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The physical properties of a topologically disordered amorphous material (glass), such as heat capacity and thermal conductivity, are
markedly different from those of its ordered crystalline counterpart. The understanding of these phenomena is a notoriously complex
problem. One of the universal features of disordered glasses is the ‘boson peak’, which is observed in neutron and Raman scattering
experiments. The boson peak is typically ascribed to an excess density of vibrational states. Here, we study the nature of the boson
peak, using numerical simulations of several glass-forming systems. We discovered evidence suggestive of the equality of the boson
peak frequency to the Ioffe–Regel limit for ‘transverse’ phonons, above which transverse phonons no longer propagate. Our results
indicate a possibility that the origin of the boson peak is transverse vibrational modes associated with defective soft structures in
the disordered state. Furthermore, we suggest a possible link between slow structural relaxation and fast boson peak dynamics in
glass-forming systems.

Vibrational states of crystals with periodicity can be well
understood as quantized plane-wave phonon modes, but the
nature of vibrations in disordered systems remains elusive.
Glassy and amorphous materials exhibit a number of peculiar
low-temperature properties that are considered anomalous in
comparison with those of their crystalline counterparts1–4. The
universality of these properties in various types of glass has
fascinated many researchers. For example, the specific heat (Cp)
below 1 K increases linearly with the temperature T instead
of T 3 expected from the Debye model. This anomaly below
1 K is explained by two-level tunnelling systems at least on a
phenomenological level1. At higher temperatures (10–30 K), all
disordered materials including biological matter (for example,
proteins3) also exhibit some unusual dynamical properties that
are practically independent of the detailed structure of the
material. These properties include anomalous acoustic behaviour,
the existence of a plateau in the T dependence of the thermal
conductivity, the peak in the T dependence of Cp/T 3 and the boson
peak observed in inelastic scattering of light or neutrons. These
indicate the existence of an excess vibrational density of states over
the prediction of the Debye model: corresponding to the maximum
in Cp/T 3, the vibrational density of states (VDOS), D(ω), scaled
by the square of the angular frequency ω, D(ω)/ω2, goes through
a maximum, which is called the ‘boson peak’ (typical energy scale:
a few millielectronvolts) (refs 1–4). There is a consensus that the
boson peak is a manifestation of some sort of disorder, but its
physical origin has remained a serious puzzle in condensed-matter
physics and materials science1–5. The boson peak is believed to be
the key to the fundamental understanding of the vibrational states
of glassy and amorphous materials, which are beyond the simple
plane-wave phonon picture for crystals.

For a long time, it has been well recognized in the glass
community that the strength of the boson peak increases with
a decrease in the fragility. The fragility characterizes how steeply
the viscosity increases on cooling3,6. Liquids in which the viscosity

obeys the Arrhenius law are called ‘strong’ (for example, covalent
liquids such as silica and germania), whereas ‘fragile’ liquids (many
organic liquids) have super-Arrhenius behaviour. It is an intriguing
open question why there is such a relation between the boson
peak characterizing the high-frequency excitations and the fragility
characterizing the slowest flow behaviour7.

Recent advances in experimental and computational techniques
provide us with further information on the microscopic dynamics
of glass. For example, Rufflé et al. found that the boson peak
frequency is closely related to the Ioffe–Regel limit of longitudinal
phonons8 for many glasses, using Brillouin scattering of light and
X-rays9. Note that the Ioffe–Regel limit is reached when the mean
free path of the phonons approaches their wavelength. However,
Scopigno et al.10 found that there exists a well-defined Ioffe–Regel
limit even well above the boson peak energy for a metallic glass
(Ni33Zr67). This controversy has made it unclear whether the
Ioffe–Regel limit has a connection to the boson peak frequency
or not11,12. The fact that the boson peak has predominantly
transverse character has been well known for decades from its
high depolarization ratio in the Raman scattering intensity13,14. This
has recently been confirmed by numerical studies, which suggest
that the boson peak in a soft sphere glass15 and silica16,17 has a
transverse character. However, it should be noted that there are
still ongoing debates on whether the boson peak has an acoustic
or non-acoustic nature18–20.

A number of theoretical models have been proposed to explain
the anomalous low-energy excitations, for example, localization
of vibrations21, soft anharmonic nature of the potentials22–24,
frequency resonance or localization of phonons due to cohesive
clusters25, the mode-coupling approach26, vibrational modes of a
system of randomly fluctuating elastic constants27–29, a crossover
between a minima-dominated phase (with phonons) and a
saddle-point-dominated phase (without phonons) in the complex
energy landscape30, strongly anharmonic transitions between the
local minima of the energy landscape31, the elastic–granular
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Figure 1 Structural relaxation and high-frequency dynamics (boson peak). a, Temperature dependence of the structural relaxation time τα of the liquid (P= 0.5,
N= 1,024) for ∆= 0.6, 0.65, 0.7, 0.75 and 0.8. Tg is the glass-transition temperature. Solid curves are Vogel–Fulcher fits. b, Density of states divided by the angular
frequency ω of the glass (P= 0.5, N= 4,096) for ∆= 0.6, 0.65, 0.7, 0.75 and 0.8. c, Temperature dependence of τα of the liquid (∆= 0.8, N= 1,024) for P= 0.5, 1.0,
1.5, 2.0 and 3.0. Solid curves are Vogel–Fulcher fits. d, Density of states divided by ω for the glass (∆= 0.8, N= 4,096) for P= 0.5, 1.0, 1.5 and 2.0. Inset: The density of
states for P= 0.5 compared with the Debye value (horizontal solid line) calculated from longitudinal and transverse sound velocities (see text).

(affine–non-affine) crossover at a certain mesoscopic length32,33

and resonant or localized modes associated with locally favoured
structures34 (LFSs). However, the physical origin of the boson
peak and the link between slow and fast dynamics still remain
elusive even on a qualitative level. Here, we tackle these
challenging problems, using numerical simulations of three
standard glass-forming systems35 as well as a recently developed
two-dimensional (2D) glass-forming system (2D spin liquid
(2DSL))36, where the fragility can be systematically controlled over
an extremely wide range just by modifying the interaction potential
or changing the pressure (see the Methods section).

Figure 1a shows the so-called Angell plot3 of 2DSL where
the structural relaxation time (τα) is plotted against Tg/T (Tg:
the glass-transition temperature) for five different degrees of
frustration ∆, or the strength of the anisotropic part of the
potential (see the Methods section), at pressure P = 0.5. We
set T ≡ Tg when τα = 106. The data can be well fitted by the
Vogel–Fulcher relation τα = τ0

α
exp[DT0/(T −T0)], where D is the

so-called fragility index and T0 is the Vogel–Fulcher temperature.

Note that the smaller D means ‘less’ fragile. The fragility can also
be characterized by the so-called fragility parameter (steepness
index) m (ref. 3): m ≡ d(log10 τα)/d(Tg/T)|T=Tg . Note that the
larger value of m means that the liquid is more fragile (opposite
to D). The reason why we prefer D rather than the more
popular m is that m depends on the choice of Tg, which is
rather arbitrary in simulations. We list the values of D and m in
Supplementary Information, Table SI. We found that the fragility
index D increases, that is, the fragility decreases, with an increase
in ∆: D = 7.4, 10.9, 17.2, 29.7 and 84.3 for ∆ = 0.6, 0.65,
0.7, 0.75 and 0.8, respectively. This range of D almost extends
from the fragile (for example, organic liquids) to the strong
extremes (for example, silica) in real liquids. Figure 1b shows
the ∆ dependence of VDOS at P = 0.5. The peak position of
D(ω)/ω, that is, the boson peak, shifts towards a lower frequency
and the intensity of the boson peak becomes stronger as the
degree of frustration ∆ increases. This result is consistent with the
well-known experimental fact that the intensity of the boson peak
becomes stronger for a stronger liquid3,7. Figure 1c shows the Angell
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Figure 2 Longitudinal and transverse phonon dynamics and the dispersion relations. a, Longitudinal and transverse dynamical structure factors of the glass (∆= 0.8,
P= 0.5). Solid lines are the damped harmonic oscillator fits. b, Dispersion relations for longitudinal (L) and transverse (T) motion of the glass (∆= 0.8, P= 0.5). Ωα and
πΓα (α = L or T ) are fitted by q (solid line) and q2 (solid curve). The horizontal thick grey line is ωBP.

plot for five pressures for ∆ = 0.8. The higher the pressure, the
more fragile the liquid: D = 84, 24, 14, 10 and 7.4 for P = 0.5,
1.0, 1.5, 2.0 and 3.0, respectively. This result is also consistent
with our prediction37. Figure 1d shows the pressure dependence of
VDOS. The boson peak frequency shifts towards a higher frequency
and the intensity of the boson peak becomes weaker with an
increase in the pressure, which is exactly the characteristic feature
observed experimentally4,38.

Now we briefly consider the dependence of the fragility on
∆ and P. The increase in ∆, which characterizes the strength of the
anisotropic part of the potential, leads to stronger bond-forming
ability. The increase in P, on the other hand, leads to weaker
bond-forming ability, because the local symmetry preferred by
the potential occupies a larger specific volume than random
structures without bonding. This is an explanation based on the
correlation of the bond-forming tendency and the fragility3. In
our two-order-parameter model of glass transition37, the fragility
is determined by the energetic frustration between long-range
ordering towards crystallization and short-range bond ordering
towards the formation of LFSs. The degree of frustration is
correlated with the ability to form the LFSs with five-fold symmetry
(pentagons) in 2DSL (ref. 36), which decreases with an increase in
P or with a decrease in ∆. Thus, the above results are also consistent
with this scenario. In our scenario37, even if the bond-forming
ability is high, if the local symmetry favoured by bonding is
consistent with that of crystal, then a liquid should be a poor
glass former and not be a strong liquid. This prediction should be
checked in the future.

Figure 2a shows the wavenumber (q) dependence of the
longitudinal and transverse dynamic structure factor, SL(q,ω) and
ST(q,ω) (see the Methods section). At low ω, these can be fitted
with a damped harmonic oscillator model:

Sα(q,ω) ∝
Ωα(q)2Γα(q)

(ω2 −Ωα(q)2)2 +ω2Γα(q)2
,

where α = L and T for a longitudinal and transverse mode
respectively. Ω (q) corresponds to the excitation frequency and
Γ (q) corresponds to the full-width at half-maximum of the
excitations. Figure 2b shows the dispersion relation for a liquid
of ∆ = 0.8 at P = 0.5. Linear dispersion relations are observed
for Ω (q) for both longitudinal and transverse phonons. As the

degrees of translational and rotational freedom are 2N and N
respectively, the Debye value DDebye(ω) of the translational motion
should satisfy

∫
dωDDebye(ω) = 2/3. Thus, we have

DDebye(ω) =
V

6πN

(
1

v2
L

+
1

v2
T

)
ω,

where vL and vT are the longitudinal and transverse sound velocity
respectively. For ∆= 0.8 and P = 0.5, we compared it with VDOS
in the inset of Fig. 1d, which shows that the peak has excess VDOS
over the Debye value: the distinct signature of the boson peak.
Both ΓL(q) and ΓT(q) obey a q2 law, consistent with experimental
results10,39,40: ΓL(q) = (ηL/ρ0)q2 and ΓT(q) = (ηT/ρ0)q2, where
ρ0 is the density and ηL and ηT are longitudinal and transverse
viscosity, respectively. The Ioffe–Regel limit condition is given by

Ω (q) =πΓ (q).

From Fig. 2b, we determine the Ioffe–Regel limit for the
longitudinal wave (ωL

IR) as 2.5 and that for the transverse wave (ωT
IR)

as 1.5. In Fig. 2b, we also show the boson peak frequency (ωBP)
for comparison. This result clearly indicates that a well-defined
longitudinal acoustic wave continues to exist well above the boson
peak frequency ωBP, which is consistent with the experimental
results of Scopigno et al.10. The most striking finding is that
ωL

IR � ωBP, but ωT
IR = ωBP.

To check the generality of the latter relation, we calculated the
dependence of ωL

IR and ωT
IR on ∆ and P and compared them with

ωBP (see Supplementary Information, Table SII and Supplementary
Information, Fig. S2). Figure 3a shows the relation ωT

IR = ωBP holds
well in a very wide range of the fragility. We also calculated ωL

IR, ωT
IR

and ωBP for three other systems, 2D and 3D binary Lennard-Jones
systems (2DLJ and 3DLJ) and a 2D binary soft-core system (2DSC)
(see Supplementary Information, Table SII and Supplementary
Information, Fig. S3). Figure 3b clearly demonstrates that the
relation ωT

IR = ωBP holds very well for all of the systems studied,
irrespective of the dimensionality and the detail of the interaction
potential. This suggests the intimate and universal link of the boson
peak with transverse phonons, but not with longitudinal phonons.
In disordered materials, however, the longitudinal sound wave is
often hybridized with the transverse one that has the same energy
and vice versa41. This is particularly the case for strong liquids
having directional covalent bonding, such as silica. This is why ωL

IR
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is located near ωBP in some materials and causes the dispute11,12

about whether ωL
IR is correlated with ωBP or not. However, it was

recently reported for some materials (for example, NiZr2) that ωL
IR

is much higher than ωBP (ref. 10), which is consistent with the result
shown in the inset of Fig. 3b. We argue that the longitudinal sound
wave can propagate as a plane wave even far above ωBP, when it is
only weakly hybridized with the transversal sound wave.

It is highly desirable to experimentally observe the dynamics of
the transverse acoustic phonons of these materials and confirm the
relation ωBP = ωT

IR. It is worth noting the physical message of our
finding. First we note that

ωBP ≡ ωT
IR = vTqIR = v2

T/π(ηT/ρ0) = µ/(πηT) = 1/(πτT),

where µ is the shear modulus and ηT and τT are the dissipation
and characteristic time associated with transverse vibrations,
respectively. Note that ηT is different from the macroscopic
viscosity η. Experimentally it was confirmed that ηL is temperature
independent in a wide temperature region ranging from values
well below Tg up to the liquid phase39,40. Thus, we speculate that
ηT may also be temperature independent, although this is to be
confirmed. Two possible origins for this temperature-independent
sound absorption have been proposed: static28,40,41 and dynamic
origin23. This is also related to the nature of the Ioffe–Regel
crossover and the origin of the boson peak. For example, it was
suggested41 that the Ioffe–Regel crossover is ascribed to ‘elastic’
scattering of acoustic phonons from a static disorder (Rayleigh-
like scattering). Schirmacher et al.28,29 suggested that the static
disorder leads to microscopic random spatial fluctuations of shear
modulus and the boson peak arises from a band of random
transverse acoustic vibrational states. Klinger and Kosevich23, on
the other hand, suggested that there can be Ioffe–Regel crossover for
‘inelastic’ (resonant) scattering of acoustic phonons from harmonic
soft-mode vibrations. Our results suggest that there is no anomaly
in the excess DOS at ω = vLqT

IR (see Fig. 1), which means that
longitudinal phonons with wavenumber around qT

IR propagate
without any anomaly. qT

IR of 2DSL is markedly different from those
of 2DLJ and 2DSC (see Supplementary Information, Table SII),
despite their rather similar structures. These facts indicate that
the length scale associated with qT

IR is not relevant to the phonon
scattering, which seems to be inconsistent with a scenario in
which spatial inhomogeneity of the local shear modulus leads to
elastic scattering of phonons. Thus, our results seem to suggest
the importance of ωT

IR rather than qT
IR and support an inelastic

(resonant) scattering scenario, but specifically ‘transverse’ soft
modes (not longitudinal ones). However, further study is necessary
to settle this fundamental issue.

Next we consider the boson peak intensity. The boson peak
intensity is known to increase with a decrease in the fragility and
the pressure. Such behaviour is indeed observed in Fig. 1. Recent
experimental studies, however, have suggested that the boson peak
intensity after scaling by the Debye level is independent of the
pressure42 or even increases with an increase in pressure43,44. Thus,
we study how the boson peak intensity scaled by the Debye level,
ABP ≡ D(ωBP)/DDebye(ωBP), behaves as a function of ∆ and P.
Because in the above we learned that the boson peak has a close
connection to transverse phonons, we also scaled the boson peak
intensity by the Debye level of the transverse phonons alone,
AT

BP ≡ D(ωBP)/DT
Debye(ωBP). The results are shown in Fig. 4. After

scaling the angular frequency by ωBP (∼=ωIR), the scaled boson peak
can be surprisingly well collapsed on a single curve for ω ≤ 3ωBP

for 2DSL at various ∆ values and P values, 2DLJ and 2DSC for
both types of scaling. The lowest angular frequency points always
lie below the Debye level, but this may be due to a too small number
of points in that low-ω region, which leads to significant errors. The
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larger excess density of states over the Debye level in 3D than in 2D
(see, for example, Supplementary Information, Fig. S3) may be due
to extra degrees of freedom of transverse vibrational modes in 3D.
Our results suggest a remarkably simple relation for the boson peak
intensity for 2D:

D(ωBP)

ωBP

∝
DDebye(ωBP)

ωBP

∝
1

K
+

1

µ
or

1

µ
. (1)

As the bulk modulus K is usually more than a few times larger than
µ and furthermore the P (or ∆) dependence of K is similar to that
of µ, the difference in the above two relations is not so significant.
Nevertheless, because the scaling by DT

Debye(ωBP) is better than that
by DDebye(ωBP) (compare Fig. 4b and d), we are tempted to claim
that the boson peak amplitude is inversely proportional to µ for 2D.
The above relation indicates that variations of the boson peak can
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Figure 4 Scaled shape of the boson peak. a, ∆ dependence of the boson peak in which intensity and angular frequency are scaled by the Debye level DDebye (ω ) and ωBP,
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transverse phonons DT

Debye (ω ) and ωBP, respectively. The data for 2DLJ and 2DSC are also plotted after the same scalings.

be described by the transformation of the elastic continuum. This is
consistent with a recent report on the pressure effects on the boson
peak of Na2FeSi3O8 (ref. 42) and the temperature dependence
of the boson peak of silica45; however, it is not compatible
with the above-mentioned experimental observations43,44. More
importantly, it is known that the boson peak intensity scaled by the
Debye level, ABP, increases with a decrease in the fragility46. It has
been proposed recently that this behaviour may be explained by
the correlation between the microscopic damping of longitudinal
phonons ηL/ρ0, the fragility m and ABP (refs 20,29,47). Our results,
however, do not exhibit such a distinct correlation among these
quantities: for the 2D systems, ABP is constant (see Fig. 4) and
independent of ηL (or ηT) (see Supplementary Information, Table
SII). The above relation (1) holds for the 2D systems studied
here, which suggests that ABP does not depend on the fragility.
This apparently contradicts experimentally observed correlations
of the ABP and the fragility46. We speculate that this problem
may be related to the relation between the macroscopic and local

modulus: ABP may be independent of the fragility only when
the mechanical series model connecting the local modulus to the
average modulus holds (see below), in other words, when soft
regions form a majority matrix phase. For stronger liquids, hard
regions become the majority and the mechanical series model
does not hold any more and mechanical series–parallel models
become necessary. This seems to explain the larger ABP for stronger
liquids. As the discussion is speculative, however, further careful
study is necessary to reveal what physical factors control the boson
peak intensity.

Now we come to another fundamental question: the structural
origin of the boson peak. In our 2DSL, there are three structural
candidates (see also Fig. 4a–c in ref. 36) that may give rise to quasi-
localized vibrational modes with the characteristic frequency ∼ωBP

and couple with transverse phonons: medium-range crystalline
(antiferromagnetic) order (MRCO) (dark green particles in
Fig. 5b), LFSs (white particles forming pentagons in Fig. 5b) and
low-density defective structures (white particles in Fig. 5c) in the
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Figure 5 Structural origin of the boson peak. a, Spatial distribution of D i (ωBP ),
which is the amplitude of the vibration modes with frequencies around the boson
peak frequency. Particles with less boson peak intensity are more blue. The
background is coloured the same way (darker for less boson peak intensity), and this
same background is repeated in b and c, to see the correlation of D i (ωBP ) with local
order and local volume, respectively. Note that we equilibrated the liquid of ∆= 0.6
at T= 0.18 and P= 0.5 and quenched it to T= 0.02 to prepare this sample. Thus,
MRCO is more developed and the number density of LFSs is higher than in samples
prepared by a rapid quench. b, Spatial distribution of the order parameter Ψ̄i (r ) (see
ref. 36 for its definition). Dark green, green and white particles represent MRCO,
normal liquids and LFSs, respectively. c, Spatial distribution of local volume (the area
of Voronoi polygon per particle). Brighter particles have larger local volume (less
local density). d, D (ω )/ω per particle averaged over the one-third of particles
having large local volume (‘large’), small local volume (‘small’), intermediate local
volume (‘intermediate’) and all of the particles.

normal liquid structure. We calculate VDOS per particle, Di(ωBP)
of a glass (see the Methods section), which is the amplitude
of the vibrations around the boson peak frequency, and study
the correlation between Di(ωBP) and these structural candidates.
Figure 4a shows the distribution of Di(ωBP) for the glass (∆= 0.6,
T = 0.02, P = 0.5). Here, ωBP = 2.1 and we set ∆ω = 0.5 (see the
Methods section). In Fig. 5a–c, the background (outside a particle)
colour is brighter for particles with high Di(ωBP). Comparison of
the colour between particles and their background in Fig. 5b tells us
that the vibrational amplitude is small in regions with high MRCO,
which is consistent with the above conclusion. Thus, particles inside
MRCO seems not to be responsible for the boson peak. As MRCO
is the origin of dynamic heterogeneity in our system36, this gives us
the impression that the boson peak may not be a direct consequence
of dynamic heterogeneity and the resulting elastic inhomogeneity.
On noting that main vibrational displacements should be located
on the surface of MRCO (see, for example, ref. 31), however, further
careful studies are necessary to settle this issue.

Next we focus on LFS, which has a unique five-fold symmetry
in this system36. The number density of LFS (S) increases with
a decrease in the fragility and decreases with an increase in the
pressure, which is qualitatively consistent with the behaviour of
the boson peak intensity (Fig. 1). The fact that white particles in
Fig. 5b often have large Di(ωBP) indicates that LFSs contribute to
the boson peak.

Finally, we consider the low-density defective structures.
Figure 4c shows the spatial distribution of the local density,
calculated from the volume of the Voronoi cell. We can see a
positive correlation between the local boson peak intensity and
the local (free) volume from the comparison of particle and
background colour in Fig. 5c. This relation can also be clearly seen
in Fig. 5d, where the boson peak intensity for particles with large,
intermediate and small free volume is shown. The particles with
larger free volume mainly contribute to the boson peak over the
Debye value. This scenario also naturally explains the fact that a
hyperquenched glass has a stronger boson peak than an annealed
one, as discussed in ref. 38. These findings seem to be incompatible
with a scenario that cohesive (dense) regions contribute to the
boson peak. Interestingly, the boson peak contribution from less
dense structures has higher frequency components, which may
suggest smaller ηT for less dense structures. Now we consider how
the relation IBP ≡ D(ωBP)/ωBP ∝ 1/µ established for 2DSL can
be reconciled with the above-mentioned dependence of the boson
peak on local structures. Suppose that each type of local structure
i (fraction Φi) has the shear modulus µi. Note that ΣiΦi = 1.
Then the boson peak from each structure may be Φi/µi and thus
IBP ∝ ΣiΦi/µi. On the other hand, the total boson peak intensity
is proportional to the inverse of the average shear modulus µ.
This implies that 1/µ = ΣiΦi/µi, suggesting the relevance of the
mechanical series model.

Here, we consider the reason why these structures couple with
transverse phonons but ‘not’ with longitudinal phonons. This may
be due to the fact that the longitudinal (or, dilatational) resonant
frequencies of these local structures are much higher than ωBP

and not well separated from those of the other local structures
(or, microscopic vibrational modes). These two factors lead to
the absence of resonant couplings between the structures and
longitudinal phonons. For example, we confirmed that rotational
vibrational states of LFS are located near the boson peak frequency,
whereas its longitudinal ones accompanying volume deformation
are located at much higher frequencies, where similar vibrational
modes for various other particle configurations (including even
MRCO) exist. Rotational motions of tetrahedra in silica (see, for
example, refs 17,21) are also an example of such soft transverse
vibrational modes. Defective structures responsible for the boson
peak are much softer against shear deformation than the other
structures in glass, whereas there is no such strong inhomogeneity
in the softness of local structures against volume deformation.
This originates from the general feature that the rigidity of a
local structural element against shear deformation is much more
sensitive to its particle configuration than that against volume
deformation is. So, structural disorder allows particles to have
isolated transverse vibrational modes.

From the above findings, we can draw the following scenario
concerning the origin of the boson peak: transverse vibrational
modes associated with low-density defective structures and LFSs
are responsible for the excess VDOS, or the boson peak. These
structures are both caused by frustration against crystalline
ordering. In other words, energetic36 or geometrical48 frustration
leads to low-density defective structures in a supercooled liquid and
a glass state, which may be the source of (quasi-)localized transverse
vibrational modes. The relation ωBP = ωT

IR tells us that there
exist structural motifs with (quasi-)localized transverse vibrational
modes that resonantly couple with transverse phonons and thus
govern their dissipation. It may be these transverse vibrational
modes that make the vibrational states of disordered solids different
from those of periodic crystals, which are characterized only by
extended plane-wave phonons. The boson peak frequency probably
marks the characteristic frequency of transverse vibrational modes,
to which transverse phonons resonantly couple and as a result

nature materials VOL 7 NOVEMBER 2008 www.nature.com/naturematerials 875

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 



ARTICLES

transform from propagating to diffusive modes. In our 2DSL, the
increase in the degree of frustration (bond-forming ability) leads
to the decrease in the fragility and also in the shear modulus
µ (see Supplementary Information, Table SII). On noting that
the boson peak amplitude is inversely proportional to µ in these
systems, this suggests a negative correlation between the fragility
and the boson peak intensity (not scaled by the Debye level). To
explain the experimentally observed dependence of the boson peak
intensity scaled by the Debye level, ABP, on the kinetic fragility7,
however, we need to seek other physical factors, one of which
may be the relationship between the average shear modulus µ and
the local one µi. Further careful study is required to clarify the
underlying mechanism.

METHODS

SIMULATION METHODS
We carried out constant pressure and temperature (N PT) ensemble molecular
dynamics with a Nosé–Poincaré–Andersen thermostat to prepare samples
for the calculation of dynamical properties36, and carried out standard
microcanonical (N V E) ensemble molecular dynamics to calculate the
dynamical structure factor for both longitudinal and transversal motion,
SL(q,ω) and ST(q,ω). We used periodic boundary conditions for a system
(volume V ) consisting of N = 4,096 particles. The model potential we used is
the following functional form:

Uij = 4ε

((
σ

rij

)12

−

(
σ

rij

)6

−∆

(
σ

rij

)6

f (θi ,θj)

)
.

Here f (θi ,θj) = (h(θi − θ0)/θc ) + (h(θj − θ0)/θc ) − (64/35π)θc , where
h(x) = 1−3x2

+3x4
− x6 for −1 < x < 1 and h(x) = 0 for x ≤ −1 or x ≥ 1.

θi is an angle between the relative vector rji = rj −ri and the unit vector ui that
represents the orientation of the axis of particle i. θj is an angle between the
relative vector rij = ri − rj and the unit vector uj . The function h(θ− θ0)/θc

(θ0 = 126◦ and θc = 53.1◦) has a maximum at θ = 126◦. Thus, this term
stabilizes the LFS of five-fold symmetry. The details of the potential and
simulation method are given in ref. 36. Note that ∆ represents the strength of
frustration against crystallization. Throughout this paper, we use the following
scaled units36. We used particle mass M , σ and ε as the basic unit of mass,
length and energy, respectively. Thus, the moment of inertia I , the temperature
T , the pressure P, the distance r and the time t are scaled as: I ≡ I/mσ2,
T ≡ kBT/ε (kB: Boltzmann’s constant), P ≡ Pσ2/ε, r ≡ r/σ and t ≡ t/τ0

(τ0 =
√

mσ2/ε). The scaled angular frequency is given by ω = 2πντ0, where ν

is the frequency.
We investigated the dynamics of liquids with ∆= 0.6, 0.65, 0.7, 0.75, 0.8

and P = 0.5, 1.0, 1.5, 2.0. We prepare the samples by the following procedure.
First we equilibrated the liquid at T = 0.8 until t = 100.0 in the N PT ensemble.
This system is then cooled to T = 0.02 at a quench rate of dT/dt = 2.0×10−4.
The quenched glass samples are relaxed for t = 100.0. The final configuration of
the N PT ensemble is used as the starting configuration of the N V E ensemble
simulation. These samples are relaxed for t = 100.0. If the averaged T and
P are different from the target values, we change the kinetic energy and the
volume slightly until they reach the target values. These samples are used as the
starting configuration for calculating dynamical structure factors. To improve
the statistics, ten different configurations of 4,096 particles created in this way
were averaged to estimate VDOS and S(q,ω).

VDOS ANALYSIS
To obtain the VDOS, two different methods were adopted. In the direct
diagonalization method, the steepest-descent method is carried out for the final
configuration of N V E. The dynamical matrix corresponding to the potential
energy minimum reached by the steepest-descent method is given by

Dij =
1√

Mi Mj

∂2U (x1,y1,φ1, . . . ,xN ,yN ,φN )

∂Ri∂Rj
,

where Mi is the mass (M) or inertia moment (I) of particle i and Ri is the
coordinate (x or y) or angle (φ) of particle i. We directly diagonalize the

dynamical matrix and calculate the VDOS DDD(ω) as

DDD(ω) =
1

3N −2

∑
l

δ(ω−ωl),

where ωl is the eigenfrequency. In the fast Fourier transformation (FFT)
method, we calculate the VDOS without the degree of rotational freedom,
DFFT(ω), by the Fourier transform of the velocity autocorrelation function as

DFFT(ω) =

∫
dt

2π
exp(iωt)

〈∑√
mi vi(t) ·

√
mi vi(0)

〉〈∑√
mi vi(0) ·

√
mi vi(0)

〉 .
We calculate the VDOS with the degree of rotational freedom DFFT,R(ω) as

DFFT,R(ω) =

∫
dt

2π
exp(iωt)

×

〈∑√
mi vi(t) ·

√
mi vi(0)+

√
Iiωi(t) ·

√
Iiωi(0)

〉〈∑√
mi vi(0) ·

√
mi vi(0)+

√
Iiωi(0) ·

√
Iiωi(0)

〉 .
The validity of our simulations is confirmed by the agreement between DDD(ω)

and DFFT,R(ω) as shown in Supplementary Information, Fig. S1. Note that
the degree of freedom of DDD(ω) and DFFT,R(ω) is 3N (translational and
rotational freedoms), whereas that of DFFT(ω) is 2N . DDD(ω) coincides well
with DFFT(ω) at low ω. At high ω, on the other hand, it is not the case. This
indicates that the translational motion is hardly coupled with the rotational
motion at high ω. As we are interested in the translational vibrations at low ω,
we used DDD(ω) to evaluate the boson peak frequency ωBP. The coincidence
of the direct diagonalization and FFT at the boson peak region confirms the
harmonic nature of vibration modes contributing to the boson peak.

LONGITUDINAL AND TRANSVERSE DYNAMIC STRUCTURE FACTORS
We also calculated the longitudinal and transverse dynamical structure factor,
SL(q,ω) and ST(q,ω), respectively, to determine the Ioffe–Regel limit, above
which the phonon decays before propagating its own wavelength. SL(q,ω) and
ST(q,ω) are given as

Sα(q,ω) =
q2

2πω2N

∫
dt
〈
jα(q, t) · jα(−q,0)

〉
exp(iωt),

where α is L or T and

jL(q, t) =

∑
(vi(t) · q̂)q̂exp(iq ·ri(t)),

jT(q, t) =

∑
(vi(t)− (vi(t) · q̂)q̂)exp(iq ·ri(t)),

where q̂ = q/|q|. We also calculate SL(q,ω) and ST(q,ω) by normal mode
analysis. SDD,L(q,ω) and SDD,T(q,ω) are given as

SDD,L(q,ω) =
kBT

M

q2

ω2

∑
l

El,L(q)δ(ω−ωl),

SDD,T(q,ω) =
kBT

M

q2

ω2

∑
l

El,T(q)δ(ω−ωl),

where

El,L(q) = |

∑
i

[q̂ ·el(i)]exp(iq · r̄i)|
2,

El,T(q) = |

∑
i

[q̂×el(i)]exp(iq · r̄i)|
2,

where el is the eigenvector and {r̄} are the equilibrium positions. We confirmed
that both methods give the same results.

VDOS AND THE BOSON PEAK INTENSITY PER PARTICLE
The VDOS per particle i, Di(ωBP), is defined as

DFFT(ω) =

∑
i

Di(ω)

=

∑
i

1

2N kBT

∫
〈vi(t) ·vi(0)〉exp(iωt)dt .
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The sum of Di(ω) is equal to the total VDOS, DFFT(ω). Then we calculate
the boson peak intensity for particle i, Di(ωBP), as

Di(ωBP) =
1

2∆ω

∫ ωBP+∆ω

ωBP−∆ω

Di(ω
′) dω′ .

SIMULATION METHODS FOR OTHER SYSTEMS
Simulation methods used for other glass-forming systems are described in
Supplementary Information.
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9. Rufflé, B., Guimbretière, G., Courtens, E., Vacher, R. & Monaco, G. Glass-specific behavior in the

damping of acoustic-like vibrations. Phys. Rev. Lett. 96, 045502 (2006).
10. Scopigno, T., Suck, J.-B., Angelini, R., Albergamo, F. & Ruocco, G. High-frequency dynamics in

metallic glasses. Phys. Rev. Lett. 96, 135501 (2006).
11. Ruocco, G., Matic, A., Scopigno, T. & Yannopoulos, S. N. Comment on Glass-specific behavior in the

damping of acousticlike vibrations. Phys. Rev. Lett. 98, 079601 (2007).
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