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The problem of electron-electron lifetime in a quantum dot is studied beyond perturbation theory
by mapping onto the problem of localization in the Fock space. Localized and delocalized regimes
are identified, corresponding to quasiparticle spectral peaks of zero and finite width, respectively.
In the localized regime, quasiparticle states are single-particle-like. In the delocalized regime, each
eigenstate is a superposition of states with very different quasiparticle content. The transition energy is
e. = A(g/Ing)'/2, whereA is mean level spacing, anglis the dimensionless conductance. Near
there is a broad critical region not described by the golden rule. [S0031-9007(97)02895-0]

PACS numbers: 72.15.Lh, 72.15.Rn, 73.23.-b

Quasiparticle in a Fermi liquid is not an eigenstate: itwhereA is the mean single-particle level spacing near the
decays into two quasiparticles and a hole. In an infiniteFermi level andg > 1 is the dimensionless conductance,
clean system, by using the golden rule (GR), quasiparticléor a finite system defined by = E./A, whereE. is
decay rate is estimated @age) ~ €2/er, wheree is quasi-  the Thouless energy (inverse time of diffusion through the
particle energy andr is Fermi energy [1]. However, in system). The decay rate (1) is much larger than in a clean
a finite system the eigenstate spectrum is discrete. In thiSsermi liquid; however, ate < E. one hasy(e) < A,
case, quasiparticles may be viewed as wave packets complying that the quasiparticle states can be resolved.
structed of such states, the packet width being determined However, the GR can be used to evaluate lifetime only
by the lifetime in an infinite systemie = y(e). Inthis when the density of final states is sufficiently large, so
paper we attempt to clarify the relation between quasiparthat the GR decay rate is larger than the level spacing
ticles and many-particle states, and find that at differenof final unperturbed states. Otherwise, the GR will not
energies it has different meanings. give the decay rate, but rather just a first-order perturbation

Conventionally, quasiparticles are well defined pro-correction to the energy of a given eigenstate. In our
vided y(e) < €. However, to resolve quasiparticles in a problem, it is important to realize that, since a quasiparticle
mesoscopic system, a more stringent condition is requiredlecays into three quasiparticles, the density of relevant
y(e) < A, the quasiparticle level spacing. As an exam-final statesys(e) = €%/2A3, is much smaller than that of
ple, consider quasiparticle peaks in tunneling conductancall many-body states. The interaction matrix elemegnt
of a quantum dot [2,3]. The peaks observed in nonlineain the GR leading to Eqg. (1) is of the order Af/g (see
conductance at certain bias are interpreted as the quasip#elow), which should be compared to the three-particle
ticle tunneling density of states (DOS). Each peak correlevel spacingl/v;. Therefore, the GR is not applicable
sponds to a “quasiparticle state,” and its width measureanlesse > €* = A /g. Note that, sincee™ > A, there
the lifetime of the state. Below we consider an isolatedare many states whose lifetime is not given by GR.

Fermi liquid, ignoring any contributions to the quasiparti- At € < €*, when matrix elements are smaller than the
cle decay due to finite escape rate, phonons, etc. [4].  spacingl/vs, the quasiparticle states do not decay: they

The meaning of quasiparticle lifetime needs clarifica-are just slightly perturbed one-particle states. Hence they
tion: strictly speaking, since a quantum dot is a finite sysproduce narrow conductance peaks that may have weak
tem, any many-particle eigenstate gives rise to an infinitelygatellites due to coupling to many-particle states. éAs
narrow conductance peak. However, we will see that onlapproaches™ from below, the number of the satellites
a small fraction of those states overlap with one-particleapidly increases. At > €*, clusters of satellites form
excitations strongly enough to be detected by a finite sensfinite width peaks well described by the GR.
tivity measurement. Under certain conditions, these strong For a quantitative description of the inten@l< ¢ <
peaks group into clusters of the widthy(e) that can be E. (including the vicinity ofe™), it is both interesting and

interpreted as quasiparticle peaks. instructive to explore the analogy of this problem with the
Before discussing possible regimes let us review thé\nderson localization. This is the goal of our paper.
GR approach. Recently Sivaet al.[5], adopting the Extension of the traditional localization problem to few

guasiparticle picture to a finite size geometry and relyingnteracting particles has received much attention recently.

on the earlier work [6] on electron-electron scattering rateThe study of the two-particle case, started by Dorokhov

in diffusive conductors, found that [7], was further advanced by Shepelyansky [8], Imry
y(e) = A(e/gA)>?, € < gA, (1) [9], and Pichardet al.[10], with extensions to more
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particles. Some of the energy scales encountered below, Hopping over the network in the Fock spae€The
such asV and1/v;, have already been discussed in thetwo-body interaction matrix elements in (2) are given by
context of those papers. In contrast, here we deal with . .
the states extended throughout the whole finite systemVys = ]]dx dx"V(x — X" (), (X )pg (x)ha (x) .
The localization we consider occurs in the Fock space of (4)
many-body states, rather than in the real space.

Distance in Fock space-This is a concept we intro- To evaluate the matrix elements, let us consider diffu-
duce to measure closeness of many-body states. Considiéve disorder and a short range interactidity — x') =
a generic two-body interaction Hamiltonian in a secondary!A V 6(x — x'), where'V is the volume, and = 1is the

quantized form dinlgensionlessinteraction strength. o= B # v #+ &,
a . . .
Ho+H, =S e.cte. + vt o 0 V,s is a random quantity with zero average. The root-
0 ! % “rare aﬁzy:(s vo CyCocpCa- (2) mean-squaré may be evaluated [12], e.g., by using the

The many-body problem is formulated in the Fock Spacegliagram shown in Fig. 1(a). Inthe absence of time rever-

by choosing as a basi&Vy}—the Slater determinants S&l Symmetry we obtain

A . 2
constructed out of th&/-particle Fermi vacuuniv), V = Aby A_z b2 — 2 Y1 5)
- ) d 2 2
’\PN = Cllm T Clwrlcallz e Ca] |N> ° (3) EC & m#0 y;n

Any state¥, can be represented as a string with entries Wherey,, are eigenvalues of the diffusion operator. (By
and 0 labeling the single-particle states which do or do notlefinition, E. = v,.) In deriving (5) we assume small
participate inWy, respectively. Let us define the distancesingle-particle energies,s,,.5) = E.. The magnitude
between two statedy and¥) as the number of positions of V decreases algebraically when the differences between
in which the corresponding strings differ. the single-particle energies exceéd; below we shall
Thus defined, the distance in the Fock space can hignore such contributions.

used to map the lifetime problem to an appropriate An- The network in the Fock space organizes all states in
derson localization problem. It is useful to think of the a hierarchy. Le{N — 1) be the ground state af — 1
statesWy, the eigenstates ofH,, as “site orbitals” in particles. The state¥® = c}|N — 1) representing one
the Fock space, each having an on-site energy +  particle added in the state form the first generation
c+ + €a,, T l€q,| + - + |€q,|. These sites areinter- of the hierarchy [see Fig. 1(b)]. The statas,” =
connected by the interactioft{;, which we think of as CZC;CHN — 1), representing two particles and one hole,
hopping in the Anderson problem (the diagonal part Ofform the generation 3. Similarly, the generation 5 is
His added toFH, by using the Hartree-Fock method). ¢ g by Y57 = cTc[JﬂcTc,\c IN = 1), etc. The two-
The point is that the two-body interaction matrix element . " arpry A

Iy : : body interaction H, couples only the states of near
(Uy|H, | ¥y ) is nonzero only if the distance between the . . :

generations, so that any given state from gener&tion-

/!
statesWy and Wy equals 0, 2, or 4. We construct a 1 is connected only to states from generati@as+ 1,

network in the Fock space by connecting all orbitdls - B T
which are at a distance 2 from each other. 2n — 1, or 2n — 3. This implies that connected states
are a distance 2 from each other.

Below we study localization on this network. We show Consider now a state of generation 1. with an on-
that there is a critical energy* above which the GR . oryg . ' .
is relevant and the states are extended, whereas at low it energye. .The DOS in generation 3 aicc%ssmge by
energies the states are localized and the GR breaks dow! oppIng, having the same energy, is(e) = €*/24°.
Above the localization threshold (and beyond the critical

region) we recover the GR picture [5] with finite width ) €1
quasiparticle conductance peaks. ‘m
The meaning of localization in the Fock space is that a -
localized state is practically identical to a single-particle
excitation (or a superposition of very few quasiparticle
states). The energy of each of the constituent quasiparti—b)
cles represents a good quantum number, whereas for the
extended delocalized states only total energy is conserved.
The transition is of the Anderson type because the two-
body Hamiltonian islocal in the Fock space: it couples 5
only the orbitals of similar quasiparticle content.
It is worth remarking that the hierarchy of many- Ks

particle states proved to be a useful picture in theFlG 1

u N (a) The diagrams used for evaluating the mean square
compound nucleus theory [11]. The “doorway states value of the matrix element in Eq. (4). (b) Schematic represen-

introduced in these studies, although they serve a differertion of the Cayley tree in the Fock space of many-body states.
purpose, are related to our network construction. Different generations are shown.
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For higher-order generations the DOS rapidly increasesnterval —W = ¢ — ¢; = W, the probability distribution
for the(2n + 1)st generation (where < np. = Je/A)  of y; is P(y;) = exp(—y;) where0 < y; < «. Fourier
it goes as(e/A)*"/(2n)!. However, we should focus transformingP, taking thenth power and Fourier trans-
only on those states of generati¢®n + 1) which are forming back, we obtain the distribution function of

directly accessiblérom agivenstate of generatio®» —  In|Z"A,|, and then ofA,|,
1). The density of such states is much smaller, and [In(l4,1z") ]! o
is given by vy,+1 = v3/n. We note that from a state P(lAn]) = Zn(n — DA, 12" Z7" <Al (9)

in the generation(2n — 1) it is also possible to hop . . .
to some states of the same generation, and to somg‘Ie typical value of4, is of the order ofz™", but we

states of the previous generatitn — 3). Respectively, are interested in the rare resonance events whénvery

DOS associated with these processes./igs/A and close toe, and thusa, is of the order of one. Let us
n(n — 1)(2n — 3)/A. FOr n < nyy the number of qqnsuder the proPab|I|ty7(n,C) that |A,,| exceeds given
such hopping processes is parametrically smaller than thfénlte C, whereZ™ « € < 1. From Eg. (9) we obtain

1 . .
number of states in the next generation accessible bfj("»C) = Jc dAP(A), where atC < 1 the integration
hopping. We thus obtain a picture which is quite close®©NVerges on the upper limit (which thus can be replaced

to that of a Cayley tree: each “site” of then — )st  PY infinity),
generation branches out K, sites of the next generation. p(n,C) = 1 1 [z 'In(CZ")]". (10)
(The number of couplings to the sites of the same or of (n — 1! C In(CZ")

the previous generations is much smaller, and thus caphe probability thanoneof the K" trajectories connect-
be ignored [13].) The branching number is given bying a site in the first generation to sites in the generation

integrating the effective DOS over the energy intertal (2, + 1) carries a large amplitude is given by
where the hopping parametét is energy independent.

We obtain the branching number [1 = p(n, O = exp(—fn). (11)
K, ~g’/6n. (6)  whereforp(n,C) < 1, f, = K"p(n,C). From Eq. (10)

DecreasingK, with increasingn makes the network forn > 1 one obtains

effectively finite. To simplify the discussion, below we Ke

Ke n—1
consider annfinite Cayley treewith constant branching fn = an CZ [7 InZ +In C/”)} - (12

numberkK = K; = g3/6. Taking into account the finite

size of the tree and dependence of the branching numberIf fn InCreases at large, then at higher generations one
getsf, > 1, i.e., strong coupling to generation 1. The

will be discussed elsewhere. localization transition takes place when the expression in
The model we are interested in was solved by Abou- P P

Chacra, Anderson, and Thouless [14]. They considereme square brackets in Eq. (12) reaches unity, which gives

T ; ) ._the criterion (7).
localization on a Cayley tree with the on-site energies ", . . . .
from a uniform distribution in the intervdl—Ww, w1, and It is interesting that in the delocalized phase the states

constant hopping amplitud€. By studying fix points arenot ergodic,i.e., they are not extended uniformly over

of the mapping of self-energies computed recursivel)}he whole tree. A typical state occupies an infinite random

using the hierarchy of the Cayley tree, it was found tha ubtree, formed by a small fl’z’.:lCI.ZiOH 9f sites of the ngley
delocalization occurs at ' ree. At largek, one can distinguish two delocalized

regimes with qualitatively different structure of states:
Ze=KInK, Z=W/V, (M )k < Z < KInk and (i) Z < K.
whereK is the tree branching number. In the case (i) the resonances are typically formed only
In our casek > 1, and thus it is important to under- petween distant generations: the probabitity to form
stand the origin of Ik’ which distinguishes Eq. (7) from 3 resonance with the nearest generation is small. The
the original Anderson estimatior,, = K [15]. Below  characteristic orden, of the generation where the first

we rederive Eq. (7) in a way that displays the structure ofesonance appears can be estimated from the condition
states close to the transition and, in addition, clarifies the

origin of InK. For that, we consider the statistics of reso- (KeInZ/Z)" = Z/no/K, (13)
nances appearing due to hopping between the tree sit@ghich means that, — © asZ — Z.. Resonances in the
Starting at a site of the first generation having ene¢gy nearest generation appear onlyZat= K.

the amplitude of hopping to a given site of t + 1)st In the case (i), for each site there are abdutZ
generation, in lowest order i1, is given by resonances in the nearest generation, which means that
1 %4 the effective branching number of an eigenstate subtree is
An = l_[ € — ¢ (8) ~K/Z. This is much less than the branching numker

=l of the whole tree; i.e., typical eigenstates do not overlap.

To find the distribution ofA,, we write InZ"|A,|) = Thus, in this regime the states are extended but still not
> yi, wherey; = In(W/le — €;]). Assuming thatthe ergodic. Only wherV = W, andZ = 1, the ergodicity is
relevant on-site energies are uniformly distributed in therestored.
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One may think of the regime (i) as representing anthe shapes of their envelopes will strongly fluctuate from
unusually extended crossover region of the transition gbeak to peak.
Z = Z.. Nonergodicity of extended states on the Cayley We acknowledge useful discussions with H. Fesh-
tree leads to a number of consequences. For examplbach, Y. Imry, V.E. Kravtsov, S. Levit, J.L. Pichard,
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differ from Wigner-Dyson for alz > 1. Sciences and Humanities, and the German-Israel Founda-
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the quasiparticle energy, and approximate the density the MRSEC Program of the National Science Foundation
of states in the generatiof2n + 1) accessible from a under No. DMR 94-00334.
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