electron–electron collisions.

Localization of the many-body states in the Fock space has been discussed in [16]
for the case of zero-dimensional systems with finite, although maybe large, number
of electrons. Authors of [16] used an approximate mapping of the Hamiltonian of a
metallic grain with large Thouless conductance g and moderate interaction between
the electrons to the one-particle Hamiltonian on a lattice with the topology of the
1 In this paper, we mostly focus on dc conductivity. As to ac conductivity, it never vanishes, because at any
frequency density of resonant pairs of states is finite.
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Cayley tree and an on-site disorder. The latter problem has an exact solution [17] that
contains the localization transition. In terms of interaction electrons this transition
means that below certain energy of the excitation the one-particle excitation states
are quite close to some exact many-body excitations. As to the one-particle excitations
with energies higher than the critical one, its wave function can be viewed as a wave
packet, which involves a large number of the many-body eigenstates. Being a property
of a finite system this transition could be nothing but a crossover, which becomes more
pronounced with increasing of g.

For an infinite system with d > 0 the presence of spatial degrees of freedom makes the
situation more complex. In this case, Cayley tree approximation turns out to be insuffi-
cient. Nevertheless, a consistent analysis of a model with weak and short range interaction
to all orders of perturbation theory enabled us to analyze the many-body localization tran-
sition and to demonstrate that both the metallic state at high temperatures and the insu-
lating state at low temperatures are stable and survive all higher loop corrections to the
locator expansion. This allows us to claim that the existence of the transition is proven
on the physical level of rigor.

It should be noted that such an insulating state that is characterized by exactly zero
conductivity is quite different from all other known types of metal-to-insulator transitions.
For example, Mott insulator is believed to have finite, though exponentially small conduc-
tivity at finite temperatures.

The remainder of the paper is organized as follows. Section 2 contains the discussion of
the problem on the qualitative level: we define the many-body localization, show its mac-
roscopic implications, and discuss the relation to the Anderson model on a certain graph.
In Section 3, we specify the model many-body system to be studied throughout the paper.
In Section 4, we show how to treat this model in the framework of non-equilibrium Kel-
dysh formalism, introduce the self-consistent Born approximation (SCBA), and derive the
general equations. Using these equations, we demonstrate the existence of the metallic
state at high temperatures and study its properties in Section 5. Section 6 is devoted to
the proof of the existence of the insulating phase at low temperatures; we evaluate the
transition temperature as the limit of stability of the insulating phase. Section 7 is dedicat-
ed to justification of SCBA; we demonstrate that corrections to SCBA are indeed small.
Finally, in Section 8 we summarize the results and present an outlook of the future
developments.

2. Qualitative discussion

2.1. Macroscopic manifestations of the many-body localization transition

2.1.1. Single-particle localization

Let us begin with the brief review of the basic notion emerged in a study of the prop-
erties of the one electron wave functions in a disordered potential in d dimensions.
Depending on the strength of the disorder potential, a wave function /a (r) of an eigenstate
a corresponding to a given energy can be classified as localized or extended:

j/aðrÞj
2 /

1
fd

loc

exp � jr�qaj
floc

� �
; localized;

1
V

; extended,

8<: ð1Þ
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where floc is the localization length which depends on the eigenenergy na, andV is the volume
of the system. Exponentially localized states have a maximum amplitude at some point qa in
the system and a wave function envelope which falls off exponentially, whereas the extended
states spread relatively uniformly over the whole volume of the system. It is believed that the
coexistence of the localized and extended states in the same energy range is not possible, and
the spectrum splits into bands of localized and extended states. The energies separating such
bands are known as mobility edges. For example, for free electrons in a disorder potential in
the dimensionality three and higher, only one mobility edge E1 exists, so that

na < E1 : localized;

na > E1 : extended.
ð2Þ

The statement about the asymptotic behaviour of the single-particle wavefunctions (1)
can be translated into the property of the matrix elements of a certain local operator
Â (R) (it might be the local mass or current density operator, etc.)

AabðRÞ ¼
Z

ddr/�aðrÞÂðRÞ/bðrÞ. ð3Þ

Then

LA
abðrÞ ¼

Z
ddRAabðRÞAbaðRþ rÞ /

6 e
� jrjfloc ; localized;

F jrj
Lxab

� �
; extended,

8><>: ð4Þ

where the linear scale Lx is controlled by the transmitted energy xab = na � nb only, and
Lx fi1 for x fi 0. No summation over the repeating indices is implied in Eq. (4). Ener-
gies na and nb are assumed to be sufficiently close to each other, so that the localization
length is approximately the same for the two states.

The notion of the matrix elements (4) is intimately related to the observable quantities.
As an example, consider the Kubo formula for the density–density response function

Pðx; rÞ ¼ 1

V

X
ab

ðfa � fbÞL.
abðrÞ

x� na þ nb þ i0
; ð5Þ

where the overlap L.
abðrÞ is given by Eq. (4) built on the operators of the local density,

.̂ðRÞ, such that .̂ðRÞjri ¼ dðR� rÞjri. In the thermal equilibrium for the fermionic parti-
cles, the occupation numbers fa are given by the Fermi distribution.

In a conducting system, the low-frequency asymptotic behavior of the density–density
response function is always determined by diffusion as the total number of particle is the
only conserved quantity in the system

Pðx; rÞ /
Z

ddQ
eiQ�r

�ixþ DQ2
; ð6Þ

where D is the diffusion coefficient. First, let assume that all the states are localized. Then,
comparing Eq. (5) with Eq. (4), we see that the asymptotic behaviour of the wave function
precludes the diffusion propagation (6). Therefore, the diffusion coefficient vanishes for any
temperature T. The same is true for the dc conductivity, as it is related to the diffusion
coefficient via Einstein relation, r / D. Physical meaning of vanishing D and r is the
impossibility for an excitation caused by a local external perturbation to propagate in a
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localized system, and uniformly span all the phase space allowed by the conservation of
energy.

If a finite mobility edge (2) exists and the Fermi level �F lies in the energy region of local-
ized states, the conductivity is determined by the exponentially small occupation number
of the delocalized states

rðT Þ / e�ðE1��F Þ=T . ð7Þ
In this paper, we will be interested in transport properties of the systems where all

single-particle states are localized, and thus without many-body effects r = 0 at any
temperature. It is well established now that the mobility edge does not exist for one- and
two-dimensional systems for any disorder, and all single-particle states are indeed localized.
Such a situation can also arise in an arbitrary high dimensionality as well. Indeed, consider
as an example Anderson model with one state per lattice site [1]. It is well known that all
eigenstates become localized as soon as the on-site disorder exceeds a critical value.

2.1.2. Many-body localization
Let us now turn to the discussion of the many-body localization. From now on, we

assume that all one-particle state are localized in the sense of the previous subsection.
Can the interaction cause finite conductivity? Consider a many-body eigenstate |Wkæ of
the interacting system, with the corresponding eigenenergy Ek. Our purpose is to general-
ize the notion of localization to such many-body states.

In the coordinate representation, the many-body wave function WkðfrjgN
j¼1Þ depends on

the coordinates of all N particles in the system. The single-particle states forming this
many-body state are located everywhere in the volume V. Thus, no definition analogous
to Eq. (1) can be constructed. On the other hand, the relation (4) can be used, if one takes
a local additive one-particle operator

ÂðRÞ ¼
X
ab

AabðRÞĉyaĉb �
Z

ddrĉyðrÞÂðRÞĉðrÞ; ð8Þ

where we introduced the fermionic creation and annihilation operators ĉya, ĉyðrÞ, ĉa, ĉðrÞ in
the basis of the one-particle eigenstates and in the coordinate representation, respectively.

We consider the matrix elements of the local operator between two exact many-body
eigenstates

Akk0 ðRÞ ¼ Wk ÂðRÞ
�� ��Wk0

� �
. ð9Þ

Then we can define localized states by a relation, analogous to Eq. (4)

LA
kk0 ðrÞ ¼

Z
ddRAkk0 ðRÞAk0kðRþ rÞ /

6 e
� jrj

fðEk Þ; localized;

F jrj
Lxkk0

� �
; extended.

8<: ð10Þ

Again, xkk0 ¼ Ek � Ek0 and the energies Ek and Ek 0 are taken sufficiently close to each
other, so that the difference between f (Ek) and fðEk0 Þ need not be taken into account.2
2 Let us emphasize that the criterion (9) can be extended to the arbitrary number of electron–hole excitations,
ÂðRÞ ! Â1ðRÞ Â2ðRÞ . . . ÂnðRÞ, corresponding to the local heating of the system. The asymptotic behaviour will
still be determined by Eq. (10).
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Eq. (10) is the definition of the localized many-body states. To elucidate its meaning, let
calculate the matrix element (9) between two Hartree–Fock states

WHF
k

�� �
¼
Y

a

ð1� f k
a þ f k

a cyaÞjvacuumi; ð11Þ

where the state jWHF
k i is completely characterized by the set of occupation numbers

f k
a ¼ 0; 1, corresponding to empty and filled single-particle states, respectively. Substitut-

ing Eq. (11) into Eq. (8) we find for k „ k 0

Akk0 ¼
X
ab

Aab f k
a ð1� f k0

a Þf k0

b ð1� f k
b Þ

h i Y
c 6¼a;b

df k
c ; f

k0
c
; ð12Þ

where we omitted the argument R in both sides of the equation. The states k and k 0 con-
nected by the operator ÂðRÞ are obtained from each other by creation of a single electron–
hole pair, so that only one term in the sum over a and b is different from zero. We note that
the matrix elements Aab (R) are exponentially suppressed unless both states a and b are
located near the point R. Thus, the distance between the electron and the hole cannot ex-
ceed the single-particle localization length floc, and the number of states k 0 which can be
connected to the given state k by the local perturbation is effectively finite, even though the
total number of the Slater determinant states (11) scales exponentially with the size of the
system.

We substitute Eq. (12) into the localization criterion (10) and obtain

LA
kk0 ðrÞ ¼

X
ab

LA
abðrÞ f k

a ð1� f k0

a Þf k0

b ð1� f k
b Þ

h i Y
c 6¼a;b

df k
c ;f

k0
c

. ð13Þ

Because of the d-symbols, jEk � Ek0 j ¼ j
P

cncðf k
c � f k0

c Þj ¼ jna � nbj, where a and b are
the only two states contributing to the sum for given k, k 0. If na, nb are not too far from
the Fermi level, so that floc(na) � floc(nb), we find that LA

kk0 ðrÞ has the same spatial depen-
dence as the kernel (4) for non-interacting system. Thus, according to definition (10) any
Hartree–Fock state (11) is localized with the localization length f (Ek) = floc.

Let us apply the same ideas to the Kubo formula for the many-body density–density
response function:

Pðx; rÞ ¼
X

k

P kPkðx; rÞ ¼
X
kk0

P k � P k0½ �Pkk0 ðx; rÞ; ð14aÞ

Pkðx; rÞ ¼
X

k0
Pkk0 ðx; rÞ �Pk0kðx; rÞ½ �; ð14bÞ

ImPkk0 ðx; rÞ ¼
p
V
L.

kk0 ðrÞdðxþ Ek � Ek0 Þ; ð14cÞ

where Pk is the probability for the system to be in the eigenstate k and Pk (x,r) is the linear
response of the system in this particular eigenstate. The overlap function L.

kk0 ðrÞ is given by
Eq. (10) with the operator of local density .̂ðRÞ ¼ ĉyðRÞĉðRÞ.

Formulas (14) are valid for any many-body eigenstates |Wkæ. For the Hartree–Fock
state (11), we can substitute Eq. (13) into Eqs. (14) and obtain Eq. (5) with

fa ¼
X

k

P kf k
a . ð15Þ

For the initial Gibbs distribution
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P k ¼
exp � Ek

T

	 
P
k exp � Ek

T

	 
 ð16Þ

and the Hartree–Fock spectrum, Ek ¼
P

af k
a na, formula (15) gives the Fermi distribution

function.
According to Eqs. (13) and (14c), the spatial dependence of the correlator P (x,r) is still

given by Eq. (4) for the localized single-particle wave functions. Therefore, both the con-
ductivity and the diffusion coefficient vanish for the Hartree–Fock states constructed in the
basis of exact one-particle wave functions of disordered systems. The same statement can
be made about certain wave functions which are formally very different from a single Slat-
er determinant. Namely, consider the creation of the electron–hole pair on top of some
eigenstate |Wkæ and expand the result in terms of other eigenstates

ĉyaĉb Wkj i ¼
X

k0
Ckk0

ab Wk0j i;
X

k0
Ckk0

ab

��� ���2 ¼ 1. ð17aÞ

For the Hartree–Fock state (11), only one term contributes to the sum, see Eq. (13). It is
possible to check that the state would remain localized in a sense of Eq. (10), if the number
of terms contributing to the sum in Eq. (17a) is large but finite, i.e.

lim
V!1

X
k0

Ckk0

ab

��� ���4" #�1

<1. ð17bÞ

In complete analogy with the non-interacting system, this corresponds to the insulating

or localized many-body state; excitation can not propagate over all states allowed by the
energy conservation.

Conductivity can be different from zero only if the wave functions of the excitations can
be broken onto the infinite number of eigenstates

lim
V!1

X
k0

Ckk0

ab

��� ���4" #�1

¼ 1; ð17cÞ

which would correspond to the metallic or extended many-body state.
Developed metallic state corresponds to the case when electron–electron interaction

mixes the excited state with all the eigenstates in the system with close enough energy

jCkk0

ab j
2 / \dðEk þ xab � Ek0 Þ"; ð17dÞ

where d-function should be understood in the thermodynamic sense: its width, although
sufficiently large to include many states, vanishes in the limit V !1. Only in this regime,
which may also be called ergodic many-body state, the electron–electron interaction can
bring the system from the initial Hartree–Fock state to the equilibrium corresponding
to spanning all the states permitted by the energy conservation. In this case, the averaging
over the exact many-body eigenfunction is equivalent to averaging over the microcanon-
ical distribution, and temperature T can be defined as a usual Lagrange multiplier. It is
related to Ek by the thermodynamic relation:

Ek � E0 ¼
Z T

0

CV ðT 1ÞdT 1; ð18Þ
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where E0 is the ground state energy, and CV ðT Þ / V is the specific heat.
The main result obtained in the present paper is the proof of existence of the extensive

many-body mobility edge Ec / V. This proof is based on two statements: (i) states with suf-
ficiently large energies Ek � E0 are extended; (ii) states with sufficiently small energies
Ek � E0 are localized.

The first statement follows from the validity of high-temperature expansion for the
quantum corrections to conductivity [15]. The quantum corrections to conductivity are
divergent for d = 1,2; for non-interacting systems these weak localization corrections have
no cutoff other than the size of the system. In interacting systems two kinds of new phe-
nomena appear: (a) interference due to the scattering off the self-consistent Hartree–Fock
potential (see [18]), and (b) inelastic electron scattering. Effects of type (a) are regularized
by the temperature itself and do not produce any consequences for the present paper. At
the same time, inelastic electron scattering leads to regularization of the weak localization
corrections due to appearance of the inelastic rate and the corresponding length

1

s/
’ k2T

gðL/Þ
; L/ ’

ffiffiffiffiffiffiffiffi
Ds/

p
; ð19Þ

where k [ 1 is the dimensionless interaction constant, D is the diffusion coefficient, and
g (L) is the dimensionless conductance of the d-dimensional cube of linear size L. All
the interference corrections are finite if

1

s/
J df. ð20Þ

Using g(floc) . 1, we rewrite Eqs. (19) and (20) as

T J T ðelÞ ’ df

k2
. ð21Þ

Inequality (21) is the condition of applicability of the expansion from the metallic state.
In fact, it is also valid for higher-dimensional systems with the finite bandwidth Eb and all
single-particle eigenstates localized, if Eb	 T(el).

At T < Tel the perturbation theory breaks down. It may indicate either (i) a simple
insufficiency of the perturbation theory to describe the metallic state, or (ii) existence of
the many-body mobility edge Ec. It important to emphasize that Ec is an extensive quantity
Ec / V.

In case (i), states Wk are extended for all Ek, so that the conductivity would remain finite
(no matter how small) down to zero temperature. In case (ii) the many-body eigenstates
with Ek � E0 6 Ec are localized, see Eq. (17b).

In case (ii), the partial conductivity of one state, rk, defined analogously to Pk from
Eqs. (14), is zero for Ek � E0 6 Ec.

Results of [16] strongly indicate that the case (ii) is realized. We will review, extend and
refine the arguments of [16] in the next section; here, we simply proceed with the discussion
of the macroscopic manifestations of this scenario. Let us assume that the equilibrium
occupation is given by the Gibbs distribution (16). One could think that it would still
imply the Arrhenius law (7) for the conductivity. However, this is not the case for the
many-body mobility threshold. In fact, in the limit V !1

rðT Þ ¼ 0; T < T c; ð22aÞ
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where the critical temperature is determined by Eq. (18)Z T c

0

dT 1 CV ðT 1Þ ¼ Ec. ð22bÞ

The schematic temperature dependence of the conductivity is summarized on Fig. 1.
Therefore, the temperature dependence of the dissipative coefficient in the system shows
the singularity typical for a phase transition.

To prove Eqs. (22) we use the Gibbs distribution and find

rðT Þ ¼
X

k

P krðEkÞ ¼
R1

0 dEeSðEÞ�E=T rðEÞR1
0 dEeSðEÞ�E=T

;

where the entropy S (E) is proportional to volume, and E is counted from the ground state.
The integral is calculated in the saddle point or in the steepest decent approximations, ex-
act for V !1. The saddle point E (T) is given by

dS
dE

����
E¼EðT Þ

¼ 1

T
.

Taking into account r (E) = 0 for E < Ec we find:

rðT Þ ¼ r EðT Þ½ �; EðT Þ > Ec;

rðT Þ / exp � Ec � EðT Þ
T

� �
; EðT Þ < Ec.

As both energies entering the exponential are extensive, EðT Þ; Ec / V, we obtain Eqs. (22).
As we already mentioned, vanishing of the dissipative conductivity at T < Tc means

freezing of all relaxation processes. In particular the microcanonical distribution could
never be established for the closed system. In this respect, the dynamics of the system
resembles the glassy state [19].

To establish the thermal equilibrium in such insulating state requires finite coupling of
the system with the external reservoir (i.e., phonons). The presence of the finite electron–
phonon interaction (as phonons are usually delocalized), smears out the transition, and
Fig. 1. Schematic temperature dependence of the dc conductivity r (T). Below the point of the many-body metal–
insulator transition, T < Tc, r (T) = 0, as shown in Section 6. Temperature interval T > T(in) > Tc corresponds to
the developed metallic phase, where Eq. (17d) is valid. In this regime for the model described in Section 3 r (T) is
given analytically by Eqs. (93)–(99) and plotted on Fig. 10. At T > T(el) the high-temperature metallic
perturbation theory of [15] is valid.
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r (T) > 0 for any temperature. Nevertheless, for the weak electron–phonon interaction, the
phenomenon of the many-body metal–insulator transition (22) manifests itself as a very
sharp crossover from phonon induced hopping at T < Tc to the conductivity independent
of the electron–phonon coupling at T > Tc.

2.2. Microscopic mechanism of the many-body localization transition

As discussed in the previous section, the existence of extended many-body states at high
energies is an established fact [15]. Here we focus on the existence of localized states at low
energies, and discuss the correspondence between a many-electron interacting system and
the Anderson model on a certain graph. As we have already mentioned, it is convenient to
analyze many-body localization in terms of single-particle excitations ĉyajWki above a cer-
tain eigenstate of the interacting system, namely, how these excitations spread over other
many-body eigenstates (consideration of the electron–hole excitation is performed in a
same fashion and does not bring anything qualitatively different). This discussion has a
close relation with that of [16].

Let the system initially be in the eigenstate |Wkæ. At time t = 0 an extra electron is cre-
ated in the single-particle state a. The many-body Schrödinger equation describing the
subsequent time evolution of such state j ~WkaðtÞi is

iot � Ĥ
� 

j ~WkaðtÞi ¼ dðtÞĉyajWki; ð23Þ

where the right-hand side determines the initial condition at t = 0, and the Hamiltonian,
written in the basis of the exact single electron wavefunctions, is given by

Ĥ ¼
X

a

naĉyaĉa þ
1

2

X
abcd

V abcdĉyaĉybĉcĉd. ð24Þ

The interaction part of the Hamiltonian contains only non-diagonal terms, a „ c, d;
b „ c, d, and assumed to be antisymmetrized, Vabcd = �Vbacd = �Vabdc. The diagonal
matrix elements are already included into the definition of the Hartree–Fock spectrum
{na}.

We make the Fourier transform of Eq. (23)

ð�þ Ek � ĤÞj ~Wkað�Þi ¼ ĉyajWki ð25Þ
(here we count the energy � from that of the reference state Ek), and solve this equation for
j ~Wkað�Þi by iterations

j ~Wkað�Þi ¼
1

�� na
wð0Þka ð�Þ
��� E

þ wð1Þka ð�Þ
��� E

þ � � �
� �

. ð26Þ

The zeroth order in the electron–electron interaction is just the one-particle excitation
itself

wð0Þka

��� E
¼ ĉyajWki. ð27Þ

The first order corresponds to a three-particle excitation above |Wkæ

wð1Þka

��� E
¼
X
b;c;d

V dcba

�� Nb
cd

ĉydĉycĉbjWki; ð28Þ
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where we introduced a short-hand notation

Nb
cd ¼ nc þ nd � nb ð29Þ

for the energy of the three-particle excitation.
As usual in the theory of metal–insulator transition [1], one starts from estimating the

probability for the sum (28) not to be small. We notice that the geometric distance between
particles is of the order of the one-particle localization length floc, as the interaction is
short-ranged. Thus, the denominators in Eq. (28) are the random quantities with the max-
imal value of the order of the level spacing in the localization length df. Assuming weak
interaction, k = max|Vabcd|/df
 1, we see that the value of sum is, in fact, determined
by the smallest denominator.

Let us assume that the typical number of terms (i.e., terms not suppressed by the matrix
elements) is K	 1. As the denominators are distributed approximately uniformly for
�df < �� Nb

cd < df, the smallest denominator is of the order of df/K. Therefore, if
Kk
 1, the probability to find the large mixing is small, whereas for

KkJ 1 ð30Þ
it becomes of the order of unity. This estimate up to a factor of the order of |lnk| is the
basis for finding the position of the transition [1].

The remaining non-trivial problems are: (i) to find the connectivity K, and (ii) to check
that higher-order terms indeed match the locator structure of Anderson, i.e., the the num-
ber N n of the nth order terms scales as

N n ’ Kn; ð31Þ
where the prefactor can be any algebraic function of n. Condition (31) is very important: if
N n 	 Kn, e.g., N n ’ n!, then the probability to find small enough denominators in high or-
ders of the perturbation theory N nk

n ’ 1 would be always of the order of unity no matter
how small the interaction constant k is; the system in this case would always remain metallic.
If, oppositely, the number of terms in high orders is small, e.g.,N n ’ Kn=n!, the higher-order
terms will not contain the small denominators, even though the lowest orders of the pertur-
bation theory do. In this case, the system would always remain insulating. In both cases, the
conclusions drawn from the lowest order perturbation theory [16] would be misleading.

To estimate K from Eq. (28), one has to account for (i) the structure of the eigenfunc-
tion |Wkæ, i.e., which indices a of fermionic operators ĉa are allowed not to produce zero
result after action on the wave function; (ii) the structure of the matrix elements Vabcd.

The energy of a typical Hartree–Fock state is almost uniformly distributed among the
localization volumes. The fact that the eigenstate |Wkæ is a linear combination of an infinite
number of Hartree–Fock states does not affect this assumption. Therefore, the state |Wkæ is
contributed by electron-like and hole-like excitations with the energy smaller than T,
where T is of the order of temperature given by Eq. (18). Considering the action of the
fermionic operators on such a state we estimate

�T < nc; nd; nb < T . ð32Þ

Second restriction is based on the structure of the matrix elements. As we already men-
tioned, they restrict the final states to be at the distance not exceeding the localization
length floc from each other. In addition to this spatial restriction, the matrix elements
decrease rapidly when the energy difference, say na � nc, exceeds the level spacing df,
i.e., Vabcd . kdf only for
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jna � ndj; jnb � ncjK df or jna � ncj; jnb � ndjK df ð33Þ

and vanish rapidly otherwise.
Counting the number of states b, c, d within one localization volume, such that they

produce the value of the denominator in Eq. (28) smaller than df. and satisfy both restric-
tions (32) and (33), we obtain for T	 df

3

K ’ T
df

. ð34Þ

Comparing Eq. (34) with the estimate (30) we conclude that at T J df

k the first correc-
tion to the wavefunction (28) contains at least one term of the order of unity, which may
signify the transition in the system.

To check that this conclusion is not an artefact of the lowest order perturbation theory,
one has to analyze further terms in the expansion (26). The second order correction is giv-
en by

wð2Þka

��� E
¼
X
a1b1

X
b;c;d

V a1b1cd

�� Nb
a1b1

V dcba

�� Nb
cd

ĉya1
ĉyb1

ĉbjWki

þ
X

a1;b1;c1

X
b;c;d

2V a1b1c1d

�� Nbc1
ca1b1

V dcba

�� Nb
cd

ĉya1
ĉyb1

ĉycĉbĉc1
jWki

þ
X

a1;c1;d1

X
b;c;d

V a1bc1d1

�� Nc1d1

cda1

V dcba

�� Nb
cd

ĉya1
ĉydĉycĉb1

ĉc1
jWki; ð35Þ

where the (2n + 1)-particle energies are defined as

Nb1...bn
a1...anþ1

¼
Xnþ1

i¼1

nai
�
Xn

i¼1

nbi
. ð36Þ

The first term in Eq. (35) is again a three-particle excitation. We can estimate its typical
value as k2T, which is smaller than the first-order contribution (28) by a factor k
 1; sim-
ilar type terms arise also from the second and the third lines for ĉy; ĉ with coinciding indi-
ces. The actual meaning of this terms is the renormalization of the value of the two-particle
interaction strength. They are analyzed with more rigor in Section 7.1, here we simply
neglect them as they do not affect the statement about the transition.

Once again, we estimate the number of the relevant terms in the multiple sum in the last
two lines Eq. (35). They are shown pictorially on Fig. 2B. The structure of the state |Wkæ
gives the restriction similar to Eq. (32) on the electron (entering Eq. (36) with plus sign)
and the hole (entering Eq. (36) with minus sign) energies, respectively. The matrix element
Vabcd restricts the energies by Eq. (33). Combining those two restrictions and requiring
each denominator in Eq. (35) to be smaller than the level spacing df, one estimates

N 2 ’ K2; ð37Þ
where K is given by Eq. (30). Apparently, Eq. (37) agrees with the requirement (31). How-
ever, some questions may arise already on this stage.
3 The estimate of [20] for the quantum dot at T = 0 is K . �2/d2, where d is the level spacing in the quantum dot.
Our estimate is different because the energy restriction on the matrix elements (33) is absent in a quantum dot.
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Fig. 2. Pictorial representation of the paths corresponding to the first (A), second (B), third (C), and higher (D)
orders of the perturbation theory for the mixing of one-particle excitations with many-particle states. Process
(d.2) is obtained from the process (d.1) by the application of the interaction operators once to each of (2n + 1)
final particles of the process (d.1). The sequence of such applications can be ordered in (2n + 1)! ways, each
producing formally different path.
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One notices from Eq. (35) that there are terms which can be obtained from each other
by the simple permutation of indices of the creation or annihilation operators. The states
obtained by such permutations from each other are in fact identical, so one may be tempt-
ed to amend Eq. (37) as [20]

N n’
? Kn

n!ðnþ 1Þ! ; ð38Þ

where the combinatorial factors describe the indistinguishability among n + 1 electrons
and n holes [n = 2 for Eq. (35)].

However, in the theory of Anderson transition [1], the relevant parameter is not the
number of available final states, but the number of statistically independent paths leading
to these states from the initial state (e.g., for the Anderson transition in three dimensions
the number of states grows as n3 whereas the number of paths grows exponentially with n).
By construction, the summation in Eq. (35) is performed over the single-particle indices
and not over the final states. Moreover, the denominators in each terms involve different
combinations of levels and thus produce statistically independent contributions. This cor-
responds to the summation over paths number of which cancels the factorials in Eq. (38).

Having demonstrated the absence of the factorial factors suppressing the number of
terms N n, one may worry about the opposite extreme: factorial growth of N n. The way
to obtain this factorial is shown on Fig. 2D. The transition between the two states with
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(2n + 1) excitations and (6n + 3) excitations may be realized in (2n + 1)! ways. These ways
are different by the order in which interaction operator acts on the particles, thereby pro-
ducing different intermediate states. If these paths were statistically independent, it would
mean

N 3nþ1’
? ð2nþ 1Þ!K2nþ1N n ð39Þ

so that no transition would occur and the system would always be delocalized.
However, such paths are, in fact, correlated and the sum of the corresponding ampli-

tudes produces always the result of the order of an amplitude of a single path; the terms
essentially cancel each other. To demonstrate this cancellation we consider the third order
of the perturbation theory. The terms schematically shown on Fig. 2C correspond to

d wð3Þka

��� E
¼

X
a2;b2;c2

X
a1;b1;d1

X
b;c;d

2V a2b2c2d

�� Nbd1c2
a1b1a2b2

V a1b1cd1

�� Nbd1
da1b1

þ V a1b1cd1

�� Nbc2
ca2b2

 !

� V dcba

�� Nb
cd

ĉya2
ĉyb2

ĉya1
ĉyb1

ĉbĉd1
ĉc2
jWki. ð40Þ

Two terms in the second factor correspond to two ways to obtain the final seven-par-
ticle state. One immediatley notices that the matrix elements in the two terms are the same.
Moreover, the denominators in two terms can be combined as

1

�� Nbd1
da1b1

þ 1

�� Nbc2
ca2b2

¼
�� Nb

cd þ �� Nbd1c2
a1b1a2b2

�� Nbd1
da1b1

� �
�� Nbc2

ca2b2

� � . ð41Þ

Generally, one seeks to maximize the transition amplitude by choosing the smallest pos-
sible denominators for each of the three factors in Eq. (40) independently. Each denomi-
nator being of the order of df/K, the whole expression would be proportional to K3.
However, one can see immediately from Eq. (41) that small denominators of the first
and the third factors of Eq. (40) appear in the numerator of the second factor. Thus,
the amplitudes shown Figs. 2(c.2) and (c.3) are not independent, and in fact, cancel each
other, producing a contribution proportional to K2 instead of K3. One can follow similar
cancellations in any order of the perturbation theory. Therefore, the estimate (39) is not
valid and scaling (31) remains intact. Therefore, one can use the Anderson result [1] for
the critical connectivity and obtain the estimate for the transition temperature Tc

K ’ T c

df
’ 1

kj ln kj ; ð42Þ

the many-body mobility edge Ec is then found from Eq. (22b). The qualitative estimate
(42) is in agreement with the result of a quantitative calculation performed in subsequent
sections for a specific model [Eq. (160)].

The arguments given in this section show that, even though the many-body problem
(24) exhibits a close analogy with the problem of Anderson localization [1], an exact map-
ping to the Anderson model on some graph, like one suggested in [16], is problematic.
First, the geometric structure of this graph is unknown. Analogy with the Cayley tree,
popular due to the exact solvability of the corresponding Anderson model [17], is not
applicable, strictly speaking, because in the many-body problem two states can be con-
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nected in more than one way, which would be prohibited for the Cayley tree. Second, the
many-body problem does not allow for simple counting of statistically independent paths,
which was the main idea of the Anderson’s solution [1], as transition amplitudes, corre-
sponding to seemingly different paths, exhibit striking correlations. Therefore, the appro-
priate starting point is the formalism where the cancellation of the factorial terms is taken
into account automatically. This formalism is in fact none but the well-known diagram-
matic technique for the many-body system [21], as one diagram includes the sum of all
the processes obtained by trivial permutations. The correlations between different dia-
grams are much weaker and can be treated perturbatively. The subsequent sections are
devoted to the statistical analysis for the many-body Green functions in a basis of the
localized one-particle states. The transition resembling the Anderson’s transition on the
Cayley tree [17,22] will be indeed demonstrated, despite of the subtleties discussed above.

3. Choice of the model

The purpose of this section is to introduce the simplest model describing the metal–in-
sulator transition for interacting electrons as a coarse-grained version of the initial Ham-
iltonian of interacting electrons in the disorder potential.

The Hamiltonian Ĥ of electrons placed in a disorder potential U (r) and interacting with
each other via a two-body interaction potential V (r, r 0) = V(r 0, r) can be written in the
basis of the exact single-electron wavefunctions4 as:

Ĥ ¼ Ĥ 0 þ V̂ int; ð43aÞ

Ĥ 0 ¼
X

a

naĉyaĉa; ð43bÞ

V̂ int ¼
1

2

X
abcd

V abcdĉyaĉybĉcĉd; ð43cÞ

V abcd ¼
1

2

Z
V ðr; r0Þ.adðrÞ.bcðr0Þddrddr0; ð43dÞ

.adðrÞ ¼ /�aðrÞ/dðrÞ; ð43eÞ
where ĉya and ĉa are the fermion creation and annihilation operators:

ĉya; ĉb

� �
¼ dab; ĉa; ĉb

� �
¼ ĉya; ĉyb
n o

¼ 0;

and {. . .;. . .} stand for the anticommutator.
Index a labels the one-particle state and na is the corresponding eigenvalue

� $2

2m
þ UðrÞ � �F

� �
/aðrÞ ¼ na/aðrÞ. ð43fÞ

To characterize the single-particle spectrum, we introduce average density of states (DoS)
per unit volume
4 For simplicity, we consider the electrons as the spinless fermions. There is no reason to believe that the
straightforward inclusion of the spin degrees of freedom affects qualitatively the final conclusions.
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m ¼ 1

V

X
a

hdðnaÞi; ð44Þ

where Æ. . .æ denote the averaging over the disorder realization and V is the volume of d-di-
mensional system.

Both one-particle energies and interaction matrix elements are random quantities which
are functionals of the random potential U (r). The usual program [15] of averaging over the
disorder realizations faces difficulty when the relevant spatial scale becomes comparable
with the one-particle localization length floc. However, we would like to discuss the physics
associated with length scale much larger than floc. To perform this task, we adopt the
reduced statistical model for the matrix elements and eigenfunctions which, however,
keeps all essential physics intact. We will not discuss how the parameters of this low-en-
ergy effective model are connected to the properties of the system in the high-temperature
regime [15].

To write down this model, we use the following properties of the localized non-interact-
ing system [23]:

(i) The typical wavefunctions have exponential envelopes

� ln j/aðrÞj ¼
r� qaj j
floc

; ð45Þ
w

w

5 Ever
well des
depende

6 We w
the unita
here floc is the localization length, and qa characterizes the position of the ‘‘center
f mass’’ of the wavefunction.5
o

(ii) Levels na, nb repel each other for jna � nbjK df exp½� jqb�qaj
floc
�, and are almost indepen-

dent otherwise. Here we introduce the main energy scale of the problem

df �
1

mfd
loc

; ð46Þ
y
c
n

hich has the meaning of one-particle level spacing on the localization length (d is
e dimensionality of the system);
th

(iii) The overlap between wavefunctions decays exponentially with the distance, see Eq.
(45), whereas the overlap between the wavefunctions with the centers of mass at the
distance much smaller than the localization length strongly depends on the corre-
sponding one-particle energies na. In particular, for the estimate of the contribution
to the interaction matrix elements (43d) from the distances smaller than the localiza-
tion length one can approximate functions . (r) from Eq. (43e) as Gaussian variables
with the correlation function6

h.abðr1Þ.�abðr2Þi ’
dfPd

r1�r2j j
Lxab

� �
xabf

d
locL

d
xab

. ð47Þ
where we assume that at the distances smaller than the localization length floc the wave functions are
ribed by the semiclassical approximation, i.e., (m�F)1/2floc	 1. We will also neglect the weak energy
ce of the localization length as well as of the average DoS in Eq. (44).
ill neglect the correlation of the wavefunctions stemming from the Cooperon contributions, i.e., assume
ry ensemble.
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where xab ” |na � nb|, diffusion length is given by Lx = (D/x)1/2, and D is the classi-
cal diffusion coefficient. Dimensionless diffusion Pd (x) is given by
PdðxÞ � Re

Z
ddQ

ð2pÞd
eiQxx

iþ Q2
and it decays exponentially at x	 1. Eq. (47) is valid provided |r1,2 � qa,b|
 floc so
that the results obtained for the metallic states are applicable.7 It is important to
emphasize that Eq. (47) implies the relation between the spatial distance and the energy
transfer and does not impose any restrictions on the values of energy themselves.

These facts suggest the following coarse-grained version of the Hamiltonian (43). We
discretize the space into a d-dimensional cubic lattice with the lattice constant floc, the
coordinate of each site will be labeled as q. We will call the unit cell of this lattice a local-

ization cell. Each localization cell, q, contains large number of levels, N fi1, labeled by
integer l,

�Ndf

2
< nlðqÞ <

Ndf

2
; 1 6 l 6 N . ð48aÞ

Two levels nl(q1), nm(q2) are independent for q1 „ q2 and repel each other otherwise. To
characterize this repulsion, let us consider the probability, P (n, E), to find n levels in the
energy interval of the width E	 df. We will write this probability in the form

P ðn;EÞ ¼ e�E=df

n!

E
df

� �n� �
exp �P ndf

E

� �� �
. ð48bÞ

The first factor in this expression characterizes the Poisson distribution of the indepen-
dent random levels. The last exponential describes the level repulsion. The precise func-
tional form of this repulsion is not important for us, we require only

lim
x!1

x�1PðxÞ ¼ 1;

which is a natural assumption for any repelling levels with the scale of the repulsion deter-
mined by df.

As follows from previous discussion of the structure of the wave functions, the interac-
tion matrix elements are largest for the states belonging to one localization cell, and decay
exponentially with the distance. Thus, we will take into account only interaction within
one localization cell.

The interaction within one cell, however, can not cause the delocalization in space and,
in fact, does not cause any qualitative effects at all. Therefore, we will take into account the
single-electron hopping from one localization cell q1 to its nearest neighbour q2. Being
small, this hopping does not change the localization properties of the single electron wave
function, however, taken together with the electron–electron interaction would eventually
lead to the transition.

The resulting Hamiltonian, thus, takes the form:
r d P 3 Anderson model with all the one-particle states localized the wavefunctions at distances smaller

loc are critical rather than metallic. It does not affect the final form of the effective model proposed in this
.
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Ĥ ¼ Ĥ 0 þ V̂ int; ð48cÞ

Ĥ 0 ¼
X
q;l

ĉylðqÞ nlðqÞĉlðqÞ þ Idn

X
a;m

ĉmðqþ aÞ
" #

; ð48dÞ

V̂ int ¼
1

2

X
l1l2j1j2;q

V j1j2
l1l2
ðqÞĉyl1

ðqÞĉyl2
ðqÞĉj2

ðqÞĉj1
ðqÞ; ð48eÞ

where fĉyi ðq1Þ; ĉjðq2Þg ¼ dijdq1q2
, fĉiðq1Þ; ĉjðq2Þg ¼ fĉyi ðq1Þ; ĉyjðq2Þg ¼ 0.

Here a are the vectors connecting the cell q to its nearest neighbors. Dimensionless hop-
ping parameter, I, such that

I 
 1

2d ln 2d
ð48fÞ

is introduced to control further perturbative expansion. We will chose I > 0: this choice
does not affect any conclusions, as I will connect terms with the random signs.

The antisymmetrized coefficients V j1j2
l1l2
ðqÞ ¼ V j2j1

l2l1
ðqÞ ¼ �V j2j1

l1l2
ðqÞ are random numbers.

Because the physical processes discussed in this paper are associated with the counting of
the resonant denominators, the particular choice of the statistical distribution of V j1j2

l1l2
ðqÞ

is not really important. For the calculational convenience we choose the binary distribution

V j1j2
l1l2
¼

kdfr
j1
l1
rj2

l2

2
�

xj1l1

df

� �
�

xj2l2

df

� �
� l1 $ l2ð Þ; ð48gÞ

where k.I
 1 is a dimensionless parameter allowing to control the perturbative expan-
sion, xlj = nl � nj and we omitted argument q on both sides of the equation. We chose
k > 0 without loss of the generality, as all the effects which will be considered are not sen-
sitive to the sign of k. Function (x) is introduced to describe the interaction decaying rap-
idly with the distance between the levels in the energy space, see Eq. (47). As the smallest
linear scale in the reduced model is floc the maximal energy transfer which is permissible to
consider in the model is of the order of df. Thus, we choose8

� ðxÞ ¼ h
M
2
� jxj

� �
; 1
 M K

1ffiffiffi
k
p . ð48hÞ

Actual value of the parameter M is not well defined and we will consider it as the initial
data for the effective Hamiltonian. The significance of the upper bound to M for the con-
sistency of the theory will be clear later, see discussion after Eq. (80) as well as Section 7.1.

The signs for different wave functions are not correlated, so

rj
lðqÞ

� 2 ¼ 1; hrj
lðqÞr

j0

l0 ðq
0Þi ¼ dq;q0dll0djj0 . ð48iÞ

Eqs. (48) constitute a complete formulation of the reduced model for the interacting
electrons in system with localized one-particle states. This model will be analyzed in the
subsequent sections to show the stability of both high-temperature phase (metal) and
low-temperature phase (insulator).
8 It can be shown that taking into account the algebraic decay of (x), x	 1 would require the consideration of
the spatial correlation of the wave functions, so the approximation for the interaction matrix elements to be
independent of each other and of the hopping would be false even on a qualitative level.
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4. Formalism

The purpose of this section is to describe the machinery which enables us to put the
previous qualitative arguments into the context of the usual many-body theory of non-
equlibrium systems. We will start with the outline of the Keldysh formalism for the exact
(non-averaged) Green functions corresponding to Hamiltonian Eqs. (48) in Section 4.1
and formulate which quantity describes the metal–insulator transition in Section 4.2.
Next, in Section 4.3 we will describe our main working approximation which corre-
sponds to the summation of all the rainbow diagrams (SCBA). The justification of
the validity of this approximation for the description of the transition is postponed until
Section 7.

4.1. Time evolution equations and basic definitions

We intend to describe both metallic and insulating regimes. In the latter regime relax-
ation dynamics is absent, there is no mechanism to establish the thermal equilibrium, and
the temperature itself is not defined. Therefore, the only appropriate formal framework is
the non-equilibrium (Keldysh) formalism [24]. We define the corresponding Green func-
tions as

GR
l ðt1; t2; qÞ ¼ �ihðt1 � t2Þ ĉlðt1; qÞ; ĉylðt2; qÞ

� �� �� �
;

GA
l ðt1; t2; qÞ ¼ ihðt2 � t1Þ ĉlðt1; qÞ; ĉylðt2; qÞ

� �� �� �
;

GK
l ðt1; t2; qÞ ¼ �i ĉlðt1; qÞ; ĉylðt2; qÞ

� � �� �
;

ð49Þ

where h (t) is the Heaviside step function, and the fermionic operators are written in the
Heisenberg representation. Quantum mechanical averaging ÆÆ. . .ææ is performed over an
arbitrary density matrix to be found from the solution of the kinetic equation. To avoid
misunderstanding, we emphasize that no averaging over the disorder realization is as-
sumed in Eq. (49).

We parametrize the Keldysh Green function as

GK
l ðqÞ ¼ GR

l ðqÞ � nlðqÞ � nlðqÞ � GA
l ðqÞ; ð50Þ

where we omitted the time arguments for brevity and introduced the short-hand notation

C �D �
Z

dt3Cðt1; t3ÞDðt3; t2Þ ð51Þ

for arbitrary functions C;D.
In the thermodynamic equilibrium

nlðq; �; tÞ ¼ 1� 2f F ð�Þ; ð52Þ
where fF (�) is the Fermi distribution function with arbitrary temperature and chemical po-
tential, and the time Wigner transform is defined as usual:

D t þ s
2
; t � s

2

� �
¼
Z

d�

2p
e�i�sD �; tð Þ. ð53Þ

In the absence of interaction nl (q; � = nl (q, t)) characterizes the occupation of the level
nl (q; nl(q), t) = 1(�1) for an empty (filled) level (q, l).
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In what follows we will use standard diagrammatic technique for the perturbative
expansion for the model Eqs. (48). The basic elements of this technique are defined in
Fig. 3.

The Green functions (49) corresponding to the Hamiltonian Eqs. (48) satisfy the equa-
tions (we omitted time arguments for brevity)

i@ t1 � nlðqÞ½ �ĜlðqÞ ¼ ŝ0dðt1 � t2Þ þ R̂lðqÞ � ĜlðqÞ;
�i@t2

� nlðqÞ½ �ĜlðqÞ ¼ ŝ0dðt1 � t2Þ þ ĜlðqÞ � R̂lðqÞ;

Ĝ ¼ GR
l ðqÞ GK

l ðqÞ
0 GA

l ðqÞ

" #
K

; R̂ ¼ RR
l ðqÞ RK

l ðqÞ
0 RA

l ðqÞ

" #
K

;

ŝ0 ¼
1 0

0 1

� �
K

; ŝ2 ¼
0 1

1 0

� �
K

.

ð54Þ
Fig. 3. (A–D) Basic elements of the diagrammatic technique. The Keldysh space is labeled by li, and the Pauli
matrices in Keldysh space are defined in Eq. (54). Line crossing the Green function excludes the orbital (l,q) from
the summation. (E) Representation of Eqs. (54) and (55).
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The self-energy R̂lðqÞ is given by

R̂lðqÞ ¼ ĝþ R̂lðqÞ; ð55Þ
where ĝ originates from the coupling of the system to an external bath with regular con-
tinuous spectrum (it will be discussed in more details later). This coupling has to be kept
small but finite and can be put to zero only in the end of the calculation. Self-energy R̂lðqÞ
originates from the electron–electron interaction and hopping and represents the sum of
all diagrams which cannot be separated by cutting one-electron line (l, q), see Figs. 4
and 5.

Substitution of Eq. (50) into the Keldysh component of Eq. (54) yields

ot1 þ ot2ð ÞnlðqÞ ¼ �iRR
l ðqÞ � nlðqÞ þ inlðqÞ � RA

l ðqÞ þ iRK
l ðqÞ. ð56Þ

On the next step we restrict ourselves to the consideration of very slow dynamics. In this
case one can perform the time Wigner transform (53) in Eq. (56) and obtain the quantum
Boltzmann equation

otnlð�; q; tÞ þ dnlð�; q; fngÞ ;� nlðq; �; tÞ½ � ¼ Stl �; q; fng; fotngð Þ þ Stbath
l ; ð57Þ

where the collision integrals are defined as:

Stlð�; q; fng; fotngÞ ¼ �2Clð�; q; fng; fotngÞnlðq; �; tÞ þ iRK
l ðq; �; fng; fotngÞ;

Stbath
l ¼ �2ImgAnlðq; �; tÞ þ igK .

ð58Þ
Fig. 4. First (A), second (B), and third (C) orders contributions to the self-energy R̂lðqÞ. The diagrams which will
be taken into account in the self-consistent Born approximation are highlighted by the dashed frames. Cross-
sections of the diagram which produce the imaginary part of the self-energy are denoted by the dotted lines.



Fig. 5. Fourth-order contributions to the self-energy R̂lðqÞ. The diagrams which will be taken into account in the
self-consistent Born approximation are highlighted by the dashed frames. Cross-sections of the diagram which
produce the imaginary part of the self-energy are denoted by the dotted lines and denoted by c1–c4. The
crosssection c4 implies cutting three lines at the same time.
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Hereinafter, the time Poisson brackets are defined as

C ;�D½ � � otC o�D� o�C otD; ð59Þ
for arbitrary functions Cð�; tÞ, Dð�; tÞ. The entries in Eq. (57) are defined by

RR ¼ dn� iC; RA ¼ dnþ iC; ð60Þ
where we suppressed all arguments which are the same as in Eq. (58). Using Eqs. (60) and
the analytic properties of the retarded and advanced Green functions one obtains
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GR
l ðq; �; tÞ ¼ GA

l ðq; �; tÞ
� � ¼ Z d�0Alðq; �0; tÞ

�� �0 þ i0þ
; ð61Þ

Alðq; �; tÞ ¼ p�1Clð�; q; fng; fotngÞ
�� nlðqÞ � dnð�; q; fngÞ½ �2 þ Clð�; q; fng; fotngÞ½ �2

;

and Cl ¼ Cl þ ImgA
l . Notation FðfngÞmeans that F is a functional depending upon all the

functions nl(�,q) but local in time. The latter functions enter the expressions through the
quasistationary version of Eq. (50):

GK
l ðq; �; tÞ ¼ �2pinlðq; �; tÞAlðq; �0; tÞ � i

Z
d�0 Alðq; �0; tÞ ;� nlðq; �; tÞ½ �P 1

�� �0 ; ð62Þ

where P denotes the principal value.
What remains now, is to specify the thermal bath. As we already mentioned, the par-

ticular form of this choice is not important. We will require only that it preserves the num-
ber of particlesZ

d�Alðq; �; tÞStbathð�; tÞ ¼ 0;

it is local, and the collision integral Stbath is nullified by the equilibrium distribution func-
tion (52). It is easy to check that the choice

2ImgA ¼
Z

dxxbðxÞAlðq; �� x; tÞ coth
x
2T
þ nlðq; �� x; tÞ

h i
;

� igK ¼
Z

dxxbðxÞAlðq; �� x; tÞ coth
x
2T

nlðq; �� x; tÞ þ 1
h i

;

ð63Þ

where b(x) = b(�x) > 0, satisfies both those requirements.9

4.2. Formulation of the problem

Having introduced the definitions, we are ready to reformulate the criterion distinguish-
ing insulating and metallic states.10 The left-hand side of the Boltzmann equation (57)
describes the evolution of the occupation of the levels in a self-consistent field created
by all the other electrons. This evolution is deterministic and time reversible. It is the
right-hand side of the kinetic equation (collision integral) that makes the time evolution
probabilistic and specifies the direction of the time arrow. Thus, the energy dependence
of the decay rate 2Cl(�) determines whether or not the irreversible evolution occurs in
the system. If coupling with the environment, b(x) from Eq. (63), is finite, Cl(�) is positive
for any energies. However, if this coupling tends to zero (but not faster than the exponen-
tial function of the volume of the system V, b > exp½�V=V0�), two situations are possible,
see Figs. 6A and B.
9 The subsequent formulas for non-zero coupling ĝ actually may be used to describe the effect of the short-
rangle electron–electron interaction on the phonon-assisted nearest neighbors hopping.
10 Subsequent discussion is a straightforward generalization of the Anderson’s argument [1] to a many-body

system.



(

Fig. 6. Schematic energy dependence of the quasiparticle decay rate C (�) for (A) metallic and (B) insulating
phases. The corresponding distribution functions are sketched on panels (C and D). The characteristic functions
are plotted on panels (E and F).
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(i) Despite b(x) tending to zero the number of the intermediate states via which the exci-
tation can decay goes to infinity. This results in Cl(�) being a smooth function of
energy even at b(x) fi 0. This situation corresponds to the applicability of the Fermi
golden rule, the thermal equilibrium within the system established at times indepen-
dent of the external bath, so it is natural to classify this regime as metallic.

ii) The number of the intermediate states via which the excitation can decay remains
finite and independent on b(x) as b(x) fi 0. This results in Cl (�) to be a sequence
of resonant peaks positioned at the energies of the exact excitations of the many-
body system. In this case n (�) will remain extremely singular function whose relax-
ation rate is determined by b(x). At b(x) fi 0 the thermal equilibrium can never
be reached and this regime is insulating.
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Since these two behaviors are qualitatively different, there could be no smooth cross-
over between them, and only phase transition is possible. Therefore, to show the existence
of the transition, it is sufficient to formulate the conditions at which either metallic (i) or
insulating (ii) regimes are stable. It will be done in Sections 5 and 6. The investigation of
the behavior of the kinetic coefficients near the phase transition point itself will be the sub-
ject of a separate paper.

Next question one has to ask is how to distinguish between metallic and insulating
phases within a statistical framework. It is clear that the positions of the peaks in
C (�) for the insulating regime deviate randomly with the variation of random energies
na from Eqs. (48). Therefore, the averaged value of the decay rate ÆC(�)æ is qualitatively
similar in both phases and can not be used for the distinction. The magnitude of the
fluctuations Æ[dC(�)]2æ is, however, qualitatively different in both cases. In the metallic
case the averaging is performed with respect to the smooth positive functions, whereas
in the insulating regime the fluctuations are determined by the squares of the separated
delta-peaks and thus diverge as the width of the delta peaks goes to zero. Thus, we have
the criterion

lim
bðxÞ!0

lim
V!1

h dCð�Þ½ �2i
hCð�Þi2

¼
finite; metal,

1; insulator.

�
ð64Þ

Another way to address the same problem is to investigate the distribution function
P(C), see Figs. 6C and D. One finds by simple inspection of Figs. 6A and B

lim
bðxÞ!0

lim
V!1

P ðC > 0Þ ¼
> 0; metal,

0; insulator.

�
ð65Þ

For us, it will be more technically convenient to perform the Laplace transform and cal-
culate the characteristic function

W ðsÞ ¼ exp½�sCð�Þ�h i; ð66Þ

where the precise definition of the averaging procedure is given in Section 6.1. The crite-
rion (65) [see also Figs. 6E and F] of the insulating phase translates into

lim
b!0

lim
V!1

W ðsÞ ¼ 1; ð67Þ

for any fixed s > 0.
Closing this section, we emphasize that the transition occurs as a function of temper-

ature (which corresponds to the extensive energy of the many-body state) and not as a
function of � which charaterizes the energy of the one-particle excitation on top of this
many-body state. The latter energy is not an extensive quantity and can not be a char-
acteristic of any phase transition, in contrast with conclusions of [16] for a finite-size
system.

4.3. Self-consistent Born approximations (SCBA and ImSCBA)

In this section, we introduce our main approximation for the summation of the infinite
series of perturbative expansion. We will discuss motivation for this approximation here in
quite loose terms and justify it further in Section 7.
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Contributions to the self-energy shown in Figs. 4 and 5 bear different physical signifi-
cance. For instance, the Hartree–Fock diagrams (b), (d2) of Fig. 4, and diagrams (3) of
Fig. 5 characterize the self-consistent one-particle spectrum. As we explained before, the
structure of this spectrum is not relevant for the transition. On the contrary, diagrams
(c1) and (c3) of Fig. 4 can lead to irreversible processes, and the appearance of the imag-
inary part of those diagrams signals the metal–insulator transition. Thus, those diagrams
will be taken into account.

The third order diagrams, Fig. 4D, describe the effect of the change of the self-
consistent potential on the tunneling process (d1); effect of the tunneling on the
self-consistent potential (d3); and the effect of the self-consistent potential on the spec-
trum of the decay channel. These diagrams will be neglected for the reasons explained
above.

Fourth order diagrams Fig. 5 describe further potentially irreversible process: tunnel-
ing out of the localization cell (1); three-particle production with the consequent tunnel-
ing (3); five-particle production (5). Those contributions must be taken into account. On
the other hand, diagrams (2) and (4) once again represent the self-consistent potential
affecting the lower order processes (c1), (c3) of Fig. 4. Diagrams (6.1), (6.2) of Fig. 5
describe the interaction of the quasiparticles created by the lower-order process (c3)
of Fig. 4. Such effect has the same physical significance and the relative value as the
effect of the self-consistent potential and will be neglected. The effect of those diagrams
will be estimated in Section 7. Finally, diagrams (5.1a), and (5.2a)–(5.2c) are exchange
counterparts of the main diagrams (5.1) and (5.2) [we will elaborate it further in Section
7]. Their role is to cancel out contributions in (5.1), (5.2) which are forbidden by Pauli
principle (more than one particle in one intermediate state) and also to give the random
sign interference corrections. The latter corrections will be neglected here and estimated
further in Section 7.

The above discussion of the lowest orders of the perturbation theory suggests the fol-
lowing prescription for the summation of the leading series: (i) we take into account only
the even orders of the perturbation theory; (ii) we require that each contribution maximize
the sum of the tunneling events and the extra quasiparticle production; (iii) we neglect con-
tributions with random sign. By inspection, one can see that such series with the correct
combinatorial coefficients is generated by the self-consistent Born approximation (SCBA)
shown on Fig. 7A.

Iterations of the SCBA equations also produce spurious contributions shown on
Fig. 7B. For the SCBA scheme to be valid, we will make sure that those spurious contri-
butions are always smaller than those responsible for the final result.

We calculate the self-energy (Fig. 7A) according to the rules of Fig. 3. We neglect the
shifts dnl(q) in accord with our previous discussion, i.e., we make the additional approx-
imation to the usual SCBA scheme

RðSCBAÞ
l ðq; �Þ ! iImRðSCBAÞ

l ðq; �Þ. ð68Þ

We will refer to approximation (68) as Im-self-consistent-Born-approximation
(ImSCBA). In the two subsequent sections, we will work only within this
approximation.

Using spectral representation (61) and (62) and performing the integration over the
intermediate energies, we obtain



Fig. 7. (A) Self-consistent Born approximation. The thick fermionic lines are defined in Fig. 4A. (B) Spurious
contributions of the fourth order generated by iteration of SCBA: b.1 contradicts the definition of the self-energy;
b.2 contains the intermediate particles in the same states; such contributions are cancelled by diagrams (5.1a) and
(5.2a)–(5.2c) of Fig. 4. (C) Fourth order tunneling and interaction contributions not taken into account by SCBA.
These contributions have a random sign.
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Clð�Þ ¼ CðelÞ
l ð�ÞþCðinÞl ð�ÞþCðbathÞ

l ð�Þ;

CðelÞ
l ð�;qÞ ¼ pI2d2

f

X
l1;a

Al1
�;qþ að Þ;

CðinÞl ð�Þ ¼ pk2d2
f

X
l1;l2;l3

Y l3;l
l1;l2

Z
d�1d�2d�3A

1
ð�1ÞAl2

ð�2ÞAl3
ð�3Þ

� dð�� �1� �2þ �3ÞF)l1;l2;l3
ð�1; �2; �3Þ;

CðbathÞ
l ð�Þ ¼ 1

2

Z
dxxbðxÞAlð��xÞ coth

x
2T
þ nlð��xÞ

h i
Alð�Þ ¼

p�1Clð�Þ
�� nl½ �2þ Clð�Þ½ �2

;

Y l3;l
l1;l2
� 1

2
�

nl2
� nl

df

� �
�

nl1
� nl3

df

� �
�� nl1

� nl

df

� �
�

nl2
� nl3

df

� �� �2

;

F)l1;l2;l3
ð�1; �2; �3Þ ¼

1

4
1þ nl1

ð�1Þnl2
ð�2Þ� nl3

ð�3Þ nl1
ð�1Þþ nl2

ð�2Þ½ �
� �

;

ð69aÞ

where g is defined in Eq. (63), and we utilized the notation used in Eq. (48) for the nearest
neighbours. Everywhere, the coordinate q and time t are assumed to be same in all terms in
the equations unless it is specified explicitly otherwise.

Eq. (69a) form a closed set for finding the decay rate for fixed occupation numbers
nl(�,q). In the delocalized regime the time evolution of those occupation numbers is gov-
erned by the ImSCBA version of the kinetic equation (57). Calculating the Keldysh com-
ponent of Fig. 7A and using Eqs. (58) and (63), we find

otnlð�Þ ¼ StðelÞ
l þ StðinÞl þ StðbathÞ

l ;

StðelÞ
l ¼ 2pI2d2

f

X
l1 ;a

Al1
ð�;qþ aÞ nl1

ð�;qþ aÞ � nlð�;qÞ½ �;

StðinÞl ¼ 2pk2d2
f

X
l1 ;l2 ;l3

Y l3 ;l
l1 ;l2

Z
d�1d�2d�3Al1

ð�1ÞAl2
ð�2ÞAl3

ð�3Þdð�� �1 � �2 þ �3Þ

� �nlð�ÞF)l1 ;l2 ;l3
ð�1; �2; �3Þ þ F(l1 ;l2 ;l3

ð�1; �2; �3Þ
h i

;

F(l1 ;l2 ;l3
ð�1; �2; �3Þ ¼

1

4
�nl3
ð�3Þ 1þ nl1

ð�1Þnl2
ð�2Þ½ � þ nl1

ð�1Þ þ nl2
ð�2Þ½ �

� �
;

StðbathÞ
l ¼

Z
dxxbðxÞAlð��xÞ

� coth
x

2T b
nlð��xÞ � nlð�Þ½ � þ 1� nlð��xÞnlð�Þ

� �
.

ð69bÞ

Eq. (69b) is the usual quantum Boltzmann equation written in terms of the exact (not
averaged) single electron levels nl(q). As any Boltzmann equation, it must respect the
fundamental symmetries of the system: conservation of the number of particles for
any collision; conservation of electron energy for the processes involving the electrons
only; and the conservation of the number of particles for a given energy for elastic col-
lisions. It is straightforward to check that the collision integral indeed possesses the
desired properties:
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X
l;q

Alð�; qÞStðelÞ
l ð�; qÞ ¼ 0;

X
l

Z
d�Alð�; qÞStðinÞl ð�; qÞ ¼ 0;

X
l

Z
d��Alð�; qÞStðinÞl ð�; qÞ ¼ 0;

X
l

Z
d�Alð�; qÞStðbathÞ

l ð�; qÞ ¼ 0.

ð70Þ

The properties (70) of the collision integrals enable one to write the continuity equa-
tions for the particle and energy densities N and E, and introduce the corresponding cur-
rents J, JE :

otN ðqÞ þ divJðqÞ ¼ 0;

otEðqÞ þ divJEðqÞ ¼ �QbathðqÞ;
ð71aÞ

where Qbath is the thermal flow to the thermal bath; it will not be important for the further
consideration. The lattice version of the divergence of the currents is defined as

divJðqÞ ¼ 1

floc

Xd

k¼1

J k qþ aðkÞ

2

� �
� J k q� aðkÞ

2

� �� �

and it becomes the usual divergence in the continuum limit. Index k labels the direction in
the cartesian coordinate system in d dimensions. Vector a(k) is the lattice vector along the
kth direction.

The densities are defined on the sites q
N

E

� �
ðqÞ ¼ 1

fd
loc

Z
d�

1

�

� �X
l

Alð�; qÞ
1� nlð�; qÞ

2
; ð71bÞ
whereas the currents are defined on the links q(k) = q + a(k)/2
J k

J k
E

" #
ðqðkÞÞ ¼

Z
d�

1

�

� �X
l;l1

Alð�; qÞAl1
�; qþ aðkÞ
	 


�
pI2d2

f

fd�1
loc

nl1
�; qþ aðkÞ
	 


� nlð�; qÞ
� 

:

ð71cÞ

Finally, StðelÞ
l is nulled by any function nl(�; q) = n (�), electron–electron inelastic colli-

sion integral StðinÞl is nulled by any Fermi function nlð�; qÞ ¼ tanh ��lðqÞ
2T ðqÞ ; and the StðbathÞ

l van-
ishes for nlð�; qÞ ¼ tanh ��lðqÞ

2T b
.

The closed system of Eqs. (69a) and (69b) is a drastic (though parametrically justifiable)
simplification in comparison with the original problem. However, it is still a non-linear
system which depends on an infinite number of random energies nl(q). Substantial progress
can be achieved within the statistical analysis. This analysis is a subject of two following
sections.
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5. Stability and properties of the metallic phase

5.1. Condition for stability

The hallmark of the developed metallic phase is self-averaging of the kinetic coeffi-
cients, see Section 4.2. To establish a sufficient condition for the existence and stability
of this phase, we assume that the inelastic decay rate is indeed self-averaging and then jus-
tify this assumption by explicit calculation of its mesoscopic fluctuations, see Fig. 8. As a
result, we will see that this condition reduces to a certain integral inequality for the distri-
bution function, see Eq. (77). We will also see that even when this condition is satisfied, the
elastic rate still may not be self-averaging. This, however, will not violate the criterion (64),
as the fluctuations of the elastic rate remain finite.

First, we take into account only the inelastic rate in the Al of Eq. (69a). We assume and
justify a posteriori that the main contribution originates from

jl� lij; jli � ljj 	 1; i; j ¼ 1; 2; 3. ð72Þ
Statistical averaging over the distribution of the levels nl can be performed

independentlyX
l

ð. . .Þ
* +

¼ d�1
f

Z
dnlð. . .Þ.

For the needed products of the spectral densities, see Eq. (69a), we find:X
l

Alð�Þ
* +

¼ 1

df
;

X
l

Alð�1ÞAlð�2Þ
* +

¼ 1

pdf

2CðinÞð�1Þ
ð�1 � �2Þ2 þ 2CðinÞð�1Þ

� 2
;

ð73Þ

where we assumed that C(�) is a smooth function on the scale of C(0).
Fig. 8. (A) Simplification of the self-consistent Born approximation at T > Tin. (B) The self-averaging of the
hopping term at T > Tel. Cross with the dashed line(s) stands for the averaging of the corresponding Green
function (product of the Green functions) over the realization of random energies nl (q), see Eq. (48a).
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Averaging Eq. (69a) with the help of Eq. (73), see also Fig. 8A, and assuming that
the distribution functions nl(�, q) do not depend explicitly on the orbital index l, we
find:11

hCðinÞl ð�Þi¼
pk2

df

Z
d�1 dxF)ð�1þx; �1;��xÞ� � 4 x

df

� �
�� 2 x

df

� �
� 2 �1þx� �

df

� �� �
.

ð74Þ

As we will see shortly, the metallic regime is realized when the characteristic energy
scale of the distribution function is much larger than Mdf [Eq. (48h)]—typical trans-
ferred energy in Eq. (74). Under such conditions, the second term in the second line
of this equation is more restrictive on the phase volume and that is why it can be
neglected:

hCðinÞl ð�Þi ¼
pk2

df

Z
d�1dx� 4 x

df

� �
F)ð�1 þ x; �1; �� xÞ. ð75Þ

Calculating mesoscopic fluctuations of the inelastic rate shown in Fig. 8B with the help
of Eq. (73), and keeping the terms with the largest phase volume we find

dCðinÞl ð�Þ
h i2
� �

¼ pk4df

2

Z
d�1dx

� 8ðx=dfÞ F)ð�1 þ x; �1; �� xÞ½ �2

CðinÞð�þ xÞ þ CðinÞð�1Þ þ CðinÞð�1 � xÞ
. ð76Þ

Our initial assumption that the inelastic rate is self-averaging is justified provided that

dCðinÞl ð�Þ
h i2
� �

K CðinÞl ð�Þ
D Eh i2

. ð77Þ

According to Eqs. (75) and (76), both sides of this inequality are determined by the dis-
tribution function only, so that Eq. (77) is a sufficient (but not necessary) condition for the
arbitrary non-equilibrium state to be metallic.

For the thermal distribution nð�Þ ¼ tanh �
2T , the explicit expressions can be obtained.

One finds

CðinÞ
� �

¼ pk2MT ; ð78Þ

where M is the coefficient defined in Eq. (48h), and

dCðinÞ
	 
2
D E

¼
pk4Md2

fT

36hCðinÞi
. ð79Þ

The condition (77), thus, reduces to the lower bound for the temperature

T J T in �
df

6pkM
. ð80Þ
11 All the formulas of Section 5 are written under the condition hCðinÞl ð�Þi 
 Mdf. In this case one can neglect the
dependence on the index l of Cl(�), nl(�), and the collision integral. Such dependence is present only for
|� � nl| J Mdf, while all physical properties are determined by the region |� � nl| � C(in); in particular, the
distribution function enters the observables only as

P
lAlð�Þnlð�Þ.
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To complete our discussion of the properties of inelastic rate, we justify our assump-
tions. To check the condition (72). we analyze the structure of the energy integrals in
Eqs. (74)–(76) and find |l � l1|, |l2 � l3| . M	 1, |l � l3| . T/df	M, which is consistent
with Eq. (72). Deriving Eq. (78) we assumed T	Mdf. It is consistent with Eq. (80) pro-
vided that the condition (48h) is fullfiled.

Let us turn now to the properties of the elastic decay rate, C(el), of Eq. (69a)

CðelÞ
l ð�; qÞ ¼ pd2

fI2
X

a

Að�; qþ aÞ;

Að�; qÞ ¼ 1

p

X
l1

CðinÞð�Þ
�� nl1

ðqÞ
� 2 þ CðinÞð�Þ

� 2
.

ð81Þ

Let us note that only the inelastic width enters the right-hand sides of these equations.
Further iterations of the elastic processes in expression for Al(q + a), see Eq. (69a), gener-
ate either terms small as I2(C(in)(�)/df)
 1 (originating from off-resonant levels), or the
divergent term corresponding to the elastic return on the same level. The latter contribu-
tion, however, corresponds to the spurious diagram Fig. 7b.1 and must be discarded.

Average and fluctuations of the elastic rate (81) is calculated with the help of the Eq.
(73) and we find

CðelÞ� �
¼ ð2dÞpI2df; CðelÞð�Þ

� 2
D E

¼
dpI4d3

f

CðinÞð�Þ
; ð82Þ

where 2d is the number of the nearest neighbors.
Using Eq. (78), we find

h½CðelÞ�2i
hCðelÞi2

¼ 4T el

T
; T el ¼

df

16p2dMk2
’ T in

k
; ð83Þ

where the numerical factor is chosen for the convenience in the further formulas, At
T	 Tel the level discreteness plays no role, so that both elastic and inelastic decay rates
are self-averaging, see also Fig. 9. At Tin
 T
 Tel only C(in) is self-averaging, while
Fig. 9. Sketches of the shapes of the non-equilibrium influx function dn (q1,�) and the spectral density of the other
neighbours Aðq2; �Þ �

P
lAlðq2; �Þ of the other neighbour; for (A) low-temperature metal Tin < T < Tel; (B)

T > Tel. See text for the further explanation.
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the fluctuations of C(el) are large compared to the average. However, they are finite, so that
the system is in the metallic state according to criterion (64).

5.2. Kinetic equation and transport coefficients

Having studied the statistical distribution of the decay rates, we are ready to apply the
same ideas to the kinetic equation

otnð�; qÞ ¼ 2pI2d2
f

X
a

Að�; qþ aÞ nð�; qþ aÞ � nð�; qÞ½ �

þ pk2

2

Z
dxd�1�

4 x
df

� �
Að�þ x; qÞ

� nð�þ x; qÞ � nð�; qÞ½ � 1� nð�1; qÞnð�1 � x; qÞ½ �f
þ 1� nð�; qÞnð�þ x; qÞ½ � nð�1 � x; qÞ � nð�1; qÞ½ �g. ð84Þ

Eq. (84) enables us to find the kinetic coefficients in the system. We look for the distri-
bution function in the form

nð�; q; tÞ ¼ tanh
�

2T
þ Uð�; q; tÞ þ uð�; q; tÞ; ð85Þ

where the function U (�,q, t) describes the shape of the distribution function on the energy
scale � J Mdf, whereas the function u (�,q) encodes the structure on the scale � � C(in), df.
Namely, we impose the condition

huð�; qÞi� �
Z �þD

��D

d�1

2D
uð�1; qÞ ¼ 0; ð86Þ

where D is an energy interval df
 D [ Mdf. We substitute Eq. (85) into Eq. (84) and lin-
earize with respect to U and u. For the smooth part of the distribution function we
find

otUð�; qÞ ¼ 2pI2df

X
a

Uð�; qþ aÞ � Uð�; qÞ½ � þ 2pI2d2
f

�
X

a

Að�; qþ aÞ uð�; qþ aÞ � uð�; qÞ½ �h i� þ bStUUð�; qÞ þ bStuuð�; qÞ
D E

�
.

ð87aÞ
Deriving Eq. (87a) we used the fact that ÆA (�)æ� = 1/df is a self-averaging

quantity.
The smooth part, U, contains, in particular, density and energy density which prop-

agate diffusively through the system. In contrast, the oscillatory contribution decays
due to the inelastic processes. Thus, function u can be considered in the stationary
limit

0 ¼ 2pI2d2
f

X
a

Að�; qþ aÞk kosc Uð�; qþ aÞ � Uð�; qÞ½ � þ 2pI2d2
f

�
X

a

Að�; qþ aÞ uð�; qþ aÞ � uð�; qÞ½ �k kosc þ bStuuð�; qÞ
��� ���

osc
; ð87bÞ

where we introduced the notation for the oscillatory part of the expression
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� � �k kosc � � � � � h� � � i�.
The smooth part of the linearized collision integral bStuu is given by
bStuuð�Þ
D E

�
¼ 2pk2T

Z
dx� 4 x

df

� �
Að�þ xÞ uð�þ xÞ � uð�Þ½ �h i�

� 2pk2T
Z

dx� 4 x
df

� �
Að�þ xÞuð�þ xÞh i� � 2CðinÞdf Að�Þuð�Þh i�. ð87cÞ
Here we used the fact that ÆA(� + x) u (�)æ� = ÆA (� + x)æ� Æu(�)æ� = 0, for |x| J df

and the contribution to the integral is determined by |x| . Mdf. We also used the
expression for the inelastic rate (78). By the same token, we find the oscillatory part
as
Ŝtuuð�Þ
��� ���

osc
¼ 2pk2T

df

Z
dx� 4 x

df

� �
uð�þ xÞ � uð�Þ½ � � �2CðinÞuð�Þ. ð87dÞ
We remind the reader that the relationship T	 Tin	Mdf is widely used, see also Eq.
(80). Finally, the shape of the smooth distribution function is stabilized by the linearized
collision integral
bStUUð�Þ ¼ 2pk2

df

Z
dx� 4 x

df

� ��
x
2

coth
x
2T

Uð�þ xÞ � Uð�Þ½ �

þx
2

Uð�þ xÞ tanh
�

2T
þ Uð�Þ tanh

�þ x
2T

h i
þ 1

4
tanh

�� x
2T
� tanh

�

2T

� �
�
Z

d�1 Uð�1 þ xÞ tanh
�1

2T
þ Uð�1Þ tanh

�1 þ x
2T

h i�
. ð87eÞ
This linear operator has two zero modes
Ulð�Þ ¼ �o� tanh
�

2T
; UT ð�Þ ¼ oT tanh

�

2T
; ð87fÞ
which reflect the conservation of number of particles and energy by the inelastic processes.
Because of the condition T	Mdf, Eq. (87e) can be rewritten in the energy diffusion

approximation

bStUUð�Þ ¼ Dð�Þ o
2
�Uð�Þ þ

o�

2
Uð�Þ tanh

�

2T

h i
� o2

�

4
tanh

�

2T

Z
d�1Uð�1Þ tanh

�1

2T

� �
;

Dð�Þ ¼
pM3d2

fk
2T

12
. ð87gÞ

The simple form of the collision integral (87d) enables us to solve Eq. (87b). We adopt
the following relation:

CðinÞ 	 Idf; ð88Þ
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which is automatically fullfiled12 for T	 T(in), see Eq. (80), and I.k. Then CðinÞ 	
I2d2

fAð�Þ and Eq. (87b) yields

uð�; qÞ ¼
pI2d2

f

CðinÞ
X

a

Að�; qþ aÞk kosc � Uð�; qþ aÞ � Uð�; qÞ½ � 1þO
I2d2

f

CðinÞ
� 2

 !" #
.

ð89Þ

Substituting Eq. (89) into Eqs. (87c) and (87a), and keeping once again only the
terms leading in (Idf/C

(in))2, we find the equation for the smooth part of the distribution
function

otUðqÞ ¼ bStUUðqÞ þ 2pI2d3
f

X
a

Að�; qÞAð�; qþ aÞh i� Uðqþ aÞ � UðqÞ½ �; ð90Þ

where we omitted the energy argument of the distribution function.
Eq. (90) deserves some discussion. The first term on the right-hand side determines

dynamics of the population at different energies � on the site q. The second term
describes transport between neighboring sites. The inspection of this term shows that
for C(in)
 df this term is contributed mostly by rare overlaps of the peaks in the spectral
densities on the neighboring sites, see Fig. 9. We will call such rare events ‘‘pin-holes.’’
The typical energy separation between the pin-holes is d2

f=C
ðinÞ. Thus, for a given energy

this term may not be self-averaging, and the calculation of the observable transport coef-
ficients requires further statistical analysis. We note that the situation when transport is
dominated by rare configurations is quite common in systems with strongly fluctuating
local transmission, see [26].

To perform this analysis, we assume that the energy relaxation rate within each site is
larger than the rate of the tunnelling into the neighbors (this assumption is justified for our
model in Appendix A). In this case, the solution is restricted to the zero modes of the
inelastic collision integral (87f)

Uð�; q; tÞ ¼ dlðq; tÞUlð�Þ þ dT ðq; tÞUT ð�Þ. ð91Þ
Substituting Eq. (91) into (90), performing the corresponding energy integration to utilize

the properties
R

d� bStUUð�; qÞ ¼ 0 and
R

d�� bStUUð�; qÞ ¼ 0, and neglecting thermopower
and Peltier coefficients (which have random signs), we find:
12 The regime C(in)
 Idf, which may occur for somewhat artificial for our model choice I	 k, corresponds to
coherent oscillations of the population between two resonant levels. In this regime one should modify Eqs. (89)
and (90) as

uð�; qÞ ¼
X

a

Uð�; qþ aÞ � Uð�;qÞ½ � �
2pI2d2

fAð�; qþ aÞ
2CðinÞ þ 2pI2d2

f ½Að�; qþ aÞ þ Að�; qÞ�

�����
�����

osc

;

otUð�; qÞ � bStUUð�; qÞ ¼
X

a

Uð�; qþ aÞ � Uð�; qÞ½ � �
2pI2d2

fAð�; qÞ2CðinÞAð�; qþ aÞ
2CðinÞ þ 2pI2d2

f ½Að�; qþ aÞ þ Að�; qÞ�

* +
�

.

One should also use the exact spectral densities for the resonant pairs, as obtained from the solution of a 2 · 2
problem. The results for the low- and high-temperature regimes remain unchanged, but an intermediate region
appears. This regime is analogous to that studied in [25] for the conductivity due to the scattering of localized
electrons on phonons.
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e2

df

olðqÞ
ot
¼
X

a

G qþ a

2

� �
lðqþ aÞ � lðqÞ½ �;

CV
oT ðqÞ

ot
¼
X

a

K qþ a

2

� �
T ðqþ aÞ � T ðqÞ½ �;

ð92aÞ
where CV = p2mT/3 is the specific heat per localization cell. The electrical conductance G

and the thermal conductance K are defined for each link q + a/2 connecting two sites q

and q + a. They are given by
G qþ a

2

� �
¼ 2pe2I2

�h
Br qþ a

2

� �
; K qþ a

2

� �
¼ 2p3e2I2T

3�h
Bj qþ a

2

� �
; ð92bÞ
where Br;j are dimensionless random quantities determined by the overlaps of the densities
of states

Br;j qþ a

2

� �
¼ d2

f

Z
d�

2T
br;j

�

2T

� �
Að�; qÞAð�; q0Þ

¼
X
l;l0

df

2T
br;j

nlðqÞ
2T

� �
2dfC

ðinÞ=p

nlðqÞ � nl0 ðq0Þ½ �2 þ 2CðinÞ
� 2

; ð92cÞ

where q 0”q + a. We used the explicit expression Eq. (81) for A (�,q) and the condition
C(in)
 T. Dimensionless functions br,j (x) such that

R
br;jðxÞdx ¼ 1, are given by

brðxÞ ¼
1

2cosh2x
; bjðxÞ ¼

6x2

p2cosh2x
. ð92dÞ
Eqs. (92a)–(92d) are nothing but the description of a network of random conductors (ther-
mal conductors). It is easy to check that the average of these quantities over the realiza-
tions of nl gives the temperature-independent result hBr;ji ¼ 1. However, this result is
meaningless as the observable conductivities are determined by typical rather than rare
events. In fact, observable conductivity r and observable thermal conductivity j are given
by:

r ¼ 2pe2I2f2�d
loc

�h
�

1
Br

D Eh i�1

; d ¼ 1;

exp hlnBri½ �; d ¼ 2;

8<:
j ¼ 2p3e2TI2f2�d

loc

3�h
�

1
Bj

D Eh i�1

; d ¼ 1;

exp hlnBji½ �; d ¼ 2;

8<:
ð93Þ
where d is the dimensionality of the system and ad are the numerical coefficients of the or-
der of unity which are not known analytically for d > 2. The formula for d = 1 is the trivial
result for the random resistors connected in series whereas the result for d = 2 follows
from the duality arguments [27].
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The averages entering Eq. (93) can be immediately calculated if the characteristic func-
tions ~P r;jðsÞ ¼ he�sBr;ji of the distributions are known:13

1

Br;j

� �
¼
Z 1

0

ds ~P r;jðsÞ; lnBr;jh i ¼
Z 1

0

ds
s

e�s � ~P r;jðsÞ
� 

. ð94Þ

The characteristic functions ~P r;jðsÞ can be found from the definition (92c) by a straightfor-
ward calculation given in Appendix B

~P r;jðsÞ ¼ exp �
Z 1

�1
dx rS2

sbr;jðxÞ
r

� �� �� �
; S2ðyÞ ¼ ye�y I 0ðyÞ þ I 1ðyÞ½ �; ð95Þ

where I 0 and I 1 are the modified Bessel functions, and br,j are given by Eq. (92d). The
result is controlled by a dimensionless parameter

rðT Þ ¼ 8pCðinÞT

d2
f

¼ 8p2k2MT 2

d2
f

¼ 1

2d
T 2

dfT el

� �
. ð96Þ

The meaning of this parameter is the typical number of resonances in the energy strip
|�| [ T.

The result of numerical integration of Eqs. (94) and (95) is plotted on Fig. 10. In two
limiting cases r	 1 and r
 1 we have

r	 1 :
~P rðsÞ � e�s½1þ ð1=6Þs2=r�;
~P jðsÞ � e�s½1þ ð7=10� 6=p2Þs2=r�;

(

r
 1 :
~P rðsÞ � e�

ffiffiffiffiffi
prs
p

;

~P jðsÞ � e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð192G2=p3Þrs
p

;

( ð97Þ

where G � 0.916� � � is the Catalan’s constant. Substituting Eq. (97) into (94), we find that
for r	 1, P r;jðBÞ are strongly peaked around 1, so that the temperature independent
Drude resistivity is restored:

rðT 	
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
Þ � r1 1� 2

3

dfT el

T 2

� �
;

jðT 	
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
Þ � j1ðT Þ 1� 14

5
� 24

p2

� �
dfT el

T 2

� �
;

r1 �
2pe2I2f2�d

loc

�h
; j1ðT Þ �

2p3e2TI2f2�d
loc

3�h
.

ð98Þ

In other words, the effect of localization of one-particle wave functions on trans-
port is completely removed by the inelastic processes even in the ‘‘non-ergodic’’
regime of C(in)
 df, where the peaks in the one-particle density of states are still
well-resolved.
13 The average of the logarithm is calculated using the identityZ 1

0

ds
e�as � e�bs

s
¼ ln

b
a

.



Fig. 10. (A) Lower and upper curves represent the conductivity r in the units of the Drude conductivity r1 for
the 1d and 2d cases, respectively [i.e., hB�1

r i
�1 and expðhlnBriÞ] as a function of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2drðT Þ

p
—temperature in the

units of
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
, as given by Eqs. (93) and (94) in the fast energy relaxation approximation (this curve does not

depend on any parameters). (B) The relative Lorentz number L/L0 vs. temperature in the units of
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
for 1d

(upper curve) and 2d (lower curve) cases. Vertical dashed lines indicate the limit of the applicablity of the theory
to the metallic region, see Eq. (80).
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In the opposite case, r
 1 we have for d = 1,2

rðT 

ffiffiffiffiffiffiffiffiffiffi
dfT el

p
Þ ¼ r1

p
4

T 2

dfT el

� �
; jðT 


ffiffiffiffiffiffiffiffiffiffi
dfT el

p
Þ ¼ j1ðT Þ

48G2

p3

T 2

dfT el

� �
; ð99Þ

(for larger dimensionalities the temperature dependence is the same but the numerical
coefficients could not be found analytically).

These results have the following meaning. At T 	
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
the quantities are self-aver-

aging and the result is temperature independent. At T 

ffiffiffiffiffiffiffiffiffiffi
dfT el

p
the electron on a site can-

not explore enough pin-holes to find the rare resonant one which would determine the
average. As a result, it chooses the best available pin-hole (i.e., the one with the smallest
separation between the levels). The denominator in the Eq. (92c) can be estimated as
|n (q) � n(q 0)| . df/n, where n . T/df is the number of the levels available for the electrons.
As a result, the largest term entering into the sums in Eq. (92c) is .C(in)T / T2. It explains
the power law dependence at low temperature.

It is instructive to investigate the validity of the Wiedemann–Frantz law. From Eq. (99)
we find for the Lorentz number

LðT Þ
L0

� 3e2jðT Þ
p2rðT ÞT ¼

1þ 24
p2 � 32

15

	 
 dfT el

T 2 ; T 	
ffiffiffiffiffiffiffiffiffiffi
dfT el

p
;

192G2

p4 � 1:65 . . . ; T 

ffiffiffiffiffiffiffiffiffiffi
dfT el

p
.

(
ð100Þ

The origin of the violation of the Wiedemann–Franz is the following. For the conduc-
tivity all the tunnelling pairs with the energies .T are roughly of the same importance.
For the thermal conduction, however, the contributions of the low energy part is less
important, and the best tunnelling pairs are different from those for the conductivity.
It leads to the renormalization of the Lorentz number (100) by the factor of the order
of unity.

We conclude this section by noticing that the contribution of the rare pin-holes leads to
the deviation from the ‘‘natural’’ assumption r / f2

locC
ðinÞ, cf. [25,28]. We think, however,

that the relative contribution of such configurations at Tin < T < Tel is a model-dependent
question, and do not pursue this line further.
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6. Stability of the insulating phase

Even though the condition (80) gives the sufficient condition for the metallic state to be
stable, the consideration of the previous section does not prove the existence or the stabil-
ity of the insulating phase, but rather gives the indications of the breakdown of the calcu-
lational scheme at T [ Tin. To show the existence of the transition, we have to prove that
perturbation theory from insulating side is also convergent under certain conditions. This
analysis is the subject of the present section.

The notion of the statistical averaging is somewhat non-standard in the insulating phase
and its general aspects are discussed in Section 6.1. To demonstrate the stability of the
insulating phase, we linearize the non-linear equation (69a) in Section 6.2 and obtain an
equation with the random coefficients somewhat similar to that of [17]. Further consider-
ation will be based on the statistical analysis of this equation, using the technique
described in Section 6.3. To begin with, we will investigate the simpler but yet instructive
case of the zero-dimensional system I = 0 to illustrate the general structure and make the
connections with [16], see Section 6.4. To complete the study, we generalize the consider-
ation to higher dimensions in Section 6.5 and calculate the transition temperature.

6.1. Averaging procedure

Eqs. (69a) and (69b) form an infinite set of coupled non-linear equations whose coeffi-
cients are functions of the random energies nl and occupation numbers nl (�). Moreover,
even though the equilibrium distribution nlð�Þ ¼ tanh �

2T nullifies the collision integral,
the time of the relaxation of an arbitrary distribution nl (�) to the equilibrium one becomes
infinite for the insulating phase. Therefore, nlð�Þ ¼ tanh �

2T has the meaning of the occupa-
tion number averaged over an infinitely long period of time (taken to infinity prior to set-
ting the coupling to the bath equal to zero) and bears no information about the state of the
system at a given instant of time.

The basis in the space of many-body states of the system is formed by states represented
as Slater determinants built on single-particle states (l,q). Such Slater determinants corre-
spond to the occupation numbers nl (�) = ±1. Thus, the decay rates Cl can be considered
for each given set {nl}. Because the transition may occur only if the number of terms con-
tributing to Cl is large, we can also perform the statistical average with respect to those
occupation numbers. We assume them to be arbitrary with the only constraint being to
fix the global energy of the system (microcanonical ensemble). Because the number of exci-
tations involved into the formation of the decay rate is much smaller than the total num-
ber of the excitations in the system (which scales proportionally to the volume), averaging
over the microcanonical ensemble with the energy E (counted from the ground state) is
equivalent to the averaging over the canonical ensemble with temperature T such that

E ¼ p2

6
mVT 2; ð101Þ

where m is the averaged density of states per unit volume and V is the volume of the system.
We assume T	Mdf and verify later that the transition occurs only at such temperature.

To find the distribution functions of the local and thus strongly fluctuating quantities,
we perform the ensemble averaging on the final stage of the calculation. Thus, the averag-
ing procedure in this section is defined as
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� � �h i ¼ lim
N!1

Z Ndf=2

�Ndf=2

YN
l¼1

Y
q

dnlðqÞ
Ndf

X
nlðqÞ¼1

exp nlðqÞnlðqÞ
2T

2 cosh nlðqÞ
2T

� � � ; ð102Þ

where the number of levels N and the domain of integration is in accordance with Eq.
(48a). Formula (102) does not take into account the level repulsion, see Eq. (48b). This
repulsion will be included later when it is necessary.

Let us notice that the same averaging formula would arise if one considered the prob-
ability of the occupation (and not the average occupation) of the levels formed as a result
of the arbitrarily weak interaction with equilibrium phonons kept at temperature T. In this
respect temperature T in Eq. (102) has a meaning of the experimentally measurable
quantity.

Having discussed the issue of how to average, we are prepared to calculate the charac-
teristic function (66) to establish the conditions of the stability of the insulating phase.

6.2. Linearized ImSCBA equations

To begin the actual analysis of the insulating phase, we notice that in the absence of the
external bath CðbathÞ

l ð�Þ, substitution Cl (�) = 0 solves the self-consistency equation (69a).
However, in accordance with the discussion of Section 4.2 the order of limits is important,
so that we have to investigate the stability of the solution Cl (�) = 0 with respect to small
but finite coupling to the bath. The smallness of Cl (�) / b enables us to linearize the spec-
tral density in Eq. (69a) as

Alð�Þ � dð�� nlÞ þ
1

p
Clð�Þ
ð�� nlÞ2

; ð103Þ

where the second term is understood as the principal value

1

ð�� nlÞ2
! Re

1

ð�� nl þ i0Þ2
. ð104Þ

We substitute Eq. (103) into the equation for Cl(�), see Eq. (69a), notice that the prob-
ability of matching the levels into exact resonance equals to zero, and keep the terms only
linear in Cl (�). Taking into account that, according to Section 6.1, nl (�) = nl = ±1, we
obtain

Clð�Þ ¼ CðbathÞ
l ð�Þ þ

X
l1;a

I2d2
fClð�; qþ aÞhD½�� nl1

ðqþ aÞ�
�� nl1

ðqþ aÞ
� 2

þ
X

l1;l2;l3

k2d2
fY l3;l

l1;l2
F)l1;l2;l3

hDð�� nl1
� nl2

þ nl3
Þ

�� nl1
� nl2

þ nl3

	 
2

� 2Cl1
ð�� nl2

þ nl3
Þ þ Cl3

ðnl1
þ nl2

� �Þ
� 

; ð105aÞ

where the denominators are defined in the sense of Eq. (104), and

F)l1;l2;l3
¼ 1

4
1þ nl1

nl2
� nl3

nl1
þ nl2

½ �
� �

¼
1; if nl1

¼ nl2
¼ �nl3

¼ 1;

0; otherwise.

�
ð105bÞ

The decay due to the connection with the bath



D.M. Basko et al. / Annals of Physics 321 (2006) 1126–1205 1167
CðbathÞ
l ð�Þ ¼ ð�� nlÞbð�� nlÞ

2
coth

ð�� nlÞ
2T

þ nl

� �
ð105cÞ

is a smooth function of �. As before, the coordinate q is assumed to be the same in all
terms in the equations unless it is specified explicitly otherwise.

To deal with certain superfluous logarithmic divergences in the future analysis of Eq.
(105a), we introduced an ultraviolet cutoff with the help of the function

hDðxÞ ¼
1; jxj 6 D

0; jxj > D.

�
ð106Þ

This ultraviolet cutoff is introduced for technical convenience only and df
 D [ Mdf,
compare with Eq. (86). The contribution from the part excluded by cutoff does not contain
small denominators. This part is self-averaging, proportional to b (x), and, thus, it is not
relevant for the question of the stability of the insulator, see Eq. (65).

The second term in Eq. (105a) is the effect of the one particle tunneling into the neigh-
boring localization cells. Due to the condition (48f) this term alone does not lead to any
significant effects. As this term corresponds to the solution of the one-particle Schrödinger
equation, it does not depend on the occupation numbers nl. On the other hand, the last
term in Eq. (105a) describes the decay due to the excitation of electron–hole pairs. The
availability of orbitals for such a process is controlled by the set of nl = ±1.

Three following sections are devoted to the statistical analysis of Eq. (105a) with respect
to the distribution (102). Namely, we formally solve Eq. (105a) as an expansion in small
parameters k2, I2

Clð�Þ ¼
X
k;m

Cðk;mÞl ð�Þ; Cð0;0Þl ð�Þ � Cbath
l ð�Þ; Cðk;mÞl ð�Þ / k2kI2m ð107Þ

and calculate the characteristic functions

W ðk;mÞðsÞ ¼ exp �sCðk;mÞl ð�Þ
� �D E

ð108Þ

for each term. The insulator is stable, see condition (66), if the typical value of each term
decreases, i.e.

lim
b!0

lim
V!1

lim
k;m!1

W ðk;mÞðsÞ ¼ 1; ð109Þ

for any fixed s > 0.

6.3. Mayer–Mayer cluster expansion for the characteristic functions

In the actual calculation of the characteristic function (108), we will use the analogy of
this function and averaging procedure (102) with the partition function of the system of
classical particles interacting through a certain many-particle potential. The energy nl

plays the role of the coordinate, occupation number nl = ±1 is equivalent to the particle
spin, and parameter s is analogous to the ‘‘inverse temperature.’’ In order to find these
interaction potentials we introduce the diagrammatic representation of Eq. (105a). This
representation and all of the notation are shown on Fig. 11.

It is obvious that k + m iterations of the diagrammatic equation shown on Fig. 11 pro-
duce diagrams for each term C(k,m) of Eq. (107). Every term depends on all the orbital



Fig. 11. Diagrammatic representation of Eq. (105a). Solid lines bear an orbital energy nl and an occupation
number nl = ±1. Double lines bear an orbital energy nl, an occupation number nl = ±1, and an energy �. The
energy carried by the double line is conserved in each hopping vertex (bold rectangle) and changes in the
interaction vertex (white square). The algebraic sum of the energies entering the interaction vertex through the
double lines and the orbital energies entering through the solid lines is conserved (signs are determined by arrow
directions). All the other rules are defined on the figure, and hD is defined in Eq. (106).
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energies and all the occupation numbers. At the same time, it can be represented as a sum
of terms depending only on the set fnl; nlg3kþm

l¼1 , such that

Cðk;mÞ ¼
X

l1;l2;...;l3kþm

Uðnl1
; nl1

; . . . ; nl3kþm
; nl3kþmÞ; ð110Þ

where we omitted the spatial coordinate q. Thus, averaging (102) in the expression (108) is
indeed equivalent to the calculation of the partition function of N fi1 particles interact-
ing via (3k + m)-particle potential U.

To perform this calculation we employ the procedure known as Mayer–Mayer cluster
expansion [29]:

ln W ðk;mÞ ¼
X1

p¼3kþm

ln W ðk;mÞ
p ; ð111Þ

where the summation is performed over linked clusters of p particles. Analogously to the
calculation of the partition function of a classical gas interacting via a two-particle poten-
tial U(r1 � r2), whose leading term of the cluster expansion is given by



Fig. 12. (A) Definition of the cluster function f; NU is the degeneracy of the diagram—the number of line
permutations keeping the diagram intact. (B) Independent averaging over the position nl and the occupation nl of
a level l. (C) Connected average of two different cluster functions f and f 0 (an arbitrary number of cluster functions
can be averaged analogously). The contribution of each linked cluster to ln W ðk;mÞ

p (p being the number of levels
averaged over) should be divided by the number of symmetries of the averaged diagram. This coefficient will be
written explicitly in each specific case.
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ln W 2ðT Þ ¼
Z

d3r

V
e�

UðrÞ
T � 1

h i
;

for each diagram (110) we introduce the cluster function f = e�sU � 1, as shown in Fig. 12.
On the same figure we show the diagrammatic representation of the averaging procedure
and linking the clusters.

This procedure is especially suitable for the present problem as it systematically
takes into account contributions from regions of the phase space where the interaction
potentials U assume large values, i.e., of small resonant denominators responsible for
delocalization. The next two subsections are dedicated to the application of this
procedure.

6.4. Statistical analysis for zero-dimensional system

In this section, we consider only transitions inside one localization cell, m = 0, or, in
other words, I fi 0. It suffices for our purposes to limit ourselves with

j�� nlj 
 Mdf. ð112Þ

To understand the most crucial features of the cluster expansion, we will consider a few
lowest order terms explicitly, and then analyze an arbitrary order term. It will be useful for
us to introduce the notation

N
m1;...;mNh
l1;...;lNe

¼
XN e

i¼1

nli
�
XNh

j¼1

nmj
ð113Þ

for the energy of an excitation consisting of Ne electrons and Nh holes.
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The lowest order terms are:14

Cð0;0Þ ¼ Tbð0Þ; ð114aÞ

Cð1;0Þ ¼ k2d2
fC
ð0;0Þ

X
l1;l2;l3

F)l1;l2;l3

2Y l3;l
l1;l2

hD �� Nl3
l1l2

� �
�� Nl3

l1l2

� �2
þ

Y l3;l
l1;l2

hD �� Nl3
l1l2

� �
�� Nl3

l1l2

� �2

264
375; ð114bÞ

where hD is given by Eq. (106). In Eq. (114b), we chose not to join the electron decay and
the hole decay even though they are equal to each other. This is done to keep the structure
of the subsequent terms more transparent. Moreover, this form will be useful for the dis-
cussion of the modification of ImSCBA in Section 7.3.

Let us use the machinery of Section 6.3 to find the characteristic function of the rate
(114b). The corresponding three-particle potentials are given by

U e
12;3 ¼ 2Uh

12;3 ¼
2Cð0;0Þk2d2

fY 3;l
1;2F)ðn1; n2; n3Þ

�� N3
12

	 
2
; ð115Þ

switched on for certain combinations {n1,n2,n3}, see Eq. (105b). The cutoff hDð�� N3
12Þ will

be incorporated in the definition of cluster function f below.
The main contribution comes from clusters with p = 3 particles, see Fig. 13A:

ln W ð1;0Þ
3 ¼

Y3

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
~f 12;3; ð116aÞ

~f 12;3 ¼ f e
12;3 þ

1

2
f h

12;3 þ
1

2
f e

12;3 f e
21;3 þ f h

12;3 2þ f e
21;3

h in o
ð116bÞ

f e
12;3 ¼ e�sUe

12;3 � 1
	 


hD �� N3
12

	 

; ð116cÞ

f h
12;3 ¼ e�2sUh

12;3 � 1
� �

hD �� N3
12

	 

; ð116dÞ

where the coefficient 1/2 and extra factor of NU = 2 in the exponential in f h
12;3 take care of

the symmetry f h
12;3 ¼ f h

21;3, second term on Fig. 13A. The last term in Eq. (116b) describes
the cross-correlations between the electron and the hole contributions as the potentials
Ue (n1,n2,n3), Ue (n2,n1,n3), and Uh (n1,n2,n3) diverge for the same sets of n1,n2,n3.15

Performing the integration with the help of Eq. (105b) and definition of Y, see Eq.
(69a), we obtain using the condition (112)

ln W ð1;0Þ
3 ¼ � 1ffiffiffi

3
p psCð0;0Þ
	 
1=2 3kT

df
M

2T
df
;
�

2T

� �
; ð117Þ
14 We assume that b (x = 0) > 0. This assumption does not correspond to any physical phonons. Actual
frequency dependence b (x) / xn is important if one tries to calculate the physical conductivity in the insulating
regime. It is however not important for the determination of the stability of the insulating phase.
15 In fact, using Eq. (115), one can rewrite

~f 12;3 ¼ 1
2
ð1þ f e

12;3Þð1þ f e
21;3Þð1þ f h

12;3Þ ¼ 1
2

expð�6UhÞ � 1
� 

;

i.e., join all the term in one cluster function. This joining, however, would obscure the structure of the higher
order terms and we choose not to perform this operation.



Fig. 13. The 3-, 4-, and 5-particle contributions to lnW(1,0). For three particles (A), the cross-correlations between
the electron and the hole contributions, the last term in Eq. (116b), are shown in the second and third lines. For 4
and 5 particles (B and C) only the hole–hole terms are shown. When not displayed, the degeneracy for all
diagrams NU are the same as on (A).
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where the numerical coefficient 1=
ffiffiffi
3
p

appears due to the cross-correlation terms in Eq.
(116b).

Parameter TMdð2T
df
; �

2TÞ roughly corresponds to the total energy of all electron–hole
pairs participating in the process of the decay of a quasiparticle with the energy �. The
explicit expression for Md is

Mðy; zÞ ¼ y
2

Z
dx1dx2 �

2ðyx1Þ � � 2ðyx2Þ
�� �� cosh z

coshðx1 þ x2 þ zÞ
Q

i¼1;2

coshðxi þ zÞ . ð118Þ

Performing integration in Eq. (118) with the help of Eq. (48h), we obtain for T	Mdf

M ¼ 2M ; ð119Þ

independently of T and �. This occurs because of the additional restriction on the phase
volume for the decay of one-particle excitation into the three-particle excitations by the
energy dependence of the matrix elements.

Although the metal–insulator transition is a property of large orders of perturbation
theory, see Eq. (109), its precursor can be seen already in the characteristic function of
the lowest order term (117). Indeed, condition lnW(1,0) (s*) . 1 gives the most probable
value Cð1;0Þtyp ’ 1=s� of the distribution. Requiring Cð1;0Þtyp < Cð0;0Þ, we obtain the condition
T < T*, where

kMT �
df

� �
’ 1; ð120Þ

i.e., T* is roughly of the order of the temperature Tin limiting the stability of the metallic
phase, see Eq. (80). Consideration of higher orders of the perturbation theory to be per-
formed shortly will only slightly refine expression (120), see Eq. (131).

To complete the analysis of the lowest order term ((114a) and (114b)), we verify the
validity of the cluster expansion, which amounts to finding the condition for which

j ln W ð1;0Þ
3 ðsÞj 	 j ln W ð1;0Þ

4;5 ðsÞj. Diagrams for ln W ð1;0Þ
4;5 ðsÞ are shown in Figs. 13b and c. They

give

ln W ð1;0Þ
4 ðsÞ ¼

Y4

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
� 1

4
~f 12;3

~f 12;4 þ 2~f 13;2
~f 14;2 þ 2~f 13;2

~f 24;1 þ 4~f 12;3
~f 14;2

	 

;

ln W ð1;0Þ
5 ðsÞ ¼

Y5

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
� 1

8
~f 12;5

~f 34;5 þ 4~f 51;2
~f 53;4 þ 4~f 12;5

~f 53;4

	 

;

ð121Þ

Using ~f 12;3 from Eq. (116b), we can estimate these expressions as

ln W ð1;0Þ
4 ðsÞ ’ sCð0;0Þ

k2MT
df

; ln W ð1;0Þ
5 ðsÞ ’ sCð0;0Þ

k2MT 2

d2
f

; ð122Þ

where M is defined in Eq. (48h). Comparing Eq. (122) with Eq. (117), we find that for
T	 df the cluster expansion is justified even for j ln W ð1;0Þ

3 j 	 1. The origin of this suppres-
sion of the larger clusters is the same as the one controlling the viral expansion for the clas-
sical gases—clusters involving more particles impose more restrictions on the phase
volume.



D.M. Basko et al. / Annals of Physics 321 (2006) 1126–1205 1173
Our next task is to consider an arbitrary order term C(k,0). To explore how the lowest-
order result Eq. (117) is modified, we consider C(2,0) first. Performing one more iteration in
Eq. (105a) with the help of Eq. (114), we find

Cð2;0Þ ¼ Cð0;0Þk4d4
f

X
l1;l2;l3

F)l1;l2;l3

X
l4;l5;l6

0
F)l4;l5;l6

�
2Y l3;l

l1;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2

� �2

2Y l1;l6
l4;l5

hD �� Nl3l6
l2l4l5

� �
�� Nl3l6

l2l4l5

� �2

8><>:
þ

2Y l3;l
l1;l2

hD �� Nl3
l1l2

� �
�� Nl3

l1l2

� �2

Y l1;l6
l4;l5

hD �� Nl4l5
l1l2l6

� �
�� Nl3l6

l2l4l5

� �2

þ
Y l3;l

l1;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2

� �2

2Y l4;l5
l3;l6

hD �� Nl4l5
l1l2l6

� �
�� Nl4l5

l1l2l6

� �2

þ
Y l3;l

l1;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2

� �2

Y l4;l5
l3;l6

hD �� Nl4l5
l1l2l6

� �
�� Nl4l5

l1l2l6

� �2

9>=>;; ð123Þ

each term is shown on Fig. 14. Here prime in the second sum excludes the terms with
l4, l5 = l1, l2 and l6 = l3, see Fig. 7b.2. (Let us note that the placement of crosses on
Fig. 14 automatically takes this exclusion into account.) Similarly to the expression for
C(1,0) in Eqs. (114a) and (114b), we chose not to join some similar terms together.

The corresponding 6-particle potentials are given by

U ee ¼ 2U eh ¼
4Cð0;0Þk4d4

fY 3;l
1;2F)1;2;3Y 6;1

4;5F)4;5;6

�� N3
12

	 
2
�� N36

245

	 
2
;

U he ¼ 2U hh ¼
2Cð0;0Þk4d4

fY 3;l
1;2F)1;2;3Y 6;3

4;5F)4;5;6

�� N3
12

	 
2
�� N45

126

	 
2
.

ð124Þ
Fig. 14. The leading contributions to the cluster expansion of ln W(2,0). The cross-correlations between the
electron and the hole contributions, second and third lines in Eq. (125b), are not shown.
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The leading term of the cluster expansion shown on Fig. 14, is given by (cf. Eq. (116d)):

ln W ð2;0Þ ¼
Y6

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
~f

12; 3

45; 6

 !
; ð125aÞ

~f
12; 3

54; 6

� �
¼ f ee 12; 3

45; 6

� �
þ 1

2
f eh 12; 3

45; 6

� �
þ 1

2
f he 12; 3

45; 6

� �
þ 1

4
f hh 12; 3

45; 6

� �
þ 1

2
f ee 12; 3

45; 6

� �
f ee 12; 3

54; 6

� ��
þ f eh 12; 3

45; 6

� �
2þ f ee 12; 3

54; 6

� �� ��
þ 1

4
f he 12; 3

45; 6

� �
� f he 12; 3

54; 6

� �
þ f hh 12; 3

45; 6

� �
2þ f he 12; 3

54; 6

� �� �� �
; ð125bÞ

f ee
12; 3

54; 6

 !
¼ e

�sUee
12; 3

54; 6

 !
� 1

26664
37775hD �� N3

12

	 

hD �� N36

245

	 

;

f eh
12; 3

54; 6

 !
¼ e

�2sUeh
12; 3

54; 6

 !
� 1

26664
37775hD �� N3

12

	 

hD �� N36

245

	 

;

f he
12; 3

54; 6

 !
¼ e

�2sUhe
12; 3

54; 6

 !
� 1

26664
37775hD �� N3

12

	 

hD �� N45

126

	 

;

f hh
12; 3

54; 6

 !
¼ e

�4sUhh
12; 3

54; 6

 !
� 1

26664
37775hD �� N3

12

	 

hD �� N45

126

	 

.

ð125cÞ

Similarly to Eq. (116b), the second and the third lines in Eq. (125b) express the cross-
correlation between different terms in the lowest order perturbation theory. These corre-
lations do not proliferate into higher order terms; in particular, Uee from Eq. (124) is
not invariant under permutation 1 M 2.

Substituting Eq. (124) into Eqs. (125a)–(125c) and using the approximate expression for
the integral

Znðy; zÞ �
Z z

0

dx1 . . . dxn exp � y
x2

1 . . . x2
n

� �
� 1

� �

¼ � ffiffiffiffiffi
py
p ln zny�1=2 þOð1Þ

� n�1

ðn� 1Þ! ; y 
 e�1z
� 2n

; ð126Þ
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we find

ln W ð2;0Þ ¼ � 1ffiffiffi
3
p psCð0;0Þ
	 
1=2 6kMT

df

� �2

� ln
D2

sCð0;0Þ
	 
1=2

kdfð Þ2

 !
; ð127Þ

where D is the scale introduced in Eq. (106), and the coefficient 1=
ffiffiffi
3
p

comes from the
cross-correlations in Eq. (125b).

The analysis of the corrections to Eq. (127) is performed similarly to the estimate of Eq.
(121), see Appendix C. It shows that their main effect is the more accurate determination
of the cutoff of the logarithm such that

D! df; ð128Þ
so that Eq. (127) is valid in a leading logarithmic approximation. This value of the cutoff is
in agreement with [20].

All the higher order terms are considered analogously, and we find

ln W ðn;0Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psCð0;0Þ

3

s
6kMT

df

� �n
1

ðn� 1Þ! lnn�1 Dn

sCð0;0Þ
	 
1=2ðkdfÞn

 !
. ð129Þ

To investigate metal–insulator transition we have to consider the behavior at n fi1.
We obtain from Eq. (129) with the logarithmic accuracy:

ln W ðn	1;0Þ ’ � sCð0;0Þ
	 
cðT Þ=2 6ekMT

df
ln

D
kdf

� �n

; cðT Þ ¼ 1� ln
D
kdf

� ��1

. ð130Þ

Eq. (130) constitute the central result of this section as they describe the complete sta-
tistics of each term in the ImSCBA series. If many particles are in the excited state (T is
finite), formula (130) predicts the phase transition. Indeed, the stability criterion (109) is
violated at T > T*, where

6ekMT �
df

ln
1

k
¼ 1; ð131Þ

where we used the replacement (128) in the argument of the logarithm. Eq. (131) refines
Eq. (120).

This would mean that insulator becomes unstable at T > T*. This conclusion, however,
is an artefact of the averaging procedure (102) which neglected the one-particle level repul-
sion, see Eq. (48b). To take this level repulsion into account we use the following qualita-
tive consideration. Inspection of each term in the perturbation theory, see, e.g., Eq. (116d)
or Eqs. (125a)–(125c), shows that W(n,0) is contributed by 2n integrations over
�T < nl < T. It means that W(n,0) is essentially determined by the probability to find 2n lev-
els within the interval with the width T. According to Eq. (48b), this probability is sup-
pressed by the level repulsion. As a result, Eq. (130) is modified as

ln W ðn	1;0Þ ’ � sCð0;0Þ
	 
c=2 6ekMT

df
ln

D
kdf

� �n

exp �P cndf

T

� �� �
; ð132Þ

where function P is defined in Eq. (48b), and c is the numerical factor of the order of unity.
Because limx!1x�1PðxÞ ¼ 1, we find

lim
n!1

ln W ðn;0Þ ¼ 0 for any T .
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Eq. (132) describes the impossibility of a genuine phase transition in a finite system
where the unphysical packing of infinite number of levels in a finite enery strip is
forbidden.

Even though for a zero-dimensional system temperature T* does not have a physical
meaning of the transition temperature, the finite coupling between the localization cells
leads to the phase transition with Tc very close to T*, as we will show in the next section.

6.5. Statistical analysis and metal–insulator transition in finite-dimensional systems

The goal of this subsection is to generalize Eq. (130) by including hopping into the
neighbouring localization cells. As a result, the effect of the finite size (132) will be over-
come and the genuine metal–insulator transition will occur. Similarly to the previous sub-
section, we will consider explicitly a few lower orders of the perturbation theory, and then
obtain the result for an arbitrary order.

The contribution which involves hopping only (its first two terms C(0,1) and C(0,2) are
shown in Fig. 15) corresponds to the purely single-particle problem. Since the exact sin-
gle-particle eigenstates are assumed to be localized, see condition (48f), this contribution
does not lead to delocalization. Thus, we start with the term C(1,1), which involves tunnel-
ing of the particle and creation of an electron–hole pair. By iterating Eq. (105a) twice, we
find (see Fig. 15):

Cð1;1Þl ðqÞ ¼ k2I2d4
fC
ð0;0Þ

�
X

l1;...;l4;a

2Y
lþ
3
;lþ

4

lþ
1
;lþ

2
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1
;lþ

2
;lþ

3
hD �� nlþ

4

� �
hD �� N
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3
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2

� �
�� nlþ
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8><>:
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1
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� �2

�� N
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1
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2

� �2

þ
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� �
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� �
�� Nl3

l1l2
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�� Nl3
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F)l1;l2;l3
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� �
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�� Nl3
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� �
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9>=>;; ð133Þ

where we used the short-hand notation (113), and nl � nlðqÞ; nlþ � nlðqþ aÞ.
From Fig. 15 we find (omitting overall numerical coefficient)

ln W ð1;1Þ ’ � sCð0;0Þ
	 
1=2 12dIkMT

df

� �
ln

D2

sCð0;0Þ
	 
1=2

d2
fIk

24 35. ð134Þ

Comparing Eq. (134) with (127), we see that by replacing the electron–hole pair crea-
tion to a single-particle hopping, we always introduce the additional smallness. Thus,
we can anticipate that the number of hoppings must be as small as possible to maximize



Fig. 15. The leading contributions to lnW(0,1), lnW(0,2), and lnW(1,1). The cross-correlations between the electron
and hole contributions are not shown.

D.M. Basko et al. / Annals of Physics 321 (2006) 1126–1205 1177
the overall W(m,n) for fixed m + n. The only reason to include hopping at all is to overcome
the finite number of levels restriction which suppressed the transition in 0-dimensional case
of previous section.

The result for the arbitrary order perturbation theory may be immediately
obtained by examining the differences between Eq. (134) with (127), and analogy with
Eq.(129)

ln W ðn;mÞ ¼ � sCð0;0Þ
	 
1=2 6kMT

df

� �n

Im

� Cðn;mÞ
ðnþ m� 1Þ! lnnþm�1 sCð0;0Þ

	 
�1=2
Dnþm

dnþm
f knIm

" #
. ð135Þ

The most important difference with Eq. (129) is the presence of the additional factor
Cðn;mÞ which has the meaning of the number of ways to order the n interactions and m

hoppings with respect to each other. The expression for these coefficients is

Cðn;mÞ ¼
Ym

i¼1

X
ai

X1
Ni¼0

dn;
P

i

N i
exp �

X
q

P

cdf

Pm
i¼1

N id
q;q0þ

Pi

j¼0

aj

T

0BBBB@
1CCCCA

2666664

3777775; ð136Þ

where q0 is an arbitrary site on the lattice, a are the vectors connecting each site to its near-
est neighbours. The meaning of the coefficients, Cðn;mÞ, is the total number of random
lines consisting of m segments on the d-dimensional cubic lattice. Integer Ni is the number
of electron hole pairs emitted by the electron between the hopping event i and the hopping
event (i + 1). We included the effect of the level repulsion within each localization cell in
the same spirit as in Eq. (132). The argument of P counts the total number of electron–
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hole pairs within localization site q and takes into account the fact that the random path
may traverse one site more than once.

To investigate the stability of the insulating state, see Eq. (109), we have to study the limit
of m = m* (n), n fi1, where m* (n) determines the direction to maximize lnW(n,m) for fixed n.

As before, we will restrict ourselves by the condition

I ’ k
 kM . ð137Þ
Simple counting of combinatorial factors in Eq. (136) shows that under condition (137)
maximum is achieved for the maximal possible number of the electron–hole pairs per a
localization cell, Ni . T/df. It translates into estimate

m�ðnÞ ’ ndf

T
. ð138Þ

Substituting Eq. (138) into (136), we find C½n;m�ðnÞ�K ð2dÞm
�ðnÞ and obtain from Eq.

(135)

ln W ðn	1;m�ðnÞÞ ¼ � sCð0;0Þ
	 
cðT Þ=2 6ekMT

df
Ic1df=T ln

D
kdf

� �n

; ð139Þ

where c1 (d) is the number of the order of unity which we were not able to calculate, and all
the other entries are the same as in Eq. (130).

Applying stability criterion (109), we arrive to the main conclusion of this sec-
tion—insulating state is stable only for T < Tc, where the critical temperature is given
by

6ekMT c

df
ln

D
kdf
¼ exp

c1df ln Ij j
T c

� �
. ð140Þ

As I is not exponentially small, I	 e�1/kM, Eq. (140) may be expanded as

T c ¼ T � 1þO kM ln Ij jð Þ½ �; ð141Þ
where T* is given by Eq. (131).

At temperatures larger than Tc metallic phase is formed. Together with the
material of Section 5 proving the stability of the metallic phase at T > Tin	 Tc,
see Eq. (80), this completes the proof of the existence of the metal–insulator
transition.

Kinetics of the system near the transition itself is a complicated problem which we hope
to address in a separate publication. However, some conclusions can be drawn already
from Eqs. (135) and (136), and the estimate (138). Indeed, we concluded that the best paths
are those that maximize the number of electron–hole pairs in a given localization cell
before hopping to a neighbouring one. It means that the self-intersections of the random
path in the Eq. (136) are forbidden and the spatial part of the problem becomes equivalent
to the statistics of the self-avoiding random walk.

The latter observation enables us to conjecture the critical behavior of the spa-
tial localization length f at T fi Tc � 0. The latter length is defined from Eq. (136),
as

f ¼
X

i

ai

�����
�����typ;
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where the configurations giving the largest statistical weight in Eq. (136) are meant by typ-
ical. The correlation length in the Fock space (typical distance between resonances) diverg-
es in the vicinity of the transition as [22]

ntyp ’
T c

jT c � T j ; ð142Þ

hence, the number of segments m . df/|Tc � T|�1. We thus conclude

fðT Þ ’ floc

df

T c � T

� �md

; ð143Þ

where md is the correlation length index for the self-avoiding random walk in d dimensions,
m1 = 1, m2 = 3/4, m3 = 0.59. . ., md>4 = 1/2, see [30].

7. Validity of ImSCBA scheme

This section is devoted to the analysis of the contributions of the processes not taken
into account in our ImSCBA calculational scheme, see Figs. 4, and 5, and Eq. (68). The
latter approximation corresponds to neglecting the level shifts due to the electron–electron
interaction. The former will be shown to correspond to the renormalization of the elec-
tron–electron interaction by intermediate virtual processes, and to certain interference
effects. We will consider the effects of those contributions separately in the following
sections.

We note here, however, that each remaining diagram, denoted by U, is a random quan-
tity. Therefore, we will have to analyse the statistical distribution of the remaining dia-
grams and check that their distribution functions have the scale parametrically smaller
than the scale of Cl (�) calculated in the previous section. The signs of the majority of
the diagrams are random, so it is more convenient to use the characteristic function,
see, e.g., Eq. (108), in a Fourier transform form

W UðqÞ ¼ expðiqUÞh i; ð144Þ

where the averaging procedure is defined in Eq. (73). To calculate function (144), all the
machinery of Section 6.3 is applicable after the replacement s fi �iq, and U on the
Fig. 12 should be understood as an analytic expression for the real or imaginary part of
the corresponding diagram.

We will present in detail the analysis for the insulating phase in Sections 7.1–7.3; the
corresponding consideration for the developed metallic phase is simple and is summarized
in Section 7.4.

7.1. Effect of the interaction renormalization

To understand the origin of the interaction renormalization, let us consider the con-
tributions c5,c6 from Fig. 4, see also Fig. 16. These contributions are the only third-
order terms that may lead to the finite decay rate—all others are either insignificant
corrections to the Hartree–Fock potential (c2,c3), or (c1,c4) the first order Hartree–
Fock shift in the second order diagram (b1,b3). Direct calculation of the diagram
(c5,c6) yields



Fig. 16. Reduction of the third order diagrams (A) to the renormalization of the interaction constant in the
SCBA scheme (B). Calculation of the characteristic function (C) using notation of Fig. 12.
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ImRAðFig.4c5Þ
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ð145Þ

where the notation is the same in in Eqs. (69a) and (69b), and P denotes the principal val-
ue. It is important to notice that using ImSCBA Green functions in this expression rather
than the bare Green functions is not an overstepping of the accuracy of the calculation.

Expression (145) illustrates the well-known principle of constructing higher order con-
tributions from the lower ones. Namely, to obtain the imaginary part of any contribution
to the self-energy one can cut the diagram in all possible ways (cuts are shown by vertical
dotted lines on Fig. 16). The cross-section produces a d-function for the energies of the
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particles crossing the cut. The two parts of the diagrams on each side of the cut correspond
to transition amplitudes. Being real, they can be incorporated into the redefinition of the
constants of the initial Hamiltonian (for the clean Fermi liquid it was first realized by Eli-
ashberg [31]).

For example, expression (145) can be obtained from CðinÞl ð�Þ of Eq. (69a) by the replace-
ment of the bare interaction matrix element V j1j2

l1l2
with the potential renormalized by exci-

tation of virtual particle–hole pairs, dVeh, or particle–particle pairs, dVee, see Fig. 16b

V l3l4
l1;l2
! V l3l4

l1;l2
þ dV eh½ �l3l4

l1;l2
� dV eh½ �l3l4

l2;l1
þ dV ee½ �l3l4

l1;l2

dV eh½ �l3l4

l1;l2
¼ 1

2

X
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ð�6ÞV l3l6
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V l5l4
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nl6
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ð�5Þ
�2 � �3 � �6 þ �5

;

dV ee½ �l3l4
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;

ð146Þ

where we are using the short-hand notation li ” (li, �i) in the first line of the expression.
For the insulating regime we use the leading term in Eq. (103), Al (�) � d(� � nl), and

calculate the characteristic functions W dV eeðqÞ and W dV ehðqÞ as shown on Fig. 16c. Assum-
ing |�2��3|, |�2 + �1| J df, T J Mdf, we find:

ln W dV ehðqÞ ¼
�2pjqjk2T ; j�2 � �3jK Mdf;

� pjqjk2Mdf

2
; j�2 � �3jJ Mdf;

(
ð147aÞ

ln W dV eeðqÞ ¼ � pjqjk2Mdf

2
. ð147bÞ

Eqs. (147a) and (147b) describe random quantities with the characteristic scale of the
distribution |dV|typ given by the coefficient multiplying |q|. This width should be compared
with the bare value of the interaction constant kdf. For T 6 T*, [see Eq. (131)], we find

jdV jtyp

kd
’ 1

M
T
T �

� �
; ð148Þ

i.e., the typical value of the correction to the interaction constant is parametrically smaller
than the bare value. On the other hand, the distribution of the dV has the same algebraic
decay at large values as the distributions of the ImSCBA quantities C, see, e.g., Eq. (129).
It means that substitution of the renormalized constant dV in, say, second order perturba-
tion theory formula (114) will produce the distribution function of the form as the fourth
order perturbation theory result (125), but with the coefficient smaller at least by the factor
of M. The same is true for any order, and therefore, the interaction renormalization (147)
can produce only perturbative in 1/M corrections to the value of the transition tempera-
ture Tc.

It is not difficult to see that certain cross-sections of higher-order diagrams may be
ascribed to the higher-order corrections to the interaction vertex, see Fig. 17. However,
not all of the cross-sections can be taken into account in a such a fashion, see, e.g.,
cross-section (c2) of Fig. 5, or Fig. 18A. Remaining terms describe the effects of the par-
ticle permutations in the final state which will be discussed in the following subsection, see
Fig. 19, and generation of the interaction vertices involving a larger number of the parti-
cles, see Fig. 18C.



− −

−

Fig. 17. Reduction of the certain cross-section of fourth order diagrams, Fig. 5, to the renormalization of the
interaction constant in the SCBA scheme.
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Statistical analysis of the higher-order corrections to the vertices is performed in the
same fashion and produce distributions similar to that of Eqs. (147a) and (147b) with
the smallness (148) in higher and higher powers. We thus conclude that the vertex renor-
malization does not lead to any dramatic effects; it only produces perturbative corrections
to the transition temperature Tc calculated within ImSCBA scheme.

7.2. Effect of the particle permutations in the final state

Cross-sections of the fourth-order diagrams, not included in Fig. 17, are shown in Fig. 19
(5.1a–5.2d) together with the two ImSCBA cross-sections (5.1 and 5.2). One can notice that



Fig. 18. (A) Reduction of a crosssection of the 6-th order diagrams to the three particle interaction. (B) SCBA
diagram generating the same state in the crosssection. (C–D) Comparing of the distribution functions of the non-
equivalent blocks in the SCBA diagram (D) and in the 3-particle interaction diagram (C).
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all of these cross-sections contain the sum over the same final 5-particle states (the same orbi-
tal indices of the particles and holes crossing the cut). Moreover, the analytic expressions cor-
responding to the two parts of a cut ImSCBA diagram for a given final state (transition
matrix elements) are equal. For non-ImSCBA diagrams the two resulting expressions are dif-
ferent, but they always can be reduced to the transition matrix elements for the diagrams 5.1
and 5.2 by a permutation of the orbital indices of the particles in the final state. This obser-
vation enables us to identify the non-ImSCBA cross-sections 5.1a–5.2d as interference terms
in the transition probability, while ImSCBA corresponds to the replacement of the square of
the sum in Fig. 19 by the sum of squares of individual terms.

This consideration for the fourth-order self-energy illustrates the general rule of con-
struction of all lowest-order diagrams containing a cross-section of Ne electrons and Nh

holes. Let us assume for a moment that electrons and holes are distinguishable particles
and introduce the quantum-mechanical amplitude A‘ðfligN e

i¼1; fmigNh

i¼1Þ of the transition
to the given final state for a given path ‘ (represented by a half-diagram with a definite
assignment of orbital indices to the free electron and hole lines). The decay rate can then
be represented as

Cl ’
X

flig;fmig
clðflig; fmigÞd ��

XN e

i¼1

nli
þ
XNh

i¼1

nmi

 !
;

cl ¼
1

N e!N h!

X
‘

X
P l;P m

ð�1ÞP lþP mA‘ðP lflig; P mfmigÞ
�����

�����
2

.

ð149Þ

The factorial prefactor takes into account the fact that different permutations of the
indices {li},{mi} correspond to the same final state, the sum over the permutations repre-
sents the usual antisymmetrization of the quantum-mechanical amplitude.16
16 It is easy to see that the diagrams (2) and (4) of Fig. 7C are also included in Eq. (149).



Fig. 19. Cross-sections of the fourth-order diagrams for self-energy, not included in Fig. 17. The orbital indices of
the particles crossing the cut (l1, l2, l3,m1,m2) are summed over. For fixed values of these indices each of the two
parts of the diagram with the free ends removed corresponds to the partial transition matrix element. Summation
of the latter over all permutations of the orbital indices of identical particles in the final state gives the total
transition matrix element for a given final state. The permutations P̂ l and P̂ m are independent; they act on electron
(l1, l2, l3) and hole (m1,m2) indices, respectively. The decay rate is then given by the square of the total matrix
element, summed over all final states. Since different permutations of electron and hole indices give the same final
state, the factor 1/(3!2!) in front of the sum is necessary. Diagrams (2) and (4) of Fig. 7C are also generated for
l00 „ l 0 or m00 „ m 0.

1184 D.M. Basko et al. / Annals of Physics 321 (2006) 1126–1205



D.M. Basko et al. / Annals of Physics 321 (2006) 1126–1205 1185
Similarly to the consideration of the quantum interference effects for a single particle in
a disorderd potential, the resulting double sum in Eq. (149) can be separated into diagonal
and off-diagonal part

Cl /
X
‘

A‘ðflig; fmigÞj j2 þ ðoff � diag.Þ ð150Þ

The first term in Eq. (150) is nothing but the ImSCBA series corresponding to the sum-
mation of the probabilities of the paths. Random-sign last term is the quantum interfer-
ence contribution to the particle lifetime.

Even though the number of the interference terms is much larger than the number of
diagonal terms one can still argue that they do not affect the value of the transition
temperature.

Indeed, if the number of the relevant terms were large, one would be able to apply the
central limit theorem for the quantum-mechanical amplitudes rather than for the proba-
bilities. It would result in a distribution function of the same scale as the one obtained
by the diagonal approximation but of a different shape (e.g., for the large number of sta-
tistically independent amplitudes Porter–Thomas distribution would replace the Gaussian
one). However, the characteristic functions obtained in Section 6.4 are non-Gaussian (as
they are not analytic at s fi 0) and have long algebraic tails at large values of C. This indi-
cates that the result is contributed by the largest term in the sum. Therefore, the interfer-
ence contribution affects the distribution function in the range of the most probable values
but not the tail of the distribution. As the transition temperature is controlled by the tail,
the interference term is not important for the position of this temperature.17

To quantify the qualitative consideration above we evaluated the characteristic function
for the quantity on the right-hand side of Eq. (149), calculated in the nth order of the per-
turbation theory (n	 1),

ln exp �sd�2
f

X
flig;fmig

clðflig; fmigÞ
 !* +

¼ �
ffiffi
s
p T

T �

� �n

ð1� ffiffiffiffiffiffiffiffiffi
saint

p þ . . .Þ;

aint ’ ½knn!�2. ð151Þ

Derivation of Eq. (151) is relegated to Appendix D, and we neglected lnk factors in the
expression for aint.

Leading at s fi 0 term is none but the the diagonal contribution calculated in SCBA
approximation. The subleading term is the interference term, and the parameter aint has
a meaning of the relative contribution of the off-diagonal terms, affecting the distribution
at small values of c. Values of aint contain the n! factor, so it apparently becomes large no
matter how small the interaction constant k is. However, as we discussed in the derivation
of Eq. (132), the order of the perturbation theory involving only one localization cell is
limited from above, n < n* . T/df. As the result for I = 0, n = n* we estimate

aint ’
kT
df

� �2n�

’ M�2n� 
 1; ð152Þ
17 Moreover, experience gained in the study of the critical behavior of the Anderson transition on the Cayley tree
[22] suggests that the transition itself is associated with the reconstruction of the tail of the distribution. Therefore,
we do not see any reason to believe the the interference terms can affect the critical behavior in our problem either.
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which means that the interference processes do not affect the most important part of the
distribution functions even in the largest possible order of the perturbation theory without
hopping between localization cells.

One could think that the inclusion of the hopping would allow the growth of the aint

beyond the estimate (152) at n > n*. However, it is not the case. Inclusion of tunneling into
neighboring localization cells will lead to further suppression of the interference effects.
The presence of tunneling vertices on the diagram makes it impossible to interchange par-
ticles residing in different localization cells, compare Figs. 19 and 21. It is possible to check
Fig. 20. Different paths for the transition from a one-particle state l to a five-particle state (l1, l2, l3;m1,m2),
corresponding to different intermediate three-particle states. The state (l2, l1, l3;m1,m2) is identical to
(l1, l2, l3;m1,m2).

C

A B

Fig. 21. Suppression of the exchange processes shown on Fig. 19 due to the inclusion of the tunneling vertices.
Diagram (A) has only one exchange counterpart (B) whereas the diagram (C) does not allow permutations at all
[cf. diagram (5.2) which produces three exchange counterparts].
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that keeping the combinatorial n! in the perturbation theory involving n particles in the
final states spread over m
 n localization cells would require the tunneling of all n par-
ticles by the distance of the order of m. Each tunneling event brings additional smallness
I, and thus we estimate

aint ’ ½knn!Imn�2 K nk exp � nj ln I jdf

T

� �� �2n

; ð153Þ

where we used m . m* from Eq. (138). Thus, no accumulation of the factorial terms is
possible, even in the vicinity of the metal–insulator transition, and the SCBA calculational
scheme is valid not only on qualitative but also on a quantitative level.

7.3. Effect of the single-particle spectrum renormalization

We now turn to the study of the effects on the interaction and tunneling which may be
viewed as a change in the properties of single-particle excitations. This change includes the
level shifts dnl and the possibility of mixing with other orbitals (which is present even with-
out interaction due to the hopping I). The level shifts are encoded in the statistics of the
real parts of the diagonal part of the self-energy ReRR

l which were neglected in ImSCBA
approximation, whereas the bubbles non-diagonal with respect to the initial and final
states, see, e.g., diagram (c3) of Fig. 7, are responsible for the mixing.

The lowest order diagram is the Hartree–Fock potential of Fig. 4a

UHF
l1l2
¼ � 1

2

X
l3

½nl3
� sgnnl3

�V l3l2
l1l3
; ð154Þ

where we subtracted the value of the potential at T = 0. The latter term is assumed to be
incorporated into the one-particle Hamiltonian. The characteristic function (144) is found
using the averaging procedure (73) and Eq. (48g) to be Gaussian

ln W UHF ¼ �q2k2dfT ln 2 � �q2d2
f

k
M

� �
T
T �

� �
. ð155Þ

This means that the variation of the Hartree–Fock potential with the distribution function
is much smaller than the level spacing df even for T of the order of transition temperature Tc.

The Hartree–Fock diagram as well as other diagrams, corresponding to single-particle
level shifts and mixing, may be included as self-energy insertions into single-particle
Green’s functions in all diagrams of the previous subsections. As a result, the Green’s
functions become non-diagonal both in the orbital indices l, and the spatial index q, if
tunneling is involved. Such insertions always introduce an additional smallness, as
discussed in Section 6.5 for the case of tunneling in the ImSCBA. However, while inclusion
of tunneling is necessary to go beyond the finite state space of a single localization volume,
insertions non-diagonal only in the orbital index do not change the number of the final
states and thus can be ignored. Insertion of tunneling into the renormalized interaction
vertex, see Fig. 22A, produces interaction, non-local in space. However, the corresponding
correction to Cl is ‘‘small’’ compared to that of the ImSCBA diagram with Fig. 22B with
the same final states, see Figs. 22C and D. Thus, we conclude the variations of the
Hartree–Fock potential do not generate any corrections to the transition temperature
or the statistics of Cl calculated in ImSCBA.



Fig. 22. Reduction of the non-SCBA diagrams (A and B) to the interaction vertex non-local in space (C).
Characteristic function (E) of the non-local interaction (C) in comparison with the corresponding block (F) of the
SCBA diagram (D).
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However, there is an important feature in the statistics of the level shifts nl which changes
the numerical factor in Eq. (140) and changes the power-law decay in the tail of the
distribution of Cl. To see this, let us consider now the second-order contribution shown on
Fig. 4b.2. Real part of this self-energy dnl (�) is included in SCBA but neglected in ImSCBA.
To investigate its effect, we apply the Kramers–Kronig relation to CðinÞl ð�Þ from Eq. (69a)

dnlð�Þ ¼ k2d2
f

X
l1;l2;l3

Y l3;l
l1;l2

Z
d�1d�2d�3F)l1;l2;l3

ð�1; �2; �3ÞP
A

1
ð�1ÞAl2

ð�2ÞAl3
ð�3Þ

�� �1 � �2 þ �3

; ð156Þ

where all the notation is introduced in Eq. (69a). Substituting Alið�iÞ ¼ dð�i � nli
Þ, we

obtain

dnlð�Þ ¼ k2d2
f

X
l1;l2;l3

Y l3;l
l1;l2

F)l1;l2;l3

�� nl1
� nl2

þ nl3

; ð157Þ

whose characteristic function is

ln W dn ¼ �2pjqjk2MT ’ �jqjkdfðT=T �Þ. ð158Þ
Therefore, the typical value of dn � kdf
 df. One thus might think that the main effect of

this contribution is a weak random shift of the level position, so it can be disregarded as well.
Nevertheless, despite its smallness, dnl (�) introduces a new qualitative effect: repulsion

between many-body levels. When dnl (�) is taken into account, one has to find the position
of the shifted single-particle level from the equation
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�� nl � dnlð�Þ ¼ 0. ð159Þ
This equation describes repulsion between the single-particle excitation l and three-par-

ticle excitations (l1, l2; l3): solutions of Eq. (159) cannot approach each other by a distance
smaller than kdf.

In the considerations of Section 6, we assumed the energies of one-particle states to be
independent of the energies of three-particle states into which these one-particle states
decayed. As a result, resonant denominators [see, e.g., Eq. (123)] could become small inde-
pendently of each other. The level repulsion suppresses such effect, so that Eq. (130), (132),
and (135) overestimate the strength of the tail of the distribution.

It is the same effect that was first discussed by Anderson [1] and analyzed rigorously by
Abou-Chacra et al. [17]. According to their results, this effect leads to a change in the
numerical coefficient in the equation for the critical disorder strength: e fi 2. Simply
adapting this prescription for our Eq. (140) we obtain the transition temperature modified
by level repulsion

12kMT c

df
ln

1

k
¼ exp

c1df ln Ij j
T c

� �
. ð160Þ

Now we will sketch the derivation of Eq. (160) for our problem. First, we have to iden-
tify the sequence of the diagrams which may give the level repulsion between the resonant
multiparticle states. To do so, we include the level shift dnl (�) into the imaginary part of
the fourth order SCBA diagram as shown on Fig. 23A.

Direct inspection of the diagrams Fig. 23A shows that for the levels nl1
; . . . ; nl6

maxi-
mizing the skeleton diagram (a0) of Fig. 23, only diagrams (a1) and (a2) give rise to the
simultaneous divergence of dn, whereas in the remaining diagrams (a3)–(a6) dn fluctuates
independently of Cl1

.

A

B

Fig. 23. (A) Including the level shift into the fourth order ImSCBA diagram. Only diagrams a.1 and a.2 are
resonant, i.e., divergences in dnl and Cl are correlated. (B) Linearized SCBA approximation which incorporates
the simultaneous divergences in dnl and Cl.
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It means that the role of the level shift dn in the diagrams (a3)–(a6), is, indeed, just the
broadening of the distribution of nl by the value of kdf (T/T*)
 df, see Eq. (158). This
broadening does not significantly change the distribution of the resonant denominators
and can be disregarded together with the fluctuations of the Hartree–Fock potential.
On the other hand, the level shifts on diagrams (a1), (a2) are large whenever Cl1

is maximal
and they describe the effect of level repulsion discussed before.

The maximally divergent series incorporating the correlations in dnl and Cl is generated
by the linearized self-consitent-Born approximation (LSCBA) shown on Fig. 23B, as it can
be checked by explicit consideration of several iterations.

The analytic expression of the LSCBA self-energy is [cf. Eqs. (69a) and (105a)]:

dnlð�Þ ¼
X
l1;a

I2d2
fhD½�� nl1

ðqþ aÞ�
�� nl1

ðqþ aÞ � dnl1
ð�; qþ aÞ

þ k2d2
f

X
l1;l2;l3

Y l3;l
l1;l2

F)l1;l2;l3

�
2hDð�� Nl3

l1l2
Þ

�� Nl3
l1l2
� dnl1

ð�� Nl3
l2
Þ
þ

hDð�� Nl3
l1l2
Þ

�� Nl3
l1l2
þ dnl3

ðNl1l2
� �Þ
�

2hDð�� Nl3
l1l2
Þ

�� Nl3
l1l2

" #
;

ð161aÞ

Clð�Þ ¼ CðbathÞ
l ð�Þ þ

X
l1;a

I2d2
fhD½�� nl1

ðqþ aÞ�Clð�; qþ aÞ
�� nl1

ðqþ aÞ � dnl1
ð�; qþ aÞ

� 2

þ
X

l1;l2;l3

k2d2
fY l3;l

l1;l2
F)l1;l2;l3

2hDð�� Nl3
l1l2
ÞCl1
ð�� Nl3

l2
Þ

�� Nl3
l1l2
� dnl1

ð�� Nl3
l2
Þ

h i2

8><>:
þ

hDð�� Nl3
l1l2
ÞCl3
ðNl1l2

� �Þ

�� Nl3
l1l2
þ dnl3

ðNl1l2
� �Þ

h i2

9>=>;. ð161bÞ

As in Eq. (69a), the coordinate q is assumed to be the same in all terms in the equations
unless it is specified explicitly otherwise. The notation Nm1...

l1... was introduced in Eq. (113). The
ultraviolet cutoff function hD (x) is the same as in Eq. (104). It is important to emphasize that
it depends on the unshifted energies of the levels. This is because the cutoff was introduced in
the non-interacting Green function first; the self-energy appears in the denominator of the
SCBA-dressed Green function as a result of the summation of a geometric series; such sum-
mation changes the denominator only, keeping the cutoff intact.

Now let us go through the steps of Section 6.4 and see how they are affected by the
shifts in the denominators of Eqs. (161a) and (161b). First, we notice that Eq. (161b) is
still given by the diagrammatic representation of Fig. 11 with the change in the rules of
reading the double line:

ð162Þ

The lowest order term of the cluster expansion, Eq. (114), see also Fig. 13, becomes
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Cð1;0Þ ¼ 2Cð0;0Þ
X

l1;l2;l3

k2d2
fY l3;l

l1;l2
F)l1;l2;l3

hD �� Nl3
l1l2

� �
�� Nl3

l1l2
� dnl1

ð�� Nl3
l2
Þ

h i2

þ Cð0;0Þ
X

l1;l2;l3

k2d2
fY l3;l

l1;l2
F)l1;l2;l3

hD �� Nl3
l1l2

� �
�� Nl3

l1l2
þ dnl3

ðNl1l2
� �Þ

h i2
. ð163Þ

We see that the corresponding potential is no longer three-particle, but depends on all the
coordinates via dn, which depend on the positions of all other levels. However, when per-
forming the linked cluster expansion, in each term of the sum over triples (l1, l2, l3) we can shift
an integration variable: nl1

þ dnl1
! nl1

. After this shift Eq. (116d) acquires the form

ln W ð1;0Þ
3 ¼ 1

2

Y3

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
ðf e þ f hÞ; ð164Þ

f e
12;3 ¼ e�sUe

12;3 � 1
	 


hhD �� N3
12 þ dn1

	 

i0;

f h
12;3 ¼ e�2sUh

12;3 � 1
� �

hhD �� N3
12 � dn3

	 

i0;

where Æ. . .æ 0 denotes the average (73) with levels 1, 2, 3 excluded, and the potentials U ðe;hÞ12;3 were
definedinEq. (115).Usingthe fact thatdn1ð�� Nl3

l1l2
Þ fromEq. (161a) isnotsingularatN3

12 ! �
and |dn|
 D, we can perform the integration in the same way as in Section 6.4 to obtain

ln W ð1;0Þ
3 ¼ �ðpsCð0;0ÞÞ1=2 6kMT

df
. ð165Þ

Here the only effect of the shifts was to make the electron contribution statistically inde-
pendent from the hole one. As a result, the cross-term in Eq. (116b) vanishes and the
numerical coefficient is changed in comparison with Eq. (117).

Let us now consider the modification of the fourth order result (123). After two itera-
tions of Eq. (161b), see also Fig. 14 and Eq. (162), we find

Cð2;0Þ ¼ Cð0;0Þk4d4
f

X
l1 ;l2;l3

F)l1 ;l2;l3

X
l4 ;l5;l6

0
F)l4 ;l5;l6

�
2Y l3 ;l

l1 ;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2
� dnl1

�� Nl3
l2

� �h i2

2Y l1;l6
l4;l5

hD �� Nl3l6
l2l4l5

� �
�� Nl3l6

l2l4l5
� dnl5

�� Nl3l6
l2l4

� �h i2

8><>:
þ

2Y l3;l
l1;l2

hD �� Nl3
l1l2

� �
�� Nl3

l1l2
� dnl1

�� Nl3
l2

� �h i2

Y l1 ;l6
l4 ;l5

hD �� Nl4l5
l1l2l6

� �
�� Nl3l6

l2l4l5
þ dnl6

Nl3
l2l4l5
� �

� �h i2

þ
Y l3;l

l1;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2
þ dnl3

Nl1l2
� �ð Þ

h i2

2Y l4 ;l5
l3 ;l6

hD �� Nl4l5
l1l2l6

� �
�� Nl4l5

l1l2l6
þ dnl4

Nl5
l1l2l6
� �

� �h i2

þ
Y l3;l

l1;l2
hD �� Nl3

l1l2

� �
�� Nl3

l1l2
þ dnl3

Nl1l2
� �ð Þ

h i2

Y l4 ;l5
l3 ;l6

hD �� Nl4l5
l1l2l6

� �
�� Nl4l5

l1l2l6
� dnl6

�� Nl4l5
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� �h i2

9>=>;; ð166Þ
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where the prime in the second sum has the same meaning as in Eq. (123). Each term in Eq.
(166) produces its own cluster function, see Eq. (125). Similar to Eq. (164), the cross-cor-
relation terms vanish and we obtain after obvious shifts of the variables:
ln W ð2;0Þ ¼
Y6

l¼1

Z
dnl

df

X
nl¼1

exp nlnl
2T

2 cosh nl
2T

 !
~f

12; 3

45; 6

� �
; ð167aÞ

~f
12; 3

45; 6

� �
¼ f ee 12; 3

45; 6

� �
þ 1

2
f eh 12; 3

45; 6

� �
þ 1

2
f he 12; 3

45; 6

� �
þ 1

4
f he 12; 3

45; 6

� �
;

ð167bÞ

f ee ¼ ðe�sUee � 1Þ hD ��N3
12 þ dn1 ��N3

2

	 
� 
hD ��N36

245 þ dn5 ��N36
24

	 
� � �0
;

f eh ¼ ðe�2sUeh � 1Þ hD ��N3
12 þ dn1 ��N3

2

	 
� 
hD ��N36

245 � dn6 N3
245 � �

	 
� � �0
;

f he ¼ ðe�2sUhe � 1Þ hD ��N3
12 � dn1 N12� �ð Þ

� 
hD ��N126

45 � dn4 N5
126 � �

	 
� � �0
;

f hh ¼ ðe�4sUhh � 1Þ hD ��N3
12� dn1 N12 � �ð Þ

� 
hD ��N45

126þ dn6 ��N45
12

	 
� � �0
;

ð167cÞ
where Æ� � �æ 0 denotes averaging (73) with the levels 1, 2, 3, 4, 5, 6 excluded. The potentials U
here are defined in Eq. (124).

Apparently, the role of the level shifts in Eqs. (167c) is similar to that in Eq.
(164)—perturbative modification of the cutoff. However, unlike the lowest order per-
turbative corrections, the shifts in Eq. (167c) contain a resonant term which depends
on variables n1, . . . ,n6 only and therefore can not be treated as a non-correlated ran-
dom number. To see the origin of such resonant term, consider the argument of the
first h-function in fee. From Eq. (161a) with I = 0, we find after the same variable
shifts as in fee
dn1 �� N3
2

	 

¼

2k2d2
fY 6;1

4;5F)4;5;6hD �� N63
452 þ � � �

� 
�� N63

452

þ � � � ; ð168Þ
where � � � denote the terms which contain extra levels. Those terms are random and can be
disregarded. One can check by the same method that the shift dn5ð�� N36

24Þ always depends
on extra levels and does not produce resonance.

Having in mind that the h-functions in Eqs. (167c) cut off the logarithmic divergence,
we neglect the non-resonant terms,18 and simplify Eqs. (167c) as:
18 Keeping them will be beyond the accuracy of LSCBA approximations where the terms of the same order were
neglected in the very beginning.
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f ee
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45

 !
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.

ð169Þ
Substituting Eq. (169) into Eqs. (167a) and (167b) and performing integration we

obtain analogously to Eq. (127)
ln W ð2;0Þ ¼ � psCð0;0Þ
	 
1=2 6kMT

df

� �2

ln
D2

k2d2
f

 !
. ð170Þ
In addition to the change in the overall numerical factor similar to Eq. (165), Eq.
(170) shows new important feature. Namely, the argument of the logarithm is no
longer dependent on the parameter s, or, in other words, the algebraic tail in the
distribution function is suppressed in comparison with Eq. (127). This is the mani-
festation of the level repulsion in complete analogy with the arguments of Anderson
[1].

The procedure outlined above can be continued to all orders of perturbation theory. In
particular, for the sixth order cluster function, Fig. 24, one finds
s

8

Fig. 24. The cluster function feee for the six order perturbation theory expansion. The notation is defined on Figs.
11 and 12 and in Eq. (162).
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f eee ¼ e
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7;8F)7;8;9

�� N3
12

	 
2
�� N36

245

	 
2
�� N369

2578

	 
2
;

ð171Þ

which means that the scale of the integration is determined by the energy of the previous
generation only. This transfer matrix structure of the cluster functions repeats itself in all
orders and makes it possible to perform the integration in any order. Instead of Eq. (135)
we find

ln W ðn;mÞ ¼ � sCð0;0Þ
	 
1=2

Cðn;mÞ � 6kMT
df

ln
D2

d2
fk

2

 !" #n

I ln
D2

d2
fI2

 !" #m

; ð172Þ

i.e., once again the algebraic tail becomes ‘‘more short-range’’ due to the suppression of
the large denominators. Coefficients Cðn;mÞ are insensitive to the resonant denominators
and they are still given by Eq. (136). We, therefore, can repeat all of the arguments after
Eq. (136) and obtain Eq. (160) after replacement (128).

To conclude, the level repulsion present in SCBA but neglected in SCBA leads to the
change in the numerical prefactor in the expression for the transition temperature [cf.
Eq. (160) with Eq. (140)] but does not affect the statement about the existence of the
transition itself.19 All other corrections lead to the perturbative corrections to Tc.

7.4. Validity of ImSCBA in the metallic phase

In the metallic phase the classification of non-SCBA diagrams into interaction vertex
corrections and interference terms is the same as presented in Sections 7.1 and 7.2 for
the insulating phase. What changes is that the resonant terms in all of the expressions
now acquire the finite width C(in)

pdðxÞ þ P
C
x2
! CðinÞ

x2 þ CðinÞ
� 2

; P
1

x
! x

x2 þ CðinÞ
� 2

; ð173Þ
19 There is another effect of a more accurate treatment of the real parts of self-energies. Namely, in the linearized
SCBA (Fig. 23) the spectral density of each of the three product particles except one for each decay process is
implied to be the single unperturbed d-function. As a matter of fact, a more accurate treatment of ReR leads to
splitting of this d-function into many-body satellites. As a result, the effective phase volume for the decay is
increased, which leads to lowering the critical temperature by a factor of approximately 2.25... with respect to that
given by Eq. (160).
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where C(in) is given by Eq. (74). This finite width prohibits vanishing of the denominators,
thereby cutting off the power-law tails of the distribution functions for all the quantities
considered in Sections 7.1–7.3. As a result, all the cumulants of the distribution function
become finite. Moreover, under the condition (80) the distribution functions may be con-
sidered Gaussian.

Another feature is that the level occupation (50) is no longer binary, nl (�) = ±1, as in
insulating phase, but it is kept close to its equilibrium value nlð�Þ ¼ tanh �

2T by the energy
relaxation. This further suppresses the fluctuations by the factor of df/T.

On the other hand, in Section 7.1, we established that the role of the higher-order cor-
rection to the vertices is the perturbative renormalization of the SCBA results. As the scale
of the fluctuation of those vertices is suppressed even further in the metallic phase, neglect-
ing this renormalization is justified even more in this phase.

The role of the particle permutations and interference in the final state, see Section 7.2 is
investigated by direct evaluation of the mesoscopic fluctuations and averages of the dia-
grams of Fig. 19 in a fashion of Fig. 8. Those contribution are smaller than SCBA values
by a factor of M at least. Therefore, deep in the metallic phase the kinetic equation con-
sideration of transport in Section 5.2 is well justified.

Finally, in the insulating phase the most important effect, not included in ImSCBA, was
many-mody level repulsion, see discussion around Eq. (159). The energy scale of this
repulsion is kdf. On the other hand, at T > Tin, where Tin is defined in Eq. (80), we find
C(in) > kdf. This means that the spectrum structure produced by this repulsion is smeared
by inelastic processes and need not be taken into account.

Thus, we conclude that the ImSCBA is justified parametrically in deep in the metallic
phase.

8. Conclusions

This paper is devoted to the analysis of the low-temperature transport in disordered
conductors with localized one-particle states. The main question is whether the
electron–electron interaction alone is sufficient to establish the thermal equilibrium in
the system. The same question can be formulated even more boldly—whether there is a

many-body mobility threshold, i.e., energy separating the many-body states localized in
the Fock space of the system from the states which are delocalized.

One can apply weak-localization arguments to show that conductivity at high
enough temperatures is non-zero. It is not disputable as long as the inelastic dephasing
rate 1/s/ exceeds the level spacing in one-particle localization volume (cell) df. Exten-
sion of this approach to lower temperatures is problematic as the quantum corrections
to conductivity diverge. For this reason, in order to describe the low-temperature
behavior, we adopt a different strategy. We formulate the effective Hamiltonian descrip-
tion for the processes with the energy transfer of the order of df. Reduction of the ori-
ginal Hamiltonian to the effective one is not performed systematically. Nevertheless, we
believe that it is an appropriate low-energy limit of the theory of electrons in disorder
potential.

Statistical analysis based on the effective Hamiltonian enables us to demonstrate the
stability of two qualitatively different phases—metallic, for T > Tc and insulating for
T < Tc, where Tc is given by Eq. (160). This corresponds to the existence of the many-body
mobility threshold Ec related to Tc by the thermodynamic formula (101).
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We show that deep in the metallic phase, T	 Tc (see Section 5) the transport coeffi-
cients in the system are self-averaging. Using this fact, we derived the quantum Boltzman
equation. The temperature dependence of the electrical conductivity r (T), following from
this equation (see Section 5.2), is quite non-trivial even for T	 Tc. Namely, r (T) increases
with T as T2 at low temperatures, while at high temperatures it saturates, approaching the
Drude limit. Thermal conductivity deviates from the Wiedemann–Franz law with the
decreasing temperature. However, this deviation is never strong, see Fig. 10.

In the insulating phase, T < Tc, we use Feynmann diagram technique to determine the
probability distribution function for quantum-mechanical transition rates. The probability
of an escape rate from a given quantum state to be finite turns out to vanish in every order
of the perturbation theory in electron–electron interaction. Thus, in the absence of cou-
pling to any external bath (phonons) electron–electron interaction alone is unable to cause
the relaxation and establish the thermal equilibrium. In other words, the insulating phase
is stable.

Although r (T) = 0 exactly as long as T < Tc, the stability of the insulator decreases as T

approaches Tc. It means that effects of interaction of the electrons with the external bath
(phonons) become more and more pronounced. More precisely, if the electron–phonon
coupling is weak and T
 Tc, one phonon can cause at most one electron to hop because
the phase volume of the accessible final states is quite small. The closer is T to Tc, the big-
ger is this phase volume, and in the vicinity of the transition point one phonon can initiate
a whole cascade of the electronic hops. The size of the cascades fluctuates strongly,
depending on the realization of disorder in the system. The typical size of the cascade
grows at T fi Tc [see Eq. (142)]. It means, that even the infinitesimal electron–phonon
interaction would produce a finite conductivity. This is the onset of the metallic phase.

We also conclude that the phonon-induced hopping conductivity in the insulating phase
close to the transition is strongly enhanced by the electron–electron interaction. This con-
clusion can be relevant for the numerous experiments [32–36], where the observed conduc-
tivity in the strongly localized phase of disordered conductors was too large to be
explained by conventional theory of phonon-assisted hopping conductivity.

It should be emphasized that the many-body localization, which we discuss in this
paper, is qualitatively different from conventional finite temperature metal to insulator
transitions, such as formation of a band insulator due to the structural phase transition
or Mott–Hubbard transition [37,38]. In these two cases, at a certain temperature T* a
gap appears in the spectrum of charge excitation (Mott insulator) or all excitations (band
insulator). However the conductivity remains finite although exponentially small as long
as T > 0. This is not the case for many-body localization, which causes exactly zero con-
ductivity in the low-temperature phase.

Is the many-body localization a true thermodynamical phase transition with corre-
sponding singularities in all equilibrium properties? This question definitely requires addi-
tional studies, however, some speculations can be put forward. The physics described in
the present paper is associated with the change of the characteristics of the many-body
wavefunctions. It is well known that for non-interacting systems localization–delocaliza-
tion transition does not influence the average density of states, i.e., it does not affect
any macroscopic thermodynamic properties. Application of the same logic to the exact
many-body eigenvalues would indicate that the many-body localization transition is not
followed by any singularities in the static specific heat, etc. On the other hand, at this point
we can not rule out the possibility that this conclusion is an artefact of treating the real
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parts of the electron self-energies with an insufficient accuracy. Most likely scenario, to our
opinion, is that the insulating phase behaves like a glass (spin or structural) and demon-
strates all the glassy properties [19], like absence of ergodicity (even when some coupling
with phonons is included), effects of aging, etc. Question of the equilibrium susceptibilities
in the latter case becomes quite meaningless.

The quantitative theory built in this paper assumes that the interaction is weak. On the
other hand, qualitative consideration of the localization of many-body excitations does
not rely on this assumption. The important ingredients are (i) localization of single-particle
excitations, and (ii) Fermi statistics. Consider, as an example, Wigner crystal [39]. It is well
known that strong enough interaction leads to a spontaneous breaking of the translational
symmetry in d-dimensional clean systems at d P 2. In a clean system Wigner crystalliza-
tion is either a first-order phase transition (d = 3), or a Kosterlitz–Thouless transition
(d = 2). Even weak disorder destroys both translational and orientational order [40] and
pins the crystal. The symmetry of this state is thus not different from the symmetry of a
liquid, and the thermodynamic phase transition is commonly believed to be reduced to
a crossover.

We argue that the many-body localization provides the correct scenario for the finite-
temperature ‘‘melting’’ transition between the insulating phase, which may be called ‘‘sol-
id,’’ and the metallic phase, which may be called ‘‘liquid.’’ Indeed, the conductivity of the
pinned Wigner crystal is provided by the motion of defects. At low temperatures and in the
absence of the external bath, all defects are localized by the one-particle Anderson mech-
anism. Phonon modes of the Wigner crystal are localized as well, so the system should
behave as a many-body insulator. As the temperature is increased, the many-body met-
al–insulator transition occurs, though it is not clear at present, whether it occurs before
or after the crystalline order is destroyed at distances smaller than Larkin’s scale. Con-
struction of effective theory of such a transition is a problem which deserves further
investigation.

Note added

When the current manuscript was almost completed, a new version of preprint [28]
appeared [41], which deals with some of the problems constituting the content of the pres-
ent paper.
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Appendix A. Slow energy relaxation?

Let us now come back to the assumption of the strong inelastic relaxation which was
used to validate expansion (91). One could think that in some cases this assumption is
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not valid, which would lead to the deviation of the temperature dependences from those of
Eqs. (93). To investigate the limits of validity of Eqs. (93)–(100), we employ the following
qualitative arguments. These arguments only slightly modify the discussion after Eq. (99).

We notice that the transport still occurs through rare pin-holes. However, the insuffi-
cient rate of the inelastic processes allows the electron to explore an energy strip of the
width ��
 T before leaving the site via tunneling to the neighboring sites. Corresponding-
ly, instead of using Eq. (91) one may look for the solution in the form

Uð�; q; tÞ ¼ dlðq; tÞ
��

~bð�=��Þ;
Z

dx~bðxÞ ’ 1; ðA:1Þ

where �� is a scale to be found self-consistently. The conductivities are still given by Eqs.
(93), but the random quantities Br;Bj replaced by different ones ~Br; ~Bj, which are defined
through ~bðxT=��Þ rather than through br,j (x). Thus, either a straightforward calculation,
or a qualitative argument, similar to that after Eq. (99), give for the typical ~B an estimate

~B ’ CðinÞ��

d2
f

; ðA:2Þ

valid if ~B
 1. To find ��, we balance the elastic and inelastic terms in Eq. (90). The esti-
mate for the elastic term is

I2d3
X

a

hAð�; qÞAð�; qþ aÞiU ’ I2df
~BU ’ CðinÞ

I2��

df
U; ðA:3Þ

while the inelastic term is estimated from Eq. (87e) as

bStUU ’ Dð�Þo2
�U ’ CðinÞ

d2
fM2

��2
U: ðA:4Þ

Requiring these two rates to be of the same order, we estimate the scale �� as

�� ¼ df
M
I

� �2=3

. ðA:5Þ

Conditions ��
 T and ~B
 1 would produce a parametric temperature region

df
M
I

� �2=3

K T K df

k2M

I
M

� �2=3

; ðA:6Þ

in which the non-equilibrium function U (�) does not have the quasi-equilibrium shape
(91). However, existence of such a regime requires the condition

I
k

� �4=3
1

kM2

� �7=6

k1=2 	 1; ðA:7Þ

which is not consistent with the additional assumptions M2k . 1, I . k
 1. Therefore,
the regime of the slow energy relaxation is not feasible for this model and Eqs. (93) and
(94) describe the entire temperature dependence for T J Tin.

Appendix B. Probability distributions for Br;j

Let us represent the definitions (92c) in the form
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B ¼
X
l;l0

Bðnl; nl0 Þ ¼
X
l;l0

df

2T
b

nl

2T

� �
2dfC=p

ðnl � n0l0 Þ
2 þ 4C2

; ðB:1Þ

where the functions br (x) and bj (x) are given by Eq. (92d). (We omit the superscript
‘‘(in)’’ of C(in) everywhere in this appendix). The positions of the levels nl, n0l0 are assumed
to be completely uncorrelated, so the sought characteristic function ~P ðsÞ ¼ he�sBi can be
represented as

~P ðsÞ ¼ lim
N!1

Z Ndf=2

�Ndf=2

YN
l¼1

dnþl dn�l
ðNdfÞ2

 !
e
�s
PN

l;l0¼1

Bðnþl ;n
�
l0 Þ

. ðB:2Þ

Equation is equivalent to the partition function of the classical gas of two species, (±),
and interacting to each other via pair potential Bðnþl ; n

�
l0 Þ. It can be immediately evaluated

using Mayer–Mayer cluster expansion [29]. We will keep the contributions upto four-par-
ticle clusters to justify the further approximations:

ln ~P ðsÞ ¼ ln ~P
ð2ÞðsÞ þ ln ~P

ð3ÞðsÞ þ ln ~P
ð4ÞðsÞ . . . ; ðB:3aÞ

ln ~P
ð2ÞðsÞ ¼

Z 1

�1

dn1dn2

d2
f

f12; ðB:3bÞ

ln ~P
ð3ÞðsÞ ¼ 1

2

Z 1

�1

dn1dn2dn3

d3
f

f12f32 þ f21f23½ �; ðB:3cÞ

ln ~P
ð4ÞðsÞ ¼

Z 1

�1

dn1 . . . dn4

d3
f

f12f32f34 þ
f12f32f34f14

2

� �
; ðB:3dÞ

where

f12 ¼ exp �sBðn1; n2Þ½ � � 1 ðB:3eÞ

is the Mayer’s f-function which vanishes rapidly with the distance between the levels
|n1 � n2|. Performing integrations in Eqs. (B.3b) and (B.3d) with the help of definition
(B.1) and using C	 T, we find

ln ~P
ð2ÞðsÞ ¼ �

Z 1

�1
dx rS2

sbðxÞ
r

� �� �
;

ln ~P
ð3ÞðsÞ ¼ df

2T

Z 1

�1
dx rS2

sbðxÞ
r

� �� �2

;

ln ~P
ð4ÞðsÞ ¼ df

2T

� �2

r3

Z 1

�1
dx �S3

2

sbðxÞ
r

� �
þ S4

sbðxÞ
r

� �� �
;

S2ðyÞ ¼ ye�y I 0ðyÞ þ I 1ðyÞ½ �;

S4ðyÞ ¼
Z 1

�1

dx1dx2dx3

ð2pÞ3
� R y; x2ð ÞR y; x2 � x3ð ÞR y; x3 � x4ð ÞR y; x4ð Þ;

Rðy; xÞ ¼ exp � 2y
1þ x2

� �
� 1.

ðB:4Þ
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Here I 0 and I 1 are the modified Bessel functions. We also have introduced the parameter
r � 8pCT=d2

f , see Eq. (96).
Next step is to notice that T	 df and the observable quantities are contributed

by s such as r S2(s/r) [ 1. Therefore, the contribution from the higher cluster are
suppressed and can be neglected. All the further calculation is performed using

~P
ð2Þ

only.
Two limiting cases can be considered. First, if r	 1, S (x) can be expanded

S (x) = x (1 � x/2 + � � �), which gives

r	 1 : ln ~P rðsÞ ln ~P jðsÞ
� �

� �sþ s2

2r

Z 1

�1
dx

b2
rðxÞ

b2
jðxÞ

( )
¼ �sþ s2

2r

1=3

7=5� 12=p2

� �
.

ðB:5Þ
In the opposite case, r
 1, we use the asymptotic expansions of the Bessel functions to

approximate SðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðpxÞ

p
, to obtain

r
 1 : ln ~P rðsÞ ln ~P jðsÞ
� �

� �
ffiffiffiffiffiffiffiffi
2

p
rs

r Z 1

�1
dx

ffiffiffiffiffiffiffiffiffiffiffi
brðxÞ

pffiffiffiffiffiffiffiffiffiffiffi
bjðxÞ

p( )
¼ �

ffiffiffiffiffiffiffiffi
2

p
rs

r
p=

ffiffiffi
2
p

4
ffiffiffi
6
p

G=p

( )
�
� ffiffiffiffiffiffiffiffi

crrs
p

� ffiffiffiffiffiffiffiffi
cjrs
p

� �
;

ðB:6Þ
where G � 0.916 is the Catalan’s constant.

It is instructive to calculate the inverse Laplace transform of ~P r;jðsÞ and find the distri-
butions functions P r;jðBÞ. In both limiting cases of large and small r one can use the saddle
point approximation. For r	 1 the distributions are approximately Gaussian with
hBr;ji ¼ 1 and

hB2
ri � hBri2 ¼

1

3r
; hB2

ji � hBji2 ¼
7=5� 12=p2

r
; ðB:7Þ

corresponding to self-averaging of Br;j. For r
 1 have

P ðBÞ ¼
Z i1

�i1

ds
2pi

esB�
ffiffiffiffi
crs
p
�

ffiffiffiffiffiffiffiffiffiffi
cr=p

p
2B3=2

e�cr=ð4BÞ. ðB:8Þ

It is noteworthy that, for B	 r this distribution coincides with the distribution of the
largest of n ¼

ffiffiffiffiffiffiffiffi
8pc
p

ðT=dfÞ independent random variables

df

4T
2dfC=p

n2
1

; . . . ;
df

4T
2dfC=p

n2
n

; ðB:9Þ

see Eq. (92c), with ni uniformly distributed in the range 0 < ni < df/2.

Appendix C. Cancellation of the cutoff D

The formal reason to introduce the cutoff D in Section 6 was the insufficient ability of the
3n-particle potentials to confine particles, which resulted in logarithmic divergences in the
leading terms of the cluster expansion for n > 1. On the other hand, since the transition is
associated with anomalously small values of the energy denominators, rather than anom-
alously large ones, it is natural to expect the transition condition not to contain D at all.
This means that D should cancel out when higher-order terms of the cluster expansion
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are taken into account. Moreover, this cancellation should occur for each component of the
potential separately (e.g., for each of the 6-particle potentials Uee, Ueh, Uhe, and Uhh). In this
appendix, we first show how the cancellation occurs for the 6-particle potential Uhh, and
then discuss 3n-particle potential Uhh. . .h for an arbitrary n. The terms corresponding to
an arbitrary sequence of electron and hole decays can be analyzed analogously.

Consider connected terms of the cluster expansion containing k functions
f hhðnð1Þ1 ; . . . ; nð1Þ6 Þ; . . . ; f hhðnðkÞ1 ; . . . ; nðkÞ6 Þ. To maximize the corresponding contribution one
should connect them in such a way that one of the energy denominators coincides for all
terms (two denominators cannot coincide, as it would require the coincidence of nðjÞi for all
j and each i, which is prohibited by the rules of the cluster expansion). Having fixed one of
the denominators, one should keep the remaining free level positions independent of each
other in order not to obtain smallness in M or T/df. As a result, two diagrams should be eval-
uated for each k, shown in Fig. 25. Summing over k and adding the leading term, we obtain

ln W ð2;0Þ
hh ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psCð0;0Þ

p 2kMT
df

� �2

ln
ðD=kdfÞ2ffiffiffiffiffiffiffiffiffiffiffiffi

sCð0;0Þ
p"

þ
X1
k¼2

ð�D=dfÞk�1

k!ðk � 1Þ

�
Z 1

�1

dx
4

cosh ðk�1Þx
2

coshkþ1 x
2

þ
X1
k¼2

ð�D=dfÞk�1

k!ðk � 1Þ
2kMT

df

� �k�1
#
; ðC:1Þ
Fig. 25. The diagrams canceling the cutoff D in the fourth diagram of Fig. 14.
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where the logarithmic term in the square brackets is the leading one, corresponding to the
fourth diagram of Fig. 14, the second and third terms correspond to the diagrams of
Fig. 25. The summation over k is performed asX1

k¼2

ð�AÞk�1

k!ðk � 1Þ ¼ �
Z A

0

dx
X1
k¼2

ð�xÞk�2

k!
¼ �

Z A

0

dx
x2

e�x � 1þ xð Þ

¼ �
Z 1

1=A
dx e�1=x � 1þ 1

x

� �
� � ln A; A	 1. ðC:2Þ

As a result, we obtain

ln W ð2;0Þ
hh ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psCð0;0Þ

p 2kMT
df

� �2

ln
MT=ðk2dfÞffiffiffiffiffiffiffiffiffiffiffiffi

sCð0;0Þ
p . ðC:3Þ

This seems to correspond to the replacement

D!
ffiffiffiffiffiffiffiffiffiffiffiffi
MT df

p
; ðC:4Þ

rather than to the promised Eq. (128).
To show that the transition point is nevertheless determined by Eq. (128), we analyze the

hole channel for an arbitrary n. In this case the subleading logarithmic correction is given by
diagrams where n � 1 energy denominators are fixed by connections, and only one is inde-
pendent of others. The independent denominator can be chosen in n ways, of which n � 1
produce diagrams analogous to the first diagram of Fig. 25 (each f has only one argument
independent of other f’s) and the last denominator produces a diagram similar to the second
diagram of Fig. 25 (each f has three last arguments independent of other f’s). The result is

ln W ðn;0Þ
h...h ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
psCð0;0Þ

p 2kMT
df

� �n

� 1

ðn� 1Þ! lnn�1 ðD=kdfÞnffiffiffiffiffiffiffiffiffiffiffiffi
sCð0;0Þ

p � 1

ðn� 2Þ! lnn�2 ðD=kdfÞnffiffiffiffiffiffiffiffiffiffiffiffi
sCð0;0Þ

p ln
MT
df

Dn

dn
f

 !" #
; ðC:5Þ

The expression in the square brackets is nothing else but the first two terms of the binomial

1

ðn� 1Þ! ln
ðD=kdfÞnffiffiffiffiffiffiffiffiffiffiffiffi

sCð0;0Þ
p � ln

MT
df

Dn

dn
f

 !" #n�1

¼ 1

ðn� 1Þ! lnn�1 df

MT kn
1ffiffiffiffiffiffiffiffiffiffiffiffi

sCð0;0Þ
p !

. ðC:6Þ

To obtain the next terms of the binomial one would have to connect the cluster func-
tions in a way that fixes n � 2, n � 3, etc., denominators. As seen from Eq. (C.6), the factor
MT/df under the logarithm becomes unimportant at large n. This justifies the rule (128).

Appendix D. Derivation of Eq. (151)

Our goal in this appendix is to evaluate the most dangerous contribution from the inter-
ference corrections to the SCBA result. For this purpose, it suffices to demonstrate the cal-
culation of aint from Eq. (151) without numerical coefficient. Therefore, we will take into
account only electron-like processes shown on Fig. 26 and disregard other processes, cf.
Figs. 13 and 14. This leads to the underestimate of the overall numerical coefficient but
does not affect the factorials.



Fig. 26. Amplitude of nth order of the peturbation theory used for the estimate of the distribution function (D.1).
Being squared, these amplitudes generate the electron-like decay processes only (the first diagrams on Figs. 13 and
14). External lines are assumed to be amputated and shown for the notation of orbitals and energy. Path ‘ in Eq.
(149) corresponds to the sequence {‘1,‘2, . . . ‘n�1} on this figure.
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The expression for such nth order amplitude in the insulating region reads

Af
i f‘kg; flkg; fmkgð Þ ’

V ‘1m1
il1

F)‘1;l1;ml

�i � Nm1
l1;‘1

V ‘2m2
‘1l2

F)‘2;l2;m2

�i � Nm1;m2
l1;l2;‘2

. . .
V fmn
‘n�1ln

F)f ;ln;mn

�i � Nm1;m2;...;mn
l1;l2...;ln;‘n�1

; ðD:1Þ

where the notation was introduced in Eqs. (105b) and (113).
Expression (D.1) has the same form as those considered in Sections 6.4 and 7.1. so that

the machinery of Section 6.3 can be applied with small modification. First we fix the elec-
tron and hole levels nl1

; . . . ; nln
; nm1

; . . . ; nmn
in Eq. (D.1), and sum over all the intermediate

states ‘1, ‘2; . . . , ‘n. Calculating the characteristic function, we perform the partial averag-
ing—i.e., procedure of Eq. (102) with 2n levels l1, . . . , ln; m1, . . . ,mn excluded.

Using the linked cluster expansion and Eq. (48g), we find

ln ~W q; flig; fmigð Þ � ln exp iq
X
‘k

Af
i f‘kg; flkg; fmkgð Þ

" #* +
fkig;fmkg

’ �pjqjdfk 2k ln
1

k

� �n�1Yn

k¼1

1� nlk nmk

2
� 2 Nm1

l1

� �
� � 2 Ni

l1

� �h i
� � 2 Nm2

l2

� �
� � 2 Nim1

l1l2

� �h i
. . . � 2 Nmn

ln

	 

� � 2 Nim1m2...mn�1

l1l2...ln

� �h i
;

ðD:2Þ

where we were dealing with the logarithmic integrals as in Section 7.3. For the sake of brie-
vity we replaced Nm1...

l1... =df ! Nm1...
l1... in the last two lines of the equation.
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Eq. (D.2) enables us to estimate the distribution function of the amplitudes summed
over the permutations among n electrons and n holes, see Eq. (149). Approximating the
amplitudes obtained by the permutations of the final states to be independent of each
other, cf. Fig. 2020 we find

W q;flig;fmigð Þ� exp iq
X
‘k

P lP m

ð�1ÞP lþP mAf
i P lflkg;P mfmkgð Þ

2666664

3777775
* +

¼
Y

P lP m

~W q;P lflig;P mfmigð Þ;

ðD:3Þ

where we used the standard expression for the characteristic function of sum, we sup-
pressed the ‘k arguments of the amplitude for brevity, and the partial averaging as in
Eq. (D.2) is implied.

ln exp �sd�2
f

X
flkg;fmkg

clðflkg; fmkgÞ
 !* +

¼
Z

dfdq

2psð Þ1=2
e�

q2d2
f

2s

Y2n

k¼1

dnk

df

X
nk¼1

exp nk nk
2

2 cosh nk nk
2T

�W q; f1; 2; . . . ng; fnþ 1; . . . ; 2ngð Þ � 1

n!ð Þ2
: ðD:4Þ

Finally, expanding the last in Eq. (D.4) in powers of |q|, and performing remaining
integrations, we obtain the structure of Eq. (151). Indeed, exponent contains (n!)2

terms itself, so that the factorial factors cancel at all in the leading term. In the next
term product Wðq; flkg; fmkgÞWðq; P lflkg; P mfmkgÞ gives the same volume for the n
integration only for Pl = Pm and impose the additional restrictions otherwise. The fac-
tor of n! is, thus, just a number of permutations electron–hole pairs without their
destruction.
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