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LOCALIZED EIGENSTATESIN DISORDEREDSYSTEMS:

APPLICATION TO PHONONS*
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(Received7 June1971 by A.A.Maradudin)

Therecentlydevelopedlocalization functionmethod is applied to
the problemof lattice vibrations in isotopically disorderedsystems
with nearestneighborcoupling. Highervalue eigenfrequenciescorre-
spondto higherdegreeof localization. Under a crudeapproximation
explicit results areobtained, which arein qualitativeagreementwith
availablecalculations.

ANDERSON‘introduced the idea that the eigen- whereknm is a 3 x 3 matrix describingthe coup-
statesof a tight-binding randommodel areex- ling of theoscillation of the nth~particlewith
tendedor localized dependingon whetheror not that of the mth~particle;a is the eigenfrequency

the renormalizationperturbationexpression’ of the oscillation. Equation(1) can bewritten as
(RPE) for the self energy’ &,~diverges.Recently
Anderson’smethodhasbeenextendedand im- (K — = ~‘ k~,,,u,,, (2)
proved2 to the point wherea localization function
L(E) hasbeenintroducedsuch that L(E)> 1 ,where K = ~ is a 3 x 3 matrix independent
(<1) if the energy E lies in the regionsof extend- m
ed (localized) states. At the energiesE~,where of n dueto the assumedpeiodicity of the coeffi-

L(E~)= 1, the natureof the eigenstateschanges cients knm; the summation in (1) and(2) is over
abruptly from localized to extended, nearestneighbors.For the tight binding approxi-

mation in the electronic caseconsideredin ref-
The purposeof this communicationis to re- erence2 the correspondingequationis

port someresults obtainedby applying similar
ideasto the problem of lattice vibrations in a (E — �~)c~= ~ Vnm cm, (3)

system with nearestneighborcoupling only and
in the casewhere randomnessis introducedby wherethe electronicwavefunction is given by
allowing the massof everyparticleto be a stat- = ~ c,, In>, n> areWannierfunctions local-
istically independentrandomvariable. ized aroundeachsite of the lattice, E is the

energyeigenvalueand the Hamiltonian is assumed
The equationgoverningthe displacement to be <niHim> = En

6nm + Vnm, with �,, random

u~of the nth particle of mass is variablesand Vnm equal to V for nearestneigh-

bors andzero otherwise.
w2m~u~= — ~ ~ — un), (1)

By comparingequations(2) and(3) onesees

* that �~, andm~o.~2arecorrespondingquantities.Supportedby the Centerfor AdvancedStudies 2
The sameanalysis that led to the proof of the

at the University of Virginia.
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existenceof a localization function for equation makesthe substitutions
(3) can be repeatedfor equation(2) andthe re- Zk = E, c~2m,, = �,,, cz2m

0= �~, w~Am= W,
suiting localization function, L, would dependon
~2 throughthe combinationo

2Am,where Am is k = V, Zk — w2rn~,= E’ (4)
a measureof the spreadof the distribution of From (4), eliminating w~betweenthe ~ and
m~.In general,largervaluesof Amo~2correspond the ~ equation, we obtain

to smaller valuesof L, althoughnot always in a
m

0
monotonicway.

2 Thus largervaluesof theeigen- E’ ~ — — W. (5)
frequencyw correspondto largerdegreeof local- = Am
ization. The fact that knm in equation(2) are Thus as w2 variesonemovesalongthe
matricesmakesanyc~uantitativecalculation of L
alongthe lines used for equation(3) impossible. straight line (5) in the E’ — W plane. This line

starts from the point A(ZV, 0) and its slopede-For this reasonand in orderto obtain someex-
pendson the ratio Am/rn

0, i.e. tan ~ = Am/rn0,plicit results, it shall be assumedfrom now on whereç~is defined in Fig. 1. Sincem~~ 0,

that u~is scalarand that knm is a constantnum- m0 — Am/2 ~ 0; andconsequently~ ~
ber k for every nearestneighborsn, m. Then = tan-

1 2. The frequencycorrespondingto any
equation(2) becomes point D in the plane is given by

(Zk — c’J2mn)un = k ~‘Um , (2’) ~2 = (AD) 2Zk
m (All’) (m~+ Am2Y

whereZ is the numberof nearestneighbours.One Hence, for thephononproblem, the line (5) corre-
doesnot expectthat sucha model candescribe spondsto thew~axis andthe scaleon it is pro-

quantitatively a real 3-D motion. However, it is portional to (m~+ Am2)f. From Fig. 1 we see
expectedthat the qualitative featuresof this that, when Am = 0, ~ = 0 andall eigenstatesare
simple model are presentin the realistic case extendedas they should be. For Am ~ 0, ~ ~ 0
describedby (2). The reasonis that, in the corre- andthere is always a critical eigenfrequency~B’

spondingelectroniccase,thereis ample evidence3 2 (AB) 2Zk

that the bandmixing always presentin realistic ______ _________ (6)
casesdoesnot alter the basic qualitative features = (All’) (m~+ Am2)i’
presentin the one-bandmodel.4 separatingthe localized states(oi > o~)from the

extendedstates(c~<aB). As Am —+ no, ~ — 0
Figure 1 exhibits a typical behavior2of the and all eigenstatesbecomelocalized. The above

localizationfunction pertinentto equation(3) in discussionshowsthat the V-plots in Fig. 1
the casewherethe quantity �~,hasa terminating (and Fig. 2) are very useful tools in presenting
distribution function centeredandpeakedat �~ propertiesnot only of electronic disorderedsys-
with a total width W. The trajectory of the mobil- tems6 but of vibrational randomsystemsaswell.
ity edgeE

0, whereL(E0) = 1, hasbeenplotted
(shown asdashedline) in the E’ — W plane, where For small randomness(small ~ in Fig. 1)

= E — �~. The lines AC and AC’ arethe localization appearsat high frequenciesandnear
trajectoriesof the bandedgesin the sameplane the bandof the edge.This seemsto be acommon
accordingto Lifshitz ~ argument.L is larger than characteristicof numericalcalculationsin corn-

71 in the unshadedregion of the spectrum(extend- plicated disorderedsystems.
ed states)andsmaller than 1 in the shadedreg-
ion. (localized states). If the distribution of the mass is a Lorentzian,

the trajectory of E0 in Fig. 1 is approximatelya
Let us now assumethat the massesm~in semicircle

2and explicit results for ~ can be

2,8(2’) possessa terminatingdistribution function obtained.
centeredandpeakedat m

0 with total width Am.
By simple inspectionof equations(3) and(2’) We considernow thebinary alloy casewhere

one seesthat problem(2’) reducesto (3) if one
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FIG. 1. Trajectoriesof thebandedges(solid lines) and mobility edges(dashedlines). For the electronic
case,Wis the total width of the distribution aroundthe value �~(see text) and E’ is the energy measured
from �,,. For the phononcasethe frequencyaxis is a straight line starting from the point A andmaking an
angle~ with the E’ axis; ~ = tan’ A rn/rn0 (seetext).
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FIG. 2. Trajectories of the bandedges(solid lines) andmobility edges(dashedlines) for the binary alloy
casefor two different valuesof the concentrationx. E’ is the energyfor the electronic casemeasured
from (�A + EB )/2 (seetext). For the phonon casethe frequencyaxis is a straig)it line starting from the
point A and making an angle t~with the E’ axis; 4 = tan’ 2(M — m)/(M + m) (see text).
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eachrn~can taketwo valuesm or M with prob- critical frequencies0C’~°~Bmergetogetherelim-
ability 1 — x and x respectively,wherex is the mating the extendedstatesof the interval
concentrationof the heavymass(M) particles. [WC, ~‘-B1~This correspondsto the Anderson
The correspondingelectronicproblem is the one transition’~2in the electroniccase.Let us con-
where ç, can taketwo values �8 or EA with •sider the casewherern is kept constantand
probability 1 — x and x respectively,(~A > ~B) M no. Then ~ —‘i ~ and~J~D-. 0. On the other
Thephononproblem is equivalentto the elec- hand,~B’ ~c(case x < x~)approachsomefinite
tronic oneif we makethe substitutions limits. Thus asM oo, if x> x

0, all ‘phonons’
becomelocalized, while, if x < x~,there aretwo

E = Zk, ~A = W

2m, EB = ~J2rn, V = k, critical frequencies°~c~~B suchthat the states

in the interval [we, cue] are extendedand the
= c~2(M— rn), E’ = Zk — ~2 (M + rn) (7) statesin the intervals [0, w~I~B’ ~E’ are

localized, wherea~is the band edge.
Figure 2 is the analogueof Fig. 1 for the

binary alloy case.The trajectoriesof theband This last casecan be important, since it
edges(solid lines) were drawn accordingto implies a temperaturedependenceof the form
Lifshitz5 argument;the trajectoriesof the mobil- e-~/kT for transportcoefficientsdependingon
ity edgesE

0 (dashedlines) were calculated phonons,like, for example, thethermal conduct-
6

accordingto the coherentpotential approximation ivity in non-magneticinsulators.The activation
of the function F(E) introducedin references2 energyE~is directly relatedwith the critical
and4; F(E) always underestimatedthe regions frequencyw~,E~=

of localized states.The c~

2axis is again a
straight line starting from the point A andmaking The analysisof the natureof the localized

an angle~ with the E’ axis (Fig. 2) given by statespresentedin reference4 as well as the

= tan’ 2 (M — m) (8) verification of the existenceof a critical con-centrationx~by percolation9theorycan becarriedM+m
on unalteredfor the phononcase.It canbeshown4

andthe scaleis proportional to [(M — rn)2 + that x~= 1 — P~, whereP,~ is the critical per-

+ m)2]i. From Fig. 2 one can seethat, as colation probability.9 The presentanalysispre-
the quantity (M — m)/(M + rn) increasesfrom zero, dicts a quite drasticchangein the characterof
a critical frequencyw

8 appearssuchthat the the eigenstatescorrespondingto the upperpart
eigenstateswith eigenfrequencylarger (smaller) of the spectrumas the concentrationof the light
thanw~arelocalized(extended).As (M — rn)/ masses1 — x passesthrough the critical per-

(M + m) increasesfurther aB varies andat a colation probability ~ This is exactly what
certain critical valueof the mass ratio two ad- wasobservedin the numericalcalculationsof
ditional critical frequencies,~ ~ appear Payton andVisscher.‘° The resultspresentedin
suchthat the regions0 ~ w <CUD and WC < Fig. 2 are also capableof explaining

8 features
W < ~B correspondto extendedstateswhile the presentin Taylor’s calculations.

regions ~D <~ <WC andw

8 <W correspond
to localized states.As (M — rn)/(M + rn) con- Acknowledgements— I wish to thankC. Papa-
tinues to increase,there aretwo possibilities triantaphillou for calculating the trajectoriesof

presentedin Figs. 2a and2b dependingon whether the mobility edgesshown in Fig. 2, aswell as
or not the concentrationX of the largemass is Morrel C. CohenandScott Kirkpatrick for stimu-
smalleror larger thana critical value x~of ~, lating discussions.
(which in thepresentcaseis calculatedto be

XC 83 per cent). If x <X0 (caseof Fig. 2a), the
difference ~ — ~ remainsalways finite as
(M — m)/(M + rn) increasesandtherearealways
extendedstatesin the interval [oi, &i, 1. On the
otherhand, if x> x0 (Fig. 2b), there is another
critical value of the massratio suchthat the
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Die kürzlich entwickelteLokalisierungsfunktionsmethodewirde auf
Gitterschwingungenin isotop gestbrtenSystemenmit Kopplung zum
nächstenNachbarnangewendet.Der Gradder Lokalisierungist umso
höher,je grosserdie Eigenfrequenzist. Mit einergrobenApproxi-
mation kann man explizite Resultatebekommen,die qualitativ mit
bisherbekanntenErgebnissenübereinstimmen.


