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The recently developed localization function method is applied to
the problem of lattice vibrations in isotopically disordered systems
with nearest neighbor coupling. Higher value eigenfrequencies corre-
spond to higher degree of localization. Under a crude approximation
explicit results are obtained, which are in qualitative agreement with

available calculations.

ANDERSON ' introduced the idea that the eigen-
states of a tight-binding random model are ex-
tended or localized depending on whether or not
the renormalization perturbation exptession1
(RPE) for the self energy ! A¢ diverges. Recently
Anderson’s method has been extended and im-
proved ? to the point where a localization function
L (E) has been introduced such that L(E) > 1

(< 1) if the energy E lies in the regions of extend-
ed (localized) states. At the energies E,, where
L (E.) = 1, the nature of the eigenstates changes
abruptly from localized to extended.

The purpose of this communication is to re-
port some results obtained by applying similar
ideas to the problem of lattice vibrations in a
system with nearest neighbor coupling only and
in the case where randomness is introduced by
allowing the mass of every particle to be a stat-
istically independent random variable.

The equation governing the displacement

v, of the nt" particle of mass m, is

0]

wmpu, = - Z'k“m'(um -u,),
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where k- is a 3 x 3 matrix describing the coup-
ling of the oscillation of the n't-particle with

that of the m'® -particle; w is the eigenfrequency
of the oscillation. Equation (1) can be written as

K - wzmn)un = ZI knm"'m @

where K = E' kom is @ 3 x 3 matrix independent
of n due to the assumed peiodicity of the coeffi-
cients k,; the summation in (1) and (2) is over
nearest neighbors. For the tight binding approxi-
mation in the electronic case considered in ref-
erence 2 the corresponding equation is

(E- €)cn =Y VamCan s (3)

where the electronic wave function is given by
lg>=2c, [n>, |n> are Wannier functions local-
n

ized around each site of the lattice, E is the
energy eigenvalue and the Hamiltonian is assumed
tobe <n|H|m>=€,6,, + V,,, with € random
variables and V,, equal to V for nearest neigh-

bors and zero otherwise.

By comparing equations (2) and (3) one sees
that €, and m_ «? are corresponding quantities.
The same amalysis2 that led to the proof of the
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existence of a localization function for equation
(3) can be repeated for equation (2) and the re-
sulting localization function, L, would depend on
w? through the combination w?Am, where Am is

a measure of the spread of the distribution of

m,. In general, larger values of Ama? correspond
to smaller values of L, although not always in a
monotonic way.2 Thus larger values of the eigen-
frequency w correspond to larger degree of local-
ization. The fact that k,,, in equation (2) are
matrices makes any quantitative calculation of L
along the lines used “ for equation (3) impossible.
For this reason and in order to obtain some ex-
plicit results, it shall be assumed from now on
that u, is scalar and that k,, is a constant num-
ber k for every nearest neighbors n, m. Then
equation (2) becomes

(Zk - @*m)ug = k Y tm 29
m

where Z is the number of nearest neighbours. One
does not expect that such a model can describe
quantitatively a real 3-D motion. However, it is
expected that the qualitative features of this
simple model are present in the realistic case
described by (2). The reason is that, in the corre-

. . . . 3
sponding electronic case, there is ample evidence

that the band mixing always present in realistic

cases does not alter the basic qualitative features
. 8

present in the one-band model.

Figure 1 exhibits a typical behavior 2 of the
localization function pertinent to equation (3) in
the case where the quantity €, has a terminating
distribution function centered and peaked at &,
with a total width W. The trajectory of the mobil-
ity edge E., where L (E_) = 1, has been plotted
(shown as dashed line) in the E' — W plane, where
E'-E - €, . The lines A'C and AC' are the
trajectories of the band edges in the same plane
according to Lifshitz d argument. L is larger than
1 in the unshaded region of the spectrum (extend-
ed states) and smaller than 1 in the shaded reg-
ion. (localized states).

Let us now assume that the masses m, in
(2') possess a terminating distribution function
centered and peaked at m, with total width Am,
By simple inspection of equations (3) and (2")
one sees that problem (2") reduces to (3) if one
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makes the substitutions
Zk=E, w?*m, = €,, &®>my= €, w?*Am="W,
k=V, Zk - w*mg = E' (4)

From (4), eliminating «? between the 4" and
the 6™ equation, we obtain

E'=27v -2y (5)
i} W

Thus as w? varies one moves along the
straight line (5) in the E'— W plane. This line
starts from the point A(ZV, 0) and its slope de-
pends on the ratio Am/m,, i.e. tan ¢ = Am/m,,
where ¢ is defined in Fig. 1. Sincem, > 0,
me — Am/2 2 0; and consequently ¢ < ¢aax
= tan' 2. The frequency corresponding to any
point D in the plane is given by

_(AD) | 2Zk
(AA") (m2 + Am?)

CUZ

Hence, for the phonon problem, the line (5) corre-
sponds to the w? axis and the scale on it is pro-
portional to (m& + Am?)t. From Fig. 1 we see
that, when Am = 0, ¢ = 0 and all eigenstates are
extended as they should be. For Am £ 0, ¢ £0
and there is always a critical eigenfrequency wg,

_(AB) 27k
T(AAYY (m? + Am?)E’

wh (6)
separating the localized states (w > wg) from the
extended states (w < wg). As Am » oo, wg - 0
and all eigenstates become localized. The above
discussion shows that the V-plots in Fig. 1

(and Fig. 2) are very useful tools in presenting
properties not only of electronic disordered sys-
tems® but of vibrational random systems as well.

For small randomness (small ¢ in Fig. 1)
localization appears at high frequencies and near
the band of the edge. This seems to be a common
characteristic of numerical calculations in com-
plicated disordered systems.”

If the distribution of the mass is a Lorentzian,
the trajectory of E_ in Fig. 1 is approximately a
semicircle * and explicit results for @, can be
obtained.?"®

We consider now the binary alloy case where
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F1G.1. Trajectories of the band edges (solid lines) and mobility edges (dashed lines). For the electronic
case, Wis the total width of the distribution around the value €, (see text) and E’ is the energy measured

from €,. For the phonon case the frequency axis is a straight line starting from the point A and making an
angle ¢ with the E' axis; ¢ = tan™" Am/m, (see text).
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F1G. 2. Trajectories of the band edges (solid lines) and mobility edges (dashed lines) for the binary alloy
case for two different values of the concentration x. E’ is the energy for the electronic case measured
from (€, + €g)/2 (see text). For the phonon case the frequency axis is a straight line starting from the
point A and making an angle ¢ with the E' axis; ¢ = tan~' 2(M — m)/(M + m) (see text).
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each m,_ can take two values m or M with prob-
ability 1 — x and x respectively, where x is the
concentration of the heavy mass (M) particles.
The corresponding electronic problem is the one
where €, can take two values €5 or € 4 with
probability 1 - x and x respectively; (€4 > €5).
The phonon problem is equivalent to the elec-
tronic one if we make the substitutions

E=Z7Zk, €4 = &*m, €5 =a?m, V =k,
€4 €5 = @M -m), E =2k - w? E2T ()

Figure 2 is the analogue of Fig. 1 for the
binary alloy case. The trajectories of the band
edges (solid lines) were drawn according to
Lifshitz argument; the trajectories of the mobil-
ity edges E_(dashed lines) were calculated
according to the coherent potential approximation6
of the function F(E) introduced in references 2
and 4; F(E) always underestimated the regions
of localized states. The w® axis is again a
straight line starting from the point 4 and making
an angle ¢ with the E’ axis (Fig. 2) given by

2M - m)

= tan™'
¢ “"M+m

(8)
and the scale is proportional to [ (M — m)® +
U m)?):. From Fig. 2 one can see that, as
the quantity (M — m)/(M + m) increases from zero,
a critical frequency wg appears such that the
eigenstates with eigenfrequency larger (smaller)
than wg are localized (extended). As (M - m)/
(M + m) increases further wp varies and at a
certain critical value of the mass ratio two ad-
ditional critical frequencies, w,, @, , appear
such that the regions 0 € w <wp and we <

w < wg correspond to extended states while the
regions wp < w < we and wy < @ correspond
to localized states. As (M — m)/(M + m) con-
tinues to increase, there are two possibilities
presented in Figs. 2a and 2b depending on whether
or not the concentration x of the large mass is
smaller or larger than a critical value x, of x,
(which in the present case is calculated to be

x, = 83 per cent). If x < x, (case of Fig. 2a), the
difference wg — we remains always finite as

M — m)/(M + m) increases and there are always
extended states in the interval [w:, w_]. On the
other hand, if x > x_ (Fig. 2b), there is another
critical value of the mass ratio such that the
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critical frequencies w,, wg merge together elim-
inating the extended states of the interval

[we, wgl. This corresponds to the Anderson
transition '’ ?in the electronic case. Let us con-
-sider the case where m is kept constant and

M - co. Then ¢ - ¢, and @, ~ 0. On the other
hand, wg, w,(case x < x_) approach some finite
limits. Thus as M - o, if x> x_, all ‘phonons’
become localized, while, if x < x,, there are two
critical frequencies w,, wg such that the states
in the interval [w,, wg] are extended and the
states in the intervals [0, w,] (g, wg] are
localized, where w is the band edge.

This last case can be important, since it
implies a temperature dependence of the form
e-E/kT for transport coefficients depending on
phonons, like, for example, the thermal conduct-
ivity in non-magnetic insulators. The activation
energy E_ is directly related with the critical
frequency w,, E. = hw,.

The analysis of the nature of the localized
states presented in reference 4 as well as the
verification of the existence of a critical con-
centration x, by percolation® theory can be carried
on unaltered for the phonon case. It can be shown®*
that x, = 1 - P. , where P, is the critical per-
colation probability’ The present analysis pre-
dicts a quite drastic change in the character of
the eigenstates corresponding to the upper part
of the spectrum as the concentration of the light
masses 1 - x passes through the critical per-
colation probability P, . This is exactly what
was observed in the numerical calculations of
Payton and Visscher. ® The results presented in
Fig. 2 are also capable of explaining8 features
present in Taylor’s calculations. "'
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Die kiirzlich entwickelte Lokalisierungsfunktionsmethode wirde auf
Gitterschwingungen in isotop gestSrten Systemen mit Kopplung zum
nédchsten Nachbarmn angewendet. Der Grad der Lokalisierung ist umso
hoher, je grosser die Eigenfrequenz ist. Mit einer groben Approxi-
mation kann man explizite Resultate bekommen, die qualitativ mit
bisher bekannten Ergebnissen iibereinstimmen.



