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The problem of electron-electron lifetime in a quantum dot is studied beyond perturbation th
by mapping onto the problem of localization in the Fock space. Localized and delocalized reg
are identified, corresponding to quasiparticle spectral peaks of zero and finite width, respect
In the localized regime, quasiparticle states are single-particle-like. In the delocalized regime,
eigenstate is a superposition of states with very different quasiparticle content. The transition ene
ec . Dsgy ln gd1y2, whereD is mean level spacing, andg is the dimensionless conductance. Nearec

there is a broad critical region not described by the golden rule. [S0031-9007(97)02895-0]

PACS numbers: 72.15.Lh, 72.15.Rn, 73.23.–b
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Quasiparticle in a Fermi liquid is not an eigenstate
decays into two quasiparticles and a hole. In an infin
clean system, by using the golden rule (GR), quasipart
decay rate is estimated asgsed , e2yeF , wheree is quasi-
particle energy andeF is Fermi energy [1]. However, in
a finite system the eigenstate spectrum is discrete. In
case, quasiparticles may be viewed as wave packets
structed of such states, the packet width being determ
by the lifetime in an infinite system:de . gsed. In this
paper we attempt to clarify the relation between quasip
ticles and many-particle states, and find that at differ
energies it has different meanings.

Conventionally, quasiparticles are well defined p
vided gsed ø e. However, to resolve quasiparticles in
mesoscopic system, a more stringent condition is requi
gsed , D, the quasiparticle level spacing. As an exa
ple, consider quasiparticle peaks in tunneling conducta
of a quantum dot [2,3]. The peaks observed in nonlin
conductance at certain bias are interpreted as the quas
ticle tunneling density of states (DOS). Each peak co
sponds to a “quasiparticle state,” and its width measu
the lifetime of the state. Below we consider an isola
Fermi liquid, ignoring any contributions to the quasipar
cle decay due to finite escape rate, phonons, etc. [4].

The meaning of quasiparticle lifetime needs clarific
tion: strictly speaking, since a quantum dot is a finite s
tem, any many-particle eigenstate gives rise to an infini
narrow conductance peak. However, we will see that o
a small fraction of those states overlap with one-parti
excitations strongly enough to be detected by a finite se
tivity measurement. Under certain conditions, these str
peaks group into clusters of the width,gsed that can be
interpreted as quasiparticle peaks.

Before discussing possible regimes let us review
GR approach. Recently Sivanet al. [5], adopting the
quasiparticle picture to a finite size geometry and rely
on the earlier work [6] on electron-electron scattering r
in diffusive conductors, found that

gsed ø DseygDd2, e , gD , (1)
0031-9007y97y78(14)y2803(4)$10.00
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whereD is the mean single-particle level spacing near t
Fermi level andg ¿ 1 is the dimensionless conductance
for a finite system defined byg  EcyD, where Ec is
the Thouless energy (inverse time of diffusion through t
system). The decay rate (1) is much larger than in a cle
Fermi liquid; however, ate , Ec one hasgsed ø D,
implying that the quasiparticle states can be resolved.

However, the GR can be used to evaluate lifetime on
when the density of final states is sufficiently large, s
that the GR decay rate is larger than the level spac
of final unperturbed states. Otherwise, the GR will n
give the decay rate, but rather just a first-order perturbat
correction to the energy of a given eigenstate. In o
problem, it is important to realize that, since a quasipartic
decays into three quasiparticles, the density of relev
final states,n3sed  e2y2D3, is much smaller than that of
all many-body states. The interaction matrix elementV
in the GR leading to Eq. (1) is of the order ofDyg (see
below), which should be compared to the three-partic
level spacing1yn3. Therefore, the GR is not applicable
unlesse . ep  D

p
g. Note that, sinceep ¿ D, there

are many states whose lifetime is not given by GR.
At e ø ep, when matrix elements are smaller than th

spacing1yn3, the quasiparticle states do not decay: th
are just slightly perturbed one-particle states. Hence th
produce narrow conductance peaks that may have w
satellites due to coupling to many-particle states. Ase

approachesep from below, the number of the satellite
rapidly increases. Ate ¿ ep, clusters of satellites form
finite width peaks well described by the GR.

For a quantitative description of the interval0 , e ,

Ec (including the vicinity ofep), it is both interesting and
instructive to explore the analogy of this problem with th
Anderson localization. This is the goal of our paper.

Extension of the traditional localization problem to few
interacting particles has received much attention recen
The study of the two-particle case, started by Dorokh
[7], was further advanced by Shepelyansky [8], Im
[9], and Pichardet al. [10], with extensions to more
© 1997 The American Physical Society 2803
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particles. Some of the energy scales encountered be
such asV and 1yn3, have already been discussed in t
context of those papers. In contrast, here we deal w
the states extended throughout the whole finite syst
The localization we consider occurs in the Fock space
many-body states, rather than in the real space.

Distance in Fock space.—This is a concept we intro
duce to measure closeness of many-body states. Con
a generic two-body interaction Hamiltonian in a second
quantized form

H0 1 H1 
X
a

eacy
aca 1

X
abgd

V
ab
gd cy

gc
y
dcbca . (2)

The many-body problem is formulated in the Fock spa
by choosing as a basishCN j—the Slater determinant
constructed out of theN-particle Fermi vacuumjNl,

CN  cy
a2m

· · · cy
am11

cam
· · · ca1 jNl . (3)

Any stateCN can be represented as a string with entrie
and 0 labeling the single-particle states which do or do
participate inCN , respectively. Let us define the distan
between two statesCN andC

0
N as the number of position

in which the corresponding strings differ.
Thus defined, the distance in the Fock space can

used to map the lifetime problem to an appropriate A
derson localization problem. It is useful to think of th
statesCN , the eigenstates ofH0, as “site orbitals” in
the Fock space, each having an on-site energyea2m 1

· · · 1 eam11 1 jeam
j 1 · · · 1 jea1 j. These sites are inter

connected by the interactionH1, which we think of as
hopping in the Anderson problem (the diagonal part
H1 is added toH0 by using the Hartree-Fock method
The point is that the two-body interaction matrix eleme
kCN jH1jC

0
N l is nonzero only if the distance between t

statesCN and C
0
N equals 0, 2, or 4. We construct

network in the Fock space by connecting all orbitalsCN

which are at a distance 2 from each other.
Below we study localization on this network. We sho

that there is a critical energyepp above which the GR
is relevant and the states are extended, whereas at l
energies the states are localized and the GR breaks d
Above the localization threshold (and beyond the criti
region) we recover the GR picture [5] with finite widt
quasiparticle conductance peaks.

The meaning of localization in the Fock space is tha
localized state is practically identical to a single-partic
excitation (or a superposition of very few quasipartic
states). The energy of each of the constituent quasip
cles represents a good quantum number, whereas fo
extended delocalized states only total energy is conser
The transition is of the Anderson type because the tw
body Hamiltonian islocal in the Fock space: it couple
only the orbitals of similar quasiparticle content.

It is worth remarking that the hierarchy of man
particle states proved to be a useful picture in
compound nucleus theory [11]. The “doorway state
introduced in these studies, although they serve a diffe
purpose, are related to our network construction.
2804
w,
e
ith
m.
of

ider
ry

e,

1
ot
e

be
-

f
.
t

e

wer
wn.
al

a
e
e
rti-
the
ed.
o-

-
e
”
nt

Hopping over the network in the Fock space.—The
two-body interaction matrix elements in (2) are given by

V
ab
gd 

ZZ
dx dx0 V sx 2 x0dcp

dsxdcp
gsx0dcbsxdcasx0d .

(4)

To evaluate the matrix elements, let us consider diff
sive disorder and a short range interaction,V sx 2 x0d 
lDV dsx 2 x0d, whereV is the volume, andl ø 1 is the
dimensionless interaction strength. Fora fi b fi g fi d,
V

ab
gd is a random quantity with zero average. The roo

mean-squareV may be evaluated [12], e.g., by using th
diagram shown in Fig. 1(a). In the absence of time rev
sal symmetry we obtain

V  lbd
D2

Ec
; b2

d 
2

p2

X
mfi0

g
2
1

g2
m

, (5)

wheregm are eigenvalues of the diffusion operator. (B
definition, Ec  g1.) In deriving (5) we assume smal
single-particle energies:easb,g,dd # Ec. The magnitude
of V decreases algebraically when the differences betw
the single-particle energies exceedEc; below we shall
ignore such contributions.

The network in the Fock space organizes all states
a hierarchy. LetjN 2 1l be the ground state ofN 2 1
particles. The statesYa  cy

ajN 2 1l representing one
particle added in the statea form the first generation
of the hierarchy [see Fig. 1(b)]. The statesY

ab
g 

cy
ac

y
bcgjN 2 1l, representing two particles and one hol

form the generation 3. Similarly, the generation 5
formed byY

abg
lm  cy

ac
y
bcy

gclcmjN 2 1l, etc. The two-
body interactionH1 couples only the states of nea
generations, so that any given state from generation2n 2

1 is connected only to states from generations2n 1 1,
2n 2 1, or 2n 2 3. This implies that connected state
are a distance 2 from each other.

Consider now a state of generation 1, with an o
site energye. The DOS in generation 3 accessible b
“hopping,” having the same energy, isn3sed  e2y2D3.

FIG. 1. (a) The diagrams used for evaluating the mean squ
value of the matrix element in Eq. (4). (b) Schematic represe
tation of the Cayley tree in the Fock space of many-body stat
Different generations are shown.
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For higher-order generations the DOS rapidly increas
for thes2n 1 1dst generation (wheren , nmax ø

p
eyD)

it goes asseyDd2nys2nd!. However, we should focus
only on those states of generations2n 1 1d which are
directly accessiblefrom agivenstate of generations2n 2

1d. The density of such states is much smaller, a
is given by n2n11  n3yn. We note that from a state
in the generations2n 2 1d it is also possible to hop
to some states of the same generation, and to so
states of the previous generations2n 2 3d. Respectively,
DOS associated with these processes is

p
n3yD and

nsn 2 1d s2n 2 3dyD. For n ø nmax the number of
such hopping processes is parametrically smaller than
number of states in the next generation accessible
hopping. We thus obtain a picture which is quite clos
to that of a Cayley tree: each “site” of thes2n 2 1dst
generation branches out toKn sites of the next generation
(The number of couplings to the sites of the same or
the previous generations is much smaller, and thus c
be ignored [13].) The branching number is given b
integrating the effective DOS over the energy intervalEc

where the hopping parameterV is energy independent.
We obtain the branching number

Kn ø g3y6n . (6)

DecreasingKn with increasing n makes the network
effectively finite. To simplify the discussion, below we
consider aninfinite Cayley treewith constant branching
numberK  K1  g3y6. Taking into account the finite
size of the tree andn dependence of the branching numb
will be discussed elsewhere.

The model we are interested in was solved by Abo
Chacra, Anderson, and Thouless [14]. They conside
localization on a Cayley tree with the on-site energi
from a uniform distribution in the intervalf2W , W g, and
constant hopping amplitudeV . By studying fix points
of the mapping of self-energies computed recursive
using the hierarchy of the Cayley tree, it was found th
delocalization occurs at

Zc . K ln K, Z ; WyV , (7)
whereK is the tree branching number.

In our caseK ¿ 1, and thus it is important to under-
stand the origin of lnK which distinguishes Eq. (7) from
the original Anderson estimation,Zc . K [15]. Below
we rederive Eq. (7) in a way that displays the structure
states close to the transition and, in addition, clarifies t
origin of lnK . For that, we consider the statistics of res
nances appearing due to hopping between the tree s
Starting at a site of the first generation having energye,
the amplitude of hopping to a given site of thes2n 1 1dst
generation, in lowest order inV , is given by

An 
nY

i1

V
e 2 ei

. (8)

To find the distribution ofAn, we write lnsZnjAnjd Pn
i1 yi , whereyi  lnsWyje 2 eijd. Assuming that the

relevant on-site energies are uniformly distributed in t
s:
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interval 2W # e 2 ei # W , the probability distribution
of yi is P̃syid  exps2yid where 0 # yi , `. Fourier
transformingP̃, taking thenth power and Fourier trans-
forming back, we obtain the distribution function o
ln jZnAnj, and then ofjAnj,

PsjAnjd 
flnsjAnjZndgn21

Znsn 2 1d! jAnj2
, Z2n , jAnj . (9)

The typical value ofAn is of the order ofZ2n, but we
are interested in the rare resonance events whenen is very
close toe, and thusAn is of the order of one. Let us
consider the probabilitypsn, Cd that jAnj exceeds given
finite C, whereZ2n ø C , 1. From Eq. (9) we obtain
psn, Cd 

R1
C dA PsAd, where atC , 1 the integration

converges on the upper limit (which thus can be replac
by infinity),

psn, Cd ø
1

sn 2 1d!
1

C lnsCZnd
fZ21 lnsCZndgn. (10)

The probability thatnoneof the Kn trajectories connect-
ing a site in the first generation to sites in the generati
s2n 1 1d carries a large amplitude is given by

f1 2 psn, CdgKn

; exps2fnd , (11)

where forpsn, Cd ø 1, fn ø Knpsn, Cd. From Eq. (10)
for n ¿ 1 one obtains

fn ø
Ke

p
2pn CZ

∑
Ke
Z

sln Z 1 ln Cynd
∏n21

. (12)

If fn increases at largen, then at higher generations on
gets fn ¿ 1, i.e., strong coupling to generation 1. Th
localization transition takes place when the expression
the square brackets in Eq. (12) reaches unity, which giv
the criterion (7).

It is interesting that in the delocalized phase the sta
arenot ergodic,i.e., they are not extended uniformly ove
the whole tree. A typical state occupies an infinite rando
subtree, formed by a small fraction of sites of the Cayle
tree. At largeK , one can distinguish two delocalized
regimes with qualitatively different structure of states
(i) K ø Z ø K ln K and (ii) Z ø K .

In the case (i) the resonances are typically formed on
between distant generations: the probabilitye2f1 to form
a resonance with the nearest generation is small. T
characteristic ordern0 of the generation where the firs
resonance appears can be estimated from the condition

sKe ln ZyZdn0 . Z
p

n0yK , (13)

which means thatn0 ! ` asZ ! Zc. Resonances in the
nearest generation appear only atZ . K.

In the case (ii), for each site there are aboutKyZ
resonances in the nearest generation, which means
the effective branching number of an eigenstate subtree
,KyZ. This is much less than the branching numberK
of the whole tree; i.e., typical eigenstates do not overla
Thus, in this regime the states are extended but still n
ergodic. Only whenV . W , andZ . 1, the ergodicity is
restored.
2805
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One may think of the regime (i) as representing
unusually extended crossover region of the transition
Z  Zc. Nonergodicity of extended states on the Cayl
tree leads to a number of consequences. For exam
the states which contribute to the local spectral dens
evaluated for a particular site, are an infinitesimal fracti
of all states on the tree. Also, spectral statistics stron
differ from Wigner-Dyson for allZ ¿ 1.

To translate these results to our problem, we p
the quasiparticle energye, and approximate the densit
of states in the generations2n 1 1d accessible from a
state of the generations2n 2 1d, by a constantn3sed.
The values ofV and K are given by Eqs. (5) and (6)
respectively, andKyW  n3sed. We then find that the
transition (7) occurs at the energy

epp ø slbdd21y2
q

DEcy ln g . (14)

At energies belowepp we get localization in Fock space
In the delocalized phase, the transition between the ab
regimes (i) and (ii) occurs at the energy

ep  slbdd21y2
p

DEc . (15)

Let us discuss the meaning of the various regimes
terms of tunneling DOS. A mathematical description
a single-particle injection into a dot involves projecting
single-particle state onto exact eigenstates of the sys
In the localized phase (e , epp) different generations
are weakly connected, and thus at such energies
exact many-body states are close to Slater determin
constructed out of exact single-particle states. Hen
each single-particle state will have a significant overl
with only one (or few) exact eigenstates, producing a f
resolvedd-function peaks in the single-particle DOS.

At e . ep all generations are well connected. Becau
of the huge density of multiparticle states, the states
generation 1 can be thought of as being effectively w
coupled to the continuum. This justifies the GR resu
Eq. (1), in this energy range [9]. Each single-partic
peak associated with generation 1 is replaced by a clu
of a large number of many-particle peaks, altogeth
forming a Lorentzian envelope. Fore , Ec, the width
of the envelope is less thanD, and thus the “quasiparticle
states” can be resolved in, e.g., transport measurem
[5]. We stress that even in this delocalized regime
many-particle states are not ergodic (since ate , Ec one
hasZ . 1), and therefore the many-particle spectrum
not truly chaotic in the Wigner-Dyson sense (also, s
[16]). This should be contrasted with the single-partic
states which are chaotic at all energies.

Finally, for intermediate energiesepp , e , ep the
peaks in the DOS are non-Lorentzian. The peak wid
are much smaller than the GR widths because they
determined by couplings between very distant generati
on the Cayley tree [see Eq. (13)]. The probability tha
particular generation is represented in a given cluste
small. As a result, the widths of the DOS peaks as wel
2806
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the shapes of their envelopes will strongly fluctuate fro
peak to peak.
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