
 

Universal Origin of Boson Peak Vibrational Anomalies in Ordered Crystals
and in Amorphous Materials

Matteo Baggioli1,2 and Alessio Zaccone3,4,5
1Instituto de Fisica Teorica UAM/CSIC, c/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid,

Cantoblanco, 28049 Madrid, Spain
2Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics,

Department of Physics, University of Crete, 71003 Heraklion, Greece
3Department of Physics “A. Pontremoli”, University of Milan, via Celoria 16, 20133 Milan, Italy

4Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
5Department of Chemical Engineering and Biotechnology, University of Cambridge,

Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom

(Received 30 October 2018; revised manuscript received 11 January 2019; published 10 April 2019)

The vibrational spectra of solids, both ordered and amorphous, in the low-energy regime, control the
thermal and transport properties of materials, from heat capacity to heat conduction, electron-phonon
couplings, conventional superconductivity, etc. The old Debye model of vibrational spectra at low energy
gives the vibrational density of states (VDOS) as proportional to the frequency squared, but in many
materials the spectrum departs from this law which results in a peak upon normalizing the VDOS by
frequency squared, which is known as the “boson peak.”A description of the VDOS of solids (both crystals
and glasses) is presented starting from first principles. Without using any assumptions whatsoever of
disorder in the material, it is shown that the boson peak in the VDOS of both ordered crystals and glasses
arises naturally from the competition between elastic mode propagation and diffusive damping. The theory
explains the recent experimental observations of boson peak in perfectly ordered crystals, which cannot be
explained based on previous theoretical frameworks. The theory also explains, for the first time, how the
vibrational spectrum changes with the atomic density of the solid, and explains recent experimental
observations of this effect.

DOI: 10.1103/PhysRevLett.122.145501

Understanding the physics of vibrational excitations in
condensed matter is a classical topic in modern physics
[1–3], which in recent years has been largely focused on
understanding the vibrational spectra of disordered sys-
tems, such as liquids, glasses, and disordered crystals. In
particular, a unifying framework has been sought to under-
stand how vibrational excitations change upon going from
liquid to glass, and vice versa, at the glass transition [4]. An
intensively studied problem is the ubiquitous anomaly
(known as boson peak) in the VDOS which appears in
glasses and crystals upon normalizing the VDOS gðωÞ by
the Debye law ω2, typically at THz frequencies in atomic
and molecular materials. In turn, this anomaly controls or
affects all anomalies and behaviors in the specific heat, heat
conduction, and low-T properties of solids [3].
It is impossible to quote all the references about

experimental observations: the boson peak anomaly has
been observed in oxide glasses [5], molecular glasses [6],
molecular crystals with minimal orientational disorder [7],
in polymers [8–10], in metallic glasses [11,12], in colloidal
crystals with defects [13], colloidal glasses [14], and
athermal jammed packings [15]. Importantly, however,
the boson peak has been experimentally observed also in

ordered single crystals with no disorder, such as molecular
single crystals [16,17] and noncentrosymmetric perfect
crystals such as α quartz [5]. The observation of a boson
peak in ordered crystals is as yet unexplained since all
theoretical models and approaches to the boson peak
problem proposed so far assume the existence of some
form of disorder in the material.
Among those previous theories, a prominent one is the

heterogeneous elasticity theory which has been developed
by Schirmacher and co-workers [18]. This approach uses
an elegant field-theoretical scheme to derive gðωÞ under the
assumption that the shear elastic constant of the system is
fluctuating in space according to some distribution (which
may or not be Gaussian). This approach cannot explain the
boson peak observed in ordered single crystals [5,16,17]
where the elastic constants are homogeneous and have the
same value throughout the whole material.
Other models are based on quasilocal vibrational states

due to randomly distributed soft anharmonic modes
[19,20], local inversion-symmetry breaking connected with
nonaffine deformations [21,22], phonon-saddle transition
in the energy landscape [23], density fluctuations of
arrested glass structures [24], and broadening or lowering
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of the lowest van Hove singularity in the corresponding
reference crystal due to the distribution of force constants
[25,26] or network rigidity [27]. As mentioned above, all
these approaches rely on assumptions of disorder.
Hence, none of the above approaches can explain the

observation of boson peak in ordered crystals [5,16,17].
In the following we will show that no hypothesis of

disorder in the system is actually needed to describe the
boson peak, and that the boson peak is a hallmark of all real
solids with a linear viscous damping, regardless of their
internal microstructure (see also Refs. [28–30] for previous
ideas about the role of damping on the low-T thermal
properties of solids). It will also be shown that, as
emphasized in previous works, while it is true that in
amorphous solids the continuum approximation breaks
down at a certain length scale (or wave vector), this is
because of anharmonic dissipation coming into play.
We start considering the following standard Hamiltonian

for the anharmonic crystal [31],

H ¼ H0 þHA; ð1Þ

where H0 ¼
P

λℏωλ½b†λbλ þ 1
2
� is the harmonic part of the

Hamiltonian and b†λ , bλ, respectively, the creation and
annihilation operators. The index λ compactly represents
the pair of indices ðqjÞ where q is the wave vector and j is
the branch index. Hence, ωλ ≡ ωjðqÞ. The anharmonic part
can be described, in the standard way, with terms of cubic
and quartic order:

HA ¼
X
n¼3;4

1

n!

X
λ1…λn

v
Yn
i¼1

½ðbλi þ b†−λiÞ�: ð2Þ

Here, v≡ vðλ1…λnÞ are coefficients related to the nth
order derivatives of the interatomic pair potential with
respect to the lattice displacements, while the factors
½ðbλi þ b†−λiÞ� arise upon replacing the atomic displace-
ments with the corresponding expressions in second
quantization. Hence, the above equation is nothing but
the usual potential energy expansion of the lattice about the
rest positions of the atoms.
This anharmonic Hamiltonian, upon performing a stan-

dard exercise in many-body theory, which can be found in
all textbooks [31–33], or alternatively using projection-
operator methods [34], gives rise to the following phonon
Green’s function for an isotropic cubic crystal [31,34]:

GL;Tðq;ωÞ ¼
a

ω2 −Ω2
L;TðqÞ þ iaωΓL;TðqÞ

; ð3Þ

where a is a prefactor that depends on the choice of
normalization for the bosonic creation and annihilation
operators, Ω is the eigenfrequency, and Γ the damping
coefficient (which results from the imaginary part of the

self-energy Σ). In this form, the eigenfrequency Ω already
contains the correction due to phonon-phonon interactions.
The above expression can be readily generalized to
anisotropic crystals upon replacing Ω everywhere with
Ωλ ≡ΩjðqÞ: each jth branch then gives rise to an additive
Green function term [31], and ΓðqÞ becomes also a
function of the direction of the wave vector. In the
following we specialize on the example of isotropic cubic
crystals, although it is clear that the results remain
qualitatively valid for anisotropic crystals.
Various choices are used in the literature for the

prefactor a (including, e.g., a ¼ 2ΩL;T of Schrieffer [35]
and a ¼ Ω2

L;T , of Abrikosov et al. [36]), depending on what
one wants to calculate [32]. Here, since our final aim is to
use the Green’s function to calculate the VDOS, we use a
normalization that is compatible with the dimensionality of
the VDOS and we choose a ¼ 1. With a ¼ 1 our Eq. (3)
coincides with the expression derived by Lovesey [34] from
the Hamiltonian Eqs. (1)–(2) above.
In the above expression, Γ represents the phonon line-

width or the phonon damping coefficient which can be
measured via neutron scattering experiments. Using
the microscopic approach based on the anharmonic
Hamiltonian, the damping coefficient has been obtained
in general form, historically, by Landau and Rumer [37].
More refined calculations using cubic and quartic terms in
the Hamiltonian showed [38] that ΓL;T ¼ DL;Tq2 in good
agreement with experiments; hence the damping coefficient
is quadratic in the module of the wave vector q, whereDL;T

is a constant. Hydrodynamic theories [39] as well as the
Akhiezer [40] approach (in the low-frequency regime) also
provide a q2 dependence. Importantly, the same form of
Green’s function Eq. (3), is also derived for disordered
solids [31,41]. Also in the case of amorphous solids one
finds that Γ ∼ q2 [42].
Therefore, the denominator of the Green’s function

presents poles that provide the following set of dispersion
relations for transverse (T) and longitudinal (L) phonons,

ωL;T ¼ cL;Tq − iDL;Tq2: ð4Þ

The corresponding speeds of sound are given by

c2T ¼ μ

ρ
; c2L ¼ K þ 2ðd−1Þ

d μ

ρ
; ð5Þ

where μ is the shear modulus and K is the bulk modulus. In
general, cL > cT since μ > K for solids with Poisson ratio
in the usual range 0 < ν < 1=2. Using Eqs. (3) and (4) we
therefore identify ΩL;TðqÞ ¼ cL;Tq and ΓL;TðqÞ ¼ DL;Tq2,
i.e., a diffusivelike damping as discussed above.
With the Green’s function of Eq. (3) it is now possible to

calculate the VDOS. Upon considering the definition of the
VDOS in terms of delta functions, together with the Plemelj
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identity, the following expression (see Supplemental
Material [43] for details) is recovered:

gðωÞ ¼ −
2ω

3πN

X
q<qD

Im½2GTðq;ωÞ þ GLðq;ωÞ�; ð6Þ

where qD denotes the maximum (Debye) wave number in
the system, qD ¼ ð6π2N =VÞ1=3, and N the number of
atoms in the system.
This formula is useful because it allows one to calculate

the VDOS gðωÞ from the knowledge of the Green’s
functions GL;Tðq;ωÞ. For our theory, the Green’s functions
are determined from Eq. (3), and can be built using the
transport coefficients such as the shear and bulk moduli and
the damping coefficients Γ, as the only input to the theory.
Instead of using the discrete sum in Eq. (6) one can use
an integral by means of the standard transformation
ð3=q3DÞ

R qD
0 q2dq ¼ ð1=NÞPq<qD

, but the integral is not
analytical. It turns out, instead, that the series in Eq. (6) can
be summed exactly, which leads to the following closed-
form expression:

gðωÞ ¼ ω

3πN
Im

�
1

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−c2L þ iDLωÞðic2T þDTωÞ

p
×
n
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ic2T þDTω

q
½ψðxÞ− ψð−xÞ− ψð1þ qD þ xÞ

þψð1þ qD − xÞ�
þ ð1þ iÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2c2L þ 2iDLω

q
½ψðyÞ− ψð−yÞ

− ψð1þ qD þ yÞ þ ψð1þ qD − yÞ�
o�

; ð7Þ

where ψ denotes the Digamma function ψðzÞ≡
ðd=dzÞ lnΓðzÞ with Γ the Gamma function, and x ¼
−ðiω= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−c2L þ iDLω
p

Þ, and y¼ð1þiÞω=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ic2Tþ2DTω

p
.

In the following we present the predictions of the above
Eq. (7) for the VDOS gðωÞ at different values of the elastic
constants and damping coefficients. In the normalized plots
of gðωÞ=ω2 in Fig. 1, the boson peak (BP) is evident, and
results from the competition between phonon propagation
(controlled by the elastic constants) and damping (con-
trolled by the damping coefficients). The damping con-
tribution (see gray line in Fig. 1) grows monotonically upon
decreasing the frequency (and it would diverge at ω → 0),
and it dominates at large enough frequencies ω ≫ ωBP. On
the contrary at small frequencies ω ≪ ωBP, the Debye law
dominates the VDOS; from the interplay and crossover of
the two contributions in Eqs. (3) and (6) the boson peak is
generated. This picture is in accordance with the crossover
between propagons at low frequency and diffusons at high
frequency proposed in Ref. [44]. In ordered crystals the
diffusivelike behavior is to be attributed to phonon-phonon
scattering, whereas in glasses it is mostly due to disorder,

which also provides a diffusivelike damping. Also, it is
evident that the boson peak is more strongly affected by the
shear elastic modulus μ, and to a lesser extent by the bulk
modulus K, which provides a theoretical basis for earlier
findings of simulations [42]. In other words, the transverse
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FIG. 1. Normalized vibrational density of states. In top panel,
the different contributions from propagating modes (Debye law)
and dissipation are outlined along with the contributions from the
transverse modes and the longitudinal ones. In bottom panel, as a
function of the shear modulus.
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FIG. 2. Boson peak frequency as a function of the shear elastic
modulus μ for different values of viscous damping. The curves
are well fitted by a square root dependence.
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contribution to the boson peak is always dominating with
respect to the longitudinal one as shown in Fig. 1.
It is seen in Figs. 1 and 2 that upon decreasing the value

of shear modulus μ, the boson peak shifts to lower
frequencies in a power-law (square-root) fashion, and
ultimately moves to zero frequency in the limit μ → 0,
which marks the limit of mechanical stability. At higher
values of μ the square-root becomes more and more like a
linear dependence. This prediction provides a theoretical
basis to experimental results where the measured ωBP
decreases upon approaching the glass transition along with
the vanishing of the shear modulus μ [8]. A similar
behavior is observed in athermal amorphous solids
[15,22] and athermal crystals with defects [22].
The vicinity of the boson peak frequency ωBP and the

longitudinal or transverse Ioffe-Regel crossover frequen-
cies ωIR

L;T ¼ c2L;T=ðπDL;TÞ has been investigated and dis-
cussed in Refs. [42,45,46]. The results from our analytical
theory, shown in Fig. 3, confirm the expectations and
suggest that, especially at low damping, the boson peak
frequency is very close to the Ioffe-Regel transverse
frequency (but not to the longitudinal one). From our
analytical calculations, it is clear thatωBP becomes closer to
ωIR
T as the ratio μ=K gets smaller (for the majority of solids

μ=K < 1 which implies that the Poisson ratio lies in the
usual ½0; 1=2� interval [47]). This provides a theoretical
justification to the simulation findings of [42] and explains
the closeness of Ioffe-Regel frequency of transverse pho-
nons to the BP frequency as due to μ=K < 1 in solids.
By means of Eq. (7) one can also study the effect of

atomic density ρ ¼ N=V on the boson peak and the VDOS,
on the example of silica glass. In this case, importantly, the
main contribution to the damping Γ is expected to come
mainly from structural disorder; hence, this example

illustrates the generality of the proposed framework. We
take the phonon damping Γ to be proportional to the density
ρ, as derived for isotropic solids in Ref. [47], and the elastic
moduli to be described by ∼α1ρþ α2ρ

2 as observed
experimentally for densified silica in Refs. [48,49].
Taking into account that the Debye wave number qD is,
by definition, proportional to the cubic root of the density ρ,
we plot our results in Fig. 4. We observe that, upon
increasing the density, the intensity of the boson peak
and the value of the normalized VDOS at zero frequency
ω ¼ 0 decrease, while the width of the peak increases and
the boson peak moves to higher frequencies. To the best of
our knowledge, our results represent the first theoretical
explanation of the experimental data and trends on densi-
fied silica presented in Ref. [5].
In conclusion, we have provided a universal framework

for the emergence of the boson peak based solely on
damping, with a focus on anharmonicity as the root cause
of damping in perfectly ordered crystals, although themodel
is generic and also applicable to glasses where damping is,
instead, mainly due to disorder. The underlying mechanism
which generically produces the boson peak in the VDOS is
the competition between propagation and damping or,
alternatively, the coexistence of an elastic response and a
viscous one determined by the damping coefficients [50]. In
ordered crystals, the presence of diffusivelike damping does
not rely on the existence of any disordered or amorphous
structure but is caused simply by anharmonicity and
phonon-phonon scattering, as shown here, which explains
the observation of boson peak in ordered crystals where
damping is active even in the absence of disorder, and is
related to viscosity [40,47,51]. In this way, the presented
framework crucially explains the universality of the
boson peak and its recent experimental observation also
in perfectly ordered crystals [5,16,17].
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FIG. 3. Comparison between the boson peak frequency ωBP

and the Ioffe-Regel transverse and longitudinal frequencies ωIR
T;L

varying the ratio μ=K. DT ¼ 0.425 is kept fixed in the plot. The
shaded area indicates the region of values μ=K < 1 typical of
most solids, where the ωIR

T =ωBP ratio lies in the interval 0.45–1.3
and hence is of order unity.
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assumed a dependence ∼ρ as derived in Ref. [47] for isotropic
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Furthermore, this model recovers, via Eq. (7), the
previously observed correlation between the Ioffe-Regel
crossover frequency of transverse phonons and the boson
peak frequency [42,45].
As a final and important result, the generic relation

between VDOS and acoustic phonon damping explains the
density dependence of the boson peak measured in silica
glass [5], for which no explanation was at hand. Our model
might be able to successfully describe also the anomalies in
the thermal transport and heat capacity related to the boson
peak [3]. In the future, it would be interesting to extend our
formalism to liquids and in particular to the recently
discovered gapped dispersion relations [52–56] to build
a unified description of the vibrational spectra of crystals,
liquids, and amorphous materials. It is also interesting to
notice the strong similarities between our results and the
holographic models for viscoelasticity [57–62], where
indeed the phonons naturally acquire a viscous damping.
All in all, this work provides new insights towards a

unifying description of the vibrational spectra of solids,
both ordered and amorphous.
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