
Chapter 4 

Neutral Fermions and Bosons 

Our major interest in this work lies with the pure electromagnetic system: elec­
trons, positrons, and the electromagnetic field. But the phenomena with which 
these are associated contain enough other interesing notions that a complete pic­
ture cannot be obtained without examining those notions. This chapter, therefore, 
is devoted to a number of peripheral subjects which, nevertheless, are essential to 
a full treatment of the Dirac theory. 

A. Neutral Fermions 
As mentioned earlier, a charge-neutral spin-1/2 particle can still interact with the 
electromagnetic field by means of the Pauli non-minimal coupling. In this case 
Eq.(3-11) becomes 

(4-1) 

where Jl = aJlo is an anomalous magnetic moment. Although the neutron appears 
not to be elementary, but composite, it nevertheless is stable enough to warrant 
detailed study. Equation (4-1) therefore is taken to describe the motion of a free 
neutron in the presence of an electromagnetic field-at least in weak fields, so that 
the particle structure is unaffected. In this respect, we also note that the neutron 
possesses an electric polarizability (e.g., Schmiedmayer, et aI, 1988). Furthermore, 
should the neutrino turn out to have a small mass, as we shall discuss presently, 
then the presence of a small anomalous magnetic moment as well would lead to the 
conclusion that Eq.( 4-1) is actually the equation of motion for the neutrino, which 
is an elementary particle. 

In the following chapter we shall consider numerous applications of the Dirac 
theory, but it is useful to examine here one example of the use of the equation of 
motion (4-1). For the case of an external uniform magnetic field B the anomalous­
moment coupling can be obtained from Eq.(3-9), so that Eq.(4-1) becomes 

i1iOt ¢ = (co· p + f3mc2 + fJf3E . B)¢ . (4-2) 

Because there is no direct coupling between kinetic and magnetic energies in this 
problem (fJB ~ mc2 ), we can presume plane-wave solutions: 

¢ (x) = (:~~:j) e- ip .x / h . 
P W3(P) 

W4(P) 

(4-3) 
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110 4: Neutral Fermions and Bosons 

With the magnetic field in the positive z-direction, substitution of Eq.( 4-3) into 
Eq.( 4-2) yields a set of four linear algebraic momentum-space equations in four 
unknowns: 

(mc2 - E + JLB)Wl + CP3W3 + C(PI - ip2)W4 = 0, 

(mc2 - E - JLB)W2 + C(pl + ip2)W3 - CP3W4 = 0, 

CP3Wl + C(PI - ip2)W2 - (mc2 + E + JLB)W3 = 0, 

C(PI + ip2)Wl - CP3W2 - (mc2 + E - JLB)w4 = o. 
(4-4) 

These equations possess nontrivial solutions only if the determinant of coeffi­
cients vanishes. After a good deal of algebra this condition leads to the expression 

(4-5a) 

where 
P.1 == psin8 (4-5b) 

is the magnitude of the projection of the momentum into the plane transverse to 
the field. The square-root yields factors ±1, which correspond to the two possible 
spin projections along the z-axis. Hence, the free-particle energies are given by 

E2(p,S)=c2p2+m2c4+JL2B2+2SJLB(C2l +m2c4)1/2, (4-6) 
.1 

and S = ±1. Note that in the case of the neutron, for example, the anomalous mag­
netic moment is opposite to the spin, so that in our convention spin-up corresponds 
to S = +1. Finally, we see that E2 is positive definite no matter what values are 
assigned to JL and B. 

One might be tempted to examine the limit m - 0 in Eq.( 4-6) in the ac­
cepted case that the neutrino actually has a vanishing mass. This is not necessarily 
a straightforward procedure, however, owing to the rather peculiar properties of 
massless particles. Because the neutrino seems to be an absolutely elementary 
particle, therefore, it is in order to digress at this time to study some of these 
peculiarities. 

MASSLESS PARTICLES 

Recall that the Poincare group contains the momentum operator PI' as a gener­
ator of translations. With Wigner (1939) we introduce the notion of the little group. 
This is defined as a subgroup of Lorentz transformations leaving the momentum of 
a particle invariant: 

(4-7) 

where PII is an eigenvalue of PII . For an infinitesimal transformation, A/tll = g/tll + 
W/tll, we obtain the condition 

(4-8) 



B. Theory of the Neutrino 111 

which can be satisfied by an antisymmetric WJLII' In the case of massive particles 
one finds that the little group is isomorphic to the orthogonal group 0(3). Hence, 
the matrices of the rotation group are sufficient to describe the irreducible represen­
tations of the Poincare group. We also recall the definition of helicity, Eq.(2-118), 
but note that massive particles do not necessarily have to be described by helicity 
states. Rather, they can be described by any linear combination of helicity states, 
and there are as many of these as there are spin states. 

For massless particles, however, the situation is quite different. The little-group 
equation in this case is 

(4-9) 

say. The antisymmetric infinitesimal quantity now satisfies WJLIIP = 0, but possesses 
only three independent components. Wigner observed that in this case the little 
group is isomorphic to the Euclidean group in two dimensions, E(2), consisting of 
a rotation about the z-direction (here) and two 'translations'. The latter will be 
discussed later, and the rotation, he noted, is associated with the particle helicity. 
As usual, the helicity eigenvalues are given by 

A = J. k = ±Ihl, (4-10) 

so that massless particles with spin possess only two independent helicity states, no 
matter what the value of (2S + 1). We shall find these observations of particular 
value in studying the electromagnetic field. 

Let us return to a study of the free-particle helicity states for spin-~ particles, 
Eq.(2-120), and consider the (~,O) spinor representation for a free massive particle 

of momentum p and helicity A = ±l. In terms of rest-frame eigenspinors cP~O)(p), 
the covariantly normalized wavefunction is 

E + mc2 + C(f' . P (0) 
cP>.(p) = (E + mc2)-1/2 cP>. (p). (4-11) 

Note that there is a minus sign difference from the boosts of Eq.(2-44), because the 
latter actually refer to the Weyl representation. In the massless limit 

m->O 
(4-12) 

so that only the A = +1 right-handed state survives for the 0,0) representation. 
Similarly, the replacements p -+ -p, A -+ -\ produce the (O,~) representation, for 
which only the A = -1 left-handed state survives in the massless limit. 

As a consequence of this analysis one concludes that massless spin- ~ fermions 
can exist in only one definite helicity state, for each representation corresponds to 
a different type particle. That is, the particle must always be in one particular 
helicity state, either right-handed or left-handed, for there is no mass to couple the 
two. These observations are of fundamental importance to a study of the neutrino. 
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B. Theory of the Neutrino 
Historically, the neutrino was introduced by Pauli in order to preserve the notion 
of energy conservation in ,a-decay. According to Carlson and Oppenheimer (1932), 
Pauli presented both the notion of a 'magnetic neutron' and the minimal-coupling 
equation (3-11) to describe it at a seminar in Ann Arbor during the summer of 
1931. Indeed, they apparently were the first to apply this equation, and its subject 
was the neutrino (a name later coined by Fermi). 

Originally the particle was to have spin ~, zero charge, and zero mass, though 
Pauli suggested it might possess a magnetic moment and the effect of this on 
electron-neutrino scattering was considered by Bethe (,1935). The aim, of course, 
was to finl a fundamental interaction mechanism for the particle. Present experi­
mental evidence suggests an extremely small moment, if any, the most recent results 
coming from analyses of the supernova 1987 A: (flo/ flo 0 ) < 5 X 10-13 (Lattimer and 
Cooperstein, 1988), and (flo/ floo) < (0.2 - 0.8) x 10-11 (Barbieri and Mohapatra, 
1988). But even moments this large are unexpected, and various models for an 
anomalous magnetic moment have been proposed (Fukugita and Yanagide, 1987; 
Babu and Mohapatra, 1989). 

Both theoretically and experimentally the evidence is overwhelming that the 
neutrino charge is identically zero. Otherwise, because observable electric charge 
appears always in quantized units of the electronic charge e, there would exist strong 
experime'ntal effects. Theoretical arguments that mil = 0 are less compelling, how­
ever, although this is generally taken to be the case. But whether or not the 
neutrino mass is precisely zero has imporant consequences, particularly for astro­
physics and cosmology. Although astronomy itself cannot provide direct evidence 
for a nonzero neutrino mass, the array of cosmological arguments for a finite mass 
are impressive (e.g., Dolgov and Zeldovich, 1981). Current laboratory bounds on 
the neutrino mass are in the range 10-30 e V / c2 , and the entire subject has been 
reviewed recently (Boehm and Vogel, 1988). The relevance of finite mass to the 
solar-neutrino problem is also discussed in some depth by Weneser and Friedlander 
(1987; Friedlander and Weneser, 1987), and a general review of neutrino properties 
can be found in Klepdor (1988). 

If the neutrino does not possess a magnetic moment, then it has no electro­
magnetic interaction at all. This motivates the hypothesis of a weak interaction and 
Fermi's point theory, currently subsumed into the so-called electroweak unification. 
Of course, if it eventually turns out that mil -# 0, then the notions of a magnetic 
moment and associated structure will become a bit more reasonable. 

THE WEYL THEORY 

Presume for the time being that mil == 0, as is conventional. Because the 
neutrino is a spin-~ fermion, it is clear that the Dirac equation immediately provides 
the equation of motion: 

(4-13) 

The Dirac theory is relativistically covariant with or without mass. In order to 
understand this equation it is first useful to rewrite the theory for massive particles 
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in an explicit 2-component form. With 

(4-14) 

the Dirac equation is equivalent to two coupled 2-component equations in the Pauli­
Dirac representation: 

Now write 

(inat - mc2 )q; = cO' . pX , 

(inot + mc2 )X = cO' . pq;. 

where the notation will be clarified presently. Equations (4-15) become 

(inat - cO' . P )'PR = mc2'PL , 

(inat + cO' . p'PL = mc2'PR , 

(4-15) 

(4-16) 

(4-17a) 

(4-17b) 

which are familiar from Eqs.(2-63). One thus verifies that this pair of equations is 
invariant under the parity operation. 

In the limit m -+ 0 Eqs.( 4-17) decompose into a set of uncoupled equations: 

(inat - CO" P)'PR = 0, 

(inat + CO" P)'PL = 0, 

(4-1Sa) 

(4-1Sb) 

and the discussion concerning masless spin-~ particles following Eq.( 4-9) is now 
relevant. That is, these equations correspond to separate representations of the 
Lorentz group, each of which describes a different type particle that can exist in only 
one definite helicity state. Hence, 'PR corresponds to a state of positive helicity and 
transforms according to the (~, 0) irreducible representation of the Lorentz group. 
Similarly, 'PL corresponds to negative helicity and to the irreducible representation 
(0, ~). 

Equations (4-1S) are more easily understood by changing to the Weyl repre­
sentation of the ,-matrices introduced in Chapter 2. Although 'Y = (Ja remains the 
same, now 

0(0 , - -0'0 -0'0) = (0' 0) o ,a 0 -0' ' 5 (0'0 , = o ( 4-19) 

Effectively, ,0 and ,5 are interchanged in the two representations. In the Weyl 
representation Eqs.( 4-1S) are equivalent to having written the Dirac bispinor as 

( 4-20) 
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in analogy with Eqs.(4-14) and (4-15). 
Under the parity transformation 70Po, 

( 4-21) 

Thus, under P Eqs.( 4-18) transform into one another and neither by itself conserves 
parity. Even though we are not here considering charged particles, it is still possible 
to carry out the charge-conjugation transformation, and under C we find that 

( 4-22) 

as verified in the problems. Once again Eqs.( 4-18) transform into one another 
but with the charge-conjugate spinors inserted, and so they are not individually 
covariant under C. They are, however, covariant under the combined operation 
CP, from whence came the notion that CP should be a strict symmetry of nature. 
One concludes again that it is the particle mass coupling the original equations that 
requires a 4-component description and conservation of parity, and that permits a 
mixing of helicity states to form arbitrary polarizations. 

Now recall that 71' and 75 anticommute, so that if 1jJ is a solution of Eq.( 4-13), 
then so is 75 1jJ. This is reminiscent of the discussion associated with Eqs.(3-49) 
and the notion of chiral symmetry, or 'handedness'. Consequently, one can impose 
on the solutions the additional constraints 75 1jJ = ±1jJ so as to project from 1jJ the 
2-component solutions. In the Weyl representation the chiral projection operators 
are 

_ 1( 5) (0"0 0) 
P+ = 2 1 + 7 = ° ° ) (4-23a) 

_ 1 5 (0 0) P- = -(1-7 ) = 
2 ° 0"0 

(4-23b) 

Then, if ¢; = P_1jJ, we automatically have 75 ¢; = -¢;, and a free spin-~ fermion of 
zero mass is completely described by a 2-component spinor. That is, if we employ 
Eq.( 4-20) and define 

( 4-24a) 

(4-24b) 

then the separate 2-component solutions are eigenfunctions of 75 with eigenvalues 
±1: 

(4-25) 
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'PL : 
p 

p 

Fig. 4-1. (a) Neutrino and antineutrino states, and (b) their behavior under spatial 
inversion. 

This is the Weyl theory (Weyl, 1929), which has been used to describe the neutrino 
since 1957-presumably because the description of a distinct particle by a single 
2-component spinor makes manifest the non-conservation of parity (Lee and Yang, 
1957; Landau, 1957; Salam, 1957). 

Further insight emerges from an investigation of positive-energy plane-wave 
states, 

'P(X) = 'P(p)e- tp'x . (4-26) 

Substitution into Eq.(4-18a) yields 

(4-27) 

and multiplication by ((T . p) provides the condition 

( 4-28) 

The implication is that nonvanishing solutions exist only if Po = ±lpl, so that mass­
less neutrinos travel at the speed of light. Thus, one concludes that 

( 4-29a) 

describes a positive-energy right-handed particle, whereas the plane-wave solution 
to Eq.(4-18b), 

(4-29b) 

decribes a positive-energy left-handed particle. The pseudo-scalar character of ((T.p) 
under P is illustrated in Figure 4-1. Note that 'PR(P) is also proportional to a 
negative-energy solution 'PL( -p). 
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If we examine the 4-component plane-wave solution for positive energy we are 
led to the expression "',lpo'IjJ = h' . p)'IjJ. Because ,,/,0 is the same in either the 
Pauli-Dirac or Weyl representation, multiplication by 1'51'0 yields the relation 

(4-30) 

in either representation. But we know that Po = Ipl, so that 

(4-31 ) 

and chirality and helicity are one and the same thing here. 
The complete set of free-particle equations is, of course, invariant under the 

full Lorentz group, and cannot by itself imply anything about non-conservation of 
parity. Such asymmetries can only arise from an interaction mechanism, as with ;3-
decay, or as a consequence of initial conditions, as noted earlier. In this latter event, 
one can think of the neutrino as polarizing the interaction. By choosing a single 
polarization to represent a particle we define the Weyl theory. Experiment-and 
that alone-dictates that Eq.( 4-29b) describes the neutrino, which is left-handed 
and has its spin antiparallel to its momentum. In this sense, Eq.( 4-29a) describes 
an antineutrino. Of course, this chirality (or 'handedness') has long been known 
elsewhere in nature-for example, in the optical activity of sugars and amino acids. 
More recently, the discovery of parity-violating weak neutral currents has led to 
direct evidence for chirality in individual atoms (e.g., Hegstrom, et al, 1988). 

As an interesting aside, consider the current operator ill = 1i"fIl'lj;. It is conven­
tional in this context to omit the factors of 1/2 from the chiral projection operators, 
so that in momentum space the neutrino current is 

(p'IJ~/J)lp) = 'PL1'Il'PL 

= v(l + 1'5),1l(1 -1'5)V, 

in the notation of Eqs.( 4-24). With the identities 

we can rewrite this matrix element as 

Similarly, for the antineutrino we have 

(4-32) 

( 4-33a) 

(4-33b) 

(4-34a) 

(4-34b) 

in which we note a reversal of momenta expected from C-invariance. One again 
encounters a minus sign illustrating Feynman's view of antiparticles as particles 
travelling backward in time. 
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It is possible to consider the neutrino in the presence of an electromagnetic 
field, but clearly the coupling cannot take place by means of a charge and a minimal 
replacement. Indeed, from Eq.(3-106) we see that the electromagnetic current can 
at best have the form 

(4-35) 

where necessarily F1(0) = O. That is, F2 = 0, because the 2-component neutrino 
can have no magnetic moment, not even a form factor. This last observation follows 
from noting that the term normally containing F2(q2) also contains a term aO/i3qi3v, 
with q == pi - p, and this vanishes identically owing to the Dirac equation (4-13). 
Physically, the presence of a magnetic moment would require the spin to be flipped 
in certain interactions, but if the neutrino has only one spin direction it cannot be 
flipped. 

If m" =1= 0, then the neutrino is described by a 4-component bispinor satisfying 
Eq.(4-1), including a possible anomalous magnetic moment. But even if mv = 0 
this equation cannot split into a 2-component Weyl theory if {t =1= 0, because the 
anomalous moment couples the components in the presence of a field. Moreover, 
the conserved currents ¢,I-'1/1 and 8v (¢al-'''1/1) are no longer proportional by means 
of Gordon's decomposition. Thus, if the neutrino possesses an anomalous magnetic 
moment it must be described by a 4-component wavefunction-which may reduce 
to 2-component form asymptotically distant from the interaction. 

THE FOUR-COMPONENT NEUTRINO 

A 4-component theory of the neutrino with m" =1= 0 was constructed by Majo­
rana (1937), who appended to the Dirac equation the constraint 1/1c = 1/1. That is, 
the particle is self-charge-conjugate, so that there is no distinction between particle 
and antiparticle. This condition is most readily realized by reference to Eq.( 4-22), 
in the Weyl representation, from which we obtain 

The coupled 2-component equations in this representation are then 

i1i8t 'P + c(u· p)'P = -mc2'Pc, 

i1i8t 'Pc -c(u,p)'Pc = - mc2'P. 

( 4-36) 

(4-37) 

Once again, we know that the full set of equations is invariant under the parity 
transformation, so that any asymmetries in weak interactions must be dynamical if 
the particles involved are Majorana neutrinos. It is clear that in the limit m ---t 0 
this theory goes over into the 2-component Weyl theory. In fact, there is no way to 
distinguish between Weyl neutrinos and the (m = O)-limit of Majorana neutrinos, 
except for the condition 1/1c = 1/1. Detailed comparisons between the two theories 
have been provided by Serpe (1952), McLennan (1957), and Case (1957). 
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There is actually a process that can test these possibilities. If f9-decay to the 
next element in the Periodic Table is energetically forbidden, or otherwise inhibited, 
a jump to the next-nearest element might be allowed by double-beta decay. That 
is, two neutrons within a nucleus might simultaneously decay via n -t p + e- + v, 
and the two Dirac antineutrinos detected. It is very difficult to detect this process, 
for the decay rate is exceedingly weak. Nevertheless, the decay mode was finally 
observed directly in 1987, from a 82Se source (Elliott, et al, 1987). But if the 
neutrinos are Majorana with a small mass, then v = v and we can also consider 
the process n + v -t p + e -. A virtual neutrino could be emitted by the first 
neutron and absorbed by the second, resulting in neutrino less double-beta decay 
(e.g., 124Sn -t 124Te+2e-). Observation of this mode c(,mld resurrect the Majorana 
theory-as well as suggest a violation of lepton conservation. The neutrinoless mode 
has yet to be observed, but with the successful observation of the two-neutrino decay 
efforts have increased. A recent review of double-beta decay is provided by Rosen 
(1988). 

Alternatively, let us take mv = 0 and explore the consequences of an anomalous 
magnetic moment for the neutrino, which must also be described by a 4-component 
bispinor. (Owing to charge-conjugation invariance, this cannot be a Majorana neu­
trino.) To be specific, consider the general nonminimal equation (3-11), which we 
take to describe a charged Dirac paricle with anomalous moment in the presence 
of a fixed Coulomb field. As is shown in detail in the following chapter, spherical 
symmetry persists and the coupled radial equations generalizing those of Eq. (3-42) 
are 

df 1'1- - 1 ( -1 Za) 1, Ze2 
- - -- + W - "c - - 9 = -a -f F(r) , 
dr r r r2 2mc2 

(4-38a) 

dg 1'1-+1 ( -1 Za) 1,Ze2 - + --g - W +"c - - f = --a -gF(r), 
dr r r r2 2mc2 

(4-38b) 

where F(r) is a magnetic form factor, and a' is the anomaly. With Barut (1980), 
we define the neutrino limit: 

e-tO, m-tO, , lie 
a 2mc -t p, = ap,o , (4-39) 

where a may be different than a', and the e of the Coulomb source is unaffected. 
The coefficients on the right-hand sides of Eqs.( 4-38) are then 

(4-40) 

and the terms in "c-1 and Za vanish. 
These equations for the neutrino with anomalous moment in a Coulomb field 

are very difficult to analyze, of course. The general procedure is to convert them 
to uncoupled second-order equations, as in Chapter 5, and for € == sgn( ep,) = -1 
the effective potentials will exhibit deep magnetic wells. A qualitative picture can 
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be developed, however, by restricting our interest to zero-energy solutions. The 
first-order equations (4-38) then become 

df = ('" -1 + Vm) f, (4-41a) 
dr r 

dg _ ('" + 1 v.) -d -- --+ m g, 
r r 

(4-41b) 

and only in this case do the equations decouple. Under this restriction the system 
mass of a bound state or resonance will be just that of the central particle. 

As is readily verified, the general solutions to Eqs.( 4-41) are 

fer) = C1r,,-1 exp {lr Vm(r)dr} , (4-42a) 

g(r) = C2r-(,,+1) exp {-lr Vm(r)dr} , (4-42b) 

the C j being constants. Note that the coefficient (eJJ/nc) in Eq.( 4-40) has the 
dimension of length-in fact, it is a/2 times the classical electron radius. We shall 
label this coefficient ro, and rewrite Eq.(4-40) as 

fro 
Vm(r) = -2 F(r). (4-43) 

r 
Although a complete integration requires knowledge of the close-in behavior of 

the form factor, at this stage we are only interested in the behavior of the wave­
functions for r > roo Consequently, it suffices to presume simply that F vanishes 
strongly at the origin and is unity for r > ro. Then, if F is otherwise almost constant, 

fer) = C1r,,-1 e-<ro/r, (4-44a) 

g(r) = C2r-(,,+1) eero/r. (4-44b) 

As an example, one could have 

F(r) ex: 1- e-2r/ ro [1 + (2r/rotJ ' (4-44c) 

The qualitative conclusions to be drawn from these results are rather inter­
esting. For example, if '" = 1, € = -1, then fer) 'leaks out' and approaches a 
constant as r ---t 00, whereas g(r) is localized around ro and is normalizable. For 
'" = -1, € = +1, we obtain the opposite behavior. These solutions are of some 
interest because neutrinos in asymptotic states seem to be described naturally by 
2-component spinors, so that these asymptotic states are not eigenstates of parity. 
A full understanding of this phenomenon, of course, can only come from a complete 
study of the actual two-body problem. 

As an aside, we note that even if mil i= 0 the equations of motion can still be 
integrated for zero-energy solutions. In this case E = mc2 and we still obtain the 
same equation for f. That for g, however, becomes 

dg ('" + 1 ) -1 dr= --r-- Vm g+ 2Ac f· (4-45) 

Nevertheless, as is demonstrated in Problem 4.2, the qualitative picture is essentially 
unchanged. 
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LEPTON FAMILIES 

Let us digress for a moment for a few remarks concerning leptons in general. 
The only members in this category of elementary particles that we have discussed 
in any detail are the electron (and to some extent the positron), and the neutrino 
(and 17). They have been treated absolutely as point particles with no observable 
structure. (Although the name 'lepton' has been used for 1/100 of a Greek drachma, 
it is the connotation of 'light one' that applies here!) It is useful to think of e- and 
v (along with e+ and 17) as a single family, for it turns out that there are other 
families of leptons. 

The muon was discovered by Anderson and Nedqemeyer (1937), and Street 
and Stevenson (1937) in cosmic-ray searches for Yukawa's pi meson (pion), thought 
to be the quantum of the nuclear force. Indeed, it was first thought to be the 
pion, but this notion soon proved wrong and the particle was then called a mu 
meson. Upon evidence that it was by no means a meson, the simple name muon 
was adopted. Although the muon mass is some 207 times the mass of the electron, 
and it is unstable with a lifetime of 2.2 X 1O-6sec, in all other respects it is much 
like an electron. The charge of p,- is the same as that of the electron (p,+ is the 
antiparticle), it has spin ~ with a small anomalous magnetic moment, there is no 
evidence for internal structure, and its radius appears to be less than 1O-16 cm. The 
primary decay mode (98.6%) is to ev17, and the electromagnetic decay cross section 
for p, --t e + 'Y is some 10-10 smaller than this. Thus, the muon cannot be merely an 
excited state of the electron in the atomic sense. But the exact role of the particle 
in the scheme of things remains an open question. 

Neutrinos produced under ordinary ,a-decay, n --t p+e- +17, can be employed to 
study the inverse process 17 + p --t n + e+. Over twenty-five years ago it also became 
possible to produce copious amounts of neutrinos from the pion decay 7r --t p,+v, but 
when these neutrinos were employed in the above processes one found v+ n --t p+ p,­
and 17 + p --t n + p,+ -with no electrons. In some way all the neutrinos here were 
associated only with muons, and since then it has been customary to distinguish 
between Ve and vJ." whose only known difference is this 'electronness' and 'muonness' 
exhibited in processes like those above. One can now understand why the dominant 
decay must be p,- --t e- + 17e + vJ." say, preventing annihilation of the neutrinos to a 
'Y. Reviews of the general two-neutrino experiment have been provided by Schwarz 
(1989), Steinberger (1989), and Lederman (1989) in their Nobel lectures. 

In the mid-seventies a third charged lepton, the tau, was discovered, and an 
associated neutrino, Vr, inferred (Perl, et al, 1975). The primary decay mode is 
r- --t p,- +17J.' +vr, say, with lifetime'" 1O-13sec. The mass ofthe tau is about 1785 
MeV, which now brings the aptness ofthe name 'lepton' into question! Nevertheless, 
except for mass and lifetime it exhibits all the leptonic features common to electrons 
and muons, including a corresponding 'tauness'. As far as is known, the three sets 
of lepton numbers are separately conserved in all processes. 

An obvious question is whether these pairs are just the beginning of a sequence: 
(e, ve ), (p" vJ.')' (r, vr ), . ". The question is one of more than mere curiosity, for the 
answer has potentially large astrophysical consequences (e.g., Dolgov and Zeldovich, 
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1981). From those considerations it appears that such a sequence cannot be much 
longer than currently known-indeed, there is strong evidence that there are only 
three families (ALEPH Collaboration, 1990), though there is no fundamental ex­
planation for why. Whatever the number, presumably all that has gone before, and 
all that comes later, applies to all lepton families. We shall, however, have more to 
say about muons in Chapter 8. 

C. Boson Wave Equations 

At one time it was thought that it may be possible to develop a neutrino theory 
of light, so that if one adopts a quantized particulate view of the electromagnetic 
field the photon would be a composite particle. The basic ideas were generated 
by de Broglie, Jordan, and Kronig, and the history is reviewed at length by Pryce 
(1938). Indeed, it was Pryce who showed in detail why the theory must fail, the 
essential cause being that light waves are polarized transversely, whereas neutrinos 
are polarized longitudinally. As we have seen, group-theoretical arguments show 
the impossibility of constructing the former from the latter. 

Thus, we are led to to think of the photon as the most fundamental stable 
boson-if, indeed, one is inclined to adopt a particulate view of the electromagnetic 
field to begin with. Although we shall adduce arguments against the quantized field 
in subsequent chapters, it is nevertheless instructive to pursue the conventional path 
for the moment. There are, of course, other bosons that live long enough to provide 
interesting phenomena, such as in 7r-mesic atoms, so it is useful to discuss briefly 
some of the relevant equations governing their behavior. 

SPIN-O BOSONS 

The manifestly covariant wave equation for spin-O bosons is just the Klein­
Gordon equation, 

( 1 2 2 -2) c2 Ott - \7 +::\c 'ljJ( x) = 0 , (4-46) 

where 'ljJ is either a scalar or a pseudoscalar. We have noted earlier that the probabil­
ity density is not positive-definite, negative-energy states arise, and Zitterbewegung 
is present. It is possible, however, to construct a consistent one-particle theory at 
low energies by interpreting p and j as charge density and electromagnetic current 
density, respectively. One notes that upon making the minimal coupling replace­
ment Eq.( 4-46) actually possesses two degrees of freedom, corresponding not only 
to positive and negative energies, but also to charges ±Q. These can describe 7r±, 
say, and if the wavefunction is taken to be purely real or imaginary the probabil­
ity density vanishes, as would be expected for a charge-neutral particle. It might 
also be expected from these observations that a 2-component formulation would be 
rather effective, and this has been provided by Feshbach and Villars (1958). 

Let 'ljJ satisfy the Klein-Gordon equation (4-46) and define two new functions 
in terms of the time derivative, ~: 

1 ( n.) 'P ==- - 'ljJ+i-'ljJ , 
2 mc2 

1 ( n.) x==-- 'ljJ-i-'ljJ . 
2 mc2 

(4-47) 



122 4: Neutral Fermions and Bosons 

Noting that 1/J = (tp + X), ~ = (me2/i1i)(tp - X), and ;j; = e2(\72 - J... c- 2)1/J, we find 
the following equations of motion: 

i1iot tp = - :~ \72(tp + X) + me2tp , 

i1iot X = :~ \72(tp + X) - me2 X. 

The 2-dimensional state vector 

then satisfies the Schrodinger-like equation 

with 
2 

H == (a3 + ia2)L + me2a3' 
2m 

(4-48a) 

(4-48b) 

(4-49) 

(4-50a) 

(4-50b) 

Although this 'Hamiltonian' is not Hermitian, the resulting theory can neverthe­
less be made consistent. Minimal coupling with charge Q leads also to a charge­
conjugate wavefunction III c associated with charge (-Q). An elegant feature of 
this formalism is that in the nonrelativistic limit X -+ 0 and and one obtains the 
Schrodinger equation for tp corresponding to charge Q and positive energies. 

Plane-wave solutions can be found in the form 

III = llIo(p)ek(P'X-Et) - (tpo(p)) ek(p·x-Et) 
- Xo(p) , 

yielding stationary-state equations 

2 p2 
(E - me )tpo = -(tpo + Xo), 

2m 
2 p2 

(E + me )Xo = --(tpo + Xo). 
2m 

One verifies the solutions to be 

E = -Ep, 

with energies 

(4-51 ) 

(4-52a) 

(4-52b) 

(4-53a) 

(4-53b) 

(4-54) 
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In both cases normalization is given by <P~ - X~ = 1. These are indeed charge­
conjugate solutions, even in the absence of external fields, and expectation values 
are defined as 

(A) == J wtu3Aw d3x. (4-55) 

The adjoint operator is defined so as to preserve charge states: 

(4-56) 

When minimal coupling is included it is found useful to represent the state 
vector in the plane-wave basis defined by Eq.(4-54): 

w(p, t) = u(p, t)w~+)(p) + v(p, t)w~-)(p), (4-57) 

where u and 11 are scalar amplitudes. Feshbach and Villars have studied the effects 
of weak electric and magnetic fields on the spin-O particle, and in such fields one 
finds that quite generally v ~ u. For example, in a Coulomb field 

v 1 4 
- "" -(Za) . 
u 8 

(4-58) 

The 2-component formalism has proved quite effective in studying 7l'-mesic 
atoms in weak fields. As a further example, consider a weak external uniform 
magnetic field B, such that A(:z:) = ~(B X r). Then, 

in8t u = Epu - 2:c C,;;:2) B . (in v p x p )u(p) . (4-59) 

But in momentum space the orbital angular momentum is L = inVp xp, so that 
we can define an effective magnetic moment 

(4-60) 

and Eq.( 4-59) acquires a familiar look. One sees that in 7l'-mesic atoms relativistic 
effects tend to reduce the Zeeman splitting. 

SPIN-1 BOSONS 

In this case the wavefunction is a 3-component object tP/.I = (0, tPi), such that 
it is either vector or pseudovector. From this one can also construct a second-rank 
antisymmetric tensor 

(4-61) 

where tPOi = -tPiO = c-18t tPi, and tPoo = tPij = O. The corresponding dynamical 
equation for free particles is called the Proca equation (Proca, 1936a,b; Kemmer, 
1939): 

(4-62) 
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and Eqs.( 4-61) and (4-62) imply the subsidiary condition 

a,.¢"· = O. ( 4-63) 

All of these expressions can then be combined to yield a Klein-Gordon equation for 
the vector amplitude: 

(4-64) 

which guarantees the correct energy-momentum relation for a free particle. 
This Proca-Kemmer theory may possibly describe objects like the p and w 

mesons. It has also been used to study the possibility of a nonzero photon mass by 
means of geophysical data (e.g., Goldhaber and Nieto, 1971). That is, a stationary 
static charge at the origin will be described, in minimal coupling, by A = 0 and 

_ \-1 
J.t = II")' • (4-65) 

The validity of Coulomb's law is then related to the photon Compton wavelength, 
A")'. 

THE PHOTON 

Although we are not particularly commited to quantization of the electromag­
netic field at this point, as mentioned above, it is useful nevertheless to think occa­
sionally of the photon as a particle-a spin-1 boson. This is by no means necessary 
here, but it does provide an opportunity to incorporate the electromagnetic field into 
the present formalism, and in a coherent way. We shall return to further discussion 
of this matter in Chapter 7. 

It is almost certain that m")' = O. A photon with spin 1 is described by a vector 
potential A,. and field tensor F,.y == a,.Ay - ayA,.. Equation (4-62) provides the 
wave equation for free photons: . 

(4-66) 

so that A,. serves as a wavefunction. Note that the subsidiary condition (4-63) is 
no longer automatic, but must be specified in accordance with the choice of helicity 
constraint. 

Recall that for m f= 0 there are now three helicity states for spin-1 particles, and 
these can be described by three mutually orthogonal polarization vectors. Right­
and left-handed, transverse, circularly polarized states correspond to f~±)(p), and 
E(O)(p) is a longitudinal polarization vector. But we have seen that the photon can 
have only two helicity states. Unlike the case for spin-t particles, though, these 
states are not completely dictated by covariance arguments. 

A free photon can be described by a plane wave satisfying Eq.( 4-66): 

A,.(x) = f,.(k)e- ik .x • (4-67) 
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The subsidiary condition defining this representation is 

(4-68) 

and can be used to ensure that there are only two independent components of €J-I' 

This condition is not sufficient, but we can use the momentum vector of Eq.( 4-9) 
to choose a transverse gauge by writing 

(4-69) 

The covariant choice (4-68) then corresponds to the Lorentz gauge: 

(]V Al! = 0, (4-70a) 

so that the wave equation (4-66) takes the familiar form 

(4-70b) 

The electromagnetic field tensor Fill! is gauge invariant, of course, and the 
general dynamical equations are just 

£'l Fill! _ 47r 'l! Ull - J, 
c 

(4-71a) 

or 
DAIl(x) = 47r jll(X). 

C 
(4-71b) 

Because Fill! = - Fl!Il, it then follows that the current is conserved: 

(4-72) 

Unfortunately, the two conditions of Eq.( 4-69) cannot be chosen separately in a 
frame-independent manner. Alternatively, a Lorentz transformation perpendicular 
to the photon momentum will not maintain the timelike component Ao equal to 
zero, for the transverse gauge condition is not manifestly covariant. It has been 
shown by Weinberg (1964a,b), however, that the Lorentz-transformed 4-potential 
can be made purely transverse if it is followed by a gauge transformation, and 
this gauge transformation is just that part of the little group associated with the 
'translational' degrees of freedom. By definition the little group leaves kll invariant, 
so that the gauge transformation has no effect on the prior Lorentz transformation. 
Han and Kim (1981; Han, et al, 1985) have provided a detailed discussion of this 
procedure, which we outline briefly. 

Consider a photon moving in the positive z-direction with frequency w, such 
that its energy-momentum 4-vector can be written kll = w(1, 0, 0, 1)/c. In this case 
the little group can be represented by the matrix 

Dt(8,u,v) = D(O,0,v)D(O,u,0)D(8,O,O), ( 4-73a) 
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where 

(I+V'/2 ° v -v'/2 ) 
D(O,O,v) = ~ 1 ° ° (4-73b) 

° 1 v ' 
v2 /2 ° v 1-v2 /2 

C+U' /2 U ° -u'/2 ) 
D(O,u,O) = ~ 1 ° 

3/2 
(4-73c) 

° 1 
u2/2 u ° 

D(9,O,O) ~ (j ° ° ~) cos (} sin (} 
( 4-73d) 

- sin (} cos (} ° . 
° ° 1 

To be more specific, we take the polarization along the positive x-axis, so that the 
plane-wave vector potential is 

AI'(x) = (0,1,0, 0)ei7 (z-ct) . (4-74) 

By definition D(O, u, 0) is a Lorentz transformation. That it is also a gauge 
transformation follows from the observation that 

and the definitions 

A ---t A' = A + V' A, 

Ao ---t A~ = Ao - ~atA , 

(4-75) 

( 4-76) 

which define a gauge transformation of the second kind. That is, we identify 

A - E!!:.e i7 (z-ct) 
- iw , (4-77) 

and verify Eqs.( 4-76). 
If we now make a Lorentz transformation to a (primed) frame moving in the 

positive x-direction with velocity v, we can use Eq.(2-3) to obtain the transformed 
quantities 

( 
-f3'Y) 

A'I' _ 'Y - ° ' 
° 

( 4-78a) 
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(4-78b) 

Thus, in general A~ i- o. But if we apply a gauge transformation with u = {3 before 
the Lorentz transformation, then the conditions kP, Ap, = 0, k· A = 0 are clearly 
maintained: /{,P,G~ = 0, k' ·G' = O. Among other things, this exercise provides a 
physical interpretation for the parameters of the little group. 

Problems 

4.1 Calculate C in the Weyl representation and identify iU2/{ as the 2-dimensional 
version of the charge-conjugation operator. Demonstrate the C-invariance of 
the Weyl theory by showing, for example, that 

(ihot + cO' • p( -iU2'PL) = O. 

4.2 With m" i- 0, show that Eq.( 4-45) yields 

and evaluate the integral for € = +1 and r > ro, thereby obtaining behavior 
qualitatively similar to Eq.( 4-44b). 
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