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Derealization of Vibrational Modes Caused by Electric Dipole Interaction 
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The electric dipole interaction of vibrational modes destroys their localization. Real-space renormal-
ization is constructed for the process of derealization. The renormalization-group equation for the dis­
tribution of dipole parameters is similar to the Boltzmann kinetic equation. Conservation laws are found 
and an H theorem is proven. Stationary distributions form a six-parameter manifold of fixed points. 
The two-point dynamical correlation function has the form / ~lF(t ~1/3r), where Fix) is a universal 
function. 

PACS numbers: 63.50.+X, 63.20.Pw, 71.55.Jv, 72.15.Rn 

Vibrational modes in a periodic crystal are propaga­
ting waves. If any disorder is introduced in the structure 
then some of the modes become localized. Localized 
states constitute a part of the spectrum near its upper 
bound. The number of localized states is small when the 
randomness is weak and it grows when the amount of de­
fects increases. These results are well established for 
many models with short-range interaction.1 Here we 
study the effect of the long-range electric dipole interac­
tion on localized states. Only dielectric materials are 
considered since in metals this interaction is absent due 
to screening. It is known2 that in systems of dimension d 
with r ~a interaction, localization can exist only if a > d. 
For a<d the diverging number of resonances destroys 
localized states.3 For asssds=s3 the divergence is loga­
rithmic, so the effect of derealization is weak. This en­
ables one to construct a renormalization group and study 
the effect within its framework. 

Basic model.—We are interested in the part of the 
spectrum consisting of states localized in the absence of 
a long-range interaction. The Hamiltonian can be writ­
ten 3 as 

_ a r a y - - 3 a , n , 7 a y i i , 7 
U k - r , | 3 ' K2) 

where n;y = (r, — r,)/1 r/ — tj \. The first sum stands for 
localized normal modes, while their long-range electric 
dipole interaction is given by the second term. The posi­
tions r, of localized modes randomly (but uniformly) fill 
the space (denote their concentration by n). The ambi­
guity of the choice of r, is of the order of the localization 
radius of the modes— this uncertainty is not crucial since 
the most important contribution comes from large scales 
where Eq. (2) for A / is correct. The vectors a, are 
defined by d, ™a/^/, where d/ is the electric dipole caused 
by the displacement q( of the /th oscillator. Random 
numbers cof are assumed to be uncorrelated, uniformly 
filling the interval [Ai ,A+] , so their distribution function 
is v((o)—2vo) for A - < co < A + , and 0 otherwise 

[v = ( A i - A 2 - ) - 1 ] . We take a, as random uncorrelated 
vectors with some distribution function / ( a ) : dP 
^fi^d^a. Since our plan is to treat the second term of 
(1) as a perturbation we impose the condition X«: i 
fo.—(a2>v/i, ( a 2 > = / a 2 / ( a ) r f 3 a l . The important param­
eter X plays the role of a coupling constant in this prob­
lem; its smallness is systematically used below. 

Now we recall the arguments3 showing that normal 
modes of the problem (1) cannot be localized. Consider 
two oscillators having frequencies cot,cOj, positions 17, r,-, 
and dipole parameters a,,ay. They are in resonance if 
| D(j | ^ | co2 — co} |. If this condition is true the eigen-
modes of the problem 

H - 1 (p,2 + o i / V ) + 7 (pf + cojq^+Dtjqiqj 

are not localized on one oscillator but are essentially 
nonzero at both places r,,r/. In order to establish the ab­
sence of localization we calculate AZ/(F), the average 
number of oscillators forming resonances with the /th 
one and contained in a sphere of volume V centered at r,. 
We find nt(V) =JnP(T)d3r, where P(r) is the probabili­
ty for two oscillators separated by a distance | r | to form 
a resonance. Estimating P(r) as v(a2)/\ r |3 gives3 

/i,(K)=*Mn(K). (3) 

The divergence of /i/(K) indicates derealization. The 
weak (logarithmic) character of the divergence and 
X<£\ suggests that one employs renormalization-group 
ideas. 

Renormalization equation.— First, we discuss one 
property of resonance oscillators that will be basic for 
our approach. Let two oscillators (having labels i and j) 
form a resonance. Consider another oscillator (having 
label k) which is also in resonance with either of these 
two. Using the result (3) one can estimate the following 
probability: 

P[{ < A y i / A * / < 2 ] = X « l (Apq = \rp-Tg\) (4) 

(here 2 can be replaced by any other number of order of 
1). In other words, if three oscillators placed at r/ ,^,^ 
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are in resonance, then one side of the triangle (say, 
|r,— rj\) is much shorter than the other two 
(I fi ~~rk I * I rj ~~rk I )• Moreover, our estimate implies 
log2(min[A*i,A*yl/A/7-)=A."~,»l (again 2 can be re­
placed by any reasonable number). These results have 
clear meaning: Since resonances are rarely distributed in 
the "logarithmic space/' they are mainly formed by 
pairs of oscillators. Triplet resonances usually do not 
appear—our estimate gives the probability — X2 for such 
resonance to occur. Similar arguments show that the 
probabilities of finding resonances of k oscillators 
(fc=4,5,6, . . .) are — A.*"1. This should be compared 
with the probability of a pair resonance, — X. We see 
that pair resonances occur — X2~k times more frequently 
than /c-oscillator resonances. This gives a basis for our 
method. Let us truncate the r ~3 interaction at some Ro. 
Put A y = 0 for all pairs (ij) such that |r /—r/| > Ro-
Find exact normal modes for this truncated Hamiltonian 
(denote them Ro modes). Then replace Ro by R\ such 
that R\?>R0, but X\og2(R{/Ro)<& 1. Find R} modes 
and consider them as linear combinations of Ro modes. 
According to the above discussion, R\ modes are either 
single Ro modes or resonance pairs of Ro modes (one can 
neglect triple and other many-oscillator resonances). 
Moreover, the separation of Ro modes in resonance pairs 
is —R\, while their localization radius is < Ro. This 
enables us to treat the interaction in such resonance pairs 
as the r~3 interaction of effective dipoles corresponding 
to Ro modes. Consider two oscillators (Ro modes) num­
bered 1 and 2. They interact according to 

/ / 1 2 s 

na z. i ney mieraci according 10 

•Hp\+a>iqt)+±(pl + colql) + Dnq\q2. 

lodes q*,q ~ are given by 

(5) 

Normal modes q +,<? are given by 

q + =cos&7i+sin&72, 

q ~ = — sinOq \ + cos6q2 

[cot20ss(co\—a)2)/2D\2]. Their frequencies ca± are 
defined by co± — (co2+ co2)co± + co2co2 = £>h The total 
electric dipole d of the modes 1,2 can be expressed as 

d=ai<7i + a2<72~a~,"<7 + + a q , where 

a + ^cosflai +sin#a2, 

a~ = — sin#ai+ cos0a2. 
(6) 

This means that any mode (say, the kth one) which 
comes into a resonance with a ( + ) mode or a (—) mode 
at some next step of the renormalization interacts with 
them via the amplitude /)* ± of the form (2) containing 
a~ instead of a 1,2. 

Note that 

\col- I ̂  IZ>i21 — constx(a2)/ |n - r 2 | 3 ; 

i.e., the separation of <y+ and co- is much bigger than 
any possible value of the interaction at all next steps. 
Hence, all further resonances cannot cause any coupling 
of the modes ( + ) and ( —). Consequently, the reso­
nances (interactions) of pairs of modes can be considered 
as uncorrelated [we mean correlations at different mo­
ments of the "renormalization time" £ =lnQ?)]. 

An important analogy with the Boltzmann kinetic 
equation should be stressed. The derivation of the kinet­
ic equation for rarefied gases is based on the absence of 
correlations of subsequent collision processes, which, in 
turn, is caused by the large mean free path of the mole­
cules [similar to our condition X,<C1, see (4)]. Besides 
providing the possibility of a probabilistic approach, the 
largeness of the mean free path (the smallness of X) al­
lows one to not take into account triple and other multi­
ple collisions (many-oscillator resonances in our prob­
lem). 

Finishing the discussion, we formulate the renormal­
ization procedure. After finding normal modes for the 
R\ -truncated interaction, we come to R\ modes which 
can be either single Ro modes or resonance pairs of Ro 
modes. Positions and frequencies of R\ modes remain 
uncorrelated and uniformly distributed, while the new 
distribution function / ( a ) of the dipole parameters must 
be recalculated (according to the above discussion the 
vectors a, for R\ modes can be taken as uncorrelated). 

We derive a recursion relation for / (a) and / (a ) : 

/ ( a ) - / ( a ) = J / ( a i ) t / 3 a , / ( a 2 ) r f 3 a 2 ^ J 3 r v r f £ [ ^ ( a - a + ) + 5 ( a - a " ) - 5 ( a - a 1 ) - 5 ( a - a 2 ) ] . (7) 

Here r ^ r i — T2, £ — \<o\ — 0)21 > 0, and «,v,a+ ,a~ are defined above. It is convenient to introduce a new variable r 
instead of E according to E =2Z)|2f. The variable r defines the angle 0 of the rotation transforming ai,a2 to a^a"1" 
(see above). The usefulness of r becomes clear from the identity 

d3rdE - (2 I r, - r21
31 D]21 )rf(ln \r\)dndr. 

Here dCt is the area element of the unit sphere corresponding to the unit vector 1112. Since the product | ri — T2131 D\21 
depends not on | ri — r21 but only on ni2, one can integrate Eq. (7) over | r | and find that its right-hand side 
— X\T\(R\/RQ)<C 1. Hence Eq. (7) can be transformed into a differential form by taking Z^lniR) as a renormalization 
"time": 

- ^ / ( a )==«vJ^ r^ 3 a i^ 3 a 2 / ( a , ) / ( a 2 ) e ( a , , a2 ) [ ^ ( a - - a + )4-5(a-a")-5(a-ai)-5(a-a2)] 
3£ 

(8) 
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FIG. 1. Function g (a ) defined by ( ) ( a , b ) - 4 * | a | | b | 

x g ( a ) (a is the angle between the vectors a,b). Q(a) is shown 
in the interval [0,/r/2]; for other a it can be found using 
the identities Q(a±n) -{2(a) , Q(-a)*=Q{a). Since 
maxIgCa)] =Q(0) -4/3VJ-0.7698 .. ., min[g(a)] -Q(n/2) 
— 2/;r—0.6366 . . ., the function g (a ) can be approximated by 
G*-0.5[g(0) + ()0r/2)]-0.7032. . . with an accuracy of 
10%: \[Q(a)-Q*]/Q*\ <0.1. 

where 

0 (a i , a2 )™J rfn |ai-a2 — 3ai-na2*n| . 

One gets the following for g ( a , b ) : (?(a,b)=4;r 
x I a | | b 1 0 ( a ) , where Q(a) is a function of the angle a 
between the vectors a,b (Fig. 1). Note that Q(a) can be 
well approximated by a constant Q* =0.7 with a reason­
able accuracy of 10%. 

Concerning Eq. (8) our main task is to find and study 
its solutions / ( a , £ ) such that / ( a , 0 ) = / ( a ) , the micro­
scopic distribution of vectors a/. Of considerable interest 
is the asymptotic behavior of / ( a , £ ) at ^—> «>, related to 
important dynamical characteristics of the problem (see 
below). Our analysis of Eq. (8) will be strongly motivat­
ed by its analogy with the Boltzmann equation. 

Integrals of Eq. (8). — First, we prove the conservation 
of<a2>:3<a2>/d£=0or 

/ a 2 / ( a , £ ) r f 3 0 = / a 2 / ( a , £ = O ) < / 3 t f 

for all £. The proof follows from the identity a + 2 

+ a ~ 2 = = a 2 + a2 (see above). This result is analogous to 
the conservation of energy for the Boltzmann equation. 

Besides (a2) there exist other invariants of Eq. (8). 
Consider the three components of the vector a = (ax, 
ay,az). Using the same method one easily finds that 
each of the six quantities W>, (a*), (a?)y (axay), (ayaz), 
(azax) is conserved when/ (a ,£ ) satisfies Eq. (8). 

One might suspect that the conservation of these 
quantities is an approximate result which fails when not 
only interacting pairs but also many-oscillator reso­

nances are taken into account. Let us show that such 
resonances do not destroy the conservation of (aaap) 
(a,j3=x,^,z) . Consider k oscillators forming a reso­
nance system: 

The variables qt are connected with normal modes ql by 
a transformation qt^R^qi, where R is an orthogonal 
A: x A: matrix. From the expression for the electric dipole 
of the system d "Za/^/ ™£a/#/ we find the transforma­
tion rule for a,-: a,-""/?//a£. We see that the vectors a, 
are transformed exactly as the variables qt. The ortho­
gonality of the transformation matrix R enables one to 
repeat the above given calculation and check the invari-
ance of the quantities (aaap). 

Further results of Eq. (8) can be obtained only for its 
approximate version which we get by replacing g ( a i , 
82)—* 4xQ* \a\ | 11?21 in (8) (the error introduced by 
this replacement is < 10%). The modified Eq. (8) 
[denote it Eq. (8M)] turns out to be much more treat­
able. It has some exact properties resembling those of 
the Boltzmann equation. Since the theories for Eq. 
(8M) and for the Boltzmann equation are completely 
parallel, we only quote the results (proofs will be 
presented elsewhere). 

(I) Invariants: The quantities <aaa^) are invariants of 
Eq. (8M), not only of Eq. (8). 

(II) H theorem: L e t / ( a , § ) satisfy Eq. (8M). Define 
"entropy" H as 

Hi/] - - Jlnl | a | / (a ,§)] / (a ,g)</ 3 f l . 

The function / / ( £ ) —//[/"(fl,§)] grows monotonously: 
8 / / ( £ ) / 8 § > 0 . 

(III) Stationary solutions of Eq. (8M): All station­
ary solutions of Eq. (8M) are / c ( a ) =,4 |a | _ 1 

xexp(— aaGapap), where G is a positively defined sym­
metric 3 x 3 matrix [A depends on G, s i n c e / ( a ) is nor­
malized: J / ( a ) r f 3 a - r l ] . 

(IV) Maximum of entropy: The entropy Hi/] reaches 
its maximal value for the distributions fc(a). More pre­
cisely, consider all functions / ( a ) such that 
JT/(a)rf3fl-l , Saaa^fU)d3a^GaP (a,/? = 1,2,3). Then 
always Hl/]^Hl/Gh Hlf\-H\fG] only if / ( a ) 
- /<?(a) . 

The stationary solutions / ^ ( a ) are analogous to the 
Maxwell distribution which is conserved by the 
Boltzmann equation. An important distinction is that 
the Maxwell distribution has only one free parameter 
(temperature), while the distributions fc (a) are charac­
terized by six parameters Gap (a,/? = 1,2,3; a < p). Note 
that the existence of the six parameters is directly con­
nected with the conservation of the six quantities (aaap). 

Thus, we see that the asymptotic properties of the 
solutions of Eq. (8M) are very simple: Any solution con­
verges to one of the stationary distributions / b ( a ) . The 
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parameters Gap are completely determined by second 
moments of the initial distribution /(a,<^ =0) . 

Unfortunately, none of the results (II), (III), or (IV) 
can be extended to the case of Eq. (8). Nevertheless, 
some understanding of its asymptotic properties can be 
reached if we utilize the closeness of Eq. (8) and Eq. 
(8M). Clearly Eq. (8M) defines a dynamical system in 
the space of all distributions / ( a ) [Eq. (8) does the 
samel. The analysis of Eq. (8M) presented above en­
ables one to extract two main features of this system: (i) 
Six integrals of motion (aaap) decompose the phase space 
into a bundle of invariant surfaces labeled by six param­
eters. (ii) Restricted on each of the invariant surfaces 
the system has one attracting fixed point / c ( a ) . The 
properties (i) and (ii) fully characterize the qualitative 
picture of motion guided by Eq. (8M). As for Eq. (8), it 
undoubtedly satisfies condition (i) and apparently 
possesses property (ii): According to the theory of 
dynamical systems the property (ii) is "rough," i.e., it 
cannot be destroyed by small changes of the system. For 
making use of this roughness we have to assume that the 
difference of right-hand sides of Eqs. (8) and (8M) (es­
timated as 10%) is sufficiently small. Of course this ar­
gument is not very convincing, so the property (ii) needs 
more investigation (perhaps numerical). Nevertheless, 
here we take it as being well established and formulate 
its consequences: (a) Every solution /(a,<^) of Eq. (8) 

converges to a stationary distribution as <£—• °o, (b) sta­
tionary distributions form a six-parameter set, where the 
parameters can be chosen as Gap

s=faaapf(a,?;s=0)d3a. 
We come to the main conclusion: The renormalization 
group Eq. (8) has a six-dimensional manifold of non-
trivial fixed points parametrized by symmetric positive­
ly defined 3x3 matrices. 

Some implications of this result for the dynamics 
should be finally mentioned. Fixed points of our dynami­
cal problem are stable under rescaling (r,/)—> (Zr,Z3t). 
Hence, all dynamical correlation functions depend essen­
tially only on the combination /~1/3r. For example, 
the two-point energy-energy correlation function (E(r,t) 
x£(0,0)> is given by K(r,t) =t ~xFG(t ~ , / 3 r ) , where 
FG(X) is some universal function of x depending also on 
Gap [energy is conserved, so jK(r,t)d3r = 1]. Thus the 
dynamics is slower than diffusive: R — T1'3. 
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