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J. Phys. C: Solid State Phys. 20 (1987) 3075-3102. Printed in the UK 

REVIEW ARTICLE 

The mobility edge since 1967 

Sir Nevi11 Mott 
The Cavendish Laboratory, Cambridge, UK 

Received 23 March 1987 

Abstract. A mobility edge is defined as the energy separating localised and non-localised 
states in the conduction or valence bands of a non-crystalline material, or the impurity band 
of a doped semiconductor. This review is limited to three-dimensional systems, since in one 
or two dimensions a mobility edge in this sense does not exist, because all states are localised. 
We distinguish between the properties of electrons in the conduction bands of non-crystalline 
semiconductors, notably hydrogenated amorphous silicon (a-Si-H), and those in a degener- 
ate electron gas, such as that in amorphous Si-Nb alloys or impurity bands in doped 
crystalline semiconductors. In the former the use of a one-electron model is legitimate, but 
a consideration of the interaction with phonons is essential; even at the absolute zero of 
temperature this leads to a broadening of the mobility edge. Our main purpose here is to 
review recent work on the effects of this interaction on the pre-exponential factor uo in the 
conductivity expressed as 

0 = 00 exp[-(Ec - EF)/kBil 
and the pre-exponential factor in the drift mobility. In the final section we also give a brief 
review of some of the recent work on the effects of the electron-electron interaction in 
metallic systems, and also spin-orbit scattering. 
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1. Introduction 

In a non-crystalline material, it is generally assumed that the lowest states in a conduction 
band are localised, that is to say they are traps. This seems to have been first proposed 
by Frohlich (1947). The density of states is then as in figure 1; the highest energy at which 
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E 

Figure 1. Density of states N ( E )  in a non-crystalline material showing the mobility edge 
E,. E A  is the energy at which injected electrons are in equilibrium at a given temperature. 

states are localised is called the mobility edge, denoted by E,. The term was first used 
by Cohen er a1 (1969) , but the concept of a sharp energy separating localised from non- 
localised states was discussed in some detail two years earlier by the present author 
(Mott 1967). As far as we know, the first paper proposing a sharp energy separating 
localised from non-localised states was that of Banyai (1964). In the early days (round 
1970) there was much discussion about whether the mobility edge should be sharp, and 
whether localised and non-localised (extended) states could coexist at the same energy. 
In general we believe they cannot, because a localised state will hybridise with the 
extended states, if they exist, so that only extended states remain. As regards sharpness, 
if the model is one in which the atoms are held rigidly in position, the mobility edge is 
sharp. In reality, in the conduction band of an amorphous semiconductor, the electron 
will always suffer inelastic collisions with phonons, even at zero temperature. We can 
thus introduce the inelastic diffusion length Li, given by 

Li = ( D r i p *  (1) 
where D is the diffusion coefficient resulting from elastic collisions and ti is the time 
between inelastic collisions. These will broaden the mobility edge; according to the 
present author (1985a) the width is 

A E / E o  = O . O ~ ( U ~ / L ~ ) ~ .  (2) 
Here Eo is as marked in figure 1; EA is the energy in the conduction band tail where the 
density of electrons is a maximum and (Mott and Davies 1979, p 31, Mott 1981b) 

= @%“(E,). (3) 
We shall return to equation (2) in P 5, and come to the conclusion that the numerical 
factor may be somewhat too small. 

On the other hand, when we consider a degenerate electron gas in the limit of low 
temperatures, that is to say, an amorphous metal such as a-Sil -xNb, (Hertel etul1983), 
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or a heavily doped semi-conductort then if the Fermi energy moves through E, in figure 
1 as a result of changes in the pressure, composition or magnetic field, a sharp metal- 
insulator transition is expected. Neither the mobility edge nor the Fermi energy is 
broadened, for the reason first pointed out for the Fermi energy by Jones er a1 (1934) 
and later by Landau (1957) in his discussion of the Fermi surface. Our discussion will 
separate the two cases; in the conduction band of semiconductors the mobility edge is 
always broadened by phonons, but electron-electron interaction is rarely important; in 
metals, however, the latter is extremely important, much more so than in crystals, and 
a theory which neglects it is subject to serious errors. The mobility edge is, however, 
sharp at zero temperature. 

2. The Anderson model of localisation 

The model introduced by Anderson (1958) has been extensively used in the discussion 
of the mobility edge, in ways that will first be outlined here, together with some of the 
consequences to be drawn from it. Figure 2 shows the Anderson potential; a three- 

t 
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Figure 2. Potential energy function introduced by Anderson (1958). (a),  In the 
of a random potential; ( b ) ,  with random potential. The density of states is also 

absence 
shown. 

dimensional array of potential wells is envisaged, with coordination number 2. A random 
potential V such that -IVo 6 V s IV, is applied to each well, and a tight-binding 
approximation assumed. If V o  is zero, the wavefunctions are of the form 

+ In discussions here of heavily doped semiconductors, we suppose that near the transition conduction is in 
an impurity band (see Mott and Kaveh 1985b, p 388, and also evidence drawn from ESR by Jerome et a1 1985 
and calculations by Ghazali and Serre 1982). Other points of view have been expressed, see for example Meyer 
er a1 (1985). We suppose also that the material is compensated and that the random positions of the centres in 
space, together with random fields produced by charged centres, gives rise to a mobility edge. For uncom- 
pensated samples the intra-site repulsion (the Hubbard U, cf 0 9), is important, but the present author has 
argued that the transition is nonetheless of Anderson type, as assumed here (for a review see Mott and Kaveh 
1985b, and J 9 of this paper.) 



3078 Sir Nevi11 Mot1 

with a band width B given by 

B = 2zZ 

where l i s  the transfer integral. A finite value of Vo introduces an elastic mean free path, 
1. If Vo - B ,  then 1 - a ;  this we call the Ioffe-Regel (Ioffe and Regel 1960) limit; 1 cannot 
be smaller than a and at the limit the wavefunctions, instead of (4), take the form 

where c,, qn are random real numbers. If we write the conductivity in the form 

U = SFe21/12n3fi (6) 
for a half-full band, putting 1 = a and SF (the Fermi surface area) equal to 4nkg and kF = 
n / a ,  we find 

uIR = Qe2/fia. (7) 
As Vo increases, the density of states will decrease. The present author has introduced 
the factor g, defined as 

g = N(EF)/N(EF)Vo=O (8) 

to describe the reduction. One can then show, (e.g. Mott and Davis 1979 ch 2), using 
the Kubo-Greenwood formula, that 

0 = 01Rg2 (9) 
provided that interference effects resulting from multiple scattering are neglected. 
Anderson’s work shows that, for a certain value of Vo,  states throughout the band 
became localised. According to recent calculations (Elyutin et a1 1984), this occurs? 
when Vo/B = 1.6 and for this value the present author finds 

l/g = 1.74(1 + Vi/B2)1/2 - 3. 

When the Fermi energy lies at the mobility edge, equation (9) gives a conductivity umin, 
where 

umin = 0.03e2/ha. (10) 

3. The mobility edge according to the Anderson model 

When Vo/B is less than the critical value, 1.6 according to Elyutin et a1 (1984) for z = 6, 
mobility edges will separate localised from extended states as in figure 1. The present 
author has proposed that for energies on the localised side of the mobility edge, 
wavefunctions should be of the form 

Y = Y1R exp(-r/E). (11) 
gis called the localisation length, and in a theory of non-interacting electrons, near the 
edge 

5 - E,a,/(E - E,)”. (12) 

i. Anderson (1958) found a much larger value. It should depend also on the coordination number. 
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Various calculations suggest v = 1 (Wegner 1979,1982, Hikami 1980,1982, Berezin er 
a1 1980), though larger values have been found in numerical work. 

For a degenerate electron gas, it is in principle possible to determine Y (of course, in 
the real model that includes electron-electron interactions) from observations of vari- 
able range hopping if carried out in a temperature sufficiently high for the Coulomb gap 
of Efros and Shklovskii (19791. to be unimportant, since the conductivity should then 
vary as exp[ - ( To/T)1/4] with 

To = constant/N(EF)g3 (13) 
(Pollitt 1976, Mott and Davis 1979 p 138, Shafarman et a1 1986). We return to these 
investigations in 0 8. 

Calculations of the position of the mobility edge using the Anderson model have 
been made by Abou-Chacra and Thouless (1974). If Vo/B - 1, one can argue that the 
‘tail’ shown in figure 1 will have a width -Vo. This will mean that for a fraction Vo/B of 
the wells the bottom is below the mobility edge. But in order to obtain localisation, the 
energy E, must be so low that wells below it generate a band of width -V0/l.6. The 
analysis appears to show that only a fraction -Vo/B of the tail states become localised, 
so that any mobility edge lies well into the tail, at an energy of order IVi/B, from the 
bottom of the band. 

As regards equations (7) and (10) for the conductivity, we believe that they are valid 
when uE (equation 3 )  is substituted for a. 

4. Effects of multiple scattering 

Equation (10) gives a value of the conductivity, 0.03e2/huE, which the present author 
has called the ‘minimum metallic conductivity’, suggesting that it gave the value of the 
conductivity of a metal when E F  lies at E,. The use of scaling theory by Abrahams et a1 
(1979) first showed that, in a theory of non-interacting electrons, a for  a metal must in 
fact go continuously to zero as E F  + E,. What the effect of electron-electron interactions 
may be is still uncertain (see 0 8), but there is now much evidence (Rosenbaum et a1 
1980) that 0, at low temperatures and in the absence of a magnetic field, does in fact go 
continuously to zero as E + E,. 

In order to understand this, we look first at the effect of multiple scattering on the 
conductivity. According to Kawabata (1981, 1982), who used diagrammatic methods, 
multiple scattering introduces a correction to formula (9) for the conductivity, namely 

0 = 0,(l - C/(kFl) ’ ) .  (14) 

Here % is the Boltzmann conductivity ( 6 ) ,  kF the wave-vector at the Fermi surface 
and c a constant of order unity. Bergmann (1983a, b, 1986), particularly in the two- 
dimensional problem, showed that the correcting term was the result of interference 
between waves scattered as shown in figure 3 .  If electrons are scattered from A to B by 
two equivalent paths in k-space ACDB, AC’D’B, the constructive interference will 
increase the scattering and reduce the conductivity. The form of (14) is easily understood 
as follows. The two paths will reinforce each other at B, and also within a circle round 
B of radius 6k = l/lgiven by the uncertainty in k .  Thus an areas n/12 of the Fermi surface 
is effective, which is a fraction t(kf)-’ of the whole area 4nk2. So the correcting term 

t Near the transition, the temperatures at which the Coulomb gap is important must tend to zero as n -+ n,. 
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k ,  
Figure 3. The Fermi surface of a metal. An electric field Fis applied in the direction shown 
by the arrow, and ACC’B and ADD’B show two paths, the scattered waves interfering 
at B. 

should be c/(kl)’ .  The constant c has not been properly evaluated; it should be between 
1 and 3 (see Mott and Kaveh 1985b). 

One can also consider interference in real space. The correcting term then comes 
from the probability that an electron is scattering back to the point from which it started, 
the interference cutting down the intensity of the incident wave (see Kaveh and Mott 
1987b). 

If there is inelastic scattering, this interference will be diminished. Also, if the 
disorder is great enough to diminish the density of states, the Mott factor g must be 
introduced. Mott and Kaveh (1985a) write an amended form of (14) as 

g represents the reduction in the density of states defined by (8), Li is the inelastic 
diffusion length, which has already been defined (equation (1)). If electron-electron 
collisions are responsible, xi is proportional to 1 / p ,  so a correction to the conductivity 
linear in Tis predicted?. This has been observed, both in amorphous metals (Howson 
1984, Howson and Greig 1985) and in heavily doped semiconductors. However, elec- 
tron-electron interaction also changes the density of states at the Fermi energy in such 
materials in a way which introduces another correction to aproportional to T”’; this is 
also observed and is the most important correction at low T ( 0  9). 

t The literature sometimes refers to scattering by magnetic centres or ‘spin-flip’ collisions in metals as 
something different from electron-electron collisions. We believe this to be wrong at the zero of T.  A moment 
in a metal, for instance due to a magnetic impurity, through Kondo-type interaction with the Fermi surface, 
produces in effect simply heavy pseudo-particles (see for instance Mott 1974, Griiner and Mott 1974). So 
‘spin-flip’ collisions are only meaningful above the Kondo temperature kBTk/h = AF exp(-€/A) where A is 
the self energy and € is defined in the papers quoted. We know of no estimate for its magnitude in impurity 
bands, and it may be very small. Spin-orbit collisions are, however, something different, as discussed in 8 8. 
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Kaveh and Mott (1985a, and earlier papers) propose that equation (15) can be 
extrapolated to the point where uvanishes, and give reasons why this should be a good 
approximation (Kaveh and Mott 1987b). At the Ioffe-Regel limit one can write kFI = 
JG, for a half-filled band. (Near a band edge, if 1 = uE, it will be smaller by n2I9, where n 
is the number of states below E,), In mid-gap, then, for Li = x (zero temperature), U 
should vanish for g = 8; near the band edge the critical values of g will be larger. 

Whether EF is in the mid band or not, the conductivity near the transition should 
behave like 

where R is the mean distance between atoms (or donors) and R, the value at which U 
vanishes. At the transition we put (kFO2g2 = 1. For an impurity band, N(EF)  without 
broadening by disorder should vary as exp( - aR),  where a i s  the rate at which the donor 
wavefunctions fall off; with broadening, this is decreased by a term depending on e2/ 
KR,  varying more slowly, since CUR is normally of order four at the transition. So near 
the transition (16) may be written 

where n is the concentration of donors and n, the critical value. 
We may compare this with the results of Hertel et ul (1983) shown in figure 4 for the 

metal-insulator transition in a-Si : Nb. It will be seen that n, = 0.115N, N being the total 
number of atoms cm-3 and that U reaches the value amin when (n  - n,)/n, = 0.39. We 
predict from equation (17) the value # = 0.375, in excellent agreement. However, it 
must be realised that, for a metal, electron-electron interactions may make a large 
difference tothisvalue (cf § 9), andforaheavymetallikeNbsomayspin-orbitscattering. 

At the transition, at any finite temperature, we must have Li 4 E ,  so that (15) becomes 

U(,??,) = 0.03 e2/hLi .  (18) 

(n -n ,  ) I n ,  
0 0.2 0.4 0.6 

0.4 

0.3 

0.2 

0.1 

12 14 16 18 ' 
Nb concentration I%)  

Figure 4. The low-temperature conductivity of amorphous Si-Nb as a function of niobium 
concentration (Hertel et al 1983). The density of states is also shown. 
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This equation must be relevant to the conduction band in non-crystalline semiconductors 
(Li being the result of the interaction with phonons); it has been suggested (Mott 1985a) 
that the conductivity should be 

a = a(&) exP[-(& - W / k B  T I .  (19) 
Following work by P Thomas and co-workers (Dersch and Thomas 1985, Muller and 
Thomas 1984, Fenz et a1 1985), this may be incorrect, as we shall show in 0 6. 

In a magnetic field H ,  at zero temperature, or if LH 6 Li, (15) should take the form 

where LH is the cyclotron radius (eh/cH)'/2. Physically it is clear that a magnetic field 
will destroy the phase correlation illustrated in figure 3, so that the field leads to anegative 
magnetoresistance, varying as 

Ap a - constant H1/2. 

This will normally be the major term in the magnetoresistance for small fields. On the 
other hand, it has been realised for many years that in doped semiconductors a magnetic 
field will decrease the radius of the orbits and thus decrease the band width B in the 
absence of disorder, g in (20) therefore decreasing. This leads to a linear term 

Ap 0~ constant H .  

Thus with increasing field U should first increase and then decrease. Then, as Shapiro 
(1984) has pointed out, the mobility edge as a function of energy and field H should 
behave as in figure 5 ;  along the dotted line an increasing field should first give a transition 
to a metallic state and then again to an insulating state. These transitions will not show 
a minimum metallic conductivity (Mott and Kaveh 1985b p 857), atending continuously 

I I \  > 
E ,  

E 

Figure 5. Phase diagram separating extended from localised states as a function of energy 
E and magnetic field H. If the field is increased along the dotted line, transition between 
localised and extended behaviour can occur at P and Q. 
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to zero. Such an effect neglects electron-electron interactions and may not be present if 
the result of these is large. 

On the other hand, when LH is less or comparable with 1 (equal to a at the Ioffe- 
Regel limit), the correcting term in (20) seems to disappear and a minimum metallic 
conductivity ami,, given by figure 6 appears. This is not fully understood theoretically, 
but seems to follow from the experimental work of Biskupski et a1 (1981,1984) and Long 
and Pepper (1984a). In doped and compensated InP and InSb, behaviour of the type 
shown in figure 6 is observed, experiments having been carried out down to 40 mK. A 

0.1 0.2 0.3 
I I T  I K - ' )  

Figure 6 .  Ln (resistance) of doped InP plotted against 1/T for increasing values of the 
field, the Tesla (Biskupski 1982). 

minimum metallic conductivity is clearly observed and the same quantity appears-as it 
should-in the pre-exponential factor for activated charge transport. Moreover ami,, can 
be plotted against a (a-3 is the concentration of electrons), giving 

amin - 0.037 e2/ha 

as shown in figure 7. The factor 0.037 is very near to our prediction (0.031). A minimum 
metallic conductivity of this order, for a transition induced by a strong field, is also 
observed in Si : Sb by Long and Pepper (1984b). 

This effect appears only in materials in which the term due to interactions 
( A U K  T"*) is small (see B 8). This is discussed by Mott and Kaveh (1985b) and Kaveh 
and Mott (1987b), who propose that U goes rapidly but continuously to zero with 
increasing H .  

In 0 7 we describe another case (liquid semiconductors) in which the correcting term 
certainly disappears, because in this case 1 = Li. 

In equation (15), in the absence of a field and at the absolute zero of temperature, L 
will be the size of the specimen. In an alternating field, we may write 

L ,  = (D/W)l/* 

where w is the frequency. Another length, relating to spin-orbit scattering, is discussed 
in § 8. 
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N o - N ,  i t m - j )  

Figure 7. Plot of u,,,,,(obs) against No - N A  (Biskupski 1982). Cis  the constant in U = Ce2/ 
fia. 

5. A deduction of NE) from the KuhMreenwood formulat 

In this section we start with the Kubo-Greenwood formula (Mott and Davis 1979 p 11). 
This formula gives for the conductivity in the metallic regime 

where 

a I ax 
M =  Y r - Y 2 d 3 ~  

Yl, Y2, being wavefunctions near the Fermi energy. This formula is simply the limit, as 
w+ 0, of the optical absorption coefficient resulting from transitions from states just 
below to just above the Fermi energy of a metal at zero temperature. When in 1979 
Abrahams and co-workers used the scaling theory to show that a(E)  should (in the 
absence of interactions) tend linearly to zero as E +- E,, the present author felt the need 
to show how (21), involving only an average of squared terms, could vanish. This could 
not be ascribed to the density of states N ( E ) ;  theory (Thouless 1970) showed that there 
should be no discontinuity in N ( E )  at the transition$ (still less a zero value); and this was 
confirmed by measurements of Kobayashi et a1 (1977) of the (electronic) specific heat of 
Si: P in the metallic regime. 

Mott (1984) and Mott and Kaveh (1985a, b) discussed how this could occur. We now 
give a somewhat revised account of their argument. 

t Kubo (1956), Greenwood (1958). 
$ The calculation of Thouless was for non-interacting electrons. When interaction is taken into account (5 9), 
one must distinguish between N ( E ) ,  the value when the free-energy is minimised, which does not vanish, and 
N ( E ) ,  the value representing the excition of a single electron, which does. N ( E )  is appropriate for discussions 
of photoexcitation and hopping conduction (Efros and Shklovskii, 1975), &‘(E) for metallic conductivity 
following the equation 

U = e&’(E)p 

where pis the mobility, and also for the specific heat. 
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We first consider states with energies lying between E, and some lower value E such 
that 

AE= E, - E  

is small. Wavefunctions will normally be non-degenerate and therefore, in the absence 
of a magnetic field, real. We suppose them to be of the form (cf equation (11)). 

Re ( y e n )  ex~(-r/E) 
where Yext may be the wavefunction \VIR defined by equation ( l l ) ,  but the constants c, 
in (5 )  remain unknown. As we have seen, when AE is small 

5: - aE,/AE. 

Consider two localised wavefunctions Y Y2, at a distance R from each other, and 
suppose also that they are not orthogonal. To orthogonalise them we write 

a y l  + b y 2  

a y 2  - bY1 

and argue that the overlap integral must be less than AE, if they are both to lie in the 
range AE. The transfer integral will then be of the form 

Ho exp(-R/S) 

R = Eln(Ho/AE) = ln(E/HoE,). (22) 

R - Eln(E/a>. (23) 

so the minimium distance between them is 

Ho and E, should be of the same order, so we write 

This gives us a number of states per unit volume in the range AE equal to l /R3 = 
[(AE)/aEc]3(a/R)3, while the true number must be N(E)AE, which is much greater. 

This is discussed by Mott and Kaveh (1985a). They point out that the statements 
above should be limited to states with energies lying within a range hoc of each other, 
where 

hw, = 1 / ~ ( ~ ) 5 3 .  (24) 
The correct density of states is then obtained. 

We discuss next the form of the wavefunctions of states with energies in a range A E  
above the mobility edge. We argue that within a length R each wavefunction Y at energy 
E above E, will be similar to one of the localised states at the same energy to below it. 
We make the assumption (which we have not been above to prove) that, within the 
energy range hw, and the length R, all wavefunctions are similar. We illustrate our 
concept of the envelopes of the functions in figure 8. In the maxima, the wavefunctions 
over an energy range hw, are highly degenerate (but may no longer be orthogonal). We 
argue, however, that within one ‘bump’ we can superimpose the functions so that all are 
real. 

If we use the Kubo-Greenwood formula to calculate (I, we found (Mott 1972) that 
at the mobility edge (I = 0.03e2/ha, assuming that phases of Y in adjacent atoms are 
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Real Imaginary 4 ( b )  d 

Figure 8. Suggested form of the envelopes of the wavefunctions for energies ( a ) ,  just 
below; and ( b ) ,  just above E,. 

uncorrelated. We now argue that within one bump (figure 8) two functions with neigh- 
bouring energies are both real and essentially identical. Thus 

-'I a I ax 
W,-Yzd X - 2  d y d ~ [ W ] : + ~  

where the integral is over a volume R3 and x ,  x + R are at the two minima. The term 
(E/a)'/* which arose in the author's treatment (1972) from the assumption that the 
phases in adjacent atoms are uncorrelated now disappears, so the integral is reduced by 
(a/E)"'. The normalisation of the functions introduces a factor [exp(R/E)I2 in the 
conductivity, which just cancels the effect of the limits x ,  x + R in (25). 

'This very approximate and intuitive argument gives 

This form with similar value of the constant was given first by Abrahams et aZ(1979) and 
Wegner (1979). 

If we compare (21) with equation (6) we obtain an expression for 

4 5  = Q(n - nc)/nc 
where n is the number of donors and n, the value of n for which avanishes. If we write 
in the neighbourhood of E, 

(n  - nc)/n, = ( E  - &)/Eo 

a/E = !(E - Ec)/Eo.  

we find 

(27) 
Eo is equal to E, if N( E )  is linear between E, and the band edge; if not, as shown in figure 
9, it is somewhat less than E,. Such a relationship, however, depends on our definition 
of 5 in the non-localised range. 
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m 

E 

Figure 9. Density of states near E, to illustrate the quantity E,,. 

As already stated, however, since 5 will tend to  infinity at the mobility edge, suf- 
ficiently near the edge we must always put 

Li 6 6. 
We shall next derive equation (18), namely 

U = c(E)e2/hLi c(E) - 0.03 

under these conditions?. We use the Kubo-Greenwood equation (20) and set 

M = (m6E/h2)x12 

where 

the integral being over the volume L ! ,  and 

6E = l /L?N(E,).  

This gives 

It is, in our view, correct to evaluatexI2 over the volume LT. There is no one-electron 
wavefunction extending from one such block to another. So the conductivity of the 
whole block, of size L3 ,  is the same as that of each block of size L:. In (28 ) ,  Y , and Y2 
must be orthogonal. We write (with L = Li) 

and, to ensure orthogonality, we approximate by writing 

YlYY, = 2x/L2 
The result obtained differs slightly from that given by Kaveh and Mott (1987b). 
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the 2 being inserted to ensure that Yt and Y$ are of order 1/L at the extremities of the 
range of x .  Thus (30) becomes L/6 and the conductivity is 

The factor arises because in (31) one could write y or z instead of x ,  in which case the 
integral vanishes. 

The constant in (31), 0.058, is near enough to our value 0.03 obtained in the last 
section, taking into account the approximations involved. 

In our view, contrary to that expressed by Kaveh and Mott (1987b), a temperature 
variation of the constant c(E) can only occur if Li approaches a ,  in which case, of course, 
the mobility edge becomes broad and the extrapolation of (15) to the transition doubtful. 

6. The pre-exponential factor in the conductivity of a-Si-H 

This was discussed by the present author? (1985a) on the assumption that one could 
write 

= uO exp[-(Ec - E F ) / k B  T ]  (32) 

with a. = a(&) and that EF would vary with temperature, but not a(&) or E,. Taking 
N(E,)  = 5 x lou) cm-3 eV-' (Spear 1983) and the band width 
B = 10 eV (Kramer et a1 1983), we found aE = 5.8 8, and amin = 126 C2-l cm-'. We 
supposed that a(&) = 0.03e2/hLi and gave an argument in favour of the factor 0.03, 
even when E,  lies near the bottom of the band. This argument is as follows. 

e 

Figure 10. The potential energy introduced by Anderson, illustrating the behaviour at the 
bottom of a band. 

If in the model proposed by Anderson (1958) illustrated in figure 2, one takes in 
figure 10 an energy E near the bottom of the wells and assumes, say, a Gaussian 
distribution of well depths, then only those wells with depths below E contribute to the 
density of states, N ( E ) ,  namely those marked A and B in figure 10. A narrow band 
formed from these will result. We argue that the treatment used by Anderson can be 
applied to this band, and that localisation will occur when g = 4. 
t For a correction to this paper see Mott (1986a). 
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We also gave an estimate of the uncertainty in the position of the mobility edge, A E ,  
introduced by inelastic scattering; this is as follows. We write 

A E  = h / t i  

where ti is the time between inelastic collisions. We wrote 

l / t i  = D / L f  

so 

A E  = h D / L f .  

Also 

U =  e2(E)D 

so 

A E  = uh/e2N(E)Lf.  

Also 

N ( E )  - l / a i E o  

and 

U = 0.03e2/hLi 

giving 

AE/Eo  = 0.03e2/hLi .  

(33) 

(34) 
This we now think may be an underestimate, since the coefficient in (33) is too small (see 
below). 

We estimated Li from the data of Vardeny et a1 (1981) on the rate of loss of energy 
of photoelectrons in a-Si-H and found L, - 30 A, from which we obtained a(Eo) = 
25 Q-l cm-'. 

Comparison with experiment rested mainly on measurements of the drift mobility 
pD by the Dundee group, using the relationships 

pD = PO exp(-AE/kB (35) 

Po = ao/e")kB T (36) 
and 

and Spear's estimate for N(E,), the effective density of states at the bottom of the band. 
More recently Overhof (1986) has examined the probable temperature-dependence 

of EF, and come to the conclusion that, to account for the experimental observations on 
theconductivity, aoshould be muchgreater, -1000 52-' cm-'. Thomas andco-workers?, 
pointing out that U, should be given by 

af 
(70 = -\z a(E)  d E  

wherefis the Fermi-Dirac function 

1/{1 + exp[(E - EF)/kB 7-11 

t Muller and Thomas (1984), Fenz et a1 (1985), Thomas (1987a, b) . 

(37) 
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find that even at zero temperature this is not equal to 

exp[-(Ec - EF)/kB ?1. 
There is no discontinuity in a(E,) at E, (since Li is finite even at T = 0) and the hopping 
conductivity for the non-degenerate gas, first described by Grant and Davis (1974), is 
considerable, By using a mode-coupling analysis due to Gotze (1978, 1979, 1981) and 
Belitz and Gotze (1983) these authors calculate a(E) near E, and find that the maximum 
current does not normally lie at E,. 

f 

A 
E ,  

E 

Figure 11. Plot of o(E)  as a function of E near the mobility edge E, in conduction band 
of a semiconductor (schematic). 

Figure 11 shows schematically the behaviour of a(E) near E, at high and low tem- 
peratures. At low Tit lies near the bottom of the band, or even in the exponential tail, 
and conduction is by hopping; then another channel appears at a value of E aboue E,, 
where the plot of In U versus 1/T is flat and U - omin. Thus, as the temperature rises 
further and Li decreases and the value of In a(E) drops less rapidly with decreasing T, 
the current path moves to lower energies below E,. Thus the conductivity is of the form 

where EM is the energy of the current path, and approximately 

E M - E F = & - y T  

where 

E B  E F  -E, at T = 0. 

The term exp( y/kB) leads to an increased value of the observed pre-exponential factor. 
However, we do not believe that this factor can be greater than -10. It follows then that 
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equation (34) somewhat underestimates the width of the mobility edge. Instead of (33) 
we should take 

oo = coe2/hLi 

where co is up to 10 times greater than 0.03, so 

AE/Eo C ( u ~ / L ~ ) ~ .  

With aE - 6 8, and Li at room temperature -30 A, we find AE/Eo - 0.013. 
Mott (1985a) found that his value of u(EJ agreed closely with data obtained from 

the drift mobility, assuming the Dundee value of N(EA). An examination of the Dundee 
data as well as that of Tiedje et a1 (1981) by Davis et a1 (1985) and Michiel et a1 (1987) 
leads to the conclusion that, while Spear’s value N(E,) = 5 X lozo cm-3 eV-’ is reason- 
able, a larger value of pext - 70 (instead of 10) gives slightly better agreement with 
experiment. 

However, following discussions with Professor Spear and co-workers, we are con- 
vinced that the effects predicted by Thomas are not shown in the drift mobility measure- 
ment, and must be small. The formulae we use are 

from which we find 

PO = uO/eN(EA)kB T* 
Measurement at high T, at which (39) breaks down, enable us, following Spear, to obtain 
pext and N(Ec)/N(EA) separately. If U, is given by Mott’s value 0.03 e2/hLi, and N(E,)/ 
N(EJ = 6, the experimental results are reproduced; if U, contains a factor exp(y/ti) of 
order 10, N(EA)  and N(Ec) become comparable, which seems unlikely?. 

We now believe (Spear 1987) that the argument given by Spear et a1 (1980) postulating 
a movement of E, with temperature are incorrect; the kink in the u -  1/T 
shown in figure 7 of that paper at 420 K is given an alternative explanation by Kakalios 
and Street (1986). The large values of the pre-exponential factor, that is a large term 
exp(y/k), are a result of the shrinkage of the band gap with increasing temperature, 
resulting from phonon interactions, observed in optical absorption and described 
theoretically by Fan (1951) for crystals and for non-polar amorphous materials by 
Griffth (1977). A shift of E, - E, with Tof about 6.5 X eV kg’ is observed, which 
gives exp(y/k) about 1000. The point is here that E, and E A  move together, relative 
to the vacuum and to EF, so the drift mobility is not affected, only the pre-exponential 
in U. This value is confirmed by both photoconductivity experiments (Spear and 
LeComber 1985) combined with absorption from E, to EF (Djamdi and Le Comber 
1987). 

The pre-exponential is a maximum for uncompensated material, when EF is pinned 
by the dangling bands. For the compensated material N(E,) increased as EF approaches 
either band, so the statistical shift of EF gives a term in U, of the type exp(-y’lk). A 
decrease in U, with compensation is therefore observed (Heintze and Spear 1986). 

t This, however, is the conclusion obtained most recently by Thomas and Overhof (1987). 
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The large values of U, demanded by Silver et a1 (1986 and earlier work) are now 
thought by those authors to be limited to experiments with a large concentration of 
electrons and holes which can screen out the random field, so such large values do not 
seem acceptable for normal specimens on any hypothesis. 

Spear's model used in these calculations proposes the following values for the 
density of states below E,; 

N ( E )  = No(A - E ) / A  E ,  < E < 0.12eV (40) 

with E, as the zero of energy, No = 5 X 1Po cm-3 eV-' and A = 1.3 eV, and 

N ( E )  = N ,  exp[(O. 12 - E ) / k ,  T,] 0.12 < E  < 0.30 

with T, = 310 K, and N ,  = 4 X 1019 cm-3 eV-'. The model thus assumes a linear drop 
in N ( E )  followed by an exponential decay. Marshall et a1 (1985) point out that better 
agreement with experiment, particularly the absence of dispersive transport observed 
by the Dundee group, is obtained if it is assumed that the cross section for trapping 
into the states in the exponential tail is small. We therefore give some speculations 
about the origin of the exponential tail. Davies (1980) made calculations of the value 
of E, in a-Si-H, ascribing the localised states to the random dihedral angles in the 
material. We suggest that the linear tail of localised states may have this origin, giving 
a capture cross section of order cm' as in the model just described. Overhof and 
Beyer (1983, 1984) have maintained that in addition there should be long-range 
fluctuations of potential resulting from point charges; this is necessary to explain the 
observed differences between the activation energy for conduction and that for the 
thermopower. We suggest that these are the origins of the exponential tail. The 
transitions into such states might have low probability because they do not overlap 
those in the linear region. 

To summarise, we now think that, to account for the observations, we have to 
make the following hypotheses. 

(i) In undoped a-Si-H, the lower part of the conduction band, that is both E A  and 
E,, move together with increasing T with reference to the vacuum (as in crystalline 
Si) and to EF.  The large pre-exponential in the conductivity must be ascribed both to 
this effect and the shift of the current path as described by Thomas and co-workers. 

(ii) The latter, however, can only be a very minor part of the effect, since the 
constants in the drift mobility are not greatly affected up to room temperature. 

(iii) The kink in the curve plotting log U versus 1/T at 420 K has its origin in a 
phase change involving hydrogen (Kakalios and Street 1986). 

(iv) The pre-exponential should be given by 

uo = (0.03e2/hLi) exp(y/kB) 

where for undoped specimens y is the result of band-gap shrinkage and for doped 
specimens also of the statistical shift of EF.  

7. Liquid semiconductors 

The present author (Mott 1985b) has suggested that in liquids all collisions are inelastic, 
and therefore in equation (15) Li = 1 so that the correcting term is absent. The strongest 
experimental evidence is perhaps that of Cutler (1977) on liquid Te,-,T12+x alloys; 
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the Pauli susceptibility (proportional to g) for various compositions and temperatures 
is plotted in figure 12 against all2 with U in the range 100 to 2500 (less than the Ioffe- 
Regel value). A straight line is obtained. 

10 20 30 40 
ol12  (* . l /Z cm-l/2) 

Figure 12. Pauli susceptibility of liquid Te, -IT12+i alloys plotted against u' '~ for various 
temperatures and compositions (Cutler 1977). 

A minimum metallic conductivity U = 0.03e2/haE should exist and give the pre- 
factor in U. Other evidence is described by Mott (1985b). 

Recently Barnes et af (1987) have described the conductivity and thermopower of 
liquid Mn-Te alloys. In these materials conduction is solely by holes in a manganese 
3d band broadened by hybridisation with 5p electrons from the tellurium. In Mn-Te 
each Mn atom has given two electrons to form Te2-, leaving Mn2+ with 5 electrons in 
the d band forming an antiferromagnetic insulator. Addition of Te produces holes in 
the band described above. Figure 13 shows the conductivity as a function of con- 
centration and figure 14 the thermopower. We believe that for specimens for which 
U < amin (-350 d-' cm-') the states are localised. The high values of the thermopower 
are difficult to explain otherwise, but are consistent with the equation 

with A E  = 0.2 eV. Also the measurements of U show a small positive value of d a/d T, 
which is consistent with the same activation energy, 0.2 eV. 

We believe, then, that for liquids o(E) is near to the value amin given by (6) at the 
mobility edge and for some way above it. 

There appear, then, to be two cases in which the correcting term in the Kawabata 
formula is absent; these are liquids, and under a magnetic field when 
(ch/eH)1/2 is comparable or less than I, though explanations are quite different (Kaveh 
and Mott 1987a). 

Enderby and Barnes (1987) have used the value amin - 1000 S2-I  cm-' in a discus- 
sion of the electrical conductivity of molten sulphide and solid mixtures, maintaining 
that, when U drops below this value, conduction may be mainly ionic. 
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Mn (at. %I 
Figure 13. The conductivity of liquid Mn,Te,-, alloys as a function of x extrapolated to 
1500 K .  The temperature dependence is slight (Barnes et at 1987, figure 4). 

0 10 20 30 LO 50 
Mn (at.%) 

Figure 14. Thennopower at 1500 K of alloys shown in figure 13 (Barnes er a1 1987, figure 
5 ) .  
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8. Spin-orbit scattering 

This is a process in which the electron changes its spin on scattering, the angular 
momentum being taken up by the specimen as a whole. The relevant cross section is 
believed to be independent? of T ,  and to increase rapidly with atomic number Z of 
the scatterer. Thus Hahn and Enderby (1967) investigated the spin-lattice relaxation 
in both solid and liquid lithium through the effect of adding Mg, Zn and Ag to the 
ESR line width; the effect of Ag atoms dissolved in broadening the ESR line was about 
500 for Mg; a variation of (Z  - Z’)4 is often assumed, which would give a ratio 200. 
Here Z‘ is the atomic number of the matrix. The most recent experimental and 
theoretical work is that of Monod and Schultz (1982). 

The effect of spin-orbit scattering on the resistivity of non-crystalline materials 
seems first to have been discussed by Hickami et a1 (1980). A time tso between such 
collisions can be defined, leading to an inelastic diffusion length L,,, given by 

L,, = (Dt,,)’/2. (41) 
This is independent of T ,  and may be greater or less than Li. Both Hahn and Enderby 
(1967) and Maekawa and Fukuyama (1981) give formulae for t,,, but they have not 
been worked out in any particular case. 

Experimental work on thin metallic non-crystalline films, treated as two dimen- 
sional, were carried out by Bergmann (1982) and Kawaguchi and Fujimori (1982). 
Discussions are given by Bergmann (1983a, b, 1986). The magnetoresistance is nor- 
mally negative, because the constructive interference illustrated in figure 3 is destroyed 
by the field. Bergmann shows, however, that after a spin-orbit collision this does not 
occur, so the resistance increases due to the contraction of the orbits. For weak fields, 
at any rate, where Li S LH, the magnetoresistance is positive. 

In the next section we discuss the effect on the resistivity of Si : Sb. 

9. Some effects of electron-electron interactions 

While these are probably negligible for electrons in the conduction band of a semi- 
conductor, they are of major importance for a degenerate electron gas when the mean 
free path is short, and afortiore when the Fermi energy EF lies near the mobility edge 
E,. Altshuler and Aronoff (1979) first showed that these interactions lead to a change 
in the density of states near the Fermi energy given by 

dN(E) = (2&DI)-’(9 - 2F){-1 + I[IE - EFl/hD]’”}. (42) 
It will be seen that the second term in (42), being proportional to D-3/2,  becomes 
important only when D is small, and thus for ‘dirty’ systems such as amorphous metals 
or impurity bands. It is deduced that a= a(0) + da(T)  where 

1/2 
da(T)/a(O) = 0.03(-$) ( 3  - 2F) .  (43) 

t Paalanen er a1 (1986) deduce from ESR measurements in Si : P a temperature-variation of the spin-flip 
scattering rate below 1 K,  which they ascribe to spin-orbit scattering. We think this may be caused by a 
temperature-dependence of N(E,) when averaged over the range kBT, which leads to the T’12 correction to 
U. as described in the final section. 
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In the last term, the 4 comes from exchange interactions betwen electrons and 2F  from 
the Hartree interaction. F is given by 

F = x - l  ln(1 - x) X = 2 k ~ A  

where A is the screening length. 6N(E)  will decrease with T (Altshuler and Aronov 
1983, Fukuyama 1985). 

The term mT1/2 has been observed in amorphous metals and in doped semi- 
conductors, and also for deformed metallic bismuth where the mean free path is short 
and can have either sign. Kaveh and Mott (1982, 1987a) argued that the inclusion of 
electron-electron interaction modifies the Kawabata formula to 

where LT = (hD/kBT)’i2 and (Kaveh and Mott 1987a) 

CI = 6voF 

with (Finkelstein 1983, Altshuler and Aronov 1983, Kaveh and Mott 1987a) 

E = 32[ (1 + 8F) 3/2 - (1 + +)]/3F. 

The last term in (42) gives the dependence of 6a. Though it can have 
either sign, Kaveh and Mott (1987a) argue that only for many-valley uncompensated 
semiconductors can the Hartree term predominate. A change of sign in the T1/’ term 
observed in Si:P and GeSb near the transition (Paalanen et a1 1986, 1987), cannot be 
attributed to a reduction of the Hartree term-but rather to the dominance of L;‘ 
compared with LT1. Near the transition (Kaveh and Mott 1987a) 

If we write 

CJ = CJo[(n - nc)/ncl” 

there seem to be two classes of material; those for which v = 1 as predicted by non- 
interacting theory and those for which v = 1, which include Si : P (Thomas et a1 1982) 
and other uncompensated many-valley semiconductors. References are given by 
Kaveh (1985), according to whom these are all materials for which the Hartree term 
dominates, with m in (42) positive (except near the transition for reasons given above). 
Kaveh’s (1985) derivation, assuming that (41) can be extrapolated to the transition, 
is as follows. Near the transition we can write 

D = C l / E  + C 2 D f  (47) 
where the first term comes from localisation and the second from electron4ectron 
interactions. Since 6q/% = 86N/N = l /Df ,  is substituted for 1 in equation (41) for 
reasons given by Kaveh (1985, p 15). Equation (47) is a quadratic equation for D ,  
with solutions 
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For large 5 this becomes 

and so the square root dominates as f+  CQ. If, as we believe, f - l/(n - nJ ,  whether 
or not interactions are included, as seem to be verified by the work of Castner’s school 
on variable-range hopping (Shafarman et a1 1985), we find here the explanation of the 
result that v = 3 for certain semiconductors. 

If c2 has the opposite sign, v will be unity as in the theory without interactions. 
In this model, the localisation length behaves like ( E  - E,)” with v = 1, not 4. The 

present author has given reasons why values of v less than 3 are unlikely (Mott 1976, 
1981b), a conclusion confirmed by the work of Chayes et a1 (1986). 

Since we believe that the transition takes place in the impurity band, we must 
suppose that many-valley behaviour persists there. How this should occur is discussed 
below, when we consider the effect of the Hubbard U for uncompensated material. 

The theory with interactions explained in outline here depends on the extrapolation 
of equation (41) to the transition, and we have no proof that this can be done without 
qualitative error. Certainly there remain phenomena, involving the transition, which 
have not been explained satisfactorily. One is the behaviour of the conductivity of 
Si:Sb at low temperatures, observed by Long and Pepper (1984b), shown in figure 
15. Some speculations about this behaviour are given by Kaveh and Mott (1985b, p 
388); we return to this problem at the end of this paper. 

I “ 5 0  ‘ * 3 0  

Figure 15. Conductivity U plotted against 1/T for Si-Sb with dopant concentration 
2.7 x lo1* ~ 1 3 1 ~ ~  for varying magnetic field in Tesla (Long and Pepper 1984b). 
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For uncompensated semiconductors near the transition the intrasite interaction, 
given by the Hubbard U defined by 

U = ( e2 /%)  
must play a role, though the evidence shows that the metal-insulator transition is of 
an Anderson type, driven by disorder in an impurity band, and not the discontinuous? 
Mott transition that one would expect for an array of donors located on a lattice. The 
present author in various publications (e.g., Mott and Kaveh 1985b) has described 
this in the following way. An impurity band is split by the Hubbard U into the upper 
and lower bands (cf also Fritzsche 1978 and earlier papers) of which the centres are 
separated by an energy U and with widths B,,  B2. B1 and B2 increase as the number 
n of donors is increased, and in the absence of disorder a Mott transition would take 
place when 

$(B1 + B2) = U 

and this equation is expected to determine approximately the value of n for which 
metallic conduction occurs. However, in the real system, states at the edge of both 
bands are localised in the Anderson sense, so slightly more overlap is required to 
bring the Fermi energy EF to E, for the overlapping bands, giving a transition of an 
Anderson type. 

Since a factor exp(-R/a,) enters into the band widths of B ,  or B2 and this is the 
major factor in determining the concentration for the transition for both compensated 
and uncompensated specimens, the concentrations at which they occur are not 
expected to differ greatly, and take place when R/a, - 4. 

At the transition, then, the wavefunctions at the Fermi energy are made up of 
orbitals from the upper and lower Hubbard bands. Kaveh’s explanation of the value 
4 for the critical index in cr depends on some ‘many-valley’ properties remaining. 
Takemori and Kamimura (1983) have shown that this should be so for the upper band 
(see also Mott 1986b). 

The descriptions given here, particularly of the behaviour near the transition, 
differs from that of Castellani et a1 (1986 and earlier papers) based particularly on the 
work of Finkelstein (1983). In their work they treat a system of dimension 2 + E ,  

where E is small, and extrapolate to E =  1. In the paper quoted they come to the 
conclusion that in the absence of spin-flip and of spin-orbit scattering, a minimum 
metallic conductivity may exist, though they do not give its value and consider that in 
a later paper this is doubtful. As this-for zero temperature and in the absence of a 
magnetic field-has not been observed, they ascribe the observed index (v = 1) for 
the conductivity to the presence of spin-orbit scattering, likely in their view to be 
significant because of the presence of the heavy element Nb. They state (without 
proof) that, when spin-orbit scattering is predominant, 0 at T = 0 goes linearly to 
zero. 

They also discuss the value v = i for Si : P in terms of a small spin-orbit scattering- 
but consider their conclusion tentative. We prefer the explanation of Kaveh (1985) 
described here. According to this, compensated Si:P should give v =  1, while the 
conjecture of Castellani et a1 (1987) suggests that it should be retained. Experiments 

t The discontinuous nature of the transition depends on the Coulomb charge on the carriers. Professor P 
Nozitres has pointed out that the concept of a Mott transition may apply to ’He, and here no discontinuity is 
expected. 
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at mK temperatures have not been made for compensated material, though the plot 
of CT against concentration for Ge-Sb (compensated) appears linear down to CT - ami,, 
(Thomas et a1 1982, Thomas 1986, p 183), in contrast to that for uncompensated Si : P, 
which is parabolic. 

Experiments on Si : P, compensated with boron, down to the transition, would be 
of interest. If Castellani and co-workers are correct, we might expect v = t ;  according 
to Kaveh (1985) we should find v = 1. 

We now return to the problem of Si : Nb for which some results of Long and Pepper 
are illustrated in figure 15. Nb being a heavy element, we suggest that the diffusion 
length for spin-orbit scattering may be such that L,, is less than Li at low T ,  specifically 
below 0.2 K. From the work of Bergmann (1983a, b) we suppose that, below this 
temperature, destructive interference of the scattered waves enhances the conductivity, 
while from Castellani and co-workers we take it that CT tends to zero linearly as n 
decreases. If this is so, the mobility edges with and without spin-orbit scattering should 
differ, as in figure 16. The upper curve gives (T ( T  = 0 )  with spin-orbit scattering, the 

f 

A B  

E 

Figure 16.Zero-temperature conductivity plotted against electron concentrations in InSb, 
according to the hypothesis of this paper. Lower curve, without spin-orbit; upper curve, 
with spin-orbit scattering. 

lower one gives the linear form expected without interaction. We suppose that the 
concentration 2.7 x 1 0 ' ' ~ m - ~  is just below A, so that below 0.1 K states are weakly 
localised. Above 0.1 K our hypothesis is that Li -e L,,, so that 4 0 )  curve should have 
the form marked (l) ,  so that localisation becomes stronger and the conductivity drops. 
The effect of a magnetic field is discussed elsewhere (Kaveh and Mott 1987~). 

The same effects should be observed in Si : As-but at considerably lower tem- 
peratures, below those for which experiments have been carried out. 

c21 
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