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We examine the effects of the electron-electron interaction on the Anderson transition. It is shown that

the dimensionality of the system and the range of the interaction are crucial in determining the decay

properties of a single-particle citation. For a long-range interaction we find that the appropriate one-electron

excitations, when localized, decay via a (e —p,)""law where (a —p,) is the energy above the Fermi energy

and d is the dimensionality. At finite temperatures this becomes a T" +' law. The single-particle excitations

are bound for short-range forces. The conditions for the persistence of the Anderson transition are presented

in terms of the nature of the "m-basis" (that in which the Green's function is diagonal) and the

convergence of a series for the renormalized self-energy.

I. INTRODUCTION

Since 1958, when the concept of localization was
first introduced by Anderson, ' there has been an

increasing amount of interest in the field. Ap-

plications of the concepts that have grown out of
the problem, such as the mobility edge, have been
used to explain the behavior of a variety of sys-
tems. ' This has been made possible by a gradual
increase in the understanding of the features of
the solution to the problem rather than the exis-
tence of a complete solution. In fact, the problem
has never been solved in detail.

The most prominent apparent success of the
application of the theory of localization is in ex-
plaining the low-temperature conductivity of cer-
tain materials; most notable of these is the in-
version layer. Variable range hopping has been
observed at low temperatures with an activated
conductivity at higher temperatures. ~ 4 This is
in accordance with the one-electron localization
picture. The same sort of behavior has been
observed in three dimensions. 2'5' Qn the other
hand, the results of measurements of the Hall
effect' are not well understood. The general state
of the art has been reviewed by Mott et al. and
more recently by Adkins.

Both the successes and failures of the one-elec-
tron theory suggest that the problem be examined
further. In particular, in this paper, we will look
at some of the effects of electron-electron inter-
actions in such a system. Since the localization
problem itself is as yet unsolved, one should not
expect exact answers for the many-body (Fermi
glass) problem. However, by using what we do
know about the localization problem, we can im-
prove our understanding of the effects of inter-
actions.

As in the case of the Fermi liquid, the succes-

ses of the one-electron picture suggest that we
develop a theory of elementary excitations. The
possibility that the same physical laws that make
this possible for the liquid —the exclusion princi-
ple —might result in the same sort of situation in
the glass was first suggested in 1970.' However,
the lack of symmetry in a glass makes the situa-
tion quite different. Perhaps the least of the
complications is that we do not know the solutions
to the noninteracting problem. For even if we
did, it is not at all clear that this is the appro-
priate place to start. %e will see that the Fermi
glass is by no means "normal" in the sense of the
Fermi liquid.

As first argued by Landau, the symmetry of the
Fermi liquid leads to a one to one, noncrossing
correspondence between the noninteracting and in-
teracting states. Even in a metal, where the

symmetry is that of the crystal, this is not neces-
sarily the case. As pointed out by Kohn and

Luttinger, ' the levels may cross and the Fermi
surface distorts. The same sort of anomalous
diagrams may occur in the glass and lead to
mixing so the eigenstates of Ho with energies
below the Fermi energy need not be the correct
starting point. Although we will have occasion
to return to this point later, we will, for the most
part, simply assume that we can self-consistently
determine which states to start from and suppose
that they are all localized.

Given this we can then see" that the lack of
momentum conservation leads to single-particle
decays that may lead to a finite decay rate at the
final Fermi energy. Aside from apparently des-
troying the quasiparticle picture it would seem that
the system can never support a localized pertur-
bation. Since Anderson insulators do seem to
occur in nature, this cannot be the final story.
In Ref. 11, it was shown how one may eliminate
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the single-particle decays by simultaneously
diagonalizing the noninteracting Hamiltonian and
the irreducible self-energy at the Fermi energy.
We will refer to this basis as the "m basis. "
These states are long lived near the Fermi
energy. Whether the system is insulating or not
depends, among other things, on whether they are
localized or extended.

All of this assumes, as in previous work, " '

that these excitations do, in fact, decay. In this
paper we will investigate the question more care-
fully. It will be shown, in perturbation theory,
that the single-particle terms vanish, and that
the many-particle decay modes that remain are
only open for long-range forces. For short-
range forces, there is no decay as long as the
appropriate states are localized. When the
forces are long range one must calculate the rate.
The phase space restrictions alone will give an
(& —p)' or T' contribution. However, the matrix
element will give an additional contribution thai
will lead to a T' law. If we think of the Fermi
glass as an energy reservoir for a localized ex-
citation it is not surprising that a T' law will
be obtained just as with phonon-assisted hopping.
The characteristic temperature (T, in o = o, e 'ro ~r'

)
-(T /&)~/4

should be similar in the two cases since it should
depend on the decay paths for the excitation.
These depend primarily on the nature of the non-
interacting system although differences may occur
due to the many electrons on the path. The pre-
exponent 00 should differ since it is a measure
of the rate at which energy can be exchanged
with the reservoir and may differ for electron-
phonon and electron-electron coupling.

There is another, more physically obvious,
problem that is hidden, or concisely included,
depending on your point of view, by the m basis.
It is the role of spin. The noninteracting system
has all of its spins paired and has a Pauli sus-
ceptibility. The interacting system will have a
large intrastate repulsion that leads to unpaired
spins and a Curie susceptibility. When the intra-
state repulsion is larger than the bandwidth we
may merely ignore spin and allow only one elec-
tron per state. When this is not the case we
must include the effects such as the screening of
deep traps by the first electron and the resulting
question of delocalization in the upper Hubbard
band. While, in principle, this is contained in
the m-basis approach, in practice the effective
Hamiltonian must be calculated in perturbation
theory. Although there should be no divergences
in going from a paired to an unpaired spin sys-
tem (ignoring the possibility of a metal insulator
or magnetic transition), a few terms will not
suffice. In the spirit of the Landau theory, one

expects the form of the physical quantity to be
unchanged except for certain renormalizations,
the Landau parameters. This is not the case
here, and we would at least expect to be forced
to sum an entire class of terms to obtain the
correct behavior. So while the m basis is a clean
formulation and allows one to make intuitive state-
ments, a physical understanding of the problem is
essential.

The outline of this paper will be as follows:
The next section will be devoted to a brief review
of some of the essential features of the localiza-
tion problem. In Sec. III we will define the re-
normalized self-energy [S (&u)] used in Ref. 11,
and discuss the problems associated in dealing
with nontranslationally invariant systems. In
Sec. IV we will examine the case of spinless fer-
mions. Such a description is relevant for sys-
tems where the intrastate repulsion is larger
than the bandwidth and there is a nonintegral num-
ber of electrons per site. The doubly occupied
states are irrelevant at low temperatures and the
particles obey a double exclusion principle. With
this assumption we analyze the simplest contribu-
tions to the imaginary part of S,(ur) and show that
the single-particle decay modes are closed and, at
most, contribute poles to the spectrum. It is then
possible, ignoring crossing, to continue with the
eigenstates of Ho. We will do so to make the in-
vestigation of range more physical. If the inter-
particle force is short range, we will see that the
many-particle decays are of a similar nature and,
therefore, that the spectrum consists of bound
states. The "reservoir" cannot effectively ex-
change energy with the excitation and the low-
temperature conductivity should then be due to
phonons.

For long-range interactions the many-particle
terms form a continuum which makes the single-
particle modes irrelevant. In the latter case, one
must estimate the decay rate of localized excita-
tions and examine their effect on the conductivity.
We will. show that the decay rate is small near the
Fermi energy, which leads to quasiparticles, and
that a T' law for the conductivity is obtained.
This will be done in Sec. V.

In Sec. VI we will examine the role of spin for
finite (C bandwidth) repulsion. It will be seen
that, if the system is still insulating, the form of
our previous results is still valid.

As in the localization problem, the overall
validity of our conclusions is based on the con-
vergence of the series for S (u). We will see,
in Sec. VII, that this divergence, for some fre-
quency, may renormalize the activation tempera-
ture. While in principle this is similar to the
noninteracting problem, we will not attempt to
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analyze it since the single-particle mobility edge
problem has yet to be solved. We will then return
to the m basis where we can make plausible the
existence of Anderson insulators.

II. THE LOCALIZATION PROBLEM

In this section we will review some of the essen-
tial results of the localization problem. We will
use these results as a basis for an investigation of
the Fermi glass.

One of the most important features of a disor-
dered system is the existence of a mobility
edge"" (see Fig. 1). This is the energy which
divides the metallic from the insulating states.
When the Fermi energy lies in the former region,
the system has a finite dc conductivity at zero
temperature. In the latter region this quantity
would vanish.

The difference in the nature of the states them-
selves is that they are either extended or lo-
calized. Extended states are basically multiply
scattered plane waves that occupy a finite frac-
tion of the material. In this region the self-energy
is such that the Green's function has a cut line on
the real axis; the states are continuumlike and
conduct. In the insulating region the states are
localized. They are of finite extent and corres-
pond to a region of poles (bound states) on the real
axis. We see that these states cannot coexist
in the same region. The bound states would sim-
ply decay into the continuum.

We expect to find localized states in the band
tails, or pseudogaps (regions of low density of
states) of samples. States in the band edges rely
heavily on coherent scattering to achieve ener-
gies that are much different from the original
atomic energy levels. We expect these to be the
first to lose their ability to tunnel resonantly in
the presence of disorder. Therefore these are
the first to become localized. The same conclu-
sion is reached by considering the randomness
first. Then the density of states is the probability
distribution of site energies. States in the tail
find fewer states of the correct energy to tunnel
to. Consequently, they are more likely to remain

' v(E)

FIG. 1. The density of states as a function of energy.
The shaded region represents localized states and Ec is
the position of the mobility edge.

localized than those in the center of the distribu-
tion.

We will label the eigenstates of the localization
problem by the symbol

~

o.). Because of the lack
of symmetry we know that n will consist of the
particle's energy &' and spin. Further, we do
not expect the states to be degenerate, except for
accidental occurrences of vanishing probability.

It will prove necessary to assume a form for
the localized wave functions. We shall write

(x
~
n) = t},(x) = Q (X)e "~ ~ ' '~ ~ . (2.1)

The function Q (g} is an oscillatory, incoherent
function which may be chosen to be real. The
envelope is characterized by the localization
length X '. This quantity is expected to be a
regular function of the energy; A. should approach
zero near the mobility edge and become larger
as the energy is moved to the center of the lo-
calized regime. The envelope is centered at the
point 7 .

As the Fermi energy moves from below to
above the mobility edge, the conductivity at zero
temperature changes from zero to some finite
value. This is the Anderson (metal-insulator)
transition. What is more important from an ex-
perimental point of view is the low-temperature
behavior of the conductivity. Suppose the Fermi
energy p, is below the mobility edge E,. At low
temperatures (~ g —E,

~

» T) there are very few
electrons above E,. The dominant contribution
to the conductivity is due to phonon-induced hop-
ping. The conductivity is proportional to the rate
at which an electron added to the system leaves
the localized state it was created in. This rate
should be proportional to the overlap of the two
states involved in the transition (-e ' "& "~') and
the probability of there being a phonon of the cor-

-e(~0 -~0,)rect energy (e ~"~ '~'). It is statistically un-
likely that two states of similar energies will be
close together. On the other hand, the probability,
at low T, of having a phonon of an energy high
enough to scatter the electron to a neighboring
site is small. As a consequence there will be an
optimal, temperature-dependent distance to hop.
This leads to the phenomenon of variable-range
hopping. "' The characteristic form of the con-
ductivity is

o g e (Q/&)

where d is the dimensionality. (It has been ar-
gued that for d = 1 a "T" law is obtained. ") This
behavior has been observed and attributed to lo-
calized wave functions in a variety of two- and
three-dimensional samples.

At higher temperatures, excitation to the mo-
bility edge will become important. Conduction
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will be dominated by the population of mobile
states. The conductivity should then have the
form6

(2.3)

and V(x, —x,) is some translationally invariant
interaction between the particles.

In order to investigate the single-particle pro-
perties of the glass we use the Green's function
which is defined by

This behavior has also been observed. It is also
possible to obtain this sort of behavior in a sys-
tem without a mobility edge or before activation
takes place. This would be the Miller-Abrahams'
regime. In this case (p —E,

(
should be replaced

by a nearest-neighbor energy difference which
should be of the order of the bandwidth. The pre-
exponent will also differ.

As mentioned previously, several experiments
have shown an anomalous Hall effect: the Hall
constant corresponds to the participation of all
the carriers and the Hall mobility is activated.
It is often argued that in a normal Hall effect,
predicted by the single-electron mobility-edge
model, only those carriers not trapped below E,
will contribute to the Hall constant (the predicted
Hall effect due to hopping" has not been observed)
and that the Hall mobility should be essentially
temperature independent.

It is not clear to us that a simple free-electron
mobility-edge model is the correct way to apply
the localization picture. We will briefly specu-
late on this later. For the most part, however,
we will concern ourselves with the low-tempera-
ture-hopping regime.

H=Hp+ U, (3 I)

where Hp is the noninteracting Hamiltonian whose
eigenstates

( a) are assumed to have the charac-
teristics discussed in the previous section. The
term U represents the interaction between parti-
cles. In the basis states of H, we may write

t 0+& I t t ypH = C~Celo P g
Co Co ~ oio2 3I Ce C~3

a a~to2

where
a3fo4 (3 2)

U = d7& dX2$ X&)g X~)

x V(x, —xq)(t(, (xq)(t, (xq) i

(3.3)

III. THE FERMI GLASS AND OTHER NONLIQUIDS

In this section we will prepare to examine some
of the single-particle properties of the Fermi
glass. While the discussion is in terms of a par-
ticular model, it is actually quite general and can
be applied to any nontranslationally invariant sys-
tem where the interactions are treated as a per-
turbation.

The Hamiltonian will be written in two parts,

tG .(t) =(4', (Tc (t)c~,(0)((IO). (3.4)

In the Fermi liquid, translational invariance
allows E(I. (3.4) to be put in an algebraic form.
Together with the relation analogous to (3.5), we
can solve for the Green's function in terms of the
self-energy. This allows us, in principle (given
Z) to find the poles and the decay rate. This is
not the case in the Fermi glass, nor in other non-
liquids where 6 and Z are not diagonal. However,
we can show that G, ((d) may be written in the
form

Gmc(((d) = ((d &e —So(~)] (3 6)

where S ((d), the "renormalized" self-energy is
given by

S ((d) =Z ((d)

+ Z ((c)GO ((d)Z, ((d) + ~ ~ ~ .
o ~e1

(3 7)

The proof of this statement is an exercise in alge-
bra. However, it does have a simple interpreta-
tion.

Suppose we ignore the terms in the sum in Eq.
(3.4') that have a, 4a. Then the Green's function
would have the form in (3.6) with Z ((d) replacing
S ((d). Since Z„((c) is irreducible it has no sin-
gle internal propagator lines. Therefore, the
imaginary part represents no transitions from the
state co(4'0) to some other state ct~, (40). In the
Fermi liquid such a process would not conserve
momentum, and if the two states are identical the
process does not represent a decay. This is why

Z(,((c) appears in the Green's function for the
Fermi liquid. In the Fermi glass there is no

The decay rate of a localized excitation is deter-
mined by the diagonal part of the Green's func-
tion. The Fourier transform of this quantity
satisfies the matrix equation

G..( (=GL.(~(+I GD.( (&...( )G...( ),
(3.4')

where Z is the (irreducible) self-energy and G is
the noninteracting Green's function which is given
by

G,((d) = 5,1im [(d —c —i sgn(p —e )rt]
p+
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such restraint. These decays must be represented.
To Z (&u) we must add all possible single-parti-
cle decays except for those states with n, = a
since these are not transitions (see Fig. 2). This
is the meaning of Eq. (3.7).

The imaginary part of S (u), which determines
the lifetime of the state c~

~
4,), has two kinds of

contributions. One is from the many-particle
state associated with Z; the other is that which
comes from the single-particle states or the sin-
gle propagators. The former give contributions
that are small near the Fermi energy. The rea-
son is that the same phase-space restrictions
that are the cause of quasiparticle behavior in a
liquid are operative in the Fermi glass. More
technically, this behavior is due to any of the
2n+ 1(n &0) internal lines that may be found in Z.
Therefore, it is true that

lim Im Z ~,(&u) = 0 .
g~g

(3.8)

This conclusion is not restricted to the Fermi
glass. It is, however, dependent on perturbation
theory.

The single-particle terms do not have this pro-
perty. In general, especially in a system without
essential disorder, there is no reason why there
should not be a finite contribution to the imaginary
part of S,(u&) as &u approaches p. This has two
immediate consequences. The first is that the
bare particle created by c~ is short lived. It is
unlikely that it can be filtered to a quasiparticle
state. While this is generally true for nonliquids,
there is another consequence for the Fermi glass.
If we create a localized state at p, , it will decay
quickly. The ground state is not capable of sus-
taining a localized excitation and we see that the
insulating behavior is destroyed. This is, in
part, the reason that the m basis was previously
introduced. "

In the Fermi glass, however, we must consider
the other problem mentioned in the Introduction.
This comes down to asking whether ImS (~) is
finite and continuous, or vanishes except at a
discrete set of points. That is, we must decide
whether the excited states are bound or continuum-
like. We shall see, in the next section, that this
depends on the range of the interaction and the di-
mensionality of the system.

Before continuing, we should point out that S (&u)

has many of the same analytic properties as the
usual Z, (ur). In addition it is quite simple to ex-
tend the concepts in this paper to finite tempera-
ture. One should also remember the introductory
remarks on normal systems. In principle, we
should be using some self-consistently obtained
states and Fermi energy.

IV. CONTINUUM VS BOUND STATES

In this section we wish to see whether a lo-
calized excitation in the Fermi glass can ex-
change energy with the other electrons and diffuse
away. To do this we must analyze the imaginary
part of the renormalized self-energy. We will
assume, unless stated otherwise, that p, lies in
the region of localized states and that the rele-
vant energy, as specified by u, is such that v &E,.

There are basically two types of terms in the
imaginary part of S (&o): those representing sin-
gle-particle decay modes and those representing
many-particle modes. (There are also terms that
involve interference between the two. These will
also have phase-space restrictions, and we will
classify them in the latter category. ) The lowest-
order (direct) diagrams of both are shown in Fig.
3. They correspond to the application of Fermi's
"golden rule" to the simplest decays of the state
c'.

~
e,).

Let us first examine the structure of the process
described by Fig. 3(a). The range of the interac-
tion is "horizontal. " That is, the states

~
n) and

~
o,) are functions of the same variable in the

expression for the matrix element. Since we are
interested in ~ ap (the case ~ p is similar),
the state

~
n, ) will be localized. In order to ob-

tain a result greater than some number, we must
require that

~

o. ,) be localized in the neighborhood
of

~
n). This restricts us to a finite number of

states
~
a,). When we take the imaginary part of

this diagram we further require that &0 be equaltk (
to ~. The probability of this condition being sat-
isfied over the finite number of points, corres-
ponding to the contributing states

~
o,), is zero.

Therefore, on the real axis, this contribution
can, at most, look like the sum of delta functions,
or, in the complex plane we would obtain poles
on the real axis.

QQJ

Qtd

Sa(cu)= Qg u, Aa, (u+

am
au

~i a+a

(a) (b)

FIG. 2. A graphical representation of So. (u).
FIG. 3. The lowest-order (direct) contributions to

Sn(co).
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The structure of the second diagram in Fig. 3
is somewhat different. Taking the imaginary
part restricts us to a plane of area -(&u —p)' in
the space (e', ,&'...&' ) (see Fig. 4). Again

~
o. ,)

must be near
~

o.). This defines a finite set of
planes, which intersect the &, axis and are
parallel to the (&,, g', ,) plane. These planes de-
fine a finite number of lines in the original tri-
angle. We should also require that

~
a,) be near

~n,). However, ~a,) maybe anywhere, and we
obtain a dense set of points on the (q', ,&,) plane.
The probability of at least one of these intersect-
ing the lines in the phase space plane is finite.

The question now becomes whether or not we
should require the pair

~

a),
~

o. ,) to be near the
pair

~

o.,), ~
n, ). Clearly this depends on the range

of the interaction. By range we do not mean as a
function of

~

x- x'~, but of R, the distance between
the pairs. If the interaction is long range we need
make no further requirements of the states in-
volved. For arbitrary (d we obtain a finite con-
tribution from this diagram. (This is true until
to-1/0, then we may have no available states
that contribute. That is, the plane in Fig. 4 may
not be intersected at all. ) For short-range
forces we must require that the p~rs be close
together. This further requirement leads to a
vanishing of the diagram except for special
values of the frequency in a manner similar to
the single-particle terms. An analysis of higher-
order terms leads to the same sort of conclu-
sions for the two cases.

Before we continue and analyze the consequences
of these possibilities, let us consider the problem
of range. Unfortunately for our theory our ability
to answer this question is limited by our under-
standing of the localization problem. We see that
we must be able to "hop" from one pair to the
other via the range of U. In Anderson's theory, '

if the range fallg off slower than, or as slow as,
R 3, we are guaranteed that this can be done. Now
the transition shown in Fig. 3 corresponds to an
"oscillation" of charge. Therefore, the range, in
terms of R, is that gf interacting dipoles on R
This puts us on the borderline, though on the con-

0

,
&a,

0

FIG. 4. The phase-space restrictions on the decay
represented by Fig. 3(b). The axes are the unperturbed
energies of the states o.&, n2, and n3.

tinuum side. The R 3 is not particularly well
understood.

Qne may think of effects which tend to push the
range either way. For example, there is spin
diffusion. This will tend to broaden the states,
and effectively push us towards continuum be-
havior [finite ImS (&u) for arbitrary &u]. This is
similar to the case in phonon-induced hopping.
The coupling to the phonons, which are a contin-
uum, allows one to absorb any amount of energy,
and if the phonons are extended the decay may
always proceed. Qn the other hand, one may
argue that if we have continuum states they will
screen and reduce the range of the interaction.
However, we will then have bound states which
will not screen. Clearly, the problem must be
solved self-consistently or in terms of summation
over the polarization parts of the interaction line.
We should also point out that the contribution from
the term with a, = a involves the generation of the
dipole pair in the presence of a monopole and
goes like R '. It would seem, though that this
involves dressing of the bare particles and
should not play an essential role (although what is
not essential in the borderline case is, perhaps,
not so clear).

We will not attempt to solve the problem of
range in this paper. Rather, we will suppose that
the interaction may be either short or long range
and investigate both possibilities. It should be
noted, however, that if a sample is really two
dimensional, and if the electric field may extend
outside of it, that R 3 is not borderline but short
range. In general, one would expect R ~ to be
the crossover.

I.et us first consider the consequences of short-
range forces. In this case all the terms are dis-
crete. If the perturbation theory is valid, we
expect the spectrum to consist of bound states up
to the mobility edge. At these energies the argu-
ments made above no longer apply since the
states

~
u, ) may be extended. The spectrum for

excitation energies above E, should then consist
of continuum states. The lower energy states will
be bound and the low-temperature conductivity
should be due to phonons. Since nearby states
will tend to have large energy differences, and
those with small energy differences are far away,
the excitation should induce a polarization that is
largest at some distance. This annular cloud,
which is thus weaker than might otherwise be ex-
pected, will dress the bare particle and tend to
increase the energy barriers involved in the
hopping. At higher temperatures contributions
to the conductivity from the continuum states
should give an activated form.

If the perturbation theory for S (m) diverges
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for some frequency, we expect the mobility edge
to be moved. The question of where this happens
is, at this time, not of any great importance since
no rigorous method of calculating E, exists for
noninteracting systems. We should point out,
however, that since the nature of the basis of ex-
pansion changes at E„it is possible that the edge
may be normalized up or down. It is, however,
possible that the series may diverge right down
to p, . In this case, the system may not remain
insulating. We will deal with this in Sec. VII.

In the case of long-range interactions we have
continuum behavior over the entire spectrum.
The single-particle terms are unimportant inso-
far as ImS ((d) is concerned. Then the phase-
space restrictions, and other effects (see Sec. V)
give quasiparticle behavior. We can create a
stable localized excitation at p which implies that
the ground state is nonconducting. The form of
the conductivity must be determined, and we will
do so in the next section. At higher temperatures
excited states of a differing nature (they have real
transitions above E,) come into play and the con-

Say co is greater than p, . The contribution from Fig.

ductivity should appear activated. Of course,
the series may diverge and change E, or even
suppress the transition. We will deal with this
possibility in Sec. VII.

V. QUASIPARTICLES AND THE T f LAW

In the case of long-range interactions we will
have continuum behavior. It is then permissible
to choose a model with which to calculate quanti-
ties. We will use the same model as used in the
theory of variable-range hopping. In this latter
case, the use of the model is justified because,
as we have mentioned previously, the electrons
are coupled to the extended phonon continuum.

Let us calculate the contribution to the imagin-
ary part Sg&u) due to the diagram shown in Fig.
2(b). We will assume that o) is close to g and in
a region where the series converges. The single-
particle decays should then be unimportant and
higher-order terms, if of the same form, should
only renormalize quantities, not change the essen-
tial form of the result.

3(b) is

rm):„(~)=)m J ())„...,,)'e(c', —g)et'', —u)8(g —a' )l)( r', —a', —a')
0)ego3

+ Co)+y-5O0

=2ZQ dpo d&~ N Co )+ C~ )+ Eo + C~ —K) U, o 50 + 6~ —M~ fo ) (5.1)

where N is the density of states/energy volume and 0 the volume. The matrix element is given by

dx J! dIY&,o(x)(j),o (x) V(x- j))(j),o (x')(j),o „o „(x') .

(t,o (X)(j,o (X) =g«(x) e "'"« '~'.

The quantity X may be evaluated at p; g„(X') is a function that is localized between the sites F and y', .
Following Mott, we write

(5.2)

Using the results of Sec. II, and realizing that the low energies involved will keep the states relatively far
apart, we write

3 1/3

! (4 N I
0—

fi R C)
(5.3)

where

3X2
4gN„

As &- p the area of the integrand goes like
2wU'()N ( —u)' P ( ) ( )

A similar argument applies for the other pair of wave functions.
The exponentials do not depend on x or x' and may be removed from the matrix element. The remain-

der, the reduced matrix element, is called U. Since all the energies are near p. , we may, having extracted
the singular behavior, evaluate this quantity along with the other slowly varying quantities at p. [The
question of whether or not N(e) is slowly varying has been the subject of some controversy. ""'" We will
assume, here, that it is slowly varying. This is contingent on the regularity of ReS (~).] We have then

to) cd+ P -eo 1/3 |/3
ImZ ((()) =2vU 0 N„A de e'xp o o o (5.4)

~a ~a, &a)

((d —y) but the second exponential goes to zero.2

We can (over) estimate the integral by
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There are two parts. The first is the phase-space
contribution (&u —p, )~. The second is due to the
localized structure of the material. The real part
of Z, if sufficiently regular, will renormalize
&' to E'. We can then estimate the decay rate to
be

- (Z' —p)
' exp -2

&a
E' —p,

(5.6)

which gives us quasiparticle behavior. (A better
estimate is obtained using the incomplete gamma
function. The quadratic nature of the phase space
is somewhat modified. ) The higher-order con-
tributions are also exponential. Let us anti-
cipate this and restrict our attention to two-
particle (hole}, single-hole (particle) states.
These terms are proportional to (&u —p)'. It
will, in general, take n hops to reach a vertex
P from the state P' shown in Fig. 5. The parti-
cle-hole pair at P' will be a distance proportional
to (~ —p) '~~. Of course we can have n —1 small
hops but we must then have one large one. There-
fore we will always have a product of exponentials
leading to a term, for a given path, of the form
(5.6). The quantity analogous to a depends on the
path chosen and, for low enough energies, may be
dominated by the optimal path. In general, since
all terms propagate exponentially, we expect the
series to renormalize the quantities in the life-
time and we obtain

(5.7)

It is easy to show that in d dimensions —,
' becomes

1/d.

FIG. 5. Cutting this diagram at p~ results in a higher-
order decay to the same final state shown in Fig. 3(b).
The same sort of decay rate is obtained.

One may ask whether virtual transitions above
the mobility edge will wipe out the exponential
behavior; however, these states are limited in
the distance they can propagate by the uncertainty
principle (since h-10 "meV sec they are very
short lived). Therefore, this effect should be
unimportant in this sense. These processes
represent a renormalization of the energies and
wave functions involved and may therefore alter
the parameters in the T'/4 law. If the wave func-
tions are changed enough to become extended,
the series for $ should diverge when n is lo-
calized.

Using this result, one can argue that the contri-
bution to the conductivity is a T' ' law. It is
perhaps more physically illuminating to do the
calculation directly for finite temperature.

Let us use Fermi's golden rule to calculate the
decay rate of our localized state at finite temp-
erature. We have

1
T~O a a a ~aa a ~ Ca &a —4'a —&a) Ea —P )f(P p, —Ecx)) P P &a) (5.8)

where P = T ' and f(x}= I/(e*+ 1). In this case the phase space will restrict the energies to lie within T of
the Fermi energy. Using the same model as the zero temperature case gives

= 2pQ Q „U dg dq — exp -4 (5 9)

where we are measuring all quantities from the
Fermi energy and g ~» &' . We see that the
phase causes the integrand to be constrained within
T of p, . However, the matrix element is zero
when q', = z', . The result is an integrand with a
peak. We locate the peak for z' ~ e', by cal-a3
culating the derivatives of the integrand and set-
ting them equal to zero. Since

f T T + 0 ~ ~0 )4/3

adding gives

(5.1O)

we have

~2= -~3 ~

Substituting this yields (take e,~ 0)
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f R 2 3 0 (5.12)

Since the area of the integrand is about T we ob-
tain (in d dimensions)

—=2gQ PP U 7 exp —4—

(5.13)

Thus a localized excitation will decay away by the
T'/4 law. This rate is related to the diffusion
constant which is in turn related to the conduc-
tivity. Thus we should expect that our system
should have a conductivity obeying a T' law as
claimed previously. The higher terms in the
series should modify the quantities in the law, but
not the form of the relation itself. So, for exam-
ple, while g should certainly be inversely pro-
portional to N, the constant of proportionality
may vary. The same comments would hold for
the phonon case.

%'hen the temperature is high enough, contribu-
tions from extended states will be important and
the conductivity will be activated. Similarly, if
the Fermi energy lies above E„we expect (&u —g)o
or T' behavior and zero resistivity, rather than
zero conductivity, would be our starting point.

VI. THE ROLE OF SPIN

Until now we have been using an analysis that
is meant, primarily, for electrons obeying a
double exclusion principle. %hen the intrastate
repulsion is small enough, one has to consider
the effects of two electrons in the same state.
As far as the Anderson transition goes, this means
asking two questions: first, is the upper Hubbard
band occupied, and second, is it extended or lo-
calized'P The former question can be answered by
examining whether the intrasite repulsion vanishes
more or less quickly than E- E, as E approaches
E, from the localized region. Numerical work

For &, &0 the third term drops down more slowly
than the first and the second rises. Therefore,
e,/T will be rather large as T is lowered (e/T
is understood to be small. As T goes to zero we
pass from the thermal regime into the case dis-
cussed previously). The first term can be dropped
and the second is about one. For low temperature
or well localized states, this is'an excellent ap-
proximation. A similar argument'holds for q&

&0 and we obtain

1/4 (47 3/4

2 It 3

indicates that the repulsion stays higher and only
the lower Hubbard band remains occupied for a
less than half-filled band. In this case an elec-
tron is excluded from visiting many (all for a
half-filled band) sites and delocalization is harder
to achieve. In fact most Anderson insulators seem
to be paramagnets.

%hen two electrons per state are allowed, the
amount of disorder seen by the second electron
is reduced by the first. Metallic behavior is more
likely. Experimentally it seems that only the tail
of the upper Hubbard band may be localized.

If we do have an insulator with doubly occupied
states we should still expect to see T' behavior.
A low-energy excitation, be it an electron or phonon,
may generate a low-energy particle-hole pair in
either of the two bands. By an argument similar
to that in Sec. V this will give rise to a variable-
range behavior. It is also possible, for example,
to remove a particle from the upper Hubbard band
and excite it to the lower. For large U this, at
first sight, might be expected to cause trouble
since the single-particle states involved differ by
U. But if we allow the second electron in the
state to relax in the field of the first, its energy
will rise to near the chemical potential. Then, if
it is close to the unoccupied lower Hubbard bound

state, the wave functions will mix and the levels
will split. Therefore these cannot be the states
between which the transition we are investigating
takes place and we see that the levels will be far
apart and the T' law should occur.

It is not necessary, however, that all of these
processes involve the same parameters. In par-
ticular the mobility edge for the upper and lower
Hubbard bands, or, more precisely, for particles
and holes, need not be the same.

Freedman and Hertz" have obtained a Pauli
spin susceptibility for the low-temperature Fermi
glass. Their method uses the noninteracting Harn-
iltonian to represent the simple system. In view
of the strong intrasite repulsion and the fact that
in the spirit of Fermi liquid theory the interac-
tions should just renorrnalize quantities not
change the essential form of a relation, this re-
sult should be viewed with some caution. As we
have pointed out, it should take some form of par-
tial summation to correctly describe the inter-
acting system if one starts with the eigenstates
of Ko. A better starting point would be

Ho Ho =Ho+ g U~n«n~, , (6.1)

so that the repulsion is considered explicitly. The un-

paired spins will give a Curie law. It has recently
come to our attention that Kamimura" has cal-
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culated the susceptibility with the assumptions
that U =u and that the &' are random variables.
He finds that for large u the low-temperature
behavior is T with a background Pauli contribu-
tion that is due to the unpaired spins.

All of this, of course, is only true if the system
is nonmagnetic. Presumably, as pointed out by
Mott, the interaction between states is anti-
ferromagnetic and either a spin glass or dis-
ordered antiferromagnet will result. Until now,
the transition has yet to be observed.

VII. THE m BASIS

Until now, our arguments have been based on the
leading terms in the perturbation series. We
have seen that the decay properties of low-energy
excitations depend on the range of the interaction
and the dimensionality of the sample. These ar-
guments hold until the energy becomes such that
states above the mobility edge become important.
At this point the nature of the transport process
changes and the conductivity will appear activated.

The variable-range (or nondecay) behavior
comes about because the single-particle decay
modes are closed. Since the proper seU-energy
Z is short ranged (exponential), this is true in
perturbation theory. The question is whether the
series for S converges. (Actually a renormalized
version should be analyzed. } At energies where
there is a divergence, the single-particle modes
become opened, and the nature of the excited state
is different. Thus, the activation temperature
may be renormalized. To ask exactly where this
occurs for a given system is not profitable at
this time since the corresponding one-electron
problem remains unsolved. Further, as men-
tioned earlier, there is the possibility of level
crossing. Even if one knew the eigenfunctions of
Ho, the crossing may lead to problems in trying
to construct, for example, the ground state out of

something destined to be an excited state.
However, a more important question is whether

or not the system will remain insulating in the
presence of interactions. If p, is less than E, in
the noninteracting system and our first term
analysis is good, we can create the ground state
by adding localized particles at the Fermi energy.
We have a nonconducting ground state. This is
not the case if the series diverges in the neighbor-
hood of p, . As we have seen in the last section,
spin and the intrasite repulsion may play an im-
portant role in this question. It is possible to take
a different approach which expresses all of these
effects in a concise way and gives a criterion for
insulating behavior that allows one to understand
the existence of localization in interacting systems.

1
G fft(tpi)%(& ) ' ) ~ g (~)

((d) =
~m(~) ~ (7.2)

However, Z(~) is not, in general, a Hermitian
operator. Therefore, the eigenvalues e („&(&u)

need not be real, nor the ~m((d)) orthogonal. In
fact, there is no guarantee that we can diagonalize
H, + Z((d) at all. (In the Fermi liquid we can do
this in the momentum representation. } However,
Z(p, ) is Hermitian. In fact it is a real symmetric
matrix. This is because the imaginary part of Z
is zero as shown in Sec. IV. In a probabilistic
sense (allowing the possibility of discrete be-
havior) the space over which the arguments of
Sec. IV were made goes to zero. Therefore,
the imaginary part of Z vanishes with probability
unity at p, .

For ur = p, we can write Hp+ Z((d) as

Hp + Z( p) + 5Z(&u) +i ImZ(&u), (7.3)

where 5Z and ImZ are both small. Then the
transformation to the

~

m((d}) is almost canonical
or pseudocanonical. We will return to the case
v 0 p, in a moment.

At p, , G can be written

G
1

sl( p ) sl( p ) ( l")
( )~m(f ) W

(7.4)

The pole [whichdefines a state ~mp()())] is real.
If the state

~
mp()()) is localized, we can argue,

by methods used earlier, that the ground state is
nonconducting.

The advantage in this approach is that it is
clear, in at least some limit, that there is no
conductivity at zero temperature. To obtain

~
m(i()) we must diagonalize a random matrix:

H, + Z(p}. The first part of this operator was
disordered enough to localize at the states in the
neighborhood of the energy we are considering.
To this we add Z(i(), which is also a disordered
matrix. It is tempting to say that the effective
Hamiltonian is even more disordered than the
initial Hamiltonian and the states must remain
localized. However, whatever correlations the
self-energy has come from the structure of Ho.
So the former conclusion is not obvious. On the
other hand, in the strongly localized limit, it is
clear that this sort of conclusion must hold.
Furthermore, for a large intrastate repulsion

To this end consider Dyson's equation written in
the form [one may wish to include (6.1) in H, ]

[(d —Hp —Z((d)]G((d) = 1 .
Suppose that the operator H, + Z(u&) can be diag-
onalized. Let us call the eigenstates ~m((d)) and
the eigenvalues e („&((d}. Then the Green's func-
tion is diagonal and has the form
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there will be double exclusion principle and the
particle cannot visit all of the sites, which makes
it easier to localize.

For frequencies near p the form of (7.2) should
be approximately valid, and we can obtain the
eigenvalues (poles) via Rayleigh-Schrodinger per-
turbation theory. In particular, we are interested
in the imaginary part

Imt
& )((d) = (m(I&)

~

ImZ(&u)
~
m(i&)) + ~ ~ ~ . (7.5)

As we have argued previously, ImZ .(m) must
approach zero as ~ approaches p, . This is due
to phase space considerations alone, and does not
depend on the system being considered (providing
of course, that the Fermi surface exists; a super-
conductor is not what we have in mind). We thus
obtain quasiparticle behavior that is at least of
the (&o —

&«) or the T' sort.
If we return to the Fermi glass, it is not diffi-

cult to show for long-range forces that all the
matrix elements of ImZ have an exponential be-
havior when &d &E,. If the ~m(p)) is localized we
can then imagine expanding it in the basis. In
this case terminating the series should produce
arbitrarily good results and ImZ &„&(ur) should
behave in the same anomalous way as before.
Actually we expect the expansion to be dominated
by a. single term. The state

~
m(g)) should

strongly overlap only a few nearby states, only
one of which will have an energy close to g(m (p, )).
The rest will have large energy denominators and
be less important. Similarly other states with &0

close to a(m(p, )) will tend to be far away and over-
lap poorly. Therefore, we reproduce our pre-
vious results. When the force is short ranged,
the matrix elements of ImZ(&d) vanish and so does
Ime &,(e).

One may ask about the effects of extended states.
First, we note that the matrix elements of Z(&d)

between such states still have the exponential
behavior due to the particle-hole pair. Second,
this contribution to imp(m(ur)) is not that impor-
tant since they are suppressed by (&u —E,) &.

That these terms work out this way should not be
surprising, since it is v, not the indices on Z,
that set the appropriate energy scale. Of course,
as p, and e approach E„ these become more and
more relevant and ultimately may lead to metallic
behavior. In this case ~m(p)) becomes extended
and we expect to find the normal phase-space be-
havior.

Vm nISCVSSION

We have seen that the nature of the system de-
pends on the range of the forces between the par-
ticles. If the interaction is short range, the ex-

cited states of the system will be nonconducting.
This should be true up to energies which begin to
include transitions that involve real extended
states. The analysis is independent on perturba-
tion theory. The convergence of the series as a
function of frequency may renormalize the mo-
bility edge. Conduction at low temperature will
be due to phonon induced hopping of localized
quasiparticles and their polarization clouds. This
should give a T' law at low temperatures with
activated behavior at higher temperatures.

The situation is somewhat different for long-
range forces. The low-energy excitations will
decay anomalously and give rise to a T' law at
low temperatures. At higher temperatures
(energies) the nature of the system changes as the
extended single-particle states become important.
The conductivity should appear activated at higher
temperatures. In principle the analog of Miller-
Abrahams hopping may occur before activation in
which case a change of shape in an lno vs T '

plot should appear. The conclusion is based on
perturbation theory and the convergence may
alter the activation energy from its noninteracting
value. We refer to activation energy rather than
mobility edge, since the excited states are all
mobile. The activation takes place due to a
change in the nature of transport at some energy.

It should be clear, then, that insofar as a single-
particle approach is valid, that interactions should
not lead to deviations from a T' law. It is
difficult to estimate the size of the pre-exponential,
and it is not likely that an estimate based on Sec.
V is very good. It seems likely that, just as in
metal, the phonons are probably more effective
than other electrons. A recent work" by Butcher
and Swierkowski suggested otherwise.

Adkins' has suggested that a single-particle
approach is not valid. In his model the electrons
form a disordered version of a Wigner crystal,
a Wigner glass. The activated transport is ex-
plained in terms of slipping and the anomalous
Hall effect would not be so anomalous since,
presumably, all of the electrons may participate.
It is hard to see, however, how a T' law might
come about in this model. It is our opinion that
it is not necessary to be so extreme. We have
seen how a quasiparticle picture will preserve the
T' law with activated behavior at higher temp-
eratures. If the interaction is long-range (or is
effectively long-range due to broadening effects)
we have seen how localized electrons may ex-
change energy with one another. Therefore, it
may be possible that the electrons trapped below
the mobility edge may not be frozen out of the
picture as conventionally assumed, and a proper
understanding of the Hall effect will necessarily
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include interactions.
Before continuing, we should emphasize that

these results, especially the T' law, depend on

a smooth quasiparticle density of states. As men-
tioned in Sec. V this has been the subject of con-
troversy. In terms of our formulation of the
problem the well-behaved density depends on a
regular ReS (ur). This quantity renormaiizes the
single-particle energies and thus the density. In

order to obtain the density of states necessary
to produce the T' ' behavior' " the relevant
quasiparticle energies g must be related to g,
the bare particle energy by e —ea '(d &I). In this

case we easily obtain a T' law with our model.
This is not surprising in view of our remarks in

the Introduction. In fact, if we assume power law

localization instead of exponential localization,
we obtain results similar to those of Last and

Thouless. " (It is necessary for the wave func-
tions to decay more quickly than x ' in order to
keep things finite. )

We have discussed the role of spin in terms of
its effects on transport and magnetic properties.
We have argued that the intrasite repulsion will
not change the form of the T' law providing the
system does not become metallic. This latter
question may, perhaps, best be answered in terms
of the m basis. Here, we hope, it is seen that the
persistence of the Anderson transition in the pre-
sence of interactions is at least plausible.
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