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Abstract

Amorphous solids (glasses) present universal properties strikingly different from that of crystalline coun-

terparts at low temperatures, regardless of their microscopic nature. Tunneling-two-level-system model

(TTLS model) successfully explained several universalities below 1K, but it cannot explain the other glass

low-temperature universal properties. Based on virtual phonon exchange interaction, we develop a glass

generic coupled block model to discuss two universal properties: sound velocity/dielectric constant shift,

and low-temperature mechanical avalanche problem. We also successfully explain the universal property of

glass Meissner-Berret ratio by using our generic coupled block model.

ii



Every challenging work, needs self efforts as well as guidance of elders especially those who were very close

to our heart. My humble effort I dedicate to my sweet and loving

Father & Mother,

Whose affection, love, encouragement and prays of day and night make me able to get such success and

honor,

Along with all hard working and respected

Teachers

iii



Acknowledgments

First, I wish to express my deepest gratitude to my advisor Anthony J. Leggett, for his patient guidance and

encouragement. I wish to learn more from him in the future, especially the way he thinks about physics, and

his strict attitude on research. Second, I would like to thank my wife and parents. I will never forget their

support and comfort during my difficult times. I got married in the fifth year of Ph.D. study. It is fortunate

to meet my wife, and stay with her forever in my life. Last my thanks would go to my friends Xianhao Xin,

Xueda Wen, Yiruo Lin and Yizhou Xin. I will always remember the happy time we work together.

iv



Table of Contents

List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Tunneling-Two-Level-System Model . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 3 The Generic Coupled Block Model . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Non-Elastic Stress-Stress Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Elastic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Virtual Phonon Exchange Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Glass Full Hamiltonian with the Presence of External Strain . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Universal Shift of Sound Velocity and Dielectric Constant in Glass . . . . . . 21
4.1 Renormalization of Glass Non-Elastic Susceptibility . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Some Discussions of Sound Velocity Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Dielectric Shift as the Function of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 5 Low Temperature Insulating Glass Mechanical Avalanche Problem . . . . . . 41
5.1 The Set up of Avalanche Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Virtual Phonon Exchange Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Full Glass Hamiltonian with the Presence of External Static, Uniform Strain field . . . . . . . 46
5.4 Real Space Renormalization for Glass Non-Elastic Susceptibility . . . . . . . . . . . . . . . . 48
5.5 The Critical External Strain of Avalanche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 6 Universal Meissner-Berret Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 The Set up of Meissner-Berret Ratio Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Virtual Phonon Exchange Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3 Second Order Perturbation Theory to Energy Absorption of Super Block . . . . . . . . . . . 65
6.4 Renormalization Procedure of Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5 The Modification of Meissner-Berret Ratio from Electric Dipole-Dipole Interactions . . . . . . 72

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Appendix A Derivation Details of Non-Elastic Stress-Stress Interaction Coefficient . . . 79

Appendix B Derivations of Renormalization Equation of Non-elastic Stress-Stress Sus-
ceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.1 Expansion details for χ
super rel(1)
ijkl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.2 Expansion details for χ
super rel(2)
ijkl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.3 Expansion details for χsuper res
ijkl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.4 Derivations of the Effect of δV̂ (t)’s contribution to Susceptibility Renormalization . . . . . . 99

v



Appendix C Derivation Details of Resonance Phonon Energy Absorption in Generic
Coupled Block Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C.1 Resonant Phonon Energy Absorption of Single Block Glass . . . . . . . . . . . . . . . . . . . 105
C.2 Resonant Phonon Energy Absorption of Super Block Glass . . . . . . . . . . . . . . . . . . . 106

C.2.1 Calculation Details of Term[1]: Eq.(6.15, 6.22) in Chapter 6 . . . . . . . . . . . . . . . 109
C.2.2 Calculation Details of Term[2]: Eq.(6.20, 6.21) in Chapter 6 . . . . . . . . . . . . . . . 114

Appendix D The Details of the Matrix Form of the Inverse of Elastic Susceptibility . . 119

Appendix E Details of Calculations of Sound Velocity Shift as the Function of Loga-
rithmic of Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix F Calculation Details of the Coefficient Renormalization Equations (4.18) . . 122

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

vi



List of Symbols and Abbreviations

TTLS Tunneling-Two-Level-System

MB ratio Meissner-Berret ratio

t, l Longitudinal, transverse

T Temperature

β β = (kBT )−1

ρ Glass mass density

m Glass elementary block mass

cl,t Longitudinal, transverse sound velocity

α α = 1− c2t/c2l
~u(~x) Displacement of particle at certain position ~x

~x Position coordinate

~p Momentum of certain particle

~A Phonon wave amplitude

~a Unit vector of phonon wave amplitude

~k Phonon wave vector

~κ Unit vector of phonon wave vector

ωk,(l,t) Phonon frequency with wave number k for longitudinal/transverse phonon

eij Phonon strain field

T̂ij Stress tensor

χijkl Stress tensor susceptibility

χl,t Longitudinal/transverse component of stress tensor susceptibility

γl,t TTLS-phonon coupling constant for longitudinal and transverse phonon

γl/γt Meissner-Berret ratio

~xs Location of the s-th glass unit block

~xss′ ~xs − ~x′s
~nss′ Unit vector of ~xss′

Λ
(ss′)
ijkl Coefficient of virtual phonon exchange interaction

vii



Chapter 1

Introduction

It has been more than 50 years since the first experiment[1] by Zeller and Pohl showed at ultra-low temper-

atures below 1K the thermal and acoustic properties of amorphous solids (glasses) behave entirely different

from that of crystalline counterparts. In 1972, Anderson, Halperin and Varma[3] group and Phillips[19] in-

dependently developed a microscopic phenomenological low-temperature glass model which was later known

as tunneling-two-level-system model (TTLS). The effective Hamiltonian for TTLS model is the summation

of elastic (phonon) part of Hamiltonian, a set of two level systems randomly embedded in glass material,

and the coupling between two-level-system and phonon strain field.

Ĥ = Ĥph +
1

2

 E 0

0 −E

+
γl,t
2

 ∆/E ∆0/E

∆0/E −∆/E

 e(t) (1.1)

where E =
√

∆2 + ∆2
0. The coupling constants between longitudinal/transverse phonon strain and TLS

are denoted as γl,t, which are adjustable parameters. Together with random distributions of TTLS model

parameters[10], it not only explained existing experiments successfully, such as linear temperature depen-

dence of heat capacity, but also predicted new experiments such as phonon echo[38] and saturation[36]

phenomena. In chapter 1, we will discuss the significance of TTLS model in details.

However, TTLS model has a number of problems. First, while TTLS successfully explained several

universal propeties of amorphous solid below 1K, there are more universalities cannot be explained for tem-

peratures around 1K< T <50K[25], e.g. universal thermal conductivity plateau around 10K, and universal

internal friction Q−1 plateau between 10K < T < 50K[34]. Second, the model itself has too many adjustable

parameters, for example, random distribution function f(E,∆) for the diagonal and off-diagonal matrix ele-

ments E,∆ of two level system; coupling constants γl,t, etc. Experimental results could always be explained

by adjusting these parameters within a certain range. Third, the model lacks the consideration that as the

interaction with phonon strain field, TTLS must generate a mutual RKKY-type interaction[42]. Taking this

virtual-phonon exchange interaction into account may not only change current theoretical results, but also

question the validity of TTLS.
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Besides the above general TTLS problems, in this thesis we will focus on 3 specific universal properties

which cannot be fully explained within TTLS model. They are: universal shifts on sound velocity and

dielectric constant, universal Meissner-Berret ratio and glass mechanical avalanche phenomena phenomena.

We want to focus on these universal acoustic and mechanical properties by developing a theory of coupled

generic blocks. We start by expanding non-elastic part of glass Hamiltonian in orders of strain field eij(~x)

and derive the non-elastic stress-stress susceptibility via linear response theory. By putting in many-body

interaction generated from virtual phonon exchange process, we set up the renormalization recursion relation

for non-elastic susceptibilities at various length scales. Our goal is to prove that glass universal properties

essentially come from many-body interaction, independent of materials’ microscopic structure and chemical

compound.

The first problem we will discuss in this thesis is the glass universal shift on sound velocity and dielectric

constant. To verify the existence of two-level-systems, L. Piché, R. Maynard, S. Hunklinger and J. Jäckle[33]

studied two-level-systems’ influence on the variation of longitudinal sound velocity in vitreous silica Suprasil

I at temperatures 0.28K < T < 4.2K and frequencies 30MHz < f < 150MHz. The sound velocity shift was

found to be logarithmically dependent on temperature. At high frequency low temperature resonance regime

with ωτ � 1 (τ is the effective thermal relaxation time, please refer to chapter 3 for detailed discussions)

the sound velocity increases with increasing temperature. This sound velocity shift in resonance regime

is independent of phonon frequency. At low frequency high temperature relaxation regime with ωτ � 1

the velocity decreases with increasing temperature. Such sound velocity increase-decrease transition occurs

at the transition point ωτ(T ) ≈ 1, which means the transition temperature T is functional of phonon

frequency. However, as long as the sound velocity measurement enters into relaxation regime, it turns out

to be frequency independent as well. In the rest of this thesis we will discuss the temperature dependence

of sound velocity in relaxation and resonance regimes separately, so we assume that sound velocity shift is

frequency independent in both relaxation and resonance regimes. Such universality has been observed in

amorphous materials such as vitreous silica, lithium-doped KCl[4] and silica based microscopic cover glass[8],

etc.. By averaging over random parameters of glass two-level-system susceptibility, TTLS model successfully

explained the logarithmic temperature dependence of sound velocity shift[19, 10]. It also proves that the

slope of lnT dependence is negative in relaxation regime and positive in resonance regime. The sound

velocity slope ratio between relaxation and resonance regimes is Crel : Cres = −1/2 : 1, which agrees quite

well with silica based microscopic cover glass measurements[8]. However at least to the author’s knowledge,

it is the only amorphous material with the absolute value of slope in relaxation regime smaller than that of

resonance regime. Other materials, however, present the absolute value of slope in relaxation regime equal or
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slightly greater than that of resonance regime: vitreous silica Suprasil I[33], PdSiCu[9], Zr-Nb[17], lithium-

doped KCl[4], vitreous silica[11], metallic glass[13] Ni81P19, etc. (the electron-TTLS coupling in metallic

glass is relatively weak compared to phonon-TTLS coupling, so conducting electrons are not strong enough

to affect sound velocity[10]). S. Hunklinger and C. Enss[12] suggest that most of the sound velocity slope

ratios of glass materials are rather −1 to 1, probably due to the interaction between tunneling systems,

because glass defects are highly concentrated. Our purpose is to set up a generic glass model to prove

such universal slope ratio of temperature dependence on sound velocity shift, in relaxation and resonance

regimes. We hope our renormalization technique would lead to the universal shift of sound velocity, but right

now the renormalization equations in chapter 4 lead to the increasing behavior of relaxation and resonance

susceptibilities rather than the expected decreasing behavior as the length scale increases. Moreover, the

fixed point in Eqs.(4.19), χrel = −2χres(ω = 0) can never be reached, due to the fact that both of relaxation

and zero-frequency resonance susceptibilities are negative — they will always have the same sign throughout

the entire renormalization process. It is at this point that our renormalization technique cannot explain the

universal sound velocity shift.

By assuming that electric field couples to two-level-systems[7], the calculation of TTLS model on dielec-

tric constant shift is similar with sound velocity shift, but the dielectric shift slope ratio between relaxation

and resonance regimes is Crel : Cres = +1/2 : −1. However, dielectric measurements on varies amorphous

materials such as vitreous silica Suprasil W and vitreous As2S3[14], vitreous silica Suprasil I[6] and borosil-

icate glass (BK7)[15] indicate that the slope ratio is Crel : Cres = +1 : −1, regardless of their microscopic

nature. In this thesis we also try to use electric dipole-dipole interaction to carry out universal glass dielec-

tric constant shift. However, our model and renormalization procedure cannot prove this universal property

as well, because of the same reason as universal sound velocity shift, that the relaxation and resonance

susceptibilities have the same sign, and the fixed point χrel = −2χres(ω = 0) can never be reached.

The second goal of this thesis is to use our generic coupled block model to understand the mechanical

avalanche behavior of three-dimensional insulating glass. The reader should be aware that it is the first time

to apply our model in glass mechanical avalanche problem. Therefore our purpose is not to solve the entire

glass avalanche problem from microscopic point of view; instead we want to provide some first-step results

for future people to continue studying this problem. We consider a block of amorphous material under the

deformation of static, uniform strain. With the slowly increasing strain the bulk glass behaves elastically

until it reaches critical strain value. After that the stress (T ) suddenly drops to a lower value. A more

convenient quantity is the mechanical stress-stress susceptibility χijkl = δTij/δekl. At critical strain field

when irreversable process happens, stress-stress susceptibility presents an abrupt positive-negative transition

3



when strain field passes through critical value. Our main goal is to prove the existence of such positive-

negative transition in glass mechanical susceptibility.

We successfully explained the third universal property in this thesis, the glass universal Meissner-Berret

ratio. In 1987, Meissner and Berret[45] measured 18 different kinds of glass materials’ coupling constants

γl,t. They pointed out that the coupling constants γl,t are not arbitrary: below temperature T < 1K, their

ratio γl/γt turns out to lie between 1.44 and 1.84 for a wide variety of amorphous materials, regardless

of their chemical compound and microscopic molecular structure. Such universality cannot be explained

within TTLS model since the model itself is based on the coupling constants. We believe that there must

be a more general model to describe universal properties of low-temperature glass, including universal ratio

γl/γt. In the rest of this thesis, we use “Meissner-Berret Ratio” to stand for “TTLS coupling constants’ ratio

γl/γt”. We consider this problem by calculating glass resonance phonon energy absorption due to the input

of external longitudinal and transverse phonons. Within TTLS model the resonance energy absorption per

unit time Ėl,t is proportional to the square of coupling constant γl,t; in our generic coupled block model the

resonance energy absorption is proportional to the imaginary part of resonance susceptibility, and it is only

functional of longitudinal/transverse sound velocity ratio. This experimentally measurable quantity does not

rely on adjustable parameters. We believe our theory can help explain the universality of Meissner-Berret

Ratio.

The organization of this thesis is as follows: in chapter 2 we give a short review of the traditional model

– tunneling-two-level-system model, the contributions of it to glass low-temperature behavior explainations,

and limitations of it. In chapter 3 we set up our generic coupled block model and non-elastic stress-

stress interaction via virtual phonon exchange process, with the presence of external phonon field. We also

introduce the most important concepts, elastic and non-elastic stress-stress suceptibilities. In chapter 4 we

study glass universal shift on sound velocity and dielectric constant. We study real space renormalization

recursion relation between small and large length scale non-elastic stress-stress susceptibilities. In chapter 5

we work on the microscopic explaination of glass mechanical avalanche phenomena. We derive the recursion

relation between small and large length scale static susceptibilities. In chapter 6 we explore the universal

Meissner-Berret ratio in glass. We calculate the resonance phonon energy absorption of a group of interacting

single blocks due to the input of external longitudinal (transverse) phonon strain field. By assuming the

external strain field is weak enough that the stress-strain coupling can be treated as perturbation, we

expand resonant phonon energy absorption up to the second order of coupling, and derive resonance energy

absorption recursion relation between single block and super block. We use such real space renormalization

procedure to carry out the Meissner-Berret ratio at experimental length scale. We prove this experimental
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measurable quantity is independent of the material’s microscopic nature. We also give a detailed discussion

on the influence of electric dipole interaction on Meissner-Berret ratio for dielectric amorphous solids. The

influence of electric dipole-dipole interaction to Meissner-Berret ratio is negligible. In the appendix (A) we

give a detailed derivation on non-elastic stress-stress interaction coefficient Λ
(ss′)
ijkl , and point out 4 differences

between our result and that derived by Joffrin and Levelut[42].
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Chapter 2

Tunneling-Two-Level-System Model

At low temperatures the only excitations to contribute the specific heat of insulating crystals are long

wavelength phonon modes. For T < 1K, much smaller than Debye temperature, the specific heat of insulating

crystal has a T 3-dependence, for example, the specific heat of crystalline quartz is C = 0.55T 3µ/gK[1].

However, the specific heat of glass is considerably higher. If we subtract the phonon contribution CD

calculated from Debye’s theory from the glass specific heat C, the excess glass specific heat Ca = C −CD is

characteristic of the amorphous state. The additional specific heat capacity can be approximated by

Ca = a1T
1+δ + a3T

3 (2.1)

for example, the exponents are δ = 0.22 for Suprasil and δ = 0.3 for Suprasil W[8]. The glass excess heat

Figure 2.1: The heat capacity comparison between amorphous material (vitreous silica) and the crystalline
version (quartz) of it by Zeller and Pohl[1].

capacity Ca at 0.1 K is about two orders of magnitude greater in the glass than in the crystal. Besides the

anomalous specific heat, glass thermal conductivity also differs from that of crystalline solids. The thermal

conductivity can be interpreted qualitatively by kinetic formula

κ =
1

3
Cvsl (2.2)
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where l is the phonon mean free path. At low temperatures in crystals phonons are scattered by defects

in the crystal or by the surfaces of the sample, so that l is independent of temperature and κ is therefore

proportional to T 3. However in glass below 1K κ increases quadratically as the increase of temperture and

then enters into a thermal conductivity plateau with temperatures 4K< T <20K. Similar results are seen

in a wide range of other amorphous solids; oxide, chalcogenide, elemental, polymeric and metallic glasses

all present the same behaviour. The universality of the temperature dependences of glass heat capacity

proportional to T and thermal conductivity proportional to T 2 provide great attractions for theorists. Since

Figure 2.2: The thermal conductivity for different amorphous materials by R. B. Stephens[48]. At low
temperatures below 1K, it increases quadratically as the increase of temperature. Between 4K and 20K it
enters in a universal plateau, regardless of the materials’ microscopic structure and chemical compound.

the anomalous properties of glass are observed down to very low temperatures, we want to develop an

effective model to describe such low-temperature behaviors. In the regular lattice of a crystal all atoms

or molecules occupy a well defined position, allowing only one possible configuration. In glass the random

structure of glass material can be realized as a large number of different configurations. Therefore we assume

there are a group of tunneling-two-level-systems randomly embedded in glass material. They can occupy

at least two different positions or configurations. We may introduce “particles” of unknown microscopic

mechnism moving in double-well potentials. In each of the wells such particles move between these wells[7],

and they have a series of vibrational states separated by an energy ~Ω which is of the order of the Debye

energy. At low-temperatures we are only interested in the ground states with the wave functions ψL and

ψR for the particles located either in the “left” or “right” well, respectively, in the following figure. The
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Figure 2.3: Double well potential by Phillips[19].

difference of double well potential minima is referred to as the “asymmetry” ∆. The tunneling strength

between two potentials is ∆0 = ~Ωe−λ. The tunneling parameter λ = d(2mV/~2)1/2 represents the overlap

of the wave function ψL and ψR. d is the separation between the two wells, m the effective mass of the

tunneling particles and V the barrier between two minima. In the basis (ψL, ψR) the Hamiltonian of a single

tunneling system is given by [37]

ĤTLS =
1

2

 ∆ ∆0

∆0 −∆

 (2.3)

Anderson, Halperin, Varma and Phillips assume that the TTLS parameters ∆ and λ are independent of

each other and to have the distribution function as follows,

P (∆, λ)d∆dλ = P̄ d∆dλ (2.4)

which means the distribution function P (∆, λ) is uniform. Because of the exponential dependence of ∆0 on

λ, only a relatively small range of λ is responsible for a large range of ∆0 and over this limited range the

distribution of λ can be taken as a constant. Therefore the distribution function for ∆ and ∆0 is given by

f(∆,∆0) =
P̄

∆0
(2.5)
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Tunneling systems couple to their environments via strain and electric fields. Since both mehcanisms can be

described in the same way, we will only discuss the coupling to strain fields. The coupling can be realized by

transitions from one well to the other. This phonon assisted tunneling process leads to a change of ∆0 and

∆. These “diagonal and off-diagonal matrix elements variation” can be described by deformation potentials

γ∆0
= δ∆0/2δe and γ∆ = δ∆/2δe. Thus the coupling between tunneling system and phonon strain field

e(t) can be written as

Ĥcoup =

 γl,t∆ γl,t∆0

γl,t∆0
−γl,t∆

 e(t) (2.6)

where l and t denotes the coupling with longitudinal/transverse phonon strain fields. Usually we assume

that γ∆ � γ∆0
, which means the strain fields mainly couple to the asymmetry ∆. At the first glance

this assumption is unusual. However coupling constants associated with the variation of the geometry are

expected to be rather small, namely of the order the energy splitting itself[5, 10, 19]. Based the assumption

that TTLS-phonon coupling term is diagonal, we would like to rewrite glass TTLS Hamiltonian in the basis

of TTLS energy eigenvalues ±E = ±
√

∆2 + ∆2
0:

Ĥ = Ĥph +
1

2

 E 0

0 −E

+
γl,t
2

 ∆/E ∆0/E

∆0/E −∆/E

 e(t) (2.7)

where the coupling constants γl,t are for TTLS-longitudinal/transverse phonon couplings. The diagonal

matrix element of TTLS-phonon coupling represents the TTLS energy eigenvalue shift due to the external

perturbation, and it is further represented by relaxation process, while the off-diagonal matrix element of

coupling stands for the transitions between TTLS different eigenstates, and it is further represented by

resonance process. Based on the above TTLS model assumptions, in this chapter we give a short review of

TTLS model calculations on the 3 universal properties we will talk about in later chapters.

Consider the external phonon field which makes the transitions between TTLS state 1 (with erengy

eigenvalue +E) and 2 (with −E). If we denote the transition probability rate from state 1 to state 2 as

ω12, and ω21 for state 2 to 1, then the time derivative of state 1 and 2 probability Ṗ1, Ṗ2 obey the following

equation of motion:

Ṗ1 = −P1ω12 + P2ω21 Ṗ2 = P1ω12 − P2ω21 ⇒ Ṗ1 = −P1(ω12 + ω21) + ω21 (2.8)

In thermal equilibrium we have P1ω12 = P2ω21. The relaxation time of two-level-system τ is defined by
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Ṗ1 = −P1/τ , and is further given by τ−1 = ω12(1+eβE). The transition rate ω12 can be calculated by Fermi

golden rule,

ω12 =
∑
α=l,t

2π

~
|〈ψ1|Ĥint|ψ2|2

g(E)

eβE − 1
(2.9)

where Ĥcoup is the coupling between phonon strain field and two-level-systems, α is phonon polarization,

g(E) is phonon density of states. Therefore one gets the relaxation time of an TLS with (∆,∆0)

τ−1(E) =
∑
α

γ2
α

c5α

E∆2
0

2πρ~4
coth

(
1

2
βE

)
(2.10)

where ∆0 comes from the off-diagonal matrix element of TTLS-phonon coupling. The phonon absorption

process corresponds to phonon number reduction: g(E)ṅph(E) = −Ṗ1. Plugging in Eq.(2.8) one obtains the

phonon scattering rate τ−1
ph

τ−1
α,ph(∆0,∆) =

2π

~
|〈ψ1|Ĥint(∆0,∆)|ψ2〉|2 tanh

(
1

2
βE

)
=
πγ2

αω

ρc2α

∆2
0

E2
tanh

(
1

2
βE

)
(2.11)

where E =
√

∆2 + ∆2
0. Since the total phonon scattering process comes from all the two-level-systems with

different parameters ∆,∆0, and
√

∆2 + ∆2
0 = E, one needs to sum over all two-level-systems with different

∆0 ranges from −E to E to obtain mean free path.

l−1
α (ω) = (cατα,ph)−1 =

∫ E

−E
f(∆,∆0)cατ

−1
α,ph(∆0)d∆0 =

P̄ πγ2
αω

ρc3α
tanh

(
1

2
β~ω

)
(2.12)

where the uniform distribution probability P̄ is given by Eq.(2.4). Given the phonon mean free path lα with

polarization α, the sound velocity shift as the function of temperature can be calculated from the real part

of response function, and it is further given by Kramers-Kronig relation as

cα(ω, T )− cα(ω, 0) = ∆cα(ω) =
1

π
P

∫ ∞
0

c2αl
−1
α (Ω)

ω2 − Ω2
dΩ (2.13)

where the integral is principle value. Using the form of mean free path Eq.(2.12) the sound velocity shift is

given by

∆cα
cα

∣∣∣∣
res

=
P̄ γα
ρc2α

ln

(
T

T0

)
(2.14)

This result is the main tool to experimentally measure the values of P̄ γ2
α. Please note that the previous
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calculations are from phonon absorption/emission process, so Eq.(2.14) is just resonance process sound ve-

locity shift. However in high temperature low frequency relaxation regime, both of resonance and relaxation

processes contribute to the sound velocity shift. The relaxation susceptibility can be obtained by introducing

thermal relaxation time τ for two-level-system. Consider the population difference ∆P = P1 − P2 between

two levels, relaxation process gives

∂∆P

∂t
= −∆P −∆P ins

τ
(2.15)

where Eq.(2.15) is the equation of instantaneous relaxation of e(t), and ∆P ins is the instantaneous distribu-

tion function for the population difference. The expectation value of the two-level-system Hamiltonian can

be perturbatively expanded in orders of external strain field. The susceptibility is defined as the first order

derivative of the expectation value with respect to strain field:

χ(ω) =
δ〈ĤTLS〉
δe(ω)

=
χ(0)

1− iωτ
(2.16)

with

χ(0) =
γ2
α∆2

4kBTE2
sech2

(
1

2
βE

)
(2.17)

in relaxation regime, both of relaxation and resonance susceptibilities contribute to the sound velocity shift.

The relaxation part contribution is

∆cα
cα

∣∣∣∣
rel

=
Reχ(ω)

2ρc2α
(2.18)

We need to take all possible two-level-systems that contribute to the relaxation process, which is, to sum

over all possible TTLS parameters ∆ and ∆0. A more convenient way to calculate this summation is

to transform ∆,∆0 summation into E, τ summation, where τ is the relaxation time for a certain TTLS.

From Eq.(2.10), the two-level-system relaxation time is inversely proportional to ∆2
0. Therefore the smallest

possible relaxation time τ is obtained by setting ∆0 = E, which gives

τmin =

[∑
α

γ2
α

c5α

E3

2πρ~4
coth

(
1

2
βE

)]−1

⇒ ∆2

E2
= 1− τmin

τ
(2.19)

Also, it is important to note, that the minimum of relaxation time τmin = T−3
[
k3
B

∑
α
γ2
α

c5α

(βE)3

2πρ~4 coth
(

1
2βE

)]−1

.

11



Therefore, the ∆,∆0 distribution function, f(∆,∆0) can be transformed to g(E, τ) distribution function via

Jacobian determinant:

g(E, τ)dEdτ = f(∆,∆0)
∆0E

2τ∆
d∆d∆0 (2.20)

Plugging in the specific form we made for TTLS model, that f(∆,∆0) = P̄ /∆0, we have the distribution

function g(E, τ) given by

g(E, τ) = − P̄

2τ(1− τmin(E)/τ)1/2
(2.21)

Finally, the summation over different configurations of two-level-systems which contribution to the sound

velocity shift for relaxation susceptibility is

∆cα
cα

∣∣∣∣
rel

=
γ2
α

2ρc2αkBT

∫ ∞
0

dE

∫ ∞
τmin

sech2

(
E

2kBT

)(
1− τmin

τ

) g(E, τ)

1 + ω2τ2
dτ

=
γ2
α

2ρc2αkBT

∫ ∞
0

dE

∫ ∞
τmin

sech2

(
E

2kBT

)(
1− τmin

τ

) 1

1 + ω2τ2

[
− P̄

2τ(1− τmin/τ)1/2

]
dτ

= − P̄ γ
2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)∫ ∞
τmin

(
1− τmin

τ

)1/2 1

1 + ω2τ2

dτ

τ

≈ − P̄ γ
2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)∫ ∞
τmin

dτ

τ

= − P̄ γ
2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)
ln

(
τcutoff

τmin

)

= − P̄ γ
2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)
ln

 τcutoff

T−3
[
k3
B

∑
α
γ2
α

c5α

(βE)3

2πρ~4 coth
(

1
2βE

)]−1


= − P̄ γ

2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)
ln
(τcutoff

T−3

)
− P̄ γ

2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)
ln

[
k3
B

∑
α

γ2
α

c5α

(βE)3

2πρ~4
coth

(
1

2
βE

)]

= − P̄ γ
2
α

2ρc2α

∫ ∞
0

sech2

(
E

2kBT

)
d

(
E

2kBT

)
ln
(
T 3
)
− Const.

= −3P̄ γ2
α

2ρc2α
lnT − Const. = −3

2

P̄ γ2
α

ρc2α
ln

(
T

T0

)
(2.22)

The factor of 3 comes from the T−3 dependence of τmin (after taking integration over variable E). This

result has the same form as that of resonance process sound velocity shift, but differs for a factor of − 3
2 .

Therefore in relaxation regime the sound velocity shift is the summation of relaxation and resonance regimes,
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it is further given by

∆cα
cα

∣∣∣∣
tot

=
∆cα
cα

∣∣∣∣
rel

+
∆cα
cα

∣∣∣∣
res

= −1

2

P̄ γ2
α

ρc2α
ln

(
T

T0

)
(2.23)

Finally, we reach the conclusion from TTLS theory: at low-temperature (below the order of 10K), sound

velocity changes as the logarithmic of temperature. It increases as the increase of temperature in resonance

regime, while decreases with the increase of temperature in relaxation regime. Further more, the slope ratio

between resonance and relaxation regime is 1 : (−1/2). However, as we will show in chapter 4, most of the

glass materials’ experiment indicate that the slope ratio is 1 : −1 rather than 1 : (−1/2).

From the results Eq.(2.14, 2.23), sound velocity shift slope is the function of P̄ , γα, ρ and cα. In 1987,

Meissner and Berret[45] measured 18 different kinds of glass materials’ sound velocity shift slope, including

organic material (PMMA), chemically pured material (a-SiO2) and chemically mixed material (BK7). They

calculate γl,t from longitudinal and transverse sound velocity measurements based on the assumption that

TTLS model is a suitable description for them. They find, that the ratio γl/γt ranges from 1.44 ∼ 1.84 for

these 18 materials, most of them are around 1.5 ∼ 1.6. Such universality cannot be explained within TTLS

model. In chapter 6 we will discuss where does this universality come from.

Finally in chapter 5 we also give a tentative microscopic explaination regarding glass mechanical avalanche

phenomena. To our knowledge there is no obvious explaination from TTLS model to solve this problem.

We will discuss the mechanical failure of glass material with the presence of externa static, uniform strain

with our generic coupled block model in chapter 5.
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Chapter 3

The Generic Coupled Block Model

In this chapter we want to develop a generalized glass Hamiltonian based on a set of interacting generic

blocks. We start by expanding non-elastic part of glass Hamiltonian in orders of strain field eij(~x) and

consider the coefficient of first order expansion with respect to strain field, namely non-elastic stress tensor.

We further define non-elastic stress-stress susceptibility defined by the first order derivative of non-elastic

stress tensor with respect to strain field. We also set up the many body interaction between different blocks,

due to the exchange process of virtual phonons. In the following chapters 4, 5 and 6, we will discuss the

universal properties of low-temperature glass from the virtuanl phonon exchange interaction.

3.1 Non-Elastic Stress-Stress Susceptibility

Let us consider a block of glass with the dimension L much greater than the atomic distance a ∼ 10Å. The

elastic strain eij(~x) can be defined as the spacial derivative of displacement ~u(~x) of the matter located at

position ~x:

eij(~x) =
1

2

(
∂ui(~x)

∂xj
+
∂uj(~x)

∂xi

)
(3.1)

In this section, we have not considered any external strain field yet. We write Ĥtot for the Hamiltonian of

glass, and expand it in orders of elastic intrinsic strain field eij in long wavelength limit (λ� a):

Ĥtot = Ĥtot
0 +

∫
d3x

∑
ij

eij(~x)T̂ tot
ij (~x) +O(e2

ij) (3.2)

where the definition of stress tensor T̂ tot
ij (~x) is the first order derivative of Hamiltonian with respect to

intrinsic strain field

T̂ tot
ij (~x) =

δĤtot

δeij(~x)
(3.3)
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Next we plug in an external infinitesimal strain field, eij(~x, t), and measure the stress reponse 〈T̂ tot
ij 〉(~x, t).

We define the glass stress-stress susceptibility, and the derivative of stress response 〈T̂ tot
ij 〉(~x, t) with respect

to external infinitesimal strain ekl(~x, t). The susceptibility is taken for the glass block much larger than

atomic distance:

χtot
ijkl(~x− ~x′; t− t′) =

δ〈T̂ tot
ij 〉(~x, t)

δekl(~x′, t′)
(3.4)

In this definition of susceptibility Eq.(3.4) the average operator 〈 〉 represents thermal average and quan-

tum average: for an arbitrary operator Â (here the operator is the stress tensor operator T̂ tot
ij (~x)), 〈Â〉 =∑

mZ−1e−βEm〈m, t|Â|m, t〉 with |m〉 the eigenbasis of Hamiltonian Ĥtot
0 and Z the partition function with

temperature β = (kBT )−1. Susceptibility is functional of temperature, but for notation simplicity we write

χtot(~x−~x′; t− t′;T ) as χtot(~x−~x′; t− t′). Let us separate the total Hamiltonian Ĥtot into purely elastic part

Ĥel and non-elastic part Ĥnon. We will discuss elastic Hamiltonian Ĥel in details in the next section. Sub-

tracting elastic Hamiltonian we define non-elastic stress tensor which comes from non-elastic Hamiltonian

Ĥnon:

Ĥnon = Ĥnon
0 +

∫
d3x

∑
ij

eij(~x)T̂ non
ij (~x) +O(e2

ij)

T̂ non
ij (~x) =

δĤnon

δeij(~x)
(3.5)

In the rest of this thesis we will always use Ĥ0, χijkl and T̂ij to represent non-elastic quantities Ĥnon
0 ,χnon

ijkl and

T̂ non
ij , while use Ĥel, χel

ijkl and T̂ el
ij to represent the elastic Hamiltonian, susceptibility and stress tensor. Define

eigenbasis of non-elastic Hamiltonian Ĥ0 to be |m〉, which is a generic multiple-level-system. We apply linear

response theory to calculate space-averaged non-elastic susceptibility χijkl(ω) = 1
L3

∫
d3xd3x′χijkl(~x−~x′;ω).

This space-averaged susceptibility is volume independent. We use the same language as tunneling-two-level-

system, that the susceptibility can be expressed in relxation and resonance susceptibilities. The relaxation

susceptibility comes from the energy eigenvalue shift due to the diagonal matrix elements of time-dependent

perturbation, while the resonance susceptibility comes from the transitions between different eigenstates due

15



to the off-diagonal matrix elements of perturbation Hamtiltonian:

χijkl(ω) =
1

1− iωτ
χrel
ijkl + χres

ijkl(ω + iη)

χrel
ijkl =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|T̂ij(~x)|n〉〈m|T̂kl(~x′)|m〉 − Pn〈n|T̂ij(~x)|n〉〈n|T̂kl(~x′)|n〉
)

χres
ijkl(ω + iη) =

1

L3~
∑
n

∑
l 6=n

∫
d3xd3x′Pn

〈n|T̂ij(~x)|l〉〈l|T̂kl(~x′)|n〉
ω + (En − El)/~ + iη

− 1

L3~
∑
l

∑
n 6=l

∫
d3xd3x′Pl

〈n|T̂ij(~x)|l〉〈l|T̂kl(~x′)|n〉
ω + (En − El)/~ + iη

(3.6)

Where we use 1
1−iωτ χ

rel
ijkl and χres

ijkl(ω+ iη) for relaxation and resonance susceptibilities. L3 is the volume, ω

is external strain field frequency, τ is the effective thermal relaxation time for glass multiple-level-system Ĥ0,

En is the n-th eigenvalue and Pn = e−βEn/Z the distribution probability of it. The non-elastic susceptibility

obeys the generic form of arbitrary isotropic materials: χijkl = (χl−2χt)δijδkl+χt(δikδjl+δilδjk)[25], where

χl is compression modulus and χt is shear modulus. Please note that the n-th eigenstate thermal relaxation

process is the summation of all relaxation processes between different m-th levels and n-th level. The

effective thermal relaxation time τn should differ for various quantum numbers n = 0, 1, 2, .... However,

in this thesis we focus on the real part of susceptibility, and we consider it in relaxation and resonance

regimes separately. In relaxation regime with ωτn � 1, the factor (1 − iωτn)−1 makes the imaginary part

of relaxation susceptibility much smaller than real part of it, while in resonance regime with ωτn � 1,

(1 − iωτn)−1 makes relaxation susceptibility negligible compared to the resonance susceptibility. The only

regime sensitive to τn is relaxation-resonance cross-over regime with ωτn ≈ 1. Therefore in the relaxation

susceptibility of Eq.(3.6) we use the approximation to replace τn, ∀n = 0, 1, 2, ... with multiple-level-system

effective thermal relaxation time τ .

3.2 Elastic Susceptibility

The elastic Hamiltonian Ĥel is usually written in terms of phonon wave functions. It can be represented by

phonon creation-annihilation operators:

Ĥel =
∑
kα

~ωkα
(
â†kαâkα +

1

2

)
(3.7)

where α is phonon polarization, i.e., longitudinal and transverse α = l, t. Due to the definition of elastic stress

tensor T̂ el
ij (~x) = δĤel/δeij(~x), the inverse of elastic stress-stress susceptibility is

(
(χel)−1

)
ijkl

(x, x′; t, t′) =
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δekl(~x
′, t′)/δ〈T̂ el

ij 〉(~x, t) = − i
~Θ(t− t′)

∑
m
e−βEm

Z 〈m| [eij(~x, t), ekl(~x′, t′)] |m〉, where Θ(t− t′) is time-ordered

operator, and Z =
∑
m e
−βEm is partition function of phonon energy levels. The full elastic susceptibility

containing higher order corrections from non-elastic susceptibility can be derived by Dyson equation:

[(
χel
)−1
]−1

ijkl

∣∣∣∣
full

(k;ω) =
[(
χel
)−1
]−1

ijkl
(k;ω)− χijkl(ω) (3.8)

where the inversed bare elastic susceptibility reads
(
χel
)−1

l,t
= 1

ρc2l,t

ω2
k

ω2−ω2
k

. The wave number independence

of non-elastic susceptibility comes from the assumption we make later, that the non-elastic susceptibility

is diagonal in spacial coordinates. Please see section 3.2.1 for details. From Eq.(3.8) we find the phonon

frequency is shifted away from ωk = cl,tk:

∆ωk
ωk

=
Reχl,t(ω) + i Imχl,t(ω)

2ρc2l,t
(3.9)

where the real part of frequency shift corresponds to sound velocity shift, while the imaginary part is relate

to internal friction Q−1. From Eq.(3.6) non-elastic susceptibility has two parts, relaxation and resonance

susceptibilities. In low temperature high frequency resonance regime, ωτ � 1 so the prefactor of relaxation

susceptibility (1 − iωτ)−1 makes it negligible compared to the resonance one. The sound velocity shift

is dominated by resonance susceptibility. In high temperature low frequency relaxation regime ωτ � 1,

so (1 − iωτ)−1 ≈ 1, relaxation susceptibility is no longer much smaller than the resonance one. Both of

relaxation and resonance susceptibilities contribute to relaxation regime sound velocity shift:

∆ωk;l,t

ωk;l,t
=

Re
(
χres
l,t (ω) + χrel

l,t (ω)
)

2ρc2l,t
relaxation regime

∆ωk;l,t

ωk;l,t
=

Reχres
l,t (ω)

2ρc2l,t
resonance regime (3.10)

where ω is corresponding phonon frequency. At the beginning of chapter 4, we will further discuss the elastic

susceptibility.

3.2.1 Virtual Phonon Exchange Interactions

Within single-block considerations, non-elastic stress tensor T̂ij(~x) is just a generalization of TLS model.

However, if we combine a set of such blocks, the interaction between them will be taken into account. Since

the stress-strain coupling eij T̂ij contains phonon strain eij , the exchange of virtual phonons will generate an
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effective RKKY-type interaction between blocks via stress tensor products:

V̂ =

∫
d3xd3x′

∑
ijkl

Λijkl(~x− ~x′)T̂ij(~x)T̂kl(~x
′) (3.11)

where the coefficient Λijkl(~x−~x′) was first derived by Joffrin and Levelut[42]. A further detailed correction to

this coefficient was given by D. Zhou and A. J. Leggett[28]. Please see Appendix (A) for detailed derivations

Λijkl(~x− ~x′) = − Λ̃ijkl
8πρc2t |~x− ~x′|3

(3.12)

Λ̃ijkl =
1

4

{
(δjl − 3njnl)δik + (δjk − 3njnk)δil + (δik − 3nink)δjl + (δil − 3ninl)δjk

}
+

1

2

(
1− c2t

c2l

){
− (δijδkl + δikδjl + δjkδil)

+3(ninjδkl + ninkδjl + ninlδjk + njnkδil + njnlδik + nknlδij)− 15ninjnknl

}
(3.13)

where ~n is the unit vector of ~x − ~x′, and i, j, k, l runs over 1, 2, 3 cartesian coordinates. We call Eq.(3.11)

non-elastic stress-stress interaction. In the rest of this thesis we always use the approximation to replace

~x−~x′ by ~xs−~xs′ for the pair of the s-th and s′-th blocks, when ~xs denotes the center of the s-th block, and

that
∫
V (s) T̂ij(~x)d3x = T̂

(s)
ij is the uniform stress tensor of the s-th block. Also we use e

(s)
ij (t) to denote the

phonon strain field eij(~x, t) located at the s-th block. By combining N0 ×N0 ×N0 identical L×L×L unit

blocks to form a N0L×N0L×N0L super block, the non-elastic Hamiltonian without external strain field is

written as

Ĥsuper =

N3
0∑

s=1

Ĥ
(s)
0 +

N3
0∑

s6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl (3.14)

From now on we make the assumption that block uniform stress tensors T̂
(s)
ij correlation function (i.e.,

non-elastic susceptibility) is diagonal in spacial coordinates: χ
(ss′)
ijkl = L−3〈T̂ (s)

ij T̂
(s′)
kl 〉 = χijklδss′ .

3.3 Glass Full Hamiltonian with the Presence of External Strain

In this section we consider glass super block Hamiltonian with the presence of external strain field e(~x, t)

as a perturbation. Please note that we have defined non-elastic stress tensor and non-elastic stress-stress

susceptibility with the help of intrinsic phonon strain field, in this section e(~x, t) stands for the external real
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phonon field. It seems the Hamiltonian Eq.(3.14) simply adds a stress-strain coupling
∑N3

0
s=1

∑
ij e

(s)
ij (t)T̂

(s)
ij .

However, more questions arise with the presence of e(~x, t). First of all, in Eq.(3.5) we expand non-elastic

Hamiltonian Ĥ(s) in orders of strain field. The zeroth order term Ĥ
(s)
0 is by definition not the function of

e(~x, t), which means the eigenstates |n(s)〉 and eigenvalues E
(s)
n of Ĥ

(s)
0 are unaffected by exteranl field.

Second, T̂
(s)
ij might be modified by e(~x, t). A familiar example is that external strain field can modify elec-

tric dipole moments by changing positive-negative charge pairs’ relative positions: ∆pi =
∑
j(∂ui/∂xj)pj .

Let’s denote the change of T̂
(s)
ij is ∆T̂

(s)
ij (e). We further define new stress tensor operator T̂

(s)
ij (e) as follows,

as the functional derivative of non-elastic Hamiltonian at the presence of external real strain with repsect

to intrinsic strain field e
(s)
ij :

T̂
(s)
ij (e) = T̂

(s)
ij + ∆T̂

(s)
ij (e) = δĤ(s)(e)/δe

(s)
ij (3.15)

which means the new operator T̂
(s)
ij (e) is non-elastic stress tensor under the presence of external strain field

e. The stress-strain coupling is then given by
∑
s

∑
ij e

(s)
ij T̂

(s)
ij (e), where e is external phonon strain field.

The non-elastic susceptibility is given by replacing T̂
(s)
ij with T̂

(s)
ij (e). The exchange of virtual phonon gives

non-elastic stress-stress interaction V̂ =
∑
ss′
∑
ijkl Λ

(ss′)
ijkl T̃

(s)
ij (e)T̃

(s′)
kl (e). In the rest of this chapter, we

write T̂
(s)
ij to stand for T̂

(s)
ij (e) for simplicity, where e is not virtual phonon strain field, but external real

strain field.

Finally the relative positions of blocks ~x(s) − ~x(s′) are changed by external strain field, so that the

coefficient of non-elastic stress-stress interaction is modified from Λ
(ss′)
ijkl to Λ

(ss′)
ijkl (e). Thus the glass non-

elastic Hamiltonian is Ĥsuper(e) =
∑
s

(
Ĥ

(s)
0 +

∑
ij e

(s)
ij (t)T̂

(s)
ij

)
+
∑
s6=s′

∑
ijkl Λ

(ss′)
ijkl (e)T̂

(s)
ij T̂

(s′)
kl . The super

block non-elastic stress tensor is given by T̂ super
ij = δĤsuper(e)/δeij . Because Λ

(ss′)
ijkl (e) is the function of

external strain field, an extra term appears in super block stress tensor:

T̂ super
ij =

∑
s

ei
~k·~xs T̂

(s)
ij +

∑
s 6=s′

∑
abcd

ei
~k· ~xs+~x

′
s

2
δΛ

(ss′)
abcd (e)

δeij
T̂

(s)
ab T̂

(s′)
cd (3.16)

where the above result is obtained in long wavelength limit. We therefore rewrite super block Hamiltonian

as the summation of unperturbed part Ĥsuper
0 (e) and time-dependent perturbation

∑
ij eij(t)T̂

super
ij :

Ĥsuper(e) = Ĥsuper
0 (e) +

∑
ij

eij(t)T̂
super
ij

Ĥsuper
0 (e) =

N3
0∑

s=1

Ĥ
(s)
0 +

N3
0∑

s6=s′

∑
ijkl

Λ
(ss′)
ijkl (0)T̂

(s)
ij T̂

(s′)
kl (3.17)
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Please note, that in Eq.(3.17) e(t) is real phonon strain field. Similar with super block non-elastic stress

tensor, the non-elastic susceptibility χsuper
ijkl (ω) receives an extra term as well. To calculate super block

non-elastic susceptibility let us denote |n∗〉 and E∗n to be the n-th eigenstate and eigenvalue for super

block unperturbed Hamiltonian Ĥsuper
0 (e), and use linear response theory with respect to perturbation∑

ij eij(t)T̂
super
ij . Please note when deriving super block relaxation susceptibility, the “effective thermal

relaxation time” τ super should be different from that of unit blocks τ . However, since we will be only

interested in relaxation regime with ωτ, ωτ super � 1 and resonance regime with ωτ, ωτ super � 1 separately,

the exact relation between τ and τ super is not important. We still use τ to stand for super block relaxation

time for convenience. The super block non-elastic susceptibility is given by

χsuper
ijkl (ω) =

1

(N0L)3

β

1− iωτ

( ∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|T̂ super

ij,cc |n
∗〉〈m∗|T̂ super

kl |m∗〉

−
∑
n∗

e−βE
∗
n

Z∗
〈n∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |n∗〉
)

+
1

(N0L)3

2

~
∑
n∗l∗

e−βE
∗
n

Z∗
(E∗l − E∗n)/~

(ω + iη)2 − (E∗l − E∗n)2/~2
〈l∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |l∗〉 (3.18)

where T̂ super
ij,cc is the complex conjugate of T̂ super

ij . The first line of Eq.(3.18) is super block non-elastic

relaxation susceptibility 1
1−iωτ χ

super rel
ijkl , and the second line is resonance susceptibility χsuper res

ijkl (ω + iη).

Z∗ =
∑
n∗ e

−βE∗n is distribution function of super block unperturbed Hamiltonian Ĥsuper
0 (e).
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Chapter 4

Universal Shift of Sound Velocity and
Dielectric Constant in Glass

Before discussing the problems of low-temperature glass, let us first give a detailed discussion about the glass

mechanical susceptibility. First of all, let us write the Hamiltonian of low-temperature glass as Ĥtot. So the

question is, what is contained in Ĥtot? First of all, long wavelength phonon Hamiltonian must be contained in

it. The long wavelength phonon Hamiltonian can be represented by phonon creation/annihilation operators,

given as follows,

∑
kα

~ωkα
(
â†kαâkα +

1

2

)
(4.1)

where α = l, t denotes the longitudinal and transverse phonon modes. Let us denote the above Hamiltonian

Eq.(4.1) as the “purely elastic part of glass Hamiltonian”, Ĥel. Subtracting the purely elastic part of

Hamiltonian, the left-over glass Hamiltonan, Ĥtot−Ĥel, we call it “the non-elastic part of glass Hamiltonian”.

We denote the non-elastic part Hamiltonian Ĥtot − Ĥel as Ĥnon.

According to D. C. Vural and A. J. Leggett[15], next we define the “strain operator” eij as follows: let us

consider a cube of an arbitrary isotropic amorphous material, with the dimension L which is assumed large

compared to “microscopic” lengths a, such as the typical interatomic distance, but is otherwise arbitrary.

We define for such a block the strain operator eij in the standard way: if ~u(~x) denotes the displacement

relative to some arbitrary reference frame of the matter at point ~x, then

eij(~x) =
1

2

(
∂ui(~x)

∂xj
+
∂uj(~x)

∂xi

)
(4.2)

In the above discussions, we have defined the glass Hamiltonian Ĥtot, purely elastic Hamiltonian Ĥel,

non-elastic Hamiltonian Ĥnon and strain eij(~x). Our next step is to expand the glass Hamiltonian, Ĥtot, in
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a Taylor series in the strain eij :

Ĥtot = Ĥtot
0 +

∫
d3x

∑
ij

eij(~x)T̂ tot
ij (~x) +O(e2) (4.3)

In the above expansion, we define the following quantities: Ĥtot
0 is the leading order of glass total Hamiltonian

in the Taylor series of strain;
∫
d3x

∑
ij eij(~x)T̂ tot

ij (~x) is the first order of glass total Hamiltonian in the Taylor

series of strain; the operator T̂ tot
ij (~x) is defined by T̂ tot

ij (~x) = δĤtot/δeij(~x) as the coefficient of the first order

expansion of glass total Hamiltonian in Taylor series. Throughout this thesis, we call this quantity “the

glass total stress tensor operator”.

Next, let us expand the glass purely elastic Hamiltonian Ĥel and non-elastic Hamiltonian Ĥnon = Ĥtot−

Ĥel in the Taylor series in the strain eij :

Ĥel = Ĥel
0 +

∫
d3x

∑
ij

eij(~x)T̂ el
ij (~x) +O(e2)

Ĥnon = Ĥnon
0 +

∫
d3x

∑
ij

eij(~x)T̂ non
ij (~x) +O(e2) (4.4)

In the above expansion, we define the following quantities: Ĥel
0 and Ĥnon

0 are the leading order of glass purely

elastic and non-elastic Hamiltonians in the Taylor series of strain, respectively;
∫
d3x

∑
ij eij(~x)T̂ el

ij (~x) and∫
d3x

∑
ij eij(~x)T̂ non

ij (~x) are the first order of glass purely elastic and non-elastic Hamiltonians in the Taylor

series of strain, respectively; the operators T̂ el
ij (~x) and T̂ non

ij (~x) are defined by T̂ el
ij (~x) = δĤel/δeij(~x) and

T̂ non
ij (~x) = δĤnon/δeij(~x). They are the coefficients of the first order expansion of glass purely elastic and

non-elastic Hamiltonians in Taylor series, respectively. Throughout this thesis, we call these quantities “the

glass purely elastic stress tensor T̂ el
ij ” and “the glass non-elastic stress tensor T̂ non

ij ”, respectively. According

to the above definitions, the stress tensor operators have the simple relation: T̂ tot
ij (~x) = T̂ el

ij (~x) + T̂ non
ij (~x).

Next, let us consider an externally imposed infinitesimal sinusoidal strain field,

eij(~x, t) = eij

(
ei
~k·~x−iωt + e−i

~k·~x+iωt
)

(4.5)

where eij is real. The glass Hamiltonian Ĥtot will provide a corresponding stress response of the material.

We denote the response as 〈T̂ tot
ij 〉(~x, t).

〈T̂ tot
ij 〉(~x, t) = 〈T̂ tot

ij 〉ei
~k·~x−iωt + c.c (4.6)
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where 〈T̂ tot
ij 〉 is in general complex. Then we can define the complex response function χtot

ij,kl(
~k, ω) in the

standard way[2]

χtot
ij,kl(

~k, ω) =
δ〈T̂ tot

ij 〉
δekl

(~k, ω) =
δ2〈Ĥtot +

∫
d3x

∑
ij eij(~x, t)T̂

tot
ij (~x)〉

δeijδekl
(~k, ω) (4.7)

Please note, that in the above definition of glass total susceptibility, Eq.(4.7), the glass overall Hamiltonian’s

expectation value (i.e., the Hamiltonian of glass which takes everything into account, including the glass total

Hamiltonian, and the externally applied time-dependent pertuabtion) is defined by the glass total Hamilto-

nian Ĥtot plus the time-dependent perturbation
∫
d3x

∑
ij eij(~x, t)T̂

tot
ij (~x): Ĥtot +

∫
d3x

∑
ij eij(~x, t)T̂

tot
ij (~x);

the glass total stress response 〈T̂ tot
ij (~x)〉(~x, t) is also defined by using the glass overall Hamiltonian: the

summation of glass total Hamiltonian Ĥtot and the perturbation: Ĥtot +
∫
d3x

∑
ij eij(~x, t)T̂

tot
ij (~x).

On the other hand, the stress tensor have the relation: T̂ tot
ij (~x) = T̂ el

ij (~x) + T̂ non
ij (~x). We can separate the

glass total stress tensor into the purely elastic part and non-elastic part. The complex response function is

therefore given by

χtot
ij,kl(

~k, ω) =
δ〈T̂ tot

ij 〉
δekl

(~k, ω) =
δ
(
〈T̂ el
ij 〉(~k, ω)

)
+ δ

(
〈T̂ non
ij 〉(~k, ω)

)
δekl

=
δ2〈Ĥel +

∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x)〉

δeijδekl
(~k, ω) +

δ2〈Ĥnon +
∫
d3x

∑
ij eij(~x, t)T̂

non
ij (~x)〉

δeijδekl
(~k, ω)

= χel
ij,kl(

~k, ω) + χnon
ij,kl(

~k, ω) (4.8)

In the rest of this thesis, we name χel
ij,kl(

~k, ω) the purely elastic part of glass susceptibility; we name

χnon
ij,kl(

~k, ω) the non-elastic part of glass susceptibility. Please note, that in the above definitions of glass

elastic/non-elastic susceptibilities, Eq.(4.8), the glass elastic/non-elastic Hamiltonians’ expectation values

are defined by the glass elastic/non-elastic Hamiltonians Ĥel and Ĥnon plus the time-dependent pertur-

bation
∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x) and

∫
d3x

∑
ij eij(~x, t)T̂

non
ij (~x): Ĥel +

∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x) and Ĥnon +∫

d3x
∑
ij eij(~x, t)T̂

non
ij (~x); the glass elastic/non-elastic stress responses 〈T̂ el

ij (~x)〉(~x, t) and 〈T̂ non
ij (~x)〉(~x, t) are

also defined by using the glass elastic/non-elastic Hamiltonians plus the external time-dependent perturba-

tions: Ĥel +
∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x) and Ĥnon +

∫
d3x

∑
ij eij(~x, t)T̂

non
ij (~x).

From the above definitions of elastic and non-elastic glass susceptibilities, at the static limit they are by

definition negative. According to the definition in Eq.(4.8), the elastic susceptibility at static limit is given

by

χel
ijkl = −

(
ρc2l − 2ρc2t

)
δijδkl − ρc2t (δikδjl + δilδjk) (4.9)
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The above result seems to be negative compared to the “elastic constant” in a standard elasticity textbook:(
ρc2l − 2ρc2t

)
δijδkl + ρc2t (δikδjl + δilδjk). This is because: in the standard elasticity textbook, one usually

defines the “elastic constant” through the definition χelastic constant
ijkl = δ2〈Ĥel〉/δeijδekl, but the Hamiltonian

Ĥel here is the elastic part of glass Hamiltonian which does not include the time-dependent perturbation∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x). Therefore our definition of elastic susceptibility differs by a negative sign compared

to the standard elastic constant in the standard textbook.

The non-elastic susceptibility, given by the definition in Eq.(4.8), is also negative at the static limit:

χnon
ijkl(ω) =

1

1− iωτ
χnon rel
ijkl + χnon res

ijkl (ω + iη)

χnon rel
ijkl =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|T̂ non
ij (~x)|n〉〈m|T̂ non

kl (~x′)|m〉 − Pn〈n|T̂ non
ij (~x)|n〉〈n|T̂ non

kl (~x′)|n〉
)

χnon res
ijkl (ω + iη) =

1

L3~
∑
n

∑
l 6=n

∫
d3xd3x′Pn

〈n|T̂ non
ij (~x)|l〉〈l|T̂ non

kl (~x′)|n〉
ω + (En − El)/~ + iη

− 1

L3~
∑
l

∑
n 6=l

∫
d3xd3x′Pl

〈n|T̂ non
ij (~x)|l〉〈l|T̂ non

kl (~x′)|n〉
ω + (En − El)/~ + iη

(4.10)

where |m〉 and Em are the m-th eigenstate and eigenvalue of the non-elastic part of glass Hamiltonian, Ĥnon.

Pm = e−βEm/Z is the m-th level probability function. Z is the partition function of the non-elastic part of

glass Hamiltonian.

One may ask the question, that in the most textbooks of elasticity theory, it seems more natural to

define the “external stress” as the external field we apply on a certain material rather than the external

strain eij(~x, t). Suppose we apply an external stress on the material. To balance with the external stress, the

material must provide an internal stress 〈T̂ tot
ij 〉(~x, t) by deforming itself. It will give rise to a corresponding

strain response eij(~x, t). We can also define the complex response function χtot
ij,kl =

∂〈T̂ tot
ij 〉

∂ekl
(~k, ω) by applying

external stress as the external field. At the first glance the previous definition of response function seems

to be different from the definition of response function by applying external strain as the external field.

However, in the following discussions, we will see these two definitions are equavalent.

Suppose we apply an external stress on the material, the material must provide a deformation reponse

eij(~x, t), to generate an internal stress 〈T̂ tot
ij 〉(~x, t) which balances the external stress. On the contrary,

instead of applying an external stress, we apply an external strain on the material. The material generates

an internal stress 〈T̂ tot
ij 〉(~x, t). To maintain the deformation, we must provide an external stress to balance the

internal stress 〈T̂ tot
ij 〉(~x, t). It is at this point that the two definitions of response function are equavalent. In

the typical elasticity textbook we prefer to put in the external stress as the “external field”, then we measure
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the material’s strain response; in this thesis, we prefer to put in the external strain as the “external field”,

then we measure the material’s internal stress response. Both definitions give the same glass mechanical

response function.

One of the unambiguous evidences presented by Zeller and Pohl[1] is that the low temperature heat

capacity of glass differs significantly from that of crystalline solids. In pure and defect-free insulating crystals

the heat capacity is proportional to T 3 below 1K, which comes from phonon vibration modes. However in

glass the heat capacity is the summation of two parts: long wavelength phonon contibution from Debye’s

theory, and an excess specific heat known as the glass excitations approximated by Cexcess = c1T
1+δ + c2T

3,

where δ < 1, c1 and c2 varies for different materials[2]. Anderson, Halperin and Varma[3] group and

Phillips[19] independently developed a model which was later known as tunneling-two-level-system (TTLS)

(see chapter 2). It successfully explained glass excess heat capacity, together with several other universal

properties such as saturation, echoes etc.

To further verify the existence of two-level-systems, L. Piché, R. Maynard, S. Hunklinger and J. Jäckle[33]

studied the influence of two-level-systems on the variation of the sound velocity of longitudinal waves in

vitreous silica Suprasil I at temperatures 0.28K < T < 4.2K and frequencies 30MHz < f < 150MHz. The

sound velocity shift was found to be logarithmically dependent on temperature. In the high frequency

low temperature resonance regime with ωτ � 1 (τ is the effective thermal relaxation time, please refer

to section 2(A) for detailed discussions) the sound velocity increases with increasing temperature. This

sound velocity shift in resonance regime is independent of phonon frequency. In the low frequency high

temperature relaxation regime with ωτ � 1 the velocity decreases with increasing temperature. Such sound

velocity increase-decrease transition occurs at the transition point ωτ(T ) ≈ 1, which means the transition

temperature T is functional of phonon frequency. However, as long as the sound velocity measurement

enters into relaxation regime, it turns out to be frequency independent as well. In the rest of this thesis we

will discuss the slope of lnT dependence of sound velocity in relaxation and resonance regimes separately,

so we assume that sound velocity shift is frequency independent in both relaxation and resonance regimes.

Such universality has been observed in amorphous materials such as vitreous silica, lithium-doped KCl[4]

and silica based microscopic cover glass[8], etc..

By averaging over random parameters of glass two-level-system susceptibility, TTLS model successfully

explained the logarithmic temperature dependence of sound velocity shift[19, 10] (see chapter 2). It also

proves that the slope of lnT dependence is negative in relaxation regime and positive in resonance regime.

The sound velocity slope ratio between relaxation and resonance regimes is Crel : Cres = −1/2 : 1, which

agrees quite well with silica based microscopic cover glass measurements[8]. However at least to the author’s
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knowledge, it’s the only amorphous material with the absolute value of the slope in relaxation regime smaller

than that of resonance regime: other materials, present the absolute value of the slope in relaxation regime

equal or slightly greater than that of resonance regime: vitreous silica Suprasil I[33], PdSiCu[9], Zr-Nb[17],

lithium-doped KCl[4], vitreous silica[11], metallic glass[13] Ni81P19, etc. (the electron-TTLS coupling in

metallic glass is relatively weak compared to phonon-TTLS coupling, so conducting electrons are not strong

enough to affect sound velocity[10]). S. Hunklinger and C. Enss[12] suggest that most of the sound velocity

slope ratios of glass materials are rather −1 to 1, probably due to the interaction between tunneling systems,

because glass defects are highly concentrated. In this chapter our main goal is to set up a generic coupled

block model to discuss the universal property of temperature dependence on sound velocity shift.

By assuming that electric field couples to two-level-systems[7], the result of TTLS model on dielectric

constant shift is similar with sound velocity shift, but the dielectric shift slope ratio between relaxation and

resonance regimes is Crel : Cres = +1/2 : −1. However, dielectric measurements on various amorphous mate-

rials such as vitreous silica Suprasil W and vitreous As2S3[14], vitreous silica Suprasil I[6] and borosilicate

glass (BK7)[15] indicate that the slope ratio is Crel : Cres = +1 : −1, regardless of their microscopic nature.

At the end of this chapter we use electric dipole-dipole interaction to discuss such universal shift of glass

dielectric constant.

In this chapter we want to focus on the universal shift of glass sound velocity and dielectric constant by

developing a theory of coupled generic blocks. From chapter 2 we have set up our generic coupled block model,

by expanding non-elastic part of glass Hamiltonian in orders of intrinsic strain field eij(~x, t) and putting

in virtual phonon exchange interaction. In this chapter our goal is to set up the renormalization recursion

relation between large and small length scale non-elastic susceptibilities. We want to prove for different kinds

of amorphous materials, at experimental large length scale the sound velocity and dielectric constant shift in

relaxation and resonance regimes have the same universal behavior, regardless of their microscopic properties.

However, as we will see from the renormalization equations of relaxation and resonance susceptibilities, we

are not able to prove universal shift of sound velocity and dielectric constant, mainly because the negativity

of relaxation and resonance susceptibilities which leads to the increasing behavior of them as the length scale

increases than the expected decreasing behavior of susceptibilities.
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4.1 Renormalization of Glass Non-Elastic Susceptibility

We have given a detailed discussion on single and super block non-elastic susceptibilities (see Eq.(3.6) and

Eq.(3.18)). For convenience we write them down again as follows,

χijkl(ω) =
1

1− iωτ
χrel
ijkl + χres

ijkl(ω + iη)

χrel
ijkl =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|T̂ij(~x)|n〉〈m|T̂kl(~x′)|m〉 − Pn〈n|T̂ij(~x)|n〉〈n|T̂kl(~x′)|n〉
)

χres
ijkl(ω + iη) =

1

L3~
∑
n

∑
l 6=n

∫
d3xd3x′Pn

〈n|T̂ij(~x)|l〉〈l|T̂kl(~x′)|n〉
ω + (En − El)/~ + iη

− 1

L3~
∑
l

∑
n 6=l

∫
d3xd3x′Pl

〈n|T̂ij(~x)|l〉〈l|T̂kl(~x′)|n〉
ω + (En − El)/~ + iη

(4.11)

χsuper
ijkl (ω) =

1

1− iωτ
χsuper rel
ijkl + χsuper res

ijkl (ω + iη)

=
1

(N0L)3

β

1− iωτ

( ∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|T̂ super

ij,cc |n
∗〉〈m∗|T̂ super

kl |m∗〉

−
∑
n∗

e−βE
∗
n

Z∗
〈n∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |n∗〉
)

+
1

(N0L)3

2

~
∑
n∗l∗

e−βE
∗
n

Z∗
(E∗l − E∗n)/~

(ω + iη)2 − (E∗l − E∗n)2/~2
〈l∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |l∗〉 (4.12)

where in the last section we define the n-th eigenstate and eigenvalue of super block to be |n∗〉 and E∗n.

We also use χijkl, χ
res
ijkl, χ

rel
ijkl, χ

super
ijkl , χsuper res

ijkl , χsuper rel
ijkl , T̂ij and T̂ super

ij to stand for χnon
ijkl, χ

non res
ijkl , χnon rel

ijkl ,

χsuper non
ijkl , χsuper non res

ijkl , χsuper non rel
ijkl , T̂ non

ij and T̂ super non
ij .

In this section our goal is to set up the relation between single block and super block non-elastic suscep-

tibilities. Since the unit and super block susceptibilities’ length scales differ by a factor of N0, repeating this

real space renormalization carries out experimental large length scale non-elastic susceptibility eventually.

The starting microscopic length scale of renormalization is, for example, L1 ∼ 50Å by D. C. Vural and A.

J. Leggett[25]. Since the final result only logarithmically depends on this choice, it will not be sensitive. In

the n-th step of renormalization, we combine N3
0 identical blocks with the dimension Ln ×Ln ×Ln to form

a n-th step super block with the dimension N0Ln ×N0Ln ×N0Ln. In the next step the unit block length

scale is Ln+1 = N0Ln. We begin with such a group of non-interacting unit blocks with bare Hamiltonian

Ĥ0 =
∑N3

0
s=1 Ĥ

(s)
0 , eigenstates |n〉 =

∏N3
0

s=1 |n(s)〉 and eigenvalues En =
∑N3

0
s=1E

(s)
n . Please note E

(s)
n stands for

the s-th unit block eigenvalue for the n(s)-th eigenstate. We combine them to form a super block and turn
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on non-elastic stress-stress interaction V̂ =
∑N3

0

s6=s′ Λ
(ss′)
ijkl (0)T̂

(s)
ij T̂

(s′)
kl . We assume non-elastic stress-stress

interactions V̂ are relatively week compared to the summation of unit block Hamiltonians Ĥ0 =
∑N3

0
s=1 Ĥ

(s)
0 ,

so that the interactions can be treated as a perturbation. If the non-elastic susceptibility decreases loga-

rithmically as the increase of length scale, then that means the non-elastic stress-stress interaction V̂ can

be treated as a perturbation at the late stages. The assumption that V̂ can be treated as a perturbation

is qualitatively correct. The n-th eigenstate and eigenvalue of super block are |n∗〉 and E∗n. Their relations

with |n〉 and En are given as follows

|n∗〉 = |n〉+
∑
p 6=n

〈p|V̂ |n〉
En − Ep

|p〉+O(V 2)

E∗n = En + 〈n|V |n〉+
∑
p 6=n

|〈p|V̂ |n〉|2

En − Ep
|p〉+O(V 2) (4.13)

With the help of Eq.(4.13) one can rewrite super block non-elastic susceptibility in terms of unit block

susceptibilities: we expand super-block relaxation and resonance susceptibilities up to the first order of

interaction V̂ , and sum over eigenstates |n〉 =
∏
s |n(s)〉. These N3

0 non-interacting unit blocks’ partition

function is Z =
∏
sZ(s), and their n-th level probability function is Pn =

∏
P

(s)
n . We apply the assumption

that unit block stress tensors’ matrix element products are diagonal in spacial coordinates, i.e., for different

unit blocks (~xs 6= ~x′s) stress tensors, their matrix element products vanish. The combination of diagonal

and off-diagonal stress tensor matrix elements can be exactly rewritten in terms of unit block relaxation

and resonance susceptibilities. Finally we obtain the recursion relation between super block and unit block

susceptibilities as follows, where both of super block and unit block suseptibilities are implicitly functional

of temperature:

χsuper
ijkl (ω) =

1

1− iωτ

{
χrel
ijkl −

L3
n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−ik·(xs−x

′
s)

] (
χrel
ijabχ

rel
cdkl + 2χrel

ijabχ
res
cdkl(0)

)}

+χres
ijkl(ω + iη)− L3

n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−ik·(xs−x

′
s)

]
χres
ijab(ω + iη)χres

cdkl(ω + iη)

+
β−1L3

n

N3
0 (1− iωτ)

∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl

(
χ

rel(1)
abef χ

rel(1)
cdgh − χ

rel(2)
abef χ

rel(2)
cdgh

)

−L
3
n

N3
0

∑
ss′

∑
abcdefgh

1

π2

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl

{∫
(1− e−β~(ωs+ω

′
s))

(1− e−β~ωs)(1− e−β~ω′s)
Imχres

abef (ωs)Imχres
cdgh(ω′s)

~ωs + ~ωs′ − ~ω
d(~ωs)d(~ω′s)

+i(1− e−β~ω)π

∫
Imχres

abef (ωs)Imχres
cdgh(ω − ωs)

(1− e−β~ωs)(1− e−β~(ω−ωs))
d(~ωs)

}
(4.14)

For details of the calculations please see appendix (B). χ
rel(1)
ijkl , χ

rel(2)
ijkl in the third line of Eq.(4.14) are the
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first and second parts of relaxation susceptibility defined as follows:

χ
rel(1)
ijkl =

β

L3

∑
nm

PnPm〈n|T̂ij |n〉〈m|T̂kl|m〉

χ
rel(2)
ijkl =

β

L3

∑
n

Pn〈n|T̂ij |n〉〈n|T̂kl|n〉

χrel
ijkl

1− iωτ
=

1

1− iωτ

(
χ

rel(1)
ijkl − χ

rel(2)
ijkl

)
(4.15)

The super block susceptibility χijkl(ω) is not functional of momentum ~k, because we take long phonon

wavelength limit ~k → 0 in the coefficient limk→0

∑
ss′ Λ

(ss′)
ijkl (0)eik·(xs−x

′
s) of Eq.(4.14).

In Eq.(4.14), the third and fourth line terms’ volume dependences are different from others’. This is

because of the 1/r3 behavior of Λ
(ss′)
ijkl . We first investigate the volume dependence of the third line term,

which is proportional to β−1. Using the expression χ
rel(1,2)
ijkl = (χ

rel(1,2)
l − 2χ

rel(1,2)
t )δijδkl + χ

rel(1,2)
t (δikδjl +

δilδjk) and summing over the indices, the third line can be simplified as β−1C
(1,2)
l,t (χ

rel(1,2)
l,t )2/(1−iωτ)ρ2c4l,tL

3
n,

where C
(1,2)
l,t are dimensionless constants of order 1. If we require that there is a critical length scale Lrel

c ,

beyond which the third line of Eq.(4.14) is smaller than unit block relaxation susceptibility, the upper limit

of Lrel
c is,

Lrel
c <

(
kBT

ρc2l,t

) 1
3

(4.16)

we further let the temperature T to take an extremely high value, T = 104K (in fact the low-temperature

glass ultrasonic sound velocity shift measurements are below 50K). The upper limit of Lrel
c is 4.6Å which is

still smaller than 50Å, the effective starting length scale of our generic coupled block model.

On the other hand, to investigate the volume dependence of the fourth line term of Eq.(4.14), we use

the assumption that the reduced imaginary resonance suceptibility Im χ̃res
ijkl(ω) = Imχres

ijkl(ω)/(1 − e−β~ω)

is approximately a constant up to the frequency of ωc and temperatures of the order 10K. Integrating over

frequency variables ωs, ω
′
s the fourth line term gives −Cl,t

[
~ωc ln

(
ωc
ω

)
− iπ~ω

] (
Im χ̃res

l,t

)2

/ρ2c4l,tL
3
n, where

we obtain this result by using the expression Imχ̃res
ijkl = (Imχ̃res

l − 2Imχ̃res
t ) δijδkl + Imχ̃res

t (δikδjl + δilδjk).

Cl,t is a positive constant of order 1, and ω is input phonon frequency[33, 34] of order ω ∼ 1MHz. If we

require that there is a critical length scale Lres
c , beyond which the fourth line term of Eq.(4.14) is smaller

than unit block resonance susceptibility, we need to calculate the order of magnitude for Lres
c . The upper

limit of Lres
c can be obtained by taking ωc to an extremely high value, ωc ∼ 1015Hz which corresponds to
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T ∼ 104K:

Lres
c <

(
1

ρc2l,t

~ωc
ln (ωc/ω)

) 1
3

∼ 1.7Å < L1 = 50Å (4.17)

which means the upper limit of Lres
c with super high cut-off frequency 1015Hz is also smaller than the

starting effective length scale of our model. Thus throughout the entire renormalization procedure the third

and fourth line terms in Eq.(4.14) are always negligible compared to other terms. This agrees with the

conclusion by D. Zhou and A. J. Leggett[28] that the contribution of Λ
(ss′)
ijkl (e) modification to resonant

energy absorption is renormalization irrelevant. Dropping the third and fourth lines in Eq.(4.14) and taking

the summations over indices abcd, the renormalization equations for non-elastic relaxation and resonance

susceptibilities are reduced to

χsuper
ijkl (ω) =

1

1− iωτ

{
χrel
ijkl −

L3
n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−ik·(xs−x

′
s)

] (
χrel
ijabχ

rel
cdkl + 2χrel

ijabχ
res
cdkl(0)

)}

+ χres
ijkl(ω + iη)− L3

n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−ik·(xs−x

′
s)

]
χres
ijab(ω + iη)χres

cdkl(ω + iη) (4.18)

We calculate the coefficient
L3
n

N3
0

[
−
∑
abcd

∑
ss′ Λ

(ss′)
abcd (0)e−ik·(xs−x

′
s)
]

which appears in Eq.(4.18), in Appendix

F. We use the expression, that resonance and relaxation susceptibilities are written in the form of χres, rel
ijkl =

(χres, rel
l − 2χres, rel

t )δijδkl + χres, rel
t (δikδjl + δilδjk). The renormalization equations are further simplified as

follows,

χsuper rel
t,l = χrel

t,l −
1

ρc2t,l

[(
χrel
t,l

)2
+ 2χrel

t,lχ
res
t,l (0)

]
χsuper res
t,l (ω + iη) = χres

t,l (ω + iη)− 1

ρc2t,l

[
χres
t,l (ω + iη)

]2
(4.19)

Eqs.(4.19) are the most important results of this thesis.

We now examine the implications of these renormalization equations. At the first glance, it seems that the

non-elastic resonance susceptibility presents usual marginally renormalization irrelevant behavior with the

increase of length scale: by repeating renormalization procedure for the modulus of resonance susceptibility

from starting small length scale L1 to experimental length scale R we get logarithmic length scale dependence

as follows

1

χres
l,t (ω + iη, R)

=
ln (R/L1)

ρc2l,t
+

1

χres
l,t (ω + iη, L1)

(4.20)
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where the experimental length scale is given by input phonon wavelength R = 2πcl,t/ω. Except for the

experiments by L. Piché and his collaborators[33] that the frequencies vary from f = 30 ∼ 150 MHz, and by

G. Bellesa and his group[13] that f = 150MHz, most of the input frequencies are f = 1 ∼ 20kHz[4, 8, 9, 11].

The factor ln(R/L1) is not sensitive to input phonon frequency: as f varies from 1kHz to 100MHz, it

only changes from 20 to 10. Therefore in Eq.(4.20) we neglect the second term of r.h.s.. The modulus

of experimental length scale resonance susceptibility is dominated by ρc2l,t/ln (R/L1). For the choice of

f ∼ 1kHz, R is of order ∼ 10m, so L1/R is of order ∼ ×10−10 � 1/ ln(R/L1).

However, if we stare at the definitions of relaxation and resonance susceptibilities in Eq.(4.11), we find

that they are not positive, but negative quantities. First of all, the resonance susceptibility is negative. For

example, let us choose ω+iη = 0, and let (kl) = (ij) in resonance susceptibility, to consider χres
ijij(ω+iη = 0),

χres
ijkl(ω + iη = 0) =

1

L3

∑
nl

(
Pn − Pl
En − El

)
|〈n|T̂ij |l〉|2 < 0 (4.21)

The resonance susceptibility χres
ijij(ω+ iη = 0) is negative mainly because Pn < Pl for arbitrary pair of levels

n,m with En > El. Because of the negativity of resonance susceptbility, the renormalization equation of

resonance susceptibility is actually not marginally irrelevant, but renormalization relevant (see the second

equation of Eqs.(4.19)).

On the other hand, the relaxation susceptibility χrel
ijkl is negative as well. To prove this result let us define∑

n Pn〈n|T̂ij |n〉 = T̄ij to be the “average value of stress tensor T̂ij”, and define
∑
n Pn|〈n|T̂ij |n〉|2 = ¯(T 2

ij

)
to be the “average value of the square of stress tensor T̂ij”. For simplicity we still let (kl) = (ij) to consider

the relaxation susceptibility. The relaxation susceptibility χrel
ijij is rewritten as follows,

χrel
ijij =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|T̂ij(~x)|n〉〈m|T̂ij(~x′)|m〉 − Pn〈n|T̂ij(~x)|n〉〈n|T̂ij(~x′)|n〉
)

=
β

L3

(∑
n

∑
m

PnPm〈n|T̂ij |n〉〈m|T̂ij |m〉 −
∑
n

Pn〈n|T̂ij |n〉〈n|T̂ij |n〉
)

=
β

L3

((
T̄ij
)2 − ¯(T 2

ij

))
< 0 (4.22)

Therefore, the relaxation susceptibility is always negative as well. If we look back to the first renormalization

equation of Eqs.(4.19), the linear term − 1
ρc2t,l

[(
χrel
t,l

)2

+ 2χrel
t,lχ

res
t,l (0)

]
< 0 is always negative, which means

with the increase of length scale, the relaxation susceptibility becomes “more and more negative”. The

relaxation susceptibility is therefore not marginally irrelevant, but renormalization relevant as well.

It is at this point that all of the beautiful theoretical explainations on experimental measurements breaks

down. To illustrate this point of view, let us pretend that the renormalization equations, Eqs.(4.19) are
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renormalization irrelevant. Therefore, the renormalization equation for relaxation susceptibility has a non-

trivial stable fixed point and a trivial stable fixed point:

χrel
t,l (R) = −2χres

t,l (ω = 0, R) (4.23)

χrel
t,l (R) = 0 (4.24)

Eq.(4.23) is the main result to explain the universal shift of sound velocity in glass, if the renormalization

equations are marginally irrelevant. The non-trivial stable fixed point, Eq.(4.23) indicates that even if

relaxation and resonance susceptibilities are entirely different at microscopic level, at experimental large

length scale relaxation susceptibility always flows to −2 of resonance susceptibility with zero-frequency.

However, the truth is, both of relaxation and resonance susceptibilities are renormalization relevant. In

that case, one would presumably have to draw the conclusion that the renormalization procedure increases

both the (negative) relaxation and resonance susceptibilities. Then we think one would have to conclude

that the starting-scale value of resonance susceptibility is considerably smaller even than the experimental

value — a surprising and interesting conclusion! Also, the fixed points Eqs.(4.23, 4.24) are actually unstable,

which means at experimental length scale, there is no reason that in Eq.(4.23), relaxation susceptibility must

equal to −2 of resonance susceptibility (what is more, since relaxation and resonance susceptibilities are both

negative, it is impossible to get the “−2” relation between two negative quantities); on the other hand, since

both of the absolute values of relaxation and resonance susceptibilities increase with the increase of length

scale, in Eq.(4.24) the relaxation susceptibility has no reason to reach the unstable fixed point χrel
t,l (R) = 0

at experimental length scale R.

4.2 Some Discussions of Sound Velocity Shift

In this section we discuss the temperature dependence of longitudinal and transverse ultrasound velocity

cl,t(T ) in relaxation and resonance regimes separately. It is convenient to set up a reference frequency shift

∆ω(k, T0) at some reference temperature T0, then consider phonon frequency shift ∆ω(k, T ) at arbitrary

temperature T . Since one can always write phonon frequency shift as ∆ω(k, T ) = k∆cl,t(T ), we get the

relative sound velocity shift as follows:

∆cl,t(T )−∆cl,t(T0)

cl,t
=

Reχl,t(ω, T )− Reχl,t(ω, T0)

2ρc2l,t
(4.25)
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The behavior of sound velocity shift is different in relaxation and resonance regimes. In resonance regime

only resonance susceptibility contributes. The real part resonance susceptibility can be derived by Kramers-

Kronig relation from the frequency integral on imaginary resonance susceptibility. Using the assumption

that reduced imaginary resonance susceptibility Im χ̃res
l,t (ω, T ) = (1−e−β~ω)−1Imχres

l,t (ω, T ) is approximately

a constant of frequency up to the order of ωc ∼ 1015Hz, and temperatures around 1K[34, 25], we obtain the

logarithmic temperature dependence of relative sound velocity shift:

∆cl,t(T )−∆cl,t(T0)

cl,t(T0)

∣∣∣∣
res

=
2

2πρc2l,t
P
∫ ∞

0

Ω
(

Imχres
l,t (Ω, T )− Imχres

l,t (Ω, T0)
)

Ω2 − ω2
dΩ = Cl,t ln

(
T

T0

)
(4.26)

where Cl,t = −Im χ̃res
l,t /2πρc

2
l,t is a positive constant proportional to reduced imaginary resonance suscep-

tibility. For the calculations of the above Eq.(4.26), please see Appendix (E) for details. Eq.(4.26) is a

multiple-level generalization of TTLS derivation on sound velocity shift[33]. The constant Cl,t is not the

functional of phonon frequency.

Next we discuss sound velocity shift in relaxation regime. It has contributions from real part resonance

and relaxation susceptibilities. The real part contribution of resonance susceptibility in relaxation regime is

still Cl,t ln (T/T0). If, we pretend that the fixed point Eq.(4.23) is stable, then from the “stable” fixed point,

the relaxation susceptibility equals to −2 of zero-frequency resonance susceptibility at experimental length

scale, ∆Reχrel
l,t (ω, T )/(2ρc2l,t) = −2Cl,t ln(T/T0). Finally, the sound velocity shift in relaxation regime is

∆cl,t(T )−∆cl,t(T0)

cl,t

∣∣∣∣
rel

=
∆Re

(
χrel
l,t (ω, T ) + χres

l,t (ω, T )
)

2ρc2l,t
= −Cl,t ln

(
T

T0

)
(4.27)

Summarize Eq.(4.26, 4.27) the slope ratio of temperature dependence of sound velocity shift in relaxation

and resonance regimes is given by Crel
l,t : Cres

l,t = −1 : 1. Unfortunally, due to the increasing behavior of

relaxation and resonance susceptibilities, the fixed point Eq.(4.23) is unstable. One can never reach the

conclusion that relaxation susceptibility equals to −2 of resonance susceptibility at zero-frequency. In fact,

since both of the relaxation and resonance susceptibilities are always negative, it is impossible that they

have opposite signs at experimental length scale.

4.3 Dielectric Shift as the Function of Temperature

The low-temperature dielectric constant is a monotonically decreasing function of temperature in crystalline

material[59], while in glass materials, the low-temperature dielectric constant decreases as the increase of

temperature first, then increases (see Fig.4.6). In the language of TTLS model, our conjecture is that in glass
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material TTLS scatter propagating photons, resulting in the change of photon speed (dielectric constant)

as the function of temperature. It is the different influences from relaxation and resonance processes upon

photon propagation which gives rise to such kind of anomalous dielectric constant shift. The input electric

field frequency of glass dielectric experiment is of order f = 500Hz ∼ 50kHz[15], with the wavelength

λ = 6× 103m ∼ 6× 105m, much greater than the experimental sample length L. Another experiment by M.

v. Schickfus[14], however, has the input frequency f = 10GHz, corresponding to wavelength λ = 3× 10−2m

smaller than sample length. We still consider a block of glass with the size much greater than atomic

distance L � a. Expanding the glass total electro-magnetic Hamiltonian Ĥtot
EM in orders of electric field in

long wavelength limit (λ� a), we obtain

Ĥtot
EM = Ĥtot

EM ;0 +

∫
d3x

∑
i

Ei(~x)P̂ tot
i (~x) +O(E2) (4.28)

where the vector operator P̂ tot(~x) is defined by

P̂ tot
i (~x) =

δĤtot
EM

δEi(~x)
(4.29)

By taking operator derivative P̂ tot
i with respect to electric field we further define the susceptibility

χtot
ij (~x− ~x′, t− t′) =

δ〈P̂ tot
i 〉(~x, t)

δEj(~x′, t′)
(4.30)

Again in the above definition the average operator stands for thermal and quantum averages, with the

temperature β = (kBT )−1. Let us separate the Hamiltonian Ĥtot
EM into purely electric part Ĥel

EM and

dielectric Hamiltonian Ĥnon
EM . The electric part Ĥel

EM can be represented by free electro-magnetic fields:

Ĥel
EM =

∫
d3x

∑
i

(
ε

2
Ei(~x)Ei(~x) +

1

2µ
Bi(~x)Bi(~x)

)
(4.31)

We further define dielectric vector operator P̂ non
i (~x) and dielectric susceptibility χnon

ij (~x − ~x′, t − t′) which

comes from the dielectric Hamiltonian Ĥnon
EM ,

Ĥnon
EM = Ĥnon

EM ;0 +

∫
d3x

∑
i

Ei(~x)P̂ non
i (~x) +O(E2)

P̂ non
i (~x) =

δĤnon
EM

δEi(~x)
χnon
ij (~x− ~x′, t− t′) =

δ〈P̂ non
i 〉(~x, t)

δEj(~x′, t′)
(4.32)
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In the following discussions we will use ĤEM ;0, χij and P̂i to stand for dielectric Hamiltonian, susceptibility

and vector operators Ĥnon
EM ;0, χnon

ij and P̂ non
i , while we use Ĥel

EM , χel
ij and P̂ el

i to stand for the purely electric

Hamiltonian, susceptibility and vector operator. The dielectric vector operator P̂i is not electric dipole

moment operators we usually use in dielectric materials. In fact, let’s consider a dielectric system with

electronic dipole moments p̂i(~x) = q(~x)li(~x) embedded in it. The total electro-magnetic Hamiltonian of

glass is:

Ĥtot
EM = Ĥtot

EM ;0 +

∫
d3x

∑
i

(
1

2
εEi(~x)Ei(~x) +

1

2µ
Bi(~x)Bi(~x)− Ei(~x)p̂i(~x)

)
(4.33)

Compare Eq.(4.32) and Eq.(4.33), the operator P̂i(~x) is the negative of electronic dipole moments: P̂i(~x) =

−p̂i(~x). To calculate the space-averaged dielectric susceptibility χij(ω) = 1
L3

∫
d3xd3x′χij(~x − ~x′, ω), let’s

denote |m〉 and Em to be the m-th eigenstate and eigenvalue of dielectric Hamiltonian ĤEM ;0. Using linear

response theory, dielectric susceptibility is given by

χij(ω) =
1

1− iωτ
χrel
ij + χres

ij (ω + iη)

χrel
ij =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|p̂i(~x)|n〉〈m|p̂j(~x′)|m〉 − Pn〈n|p̂i(~x)|n〉〈n|p̂j(~x′)|n〉
)

χres
ij (ω + iη) =

1

L3~
∑
n

∑
l 6=n

∫
d3xd3x′Pn

〈n|p̂i(~x)|l〉〈l|p̂j(~x′)|n〉
ω + (En − El)/~ + iη

− 1

L3~
∑
l

∑
n 6=l

∫
d3xd3x′Pl

〈n|p̂i(~x)|l〉〈l|p̂j(~x′)|n〉
ω + (En − El)/~ + iη

(4.34)

Where Pn = e−βEn/Z stands for the distribution function of the n-th eigenstate. τ is the effective multiple-

level-system ĤEM ;0 relaxation time. Since the dielectric susceptibility must be invariant under SO(3) group

transformations, it takes the generic form χij(ω) = χ(ω)δij . Similar with phonon frequency shift, photon

frequency can be shifted by dielectric susceptibility χ(ω):

∆ωk
ωk

=
χ(ω)

2ε
(4.35)

where the real part frequency shift corresponds to dielectric constant shift, and the imaginary part frequency

shift corresponds to dielectric loss α. Dielectric susceptibility has relaxation and resonance parts to shift
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dielectric constant:

∆εr
εr

= −
Re
(
χres(ω) + χrel(ω)

)
ε

relaxation regime

∆εr
εr

= −Reχres(ω)

ε
resonance regime (4.36)

To explore the dielectric shift as the functional of temperature, we want to find the temperature dependence

of real part dielectric susceptibility in different regimes.

One may realize that the Hamiltonian Eq.(4.33) is incomplete, because electric dipole moments p̂i(~x) can

interact with each other via 1/r3 dipole-dipole interaction. In fact, we can also derive electric dipole-dipole

interaction by virtual photon exchange process:

Û =

3∑
i,j=1

∫
d3xd3x′ µij(~x− ~x′)p̂i(~x)p̂j(~x

′) µij(~x− ~x′) =
δij − 3ninj
8πε|~x− ~x′|3

(4.37)

where ni is the i-th component of unit vector of ~x − ~x′. If we combine N3
0 copies of L × L × L glass unit

blocks to form a N0L × N0L × N0L super block, dipole-dipole interaction between unit blocks will affect

glass super block dielectric Hamiltonian. In the following discussions we will always use the approximation

to replace ~x by ~xs for the center of s-th unit block, where s = 1, 2, ...N3
0 , and that

∫
V (s) p̂i(~x)d3x = p

(s)
i is the

uniform electric dipole moment of the s-th block. Also, we use ~E(s)(t) to denote the uniform electric field

of the s-th block. With the presence of external electric field, the glass super block dielectric Hamiltonian is

given by

ĤEM =

N3
0∑

s=1

(
Ĥ

(s)
EM ;0 −

3∑
i=1

E
(s)
i (t)p

(s)
i

)
+

N3
0∑

s6=s′

∑
ij

µ
(ss′)
ij p̂

(s)
i p

(s′)
j (4.38)

From now on we assume the uniform dipole moments’ p̂
(s)
i correlation function (dielectric susceptibility) are

diagonal in spacial coordinates in glass: χ
(ss′)
ij = 1

L3 〈p̂(s)
i p̂

(s′)
j 〉 = χijδss′ . Please note that different from

phonon field, electric field is not a collection of real particle oscillations. Therefore the relative positions

between differen blocks ~xs − ~x′s will not be modified by external electric field. Hence the dipole-dipole

interaction coefficient µij(~x− ~x′) keeps unchanged under the presence of external field, and the super-block

electric dipole moment p̂super
i is the direct summation of unit block dipole moments:

p̂super
i =

N3
0∑

s=1

ei
~k·~xs p̂

(s)
i (4.39)
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Let’s denote |n∗〉 and E∗n to be the n-th eigenstate and eigenvalue for super block unperturbed Hamiltonian∑N3
0

s=1 Ĥ
(s)
EM ;0 +

∑N3
0

s6=s′
∑
ij µ

(ss′)
ij p̂

(s)
i p

(s′)
j . With the definition of dielectric susceptibility Eq.(4.32), super

block dielectric susceptibility is given by

χsuper
ij (ω) =

1

(N0L)3

β

1− iωτ

( ∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|p̂super

i,cc |n
∗〉〈m∗|p̂super

j |m∗〉

−
∑
n∗

e−βE
∗
n

Z∗
〈n∗|p̂super

i,cc |n
∗〉〈n∗|p̂super

j |n∗〉
)

+
1

(N0L)3

2

~
∑
n∗l∗

e−βE
∗
n

Z∗
(E∗l − E∗n)/~

(ω + iη)2 − (E∗l − E∗n)2/~2
〈l∗|p̂super

i,cc |n
∗〉〈n∗|p̂super

j |l∗〉 (4.40)

where psuper
i,cc stands for the complex conjugate of p̂super

i . The first and second lines of Eq.(4.40) are super

block relaxation and resonance susceptibilities. Next we want to sep up the relation between microscopic

and macroscopic dielectric susceptibities. Since the unit and super blocks’ length scales differ by a factor

of N0, repeating this renormalization procedure will carry out experimental length scale susceptibility. We

still choose starting small length scale L1 ∼ 50Å. In the n-th step renormalization, the unit and super block

length scales are Ln and N0Ln. We begin with bare Hamiltonian
∑N3

0
s=1 Ĥ

(s)
EM ;0, eigenstates |n〉 =

∏N3
0

s=1 |n(s)〉

and eigenvalues En =
∑N3

0
s=1E

(s)
n . We assume electric dipole-dipole interaction Û is relatively weak compared

to
∑N3

0
s=1 Ĥ

(s)
EM ;0, so it can be treated as perturbation. The relations between |n∗〉, E∗n and |n〉, En are

|n∗〉 = |n〉+
∑
m 6=n

〈m|Û |n〉
En − Em

|m〉+O(U2) E∗n = En + 〈n|U |n〉+
∑
m 6=n

|〈m|Û |n〉|2

En − Em
|m〉+O(U2)

(4.41)

One can expand super block dielectric susceptibility up to the first orders of Û to rewrite super block

susceptibility in terms of unit block susceptibility:

χsuper
ij (ω) =

1

1− iωτ
χsuper rel
ij + χsuper res

ij (ω + iη)

=
1

1− iωτ

{
χrel
ij −

L3
n

N3
0

[
−
∑
ab

∑
ss′

µ
(ss′)
ab e−ik·(xs−x

′
s)

] (
χrel
ia χ

rel
bj + 2χrel

ia χ
res
bj (0)

)}

+ χres
ij (ω + iη)− L3

n

N3
0

[
−
∑
ab

∑
ss′

µ
(ss′)
ab e−ik·(xs−x

′
s)

]
χres
ia (ω + iη)χres

bj (ω + iη) (4.42)

where 1
1−iωτ χ

super rel
ij and χsuper res

ij (ω+iη) are super block relaxation and resonance dielectric susceptibilities.

Applying symmetry property of dielectric susceptibility χij = χδij the renormalization equations can be
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further simplified as:

χsuper rel = χrel − 1

3ε
χrel

[
χrel + 2χres(0)

]
χsuper res(ω + iη) = χres(ω + iη)− 1

3ε
[χres(ω + iη)]

2
(4.43)

Eq.(4.43) is very similar to the renormalization equations of non-elastic stress-stress susceptibility. We now

examine the implications of these renormalization equations. At the first glance, it seems that the dielectric

resonance susceptibility presents usual marginally renormalization irrelevant behavior with the increase

of length scale: by repeating renormalization procedure for the modulus of resonance susceptibility from

starting small length scale L1 to experimental length scale R we get logarithmic length scale dependence as

follows

1

|χres(ω + iη, R)|
=

1

3ε
ln

(
R

L1

)
+

1

|χres(ω + iη, L1)|
(4.44)

On the other hand, there is a fixed point in the renormalization equation of relaxation susceptibility in

Eqs.(4.43):

χrel(R) = −2χres(ω = 0, R) (4.45)

The “experimental length scaleR” is the minimum of sample length scale L and input electric field wavelength

λ: R = min(L, λ). In the problem of sound velocity shift, L > λ. In this dielectric shift problem, for input

frequency 480Hz < f < 50kHz[15] we have R = L < λ, while for input frequency f = 10GHz by M. v.

Schickfus[14], we have L > λ = R.

However, if we stare at the definitions of relaxation and resonance susceptibilities in Eq.(4.34), we find

that they are not positive, but are negative quantities. First of all, the resonance susceptibility is negative.

For example, let us choose ω+ iη = 0, and let i = j in resonance susceptibility, to consider χres
ij (ω+ iη = 0),

χres
ij (ω + iη = 0) =

1

L3

∑
nl

(
Pn − Pl
En − El

)
|〈n|p̂i|l〉|2 < 0 (4.46)

The resonance susceptibility χres
ij (ω+ iη = 0) is negative mainly because Pn < Pl for arbitrary pair of levels

n,m with En > El. Because of the negativity of resonance susceptbility, the renormalization equation of

resonance susceptibility is actually not marginally irrelevant, but renormalization relevant (see the second

equation of Eqs.(4.43)).
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On the other hand, the relaxation susceptibility χrel
ij is negative as well. To prove this result let us define∑

n Pn〈n|p̂i|n〉 = p̄i to be the “average value of dipole moment operator p̂i”, and define
∑
n Pn|〈n|p̂i|n〉|2 =

¯(p2
i ) to be the “average value of the square of electric dipole moment operator p̂i”. For simplicity we still let

i = j to consider the relaxation susceptibility. The relaxation susceptibility χrel
ii is rewritten as follows,

χrel
ii =

β

L3

∑
n

∫
d3xd3x′

(∑
m

PnPm〈n|p̂i(~x)|n〉〈m|p̂i(~x′)|m〉 − Pn〈n|p̂i(~x)|n〉〈n|p̂i(~x′)|n〉
)

=
β

L3

(∑
n

∑
m

PnPm〈n|p̂i|n〉〈m|p̂i|m〉 −
∑
n

Pn〈n|p̂i|n〉〈n|p̂i|n〉
)

=
β

L3

(
(p̄i)

2 − ¯(p2
i )

)
< 0 (4.47)

Therefore, the relaxation susceptibility is always negative as well. If we look back to the first renormalization

equation of Eqs.(4.43), the linear term − 1
3ε

[(
χrel
)2

+ 2χrelχres(0)
]
< 0 is always negative, which means with

the increase of length scale, the relaxation susceptibility becomes “more and more negative”. The relaxation

susceptibility is therefore not marginally irrelevant, but renormalization relevant as well.

Similar with the theoretical explaination on universal shift of sound velocity in glass, all of the theoretical

explainations on experimental measurements of dielectric constant break down. To illustrate this point of

view, let us pretend that the renormalization equations, Eqs.(4.43) are renormalization irrelevant. Therefore,

the renormalization equation for relaxation susceptibility has a non-trivial stable fixed point which was shown

in Eq.(4.45).

Eq.(4.45) is the main result to explain the universal shift of dielectric constant in glass, if the renormal-

ization equations are marginally irrelevant. The non-trivial stable fixed point, Eq.(4.45) indicates that even

if relaxation and resonance susceptibilities are entirely different at microscopic level, at experimental large

length scale relaxation susceptibility always flows to −2 of resonance susceptibility with zero-frequency.

However, the truth is, both of relaxation and resonance susceptibilities are renormalization relevant.

Therefore the renormalization procedure increases both the (negative) relaxation and resonance susceptibil-

ities, which means the starting-scale value of resonance susceptibility is considerably smaller even than the

experimental value. Also since relaxation and resonance susceptibilities are both negative, it is impossible

to get the “−2” relation between two negative quantities in the fixed point Eq.(4.45).

Since dielectric susceptibility is functional of temperature, it is convenient to set up a reference dielectric

shift ∆εr(T0) at some reference temperature T0. The relative shift of dielectric constant at temperature T is

∆εr(T )−∆εr(T0)

εr
= −Reχ(ω, T )− Reχ(ω, T0)

ε
(4.48)
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In resonance regime, the real part of dielectric resonance susceptibility can be obtained by integrating over

imaginary part of dielectric susceptibility via Kramers-Kronig relation. Again we use the assumption that

reduced imaginary resonance susceptibility Im χ̃res(ω, T ) = (1− e−β~ω)−1 Imχres(ω, T ) is approximately the

constant of frequency and temperature around 1K[8], we obtain the logarithmic temperature dependence of

relative dielectric constant shift:

∆εr(T )−∆εr(T0)

εr(T0)

∣∣∣∣
res

= − 2

πε
P
∫ ∞

0

Ω (Imχres(Ω, T )− Imχres(Ω, T0))

Ω2 − ω2
dΩ = −C ln

(
T

T0

)
(4.49)

where C = − Im χ̃res/πε is a positive constant proportional to the reduced imaginary resonance susceptibility.

C is independent of frequency ω.

Next we discuss dielectric constant shift in relaxation regime. It has contributions from real part resonance

and relaxation susceptibilities. The real part contribution of resonance susceptibility in relaxation regime is

still C ln (T/T0). If, we pretend that the fixed point Eq.(4.45) is stable, then from the “stable” fixed point,

the relaxation susceptibility equals to −2 of zero-frequency resonance susceptibility at experimental length

scale, ∆Reχrel(ω, T )/ε = 2C ln(T/T0). Finally, the dielectric constant shift in relaxation regime is

∆εr(T )−∆εr(T0)

εr

∣∣∣∣
rel

= −
∆ Re

(
χrel(ω, T ) + χres(ω, T )

)
ε

= C ln

(
T

T0

)
(4.50)

Summarize Eq.(4.49, 4.50) the slope ratio of temperature dependence of dielectric constant shift in relaxation

and resonance regimes is given by Crel : Cres = 1 : −1. Unfortunally, due to the increasing behavior of

relaxation and resonance susceptibilities, the fixed point Eq.(4.45) is unstable. One can never conclude that

relaxation susceptibility equals to −2 of resonance susceptibility at zero-frequency. In fact, since both of the

relaxation and resonance susceptibilities are always negative, it is impossible that they have opposite signs

at experimental length scale. Compare the slope ratio of dielectric constant shift with that of sound velocity

shift, the negative sign appears in the definition of electric dipole moment.
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Chapter 5

Low Temperature Insulating Glass
Mechanical Avalanche Problem

5.1 The Set up of Avalanche Problem

The glass mechanical avalanche phenomena is referred to the glass stress-strain curve which presents a steep

drop to a lower value at certain critical external strain when avalanche happens[23]. The purpose of this

chapter is to develop a tentative microscopic field theory to investigate such mechanical property of three-

dimensional insulating glass under the deformation of external static, uniform strain. The reader should

be aware that this is the first time to apply “generic coupled block model” in glass mechanical avalanche

problem. Therefore our purpose is not to solve the entire glass avalanche problem from microscopic point of

view; instead we want to provide some first-step results for future people to continue studying this problem.

In the following renormalization analysis of Eq.(5.22), we will find that since the non-elastic susceptibility

stays negative throughout the entire renormalization procedure, it is impossible to find positive-negative

transitions in non-elastic susceptibility. We hope to provide some help for future people to further explore

glass avalanche problems.

As we will see later, the effective starting microscopic length scale of our real space renormalization

procedure is of order ∼ 50Å, corresponding to the characteristic thermal phonon wavelength with the

temperature of order 50K. Our explaination is only valid below this temperature. However, at least to the

author’s knowledge, all of glass avalanche experiments are taken under room temperatures or glass transition

temperatures[21, 43, 44, 39, 40] (T ∼ 300K). We hope more experiments on such mechanical properties of

glass could be taken at low-temperatures below 50K.

Let’s consider a block of glass material. With the slowly increasing external strain the bulk glass behaves

elastically until it reaches critical strain value. The stress (T ) v.s. strain (e) curve shows a steep drop. A

much more convenient quantity we consider is the mechanical stress-stress susceptibility χijkl(e) = δTij/δekl.

At critical external strain field when irreversable process happens, stress-stress susceptibility presents an

abrupt positive-negative transition, which is shown in Fig.5.1 as follows:
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Figure 5.1: As an illustration of stress-strain curve, the left picture shows a steep drop of stress. As an
illustration of susceptibility-strain curve, the right picture shows a positive-negative susceptibility transition,
where susceptibility is the first order derivative of stress with respect to external strain field.

The purpose of this chapter is to understand such mechanical property of three-dimensional insulating

glass under the deformation of external static, uniform strain. Since we do not take conducting electrons

into consideration, our model only applys for insulating glass. Further considerations regarding conducting

electron Hamiltonian, electron-phonon coupling and electron-stress tensor coupling are required to explore

the ductility of metallic glass. In this chapter our main goal is to prove the existence of such mechanical

susceptibility positive-negative transition. We start our problem by considering a block of glass with the

length scale L much greater than the atomic distance a ∼ 10Å. Please note, that in this section we have

not put in external static uniform external strain field yet. We further define the elastic strain field eij(~x)

which is the spacial derivative of matter displacement ~u(~x) at position ~x: eij(~x) = 1
2

(
∂ui(~x)
∂xj

+
∂uj(~x)
∂xi

)
. We

write general glass Hamiltonian as Ĥtot, and expand it in orders of intrinsic elastic strain field eij in long

wavelength limit (λ� a):

Ĥtot = Ĥtot
0 +

∫
d3x

∑
ij

eij(~x)T̂ tot
ij (~x) +O(e2

ij) (5.1)

the coefficient of first order expansion is stress tensor T̂ tot
ij (~x), defined by the derivative of Hamiltonian with

respect to intrinsic phonon strain field

T̂ tot
ij (~x) =

δĤtot

δeij(~x)
(5.2)

The most important quantity of this thesis, stress-stress susceptibility χtot
ijkl is defined by taking derivative

on stress tensor T̂ tot
ij with respect to intrinsic phonon strain field ekl(~x). The susceptibility is taken for the

glass block much larger than atomic distance:

χtot
ijkl(~x− ~x′; t− t′) =

δ〈T̂ tot
ij 〉(~x, t)

δekl(~x′, t′)
(5.3)
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where the expectation value of stress tensor operator T̂ tot
ij (~x) is functional of time. In Eq.(5.3) the average of

〈T̂ tot
ij 〉 represents thermal and quantum average: for an arbitrary operator Â, 〈Â〉 =

∑
mZ−1e−βEm〈m, t|Â|m, t〉

with |m〉 the eigenbasis of Hamiltonian Ĥ0 and Z the partition function Z =
∑
m e
−βEm with temperature

β = (kBT )−1. Susceptibility is also the function of temperature, but for notational simplicity we write

χ(~x− ~x′; t− t′;T ) as χ(~x− ~x′; t− t′).

In the rest of this chapter it is convenient to separate glass Hamiltonian Ĥtot into purely elastic part

Ĥel and non-elastic part Ĥnon: Ĥtot = Ĥel + Ĥnon. By taking their first order derivatives with respect

to intrinsic phonon strain field, the stress tensor T̂ tot
ij can be separeted into elastic and non-elastic stress

tensors: T̂ tot
ij (~x) = T̂ el

ij (~x) + T̂ non
ij (~x). Similarly, the elastic and full non-elastic stress-stress susceptibilities

are the corresponding stress tensors’ derivatives:

χtot
ijkl(

~k, ω) = χel
ijkl(

~k, ω) + χnon
ijkl(

~k, ω) (5.4)

The purpose of this chapter is to prove that for certain critical external strain field eij , the positive stress-

stress susceptibility Eq.(5.4) suddenly drops to a negative value, leading to the mechanical avalanche behavior

of glass. Subtracting elastic part from glass Hamiltonian, the left-over non-elastic Hamiltonian can be

expanded in orders of long wavelength intrinsic phonon strain field:

Ĥnon = Ĥnon
0 +

∫
d3x

∑
ij

eij(~x)T̂ non
ij (~x) +O(e2

ij)

T̂ non
ij (~x) =

δĤnon

δeij(~x)

χnon
ijkl(~x− ~x′; t− t′) =

δ〈T̂ non
ij 〉(~x, t)

δekl(~x′, t′)
(5.5)

where for convenience we will use χnon
ijkl(~x − ~x′; t − t′) to stand for χnon

ijkl(~x − ~x′; t − t′; e). In the rest of this

chapter we further use Ĥ0, χijkl and T̂ij to represent Ĥnon
0 ,χnon

ijkl and T̂ non
ij , while we use Ĥel, χel

ijkl and T̂ el
ij

to represent the elastic Hamiltonian, susceptibility and stress tensor.

We want to explain avalanche under external static strain field deformations. Therefore we focus on

DC (ω = 0) non-elastic stress-stress susceptibility limω→0 χijkl(ω). We denote |m〉 and Em to be the m-

th eigenstate and eigenvalue of unperturbed non-elastic Hamiltonian Ĥ0. The eigenbasis |m〉 is a set of

generic multiple-level-system. By using linear response theory, we expand the expectation value of stress

tensor 〈T̂ij〉 up to the first order of eij T̂ij to derive non-elastic stress-stress susceptibility. We use the same

language as tunneling-two-level-system, that the susceptibility can be expressed in relxation and resonance

susceptibilities. The relaxation susceptibility comes from the energy eigenvalue shift due to the diagonal
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matrix elements of perturbation, while the resonance susceptibility comes from the off-diagonal matrix

elements of perturbing Hamtiltonian. Let’s denote τ to be effective thermal relaxation time for glass. We

use χrel
ijkl(ω) to stand for relaxation susceptibility, and use χres

ijkl(ω) to stand for the resonance susceptibility.

The susceptibility is always in relaxation regime because ωτ = 0 for external static field. Thus both of zero-

frequency relaxation and resonance susceptibilities contribute in full non-elastic stress-stress susceptibility.

In the rest of this chapter for simplicity let’s use χijkl to stand for limω→0 χijkl(ω), and use χrel
ijkl and χres

ijkl

for limω→0 χ
rel
ijkl(ω) and limω+iη→0 χ

res
ijkl(ω + iη). The zero-frequency susceptibility of generic multiple-level-

system is given as follows:

χijkl = χrel
ijkl + χres

ijkl

χrel
ijkl =

β

V

(∑
nm

PnPm〈n|T̂ij |n〉〈m|T̂kl|m〉 −
∑
n

Pn〈n|T̂ij |n〉〈n|T̂kl|n〉
)

χres
ijkl = − 1

V ~
∑
n

∑
m6=n

Pm
〈n|T̂ij |m〉〈m|T̂kl|n〉
(En − Em)/~ + iη

+
1

V ~
∑
m

∑
n 6=m

Pn
〈n|T̂ij |m〉〈m|T̂kl|n〉
(En − Em)/~ + iη

(5.6)

where
∫
V
T̂ij(~x)d3x = T̂ij is the uniform stress tensor of this glass block. Pn = e−βEn/Z is the n-th

level probability function and Z =
∑
n e
−βEn is the partition function with temperature β = (kBT )−1. η

is a phenomenological parameter to represent the higher order corrections of full non-elastic stress-stress

susceptibility due to the coupling between strain field and non-elastic stress tensor:
∑
ij eij T̂ij .

Let us stop here for a moment and check the signs of relaxation and resonance susceptibilities. For

example, let us check the diagonal matrix element of relaxation susceptibility, χrel
ijij with indices (ij) = (kl).

The diagonal matrix element of relaxation susceptibility, χrel
ijij is always negative, because we have the

relation
∑
nm PnPm〈n|T̂ij |n〉〈m|T̂ij |m〉 <

∑
n Pn|〈n|T̂ij |n〉|2. On the other hand the diagonal matrix element

of resonance susceptibility χres
ijij(η = 0) with indices (ij) = (kl) is negative as well, because Pn < Pm for

arbitrary pair of energy levels n,m with En > Em. This negative property of relaxation and resonance

susceptibilities will be very useful in later discussions of renormalization equation of non-elastic susceptibility.

Next we consider elastic stress-stress susceptibility. The elastic Hamiltonian Ĥel can be represented by

phonon creation-annihilation operators

Ĥel =
∑
kα

~ωkα
(
â†kαâkα +

1

2

)
(5.7)

where α = l, t is phonon polarization, i.e., longitudinal and transverse phonons. The elastic complex response
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function is therefore given by

χel
ij,kl(

~k, ω) =
δ2〈Ĥel +

∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x)〉

δeijδekl
(~k, ω) (5.8)

Please note, that in the above definitions of glass elastic susceptibility, the glass elastic Hamiltonian’s

expectation value is defined by the glass elastic Hamiltonian Ĥel plus the time-dependent perturbation∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x): Ĥel +

∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x); the glass elastic stress response 〈T̂ el

ij (~x)〉(~x, t) is

also defined by using the glass elastic Hamiltonian plus the external time-dependent perturbations: Ĥel +∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x).

From the above definitions of elastic and non-elastic glass susceptibilities, at the static limit they are by

definition negative. The elastic susceptibility at static limit is given by

χel
ijkl = −

(
ρc2l − 2ρc2t

)
δijδkl − ρc2t (δikδjl + δilδjk) (5.9)

The above result seems to be negative compared to the “elastic constant” in a standard elasticity textbook:(
ρc2l − 2ρc2t

)
δijδkl + ρc2t (δikδjl + δilδjk). This is because: in the standard elasticity textbook, one usually

defines the “elastic constant” through the definition χelastic constant
ijkl = δ2〈Ĥel〉/δeijδekl, but the Hamiltonian

Ĥel here is the elastic part of glass Hamiltonian which does not include the time-dependent perturbation∫
d3x

∑
ij eij(~x, t)T̂

el
ij (~x). Therefore our definition of elastic susceptibility differs by a negative sign compared

to the standard elastic constant in the standard textbook.

5.2 Virtual Phonon Exchange Interactions

The previous problem is within single-block considerations. If we combine a set of such single-blocks together,

the interaction between them will be taken into glass Hamiltonian. Since the stress-strain coupling eij T̂ij

contains phonon strain field eij , allowing virtual phonons to exchange will give rise to an effective RKKY-type

interaction between different blocks via stress tensor products:

V̂ =

∫
d3xd3x′

∑
ijkl

Λijkl(~x− ~x′)T̂ij(~x)T̂kl(~x
′) (5.10)

where the coefficient Λijkl(~x − ~x′) was discussed in chapter 2. In the rest of this chapter we still use the

approximation to replace ~x− ~x′ by ~xs − ~xs′ for the s-th and s′-th blocks, in which ~xs denotes the center of

the s-th block, and
∫
V (s) T̂ij(~x)d3x = T̂

(s)
ij is the uniform stress tensor of the s-th block. From this definition
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the uniform stress tensor operator T̂
(s)
ij is volume proportional extensive quantity. The non-elastic part of

super block Hamiltonian without external strain field is given by

Ĥsuper =

N3
0∑

s=1

Ĥ
(s)
0 +

N3
0∑

s6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl (5.11)

Again, we apply the assumption: to assume that the correlation function of block uniform stress tensors

T̂
(s)
ij are diagonal in spacial coordinates: χ

(ss′)
ijkl = 1

L3 〈T̂ (s)
ij T̂

(s′)
kl 〉 = χijklδss′ .

5.3 Full Glass Hamiltonian with the Presence of External Static,

Uniform Strain field

In this section we begin to put in external static, uniform strain field and consider glass super block Hamil-

tonian affected by external strain field e(~x, t). Please note that we have defined non-elastic stress tensor

and non-elastic stress-stress susceptibility with the help of intrinsic phonon strain field, in this section

e(~x, t) stands for the external real phonon field. Because the purpose of this thesis is to consider avalanche

problem under static uniform external strain field, we denote the external strain as e(~x, t) = e on an

isotropic (spherical) glass with radius r. As the simplest case, we consider the static strain as exx = e,

eyy = ezz = exy = eyz = ezx = 0. For other kinds of external strain e = eij , similar avalanche behaviors

cound be found as well. The spherical glass is deformed to be an ellipsoid. The xy and xz plane cross

sections are ellipses with eccentricity ε =
√
e2+2e

(1+e) while the yz cross section is circular.

Figure 5.2: An isotropic (spherical) glass deformed by strain exx = e to become an ellipsoid.

There are a couple of terms appear in glass Hamiltonian with the turning on of external strain field

e. First, non-elastic stress tensor operators T̂
(s)
ij might be changed for ∆T̂

(s)
ij by external strain field. We

further define new single-block stress tensor T̂
(s)
ij (e) as follows

T̂
(s)
ij (e) = T̂

(s)
ij + ∆T̂

(s)
ij =

δĤ(s)(e)

δe
(s)
ij

(5.12)
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which means the new quantity T̂
(s)
ij (e) is non-elastic stress tensor under the presence of external strain

e. Such strain field dependent property of T̂
(s)
ij (e) comes from the nonlinear strain field dependence of

non-elastic Hamiltonian. Thus the strain-stress coupling term is given by
∑
s

∑
ij e

(s)
ij T̂

(s)
ij (e), where e is

external strain. The s-th unit block full non-elastic susceptibility χijkl = V −1〈δ2Ĥ(s)(e)/δe
(s)
ij δe

(s)
kl 〉 is given

by Eq.(5.6) by replacing T̂
(s)
ij with T̂

(s)
ij (e). Virtual phonon exchange process gives non-elastic stress-stress

interaction V̂ =
∑
ss′
∑
ijkl Λ

(ss′)
ijkl T̃

(s)
ij (e)T̃

(s′)
kl (e). In the rest of this thesis we will always write T̂

(s)
ij to stand

for T̂
(s)
ij (e) for simplicity.

There is a second question arising from external strain field: the relative positions of unit blocks ~x(s)−~x(s′)

can be changed by external strain field, resulting in the modification of stress-stress interaction coefficient

Λ
(ss′)
ijkl → Λ

(ss′)
ijkl (e). Thus the glass super block Hamiltonian is Ĥsuper(e) =

∑
s

(
Ĥ

(s)
0 +

∑
ij e

(s)
ij T̂

(s)
ij

)
+∑

s6=s′
∑
ijkl Λ

(ss′)
ijkl (e)T̂

(s)
ij T̂

(s′)
kl . Super block non-elastic stress tensor is defined as T̂ super

ij (e) = δĤsuper(e)/δeij .

Because of the external strain field dependence of Λ
(ss′)
ijkl (e), an extra term appears in super block stress ten-

sor:

T̂ super
ij =

∑
s

T̂
(s)
ij +

∑
ss′

∑
abcd

δΛ
(ss′)
abcd (e)

δeij
T̂

(s)
ab T̂

(s′)
cd (5.13)

where we use T̂ super
ij to stand for T̂ super

ij (e).

The super block susceptibility also receives an extra term. To calculate super block susceptibility let us

first denote |n∗〉 and E∗n to be the n-th eigenstate and eigenvalue of super block unperturbed Hamiltonian

Ĥsuper
0 (e) =

∑
s Ĥ

(s)
0 +

∑
ss′
∑
ijkl Λ

(ss′)
ijkl (e)T̂

(s)
ij T̂

(s′)
kl with perturbation

∑
s

∑
ij e

(s)
ij T̂

(s)
ij . By using linear

response theory we get super block susceptibility:

χsuper
ijkl =

β

(N0L)3

(∑
nm

P ∗nP
∗
m〈n∗|

∑
s

T̂
(s)
ij |n

∗〉〈m∗|
∑
s′

T̂
(s′)
kl |m

∗〉 −
∑
n

P ∗n〈n∗|
∑
s

T̂
(s)
ij |n

∗〉〈n∗|
∑
s′

T̂
(s′)
kl |n

∗〉
)

− 1

(N0L)3~
∑
nm

(P ∗m − P ∗n)
〈n∗|

∑
s T̂

(s)
ij |m∗〉〈m∗|

∑
s′ T̂

(s′)
kl |n∗〉

(E∗n − E∗m)/~ + iη

+
1

(N0L)3

∑
abcd

∑
ss′

〈
δ2Λ

(ss′)
abcd (e)

δeijδekl
T̂

(s)
ab T̂

(s′)
cd

〉
(5.14)

where we use χsuper
ijkl to stand for χsuper

ijkl (e).
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5.4 Real Space Renormalization for Glass Non-Elastic

Susceptibility

In this section our purpose is to find the non-elastic stress-stress susceptibility at experimental large length

scale. We want to set up the relation between unit block and super block non-elastic suscetpibilities. Since

the super block length scale is N0 times greater than single block length scale, repeating the recursion relation

allows to get experimental length scale non-elastic suscetpibility. The suggested renormalization procedure

starting length scale is, for example, L1 ∼ 50Å according to the argument of D. C. Vural and A. J. Leggett[25].

Since the final result only logarithmically depends on this choice, it will not be sensitive. The effective starting

microscopic length scale must be no less than the order of ∼ 50Å, corresponding to the characteristic thermal

phonon wavelength with the temperature of order 50K. Again, we combine N3
0 unit blocks with the dimension

Ln×Ln×Ln to form the n-th step super block glass with the dimension N0Ln×N0Ln×N0Ln. These non-

interacting unit blocks have the Hamiltonian Ĥ0 =
∑N3

0
s=1 Ĥ

(s)
0 , eigenstates |n〉 =

∏N3
0

s=1 |n(s)〉 and eigenvalues

En =
∑N3

0
s=1E

(s)
n . We combine them into a super block and turn on non-elastic stress-stress interactions

V̂ (e) =
∑N3

0

s 6=s′ Λ
(ss′)
ijkl (e)T̂

(s)
ij T̂

(s′)
kl . We assume non-elastic stress-stress interactions V̂ are relatively week

compared to the summation of unit block Hamiltonians Ĥ0 =
∑N3

0
s=1 Ĥ

(s)
0 , so that the interactions can be

treated as a perturbation. If the non-elastic susceptibility decreases logarithmically as the increase of length

scale, then that means the non-elastic stress-stress interaction V̂ can be treated as a perturbation at the late

stages. The assumption that V̂ can be treated as a perturbation is qualitatively correct. In the last section

we define super block eigenstates and eigenvalues to be |n∗〉 and E∗n. Their relations with |n〉 and En are

|n∗〉 = |n〉+
∑
p 6=n

〈p|V̂ (e)|n〉
En − Ep

|p〉+O(V 2)

E∗n = En + 〈n|V̂ (e)|n〉+
∑
p 6=n

|〈p|V̂ (e)|n〉|2

En − Ep
|p〉+O(V 2) (5.15)

With the relations in Eq.(5.15) one can expand super block full non-elastic susceptibility Eq.(5.14) in orders

of V̂ (e). Up to the first order in V̂ (e) we write these expansions in terms of unit block susceptibilities. The
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recursion relations for unit block and super block susceptibilities are as follows:

χsuper
ijkl = χsuper rel

ijkl + χsuper res
ijkl

= χrel
ijkl −

L3
n

N3
0

[
−
∑
mnpq

∑
ss′

Λ(ss′)
mnpq(e)

] (
χrel
ijmnχ

rel
pqkl + χrel

ijmnχ
res
pqkl + χres

ijmnχ
rel
pqkl

)
+ χres

ijkl −
L3
n

N3
0

[
−
∑
mnpq

∑
ss′

Λ(ss′)
mnpq(e)

]
χres
ijmnχ

res
pqkl

+
1

(N0Ln)3

∑
mnpq

∑
ss′

〈
δ2Λ

(ss′)
mnpq(e)

δeijδekl
T̂ (s)
mnT̂

(s′)
pq

〉
(5.16)

where again we use χrel
ijkl, χ

res
ijkl, χ

super
ijkl to stand for χrel

ijkl(e), χres
ijkl(e), χsuper

ijkl (e). For details of calculations

please refer to Appendix (B). The last term of Eq.(5.16) is renormalization irrelevant. Compared to other

terms in Eq.(5.16) the last term decreases cubically L−3 as the increase of sample length scale L. To prove

this result let us provide a qualitative analysis: denote Λ
(ss′)
ijkl = −Λ̃ijkl(~n)/8πρc2tR

3
ss′ where Rss′ = |~Rs− ~R′s|

and Λ̃ijkl(~n) is a dimensionless number of order 1. By applying linear response theory on the last term of

Eq.(5.16) with respect to perturbation
∑
ij

∑
s e

(s)
ij T̂

(s)
ij to calculate the thermal and quantim averages, it

turns out to be the convolution of the imaginary part resonance susceptibilities functional of frequency Ω:

∑
mnpq

∫
dΩ Imχres

ijmn(Ω)

(∑
ss′

~L3
nλmnpq

8πρ2c4tR
6
ss′

)
Imχres

pqkl(−Ω) (5.17)

where λmnpq(~n) is the second order derivative of Λ̃mnpq(~n) with respect to phonon strain field, and it is also

a dimensionless number of order 1. We use the assumption that the reduced imaginary part resonance sucep-

tibility Im χ̃res
ijkl(ω) = Imχres

ijkl(ω)/(1− e−β~ω) is approximately a constant up to the frequency ωc ∼ 1015Hz

and the temperature of order 10K. Since the imaginary part of resonance susceptibility is always smaller than

the reduced version: Imχres
ijkl(ω) < Im χ̃res

ijkl(ω) for arbitrary temperature and frequency, integrating over Ω

gives the upper limit of Eq.(5.19): −C~ωc (Im χ̃res
t )

2
/ρ2c4tL

3
n, where C is also a dimensionless constant of

order 1. If we require that there is a critical length scale Lc, below which the last term of Eq.(5.16) is

comparable to the other terms, the order of magnitude for Lc is

Lc <

(
~ωc
ρc2l,t

) 1
3

≈ 4.6Å < L1 = 50Å (5.18)

which means the upper limit of Lc is even smaller than the starting effective length scale of renormalization

technique. Throughout the entire renormalization procedure the last term in Eq.(5.16) is always negligible.

With the above simplifications one can rewrite the non-elastic susceptibility renormalization equation as
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follows,

χsuper
ijkl = χsuper rel

ijkl + χsuper res
ijkl

=
(
χrel
ijkl + χres

ijkl

)
− L3

n

N3
0

[
−
∑
mnpq

∑
ss′

Λ(ss′)
mnpq(e)

] (
χrel
ijmnχ

rel
pqkl + χrel

ijmnχ
res
pqkl + χres

ijmnχ
rel
pqkl + χres

ijmnχ
res
pqkl

)
= χijkl −

L3
n

N3
0

[
−
∑
mnpq

∑
ss′

Λ(ss′)
mnpq(e)

]
χijmnχpqkl (5.19)

where the zero-frequency non-elastic susceptibility χijkl = χrel
ijkl + χres

ijkl.

The renormalization equation for non-elastic susceptibility can be simplified with the following three

steps. First of all, we define a 4-indice tensor Mmnpq, given by

Mmnpq =
L3
n

N3
0

[
−
∑
ss′

Λ(ss′)
mnpq(e)

]
(5.20)

So the non-elastic susceptibility renormalization relation is rewritten as

χsuper
ijkl = χijkl − χijmnMmnpqχpqkl (5.21)

Second, we denote the 2-fold indices (ij), (kl), (mn), (pq) in Eq.(5.21) to be (ij)→ A, (kl)→ B, (mn)→

C, (pq) → D. With this simplification, we rewrite 4-indice quantities χijkl and Mmnpq into a 2-indice

matrix form: χAB and MCD. They are 6 × 6 matrices, for example, MCD has the indices C (orD) =

(xx), (xy), (xz), (yy), (yz), (zz). Third, let us define the change of non-elastic susceptibility δχ = χsuper−χ.

The real space renormalization equation for non-elastic susceptibility is simplified as:

χsuper = χ− χMχ ⇒ δχ = −χMχ ⇒ (χ)
−1
δχ (χ)

−1
= −M ⇒ δ

(
χ−1

)
= M

⇒ χ−1(R) = M logN0

(
R

L1

)
+ χ′−1 (5.22)

where the experimental length scale R is the size of glass sample. In this chapter we consider the avalanche

problem with the precense of external static, uniform strain, which means the “effective phonon wavelength

of external strain” is much, much greater than the actual size of experimental sample. Therefore, to calculate

the matrix M we first take the momentum k → 0 limit, then take the spacial integral over the non-elastic

stress-stress interaction coefficient Λ
(ss′)
ijkl . Please note that the above renormalization irrevelant behavior

is only valid for negative eigenvalues of matrix M and it’s corresponding eiganvectors. For the positive

eigenvalues of matrix M , the renormalization equation, Eq.(5.22) turns out to be problematic: since the
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zero-frequency relaxation and resonance susceptibilities are negative, the positive eigenvalues of M will

lead to the “more negative behavior” to the eigenvalues of non-elastic susceptibility χ. Eventually at the

experimental length scale R these negative eigenvalues of χ are so large, that the physics picture turns out

to be problematic: as long as an infinitesimal strain is applied, the glass system crashes instantly. Here we

would like to argue, that for those positive eigenvalues of matrix M , our generic couple block model and

the renormalization equation may not be applicable in avalanche problem. For the negative eigenvalues of

M which lead to the logarithmic decreasing behavior of the eigenvalues of non-elastic susceptibility, we try

to continue our work to obtain the positive-negative transitions in non-elastic susceptibility.

We have no idea what the value of the constant of integration χ′ is. One may guess, that the this

constant of integration χ′ is something positive quantity. But this cannot be true. Because the non-elastic

susceptibility keeps negative throughout the entire process of renormalization procedure. At experimental

length scale, it must be negative as well. It is impossible to find any positive-negative transition in non-elastic

susceptibility. If, we use the wrong assumption, that the constant of integration χ′ is some positive quantity,

and it takes the generic isotropic form χ′ijkl = (χ′l − 2χ′t)δijδkl + χ′t(δikδjl + δilδjk), then the non-elastic

susceptibility obtained from the wrong assumption is then given by Eq.(5.22).

5.5 The Critical External Strain of Avalanche

If we want to prove the existence of positive-negative transition in glass total stress-stress susceptibility,

we are actually required to find the singularity in glass total susceptibility. Since the elastic susceptibility

χel
ijkl = −(ρc2l − 2ρc2t )δijδkl − ρc2t (δikδjl + δilδjk) does not show such kind of singularity, our hope is to

find the singularity in full non-elastic stress-stress susceptibility. However, as we have discussed earlier, the

non-elastic susceptibility keeps negative. It is impossible to find singularities in non-elastic susceptibility as

well. Let us pretend that in Eq.(5.22) the constant of integration χ′ is a positive quantity. We will be able

to observe the positive-negative transitions in non-elastic susceptibility as follows. But the reader should

keep in mind that the results in this section are not correct.

The spherical glass is deformed by external static strain exx to become an ellipsoid. Take continuum

limit in Eq.(5.20) and change the variables ~rs + ~r′s = ~R and ~rs − ~r′s = ~r, we calculate the matrix Mmnpq as

follows

Mmnpq =
1

2πρc2t

∫
V (e)

d3r
Λ̃mnpq(~n)

r3
(5.23)

where the integral domain V (e) is an ellipsoid, for the form of Λ
(ss′)
ijkl please refer to Eq.(3.12, 3.13).
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M logN0
(R/L1) is then represented by the following matrix form

M logN0

(
R

L1

)
=

2

ρc2t
ln

(
R

L1

)



A 0 0 B 0 B

0 C 0 0 0 0

0 0 C 0 0 0

B 0 0 D 0 E

0 0 0 0 F 0

B 0 0 E 0 D


(5.24)

where

A = 1− 3n2
x +

1

2
α
(
−3 + 18n2

x − 15n4
x

)
B =

1

2
α
[
−1− 15n2

xn
2
y + 3

(
n2
x + n2

y

)]
C =

1

4

(
2− 3n2

x − 3n2
y

)
+

1

2
α
[
−1− 15n2

xn
2
y + 3

(
n2
x + n2

y

)]
D = 1− 3n2

y +
1

2
α
(
−3 + 18n2

y − 15n4
y

)
E =

1

2
α
(
−1− 15n2

yn
2
z + 6n2

y

)
F =

1

2

(
1− 3n2

y

)
+

1

2
α
(
−1− 15n2

yn
2
z + 6n2

y

)
(5.25)

In the above result we have applied rotational invariance of the integral domain V (e) around x-axis, and

the parameter α = 1 − c2t/c2l . The definition of average values n2
x,y, n4

x,y, n2
xn

2
y, n2

yn
2
z are given as follows:

for arbitrary function f(~r), the average value is

f(~r) =

∫
V (e)

d3r f(~r)/r3∫
V (e)

d3r 1/r3
(5.26)

Taking integrals over the ellipsoid space, the unit vector averages are displayed as follows,

n2
x =

ε
√

1− ε2(−1 + 2ε2) + arcsin ε

4ε2
(
ε
√

1− ε2 + arcsin ε
)

n4
x =

ε
√

1− ε2(−3− 2ε2 + 8ε4) + 3 arcsin ε

24ε4
(
ε
√

1− ε2 + arcsin ε
)

n2
yn

2
z =

ε
√

1− ε2(−3 + 10ε2 + 8ε4)

192ε4
(
ε
√

1− ε2 + arcsin ε
) +

3(1− 4ε2 + 8ε4) arcsin ε

192ε4
(
ε
√

1− ε2 + arcsin ε
) (5.27)

where 0 ≤ ε ≤ 1 is the eccentricity of the ellipsoid xy and xz cross section (see Fig.5.2). The matrix form of
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the inverse of unknown susceptibility χ′ is given as follows, where we denote α′ = 1− χ′t/χ′l,

(
χel
)−1

=
1

χ′t



α′

4α′−1 0 0 − 2α′−1
2(4α′−1) 0 − 2α′−1

2(4α′−1)

0 1 0 0 0 0

0 0 1 0 0 0

− 2α′−1
2(4α′−1) 0 0 α′

4α′−1 0 − 2α′−1
2(4α′−1)

0 0 0 0 1 0

− 2α′−1
2(4α′−1) 0 0 − 2α′−1

2(4α′−1) 0 α′

4α′−1


(5.28)

where we don’t know the exact values of χ′l,t. In fact, the non-elastic susceptibility must keep negative.

So the assumption that χ′ is a positive quantity is not correct. The inverse of full non-elastic stress-stress

susceptibility χ−1 is the summation of Eq.(5.24) and Eq.(5.28). For an arbitrary invertible matrix A, if ϕ is

one of the eigenvectors of A, and λ is the corresponding eigenvalue, then Aϕ = λϕ. We have the important

following relation

A−1ϕ =
1

λ
A−1λϕ =

1

λ
A−1Aϕ =

1

λ
ϕ (5.29)

which means as long as ϕ is the eigenvector of invertible matrix A, it is also the eigenvector of A−1, with the

eigenvalue λ−1. Our purpose is to find the singularity of eigenvalues of full non-elastic susceptibility. From the

above proof, if we are able to find the zero-point of eigenvalues of the inverse of full non-elastic susceptibility,

which is the summation of Eq.(5.24) and Eq.(5.28), then we can prove the existence of position-negative

transition in full non-elastic susceptibility. In the following we straightforwardly calculate the eigenvalues of

full non-elastic susceptibility, instead of calculating the eigenvalues of inverse full non-elastic susceptibility.

If we expand Eq.(5.27) in orders of eccentricity and keep only up to the second order of ε, we will not

be able to obtain the singularities of the eigenvalues of full non-elastic susceptibility. Since mechanical

avalanche happens when the stress-stress susceptibility of material presents a positive-negative transition at

certain critical external strain field ecrit, we need to figure out which of the eigenvalues of full non-elastic

susceptibility χ show such transitions. Among 6 eigenvalues of full non-elastic susceptibility, 3 of them keep

positive for eccentricity varies from 0 to 1, while other 3 show positive-negative transitions. We first list

a series of variable changes for convenience: A′ = A + 1
2 ln(R/L1)

ρc2t
χ′t

α′

4α′−1 , B′ = B − 1
2 ln(R/L1)

ρc2t
χ′t

2α′−1
2(4α′−1) ,

C ′ = C+ 1
2 ln(R/L1)

ρc2t
χ′t

, D′ = D+ 1
2 ln(R/L1)

ρc2t
χ′t

α′

4α′−1 , E′ = E− 1
2 ln(R/L1)

ρc2t
χ′t

2α′−1
2(4α′−1) , F ′ = F + 1

2 ln(R/L1)
ρc2t
χ′t

,

and ∆ = 8B′2 + (A′ −D′ − E′)2. The 6 eigenvalues and corresponding eigenvectors of the matrix form of

full non-elastic susceptibility (not the inverse of full non-elastic susceptibility) are given as follows:
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eigenvalue eigenvector

C ′−1 (0, 0, 1, 0, 0, 0)

C ′−1 (0, 1, 0, 0, 0, 0)(
A′+D′+E′+

√
∆

2

)−1 (
A′−D′−E′+

√
∆

2B′ , 0, 0, 1, 0, 1
)

(
A′+D′+E′−

√
∆

2

)−1 (
A′−D′−E′−

√
∆

2B′ , 0, 0, 1, 0, 1
)

(D′ − E′)−1
(0, 0, 0,−1, 0, 1)

F ′−1 (0, 0, 0, 0, 1, 0)

(5.30)

As an example, we choose the average value of α = 1 − c2t/c2l = 0.7 and R = 1mm so ln(R/L1) ≈ 12

for amorphous solids. We also choose, for example, χ′t = ρc2t and χ′l = ρc2l to give an illustration of the

following positive-negative transitions of non-elastic susceptibility. The first, second and third eigenvalues

C ′−1, C ′−1 and
(
A′+D′+E′+

√
∆

2

)−1

stay positive for eccentricity varies from 0 to 1. The plots of eigenvalue

versus eccentricity are displayed as follows.

Fig.5.3 and Fig.5.4 are positive eigenvalues of matrix M . The corresponding strain directions are exy,

exz and A′−D′−E′+
√

∆
2B′ exx + eyy + ezz, where the coefficient A′−D′−E′+

√
∆

2B′ < 0 for ∀ε ∈ [0, 1]. We plot the

negativity of coefficient A′−D′−E′+
√

∆
2B′ in Fig. 5.4,
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Figure 5.3: The first and second eigenvalues C ′−1 in units of ρc2t as the function of eccentricity (x-axis)
varies from 0 to 1. It stays positive.

Figure 5.4: The third eigenvalue
(
A′+D′+E′+

√
∆

2

)−1

as the function of eccentricity. It stays positive.

Figure 5.5: The coefficient in the third eigenvector, A′−D′−E′+
√

∆
2B′ as the function of eccentricity. It stays

negative for eccentricity ∀ε ∈ [0, 1], with the value from −2 to −6.
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On the other hand, the fourth, fifth and sixth eigenvalues of matrix M are negative. The correspond-

ing eiganvalues
(
A′+D′+E′−

√
∆

2

)−1

, (D′ − E′)−1
and F ′−1 of non-elastic susceptibility χ present positive-

negative transitions at certain critical eccentricity varies from 0 to 1:

Figure 5.6: The fourth eigenvalue
(
A′+D′+E′−

√
∆

2

)−1

as the function of eccentricity.

Figure 5.7: The fifth eigenvalue (D′ − E′)−1
as the function of eccentricity..

Let’s discuss the eigenvalues which show positive-negative transitions in details. First, the eigensvector

which corresponds to the eigenvalue
(
A′+D′+E′−

√
∆

2

)−1

is
(
A′−D′−E′−

√
∆

2B′ , 0, 0, 1, 0, 1
)

. From Fig. 5.9,

the coefficients of exx and eyy and ezz have the same signs. For the external static strain which pulls glass

system in x direction with exx, when it exceeds critical value, the glass is fragile against additional expansion

or contraction deformations. Second, the eigenvector which corresponds to the eigenvalue (D′ − E′)−1
is

(0, 0, 0,−1, 0, 1). When the external static strain exceeds critical value, the glass is fragile against additional

external strain ±(eyy−ezz), which is to pull glass in y or z direction and squeeze in another direction. Third,

the eigenvector for eigenvalue F ′−1 is eyz, a shear deformation to glass system. For the external static strain

exceeding critical value, the glass is fragile against additional shear in yz plane.
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Figure 5.8: The sixth eigenvalue F ′−1 as the function of eccentricity.

Fig.5.6-5.8 indicate when external static deformation exx = e exceeds certain critical value, glass is fragile

against the external strain fields in the directions of A′−D′−E′−
√

∆
2B′ exx + eyy + ezz, −eyy + ezz and eyz.

Figure 5.9: The coefficient in the sixth eigenvector, A′−D′−E′−
√

∆
2B′ as the function of ε. It stays positive for

eccentricity ∀ε ∈ [0, 1].

Finally, to verify the existence of mechanical avalanche phenomena, we need to sum up elastic and non-

elastic susceptibilities to get total susceptibility, χtot = χel +χ. However the elastic susceptibility does not

have a singularity. For external strain fields away from the critical value, there is no steep positive-negative

transition in glass mechanical susceptibility. When external strain approaches critical value, non-elastic

susceptibility presents a sharp positive-negative transition. The singularity of total susceptibility (glass

avalanche behavior) is therefore determined by the singularity of non-elastic susceptibility. (However, please

note this result is based on the wrong assumption that the constant of integration χ′ is a positive quantity

in the renormalization Eq.(5.22). The motivation of making this assumption that χ′ is positive is because

we want to obtain the positive-negative transition in non-elastic susceptibility. We hope to get some useful

results to explain the glass mechanical avalanche problem, but since the non-elastic susceptibility keeps

negative from the starting microscopic length scale, the assumption that χ′ is positive is not valid. It is at

this point that finally our theory is not able to explain the avalanche problem. )

This chapter is only a tentative work to apply our generic coupled block model into a new field, glass
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avalanche problem. Our model is only valid below the temperature of T ≈ 50K. However, the glass avalanche

experiments we are able to find are taken under room temperatures or glass transition temperatures[21, 43,

44, 39, 40] (T ∼ 300K). This might be another reason that our model is not applicable in the glass avalanche

problem.

Figure 5.10: Three external strain field directions to crack the glass. (1) pull or squeeze it in exx, eyy and
ezz strain; (2) pull in eyy strain direction while squeeze in ezz direction, or vice versa; (3) shear in yz plane,
please note ∂uy/∂z and ∂uz/∂y not necessarily the same.
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Chapter 6

Universal Meissner-Berret Ratio

It has been more than 50 years since the first experiment[1] by Zeller and Pohl showed at ultra-low tempera-

tures below 1K the thermal properties of amorphous solids behave entirely different from that of crystalline

counterparts. Anderson, Halperin and Varma[3] group and Phillips[19] independently developed a model

which was later known as tunneling-two-level-system (TTLS) model. It successfully explained several uni-

versal experimental results of amorphous solids which cannot be found in crystalline solids, e.g., linear heat

capacity, saturation, echoes, low-temperature heat conductivity etc. In TTLS model people assume he Hamil-

tonian of amorphous solid is the summation of elastic (phonon) part of Hamiltonian, a set of non-elastic

two-level-systems and phonon-TTLS couplings. The longitudinal and transverse phonon-TTLS coupling

constants γl,t are adjustable parameters. However, in 1987 it was Meissner and Berret’s experiment[45] first

pointed out the coupling constants γl,t are not arbitrary: below temperature T < 1K, the ratio between them

γl/γt turns out to lie between 1.44 and 1.84 for a wide variety of amorphous materials, regardless of their

chemical compounds and microscopic molecular structure. Such universality suggests coupling constants

γl,t come from more general mechanism which cannot be explained within TTLS model. In the rest of this

chapter, we use “Meissner-Berret Ratio” to represent for “the ratio γl/γt of TTLS coupling constant”.

We want to investigate the universality of Meissner-Berret ratio (γl/γt ≈ (1.44 ∼ 1.84)) by applying our

generic coupled block model. Within TTLS model the resonance energy absorption per unit time Ėl,t is

proportional to the square of coupling constant γl,t; in our model this energy absorption rate is proportional

to the imaginary part of non-elastic resonance susceptibility Imχres
l,t , which will be defined in details in

section 1. So if we want to prove the “universality of γl/γt”, we are actually proving the “universality of

Imχres
l /Imχres

t ” in our generic coupled block model, where χl is the non-elastic compression modulus, and

χt is non-elastic shear modulus.
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6.1 The Set up of Meissner-Berret Ratio Problem

Based on TTLS model the amorphous solid (glass) Hamiltonian with the coupling between two-level-system

and phonon strain field is written as[10]

Ĥ =
1

2

 E 0

0 −E

+
γl,t
2
Ak

 D M

M −D

 eiωt (6.1)

where the Hamiltonian is written in two-level-system energy eigenbasis with E =
√

∆2 + ∆2
0; D = ∆/E

and M = ∆0/E are diagonal and off-diagonal matrix elements[20] of coupling between two-level-system

and phonon strain field, and by definition they are no greater than 1; Ak is the product of phonon wave

amplitude A and wave number k; ω is the frequency of input external phonon; γl,t is the coupling constants

for longitudinal/transverse phonon strains. Because in glass there are a set of TTLS with different paramters

∆,∆0, γl,t, those TTLS in resonance with external phonon field E = ~ω can resonantly absorb phonon energy

which linearly increases with time t. Using Fermi golden rule the resonance energy absorption per unit time

is proportional to coupling constant squared:

Ėl,t =
π

2~
A2k2M2E tanh

(
1

2
β~ω

)
δ(E − ~ω)γ2

l,t ∝ γ2
l,t (6.2)

where we take phonon strain e = Ak and frequency ω to be identical for longitudinal and transverse input

phonons.

Since the set up of TTLS model is based on these parameters, within it we cannot explain the universality

of γl/γt. Therefore, we want to apply our generic coupled block model to consider their energy absorption

due to external phonon fields, and try to explore if the ratio of energy absorption due to longitudinal and

transverse phonon turns out to be universal or material independent.

Let us consider a block of glass with the dimension L much greater than the atomic distance a ∼ 10Å.

The elastic strain eij(~x, t) can be defined as the spacial derivative of displacement ~u(~x, t) for the matter

located at ~x: eij(~x, t) = 1
2

(
∂ui(~x,t)
∂xj

+
∂uj(~x,t)
∂xi

)
. We write Ĥtot for the total Hamiltonian of the glass block,

and expand it in orders of elastic intrinsic strain field eij(~x, t) in long wavelength limit:

Ĥtot = Ĥtot
0 +

∫
d3x

∑
ij

eij(~x)T̂ tot
ij (~x) +O(e2

ij) (6.3)

where the definition of stress tensor T̂ tot
ij (~x) is the first order derivative of Hamiltonian with respect to
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intrinsic strain field

T̂ tot
ij (~x) =

δĤtot

δeij(~x)
(6.4)

Next we can define stress-stress susceptibility, the derivative of stress tensor T̂ tot
ij with respect to intrinsic

strain field ekl. The susceptibility is taken for the glass block much larger than atomic distance:

χtot
ijkl(~x− ~x′; t− t′) =

δ〈T̂ tot
ij 〉(~x, t)

δekl(~x′, t′)
(6.5)

In the above definition the average operator 〈 〉 represents thermal average and quantum average. For an

arbitrary operator Â, 〈Â〉 =
∑
mZ−1e−βEm〈m, t|Â|m, t〉 with |m〉 the eigenbasis of Hamiltonian Ĥtot

0 and

Z the partition function with the temperature β = (kBT )−1.

Let us separate Hamiltonian Ĥtot into purely elastic part Ĥel and non-elastic part Ĥnon. We define a

new stress tensor which comes from non-elastic part of glass Hamiltonian:

Ĥnon = Ĥnon
0 +

∫
d3x

∑
ij

eij(~x)T̂ non
ij (~x) +O(e2

ij)

T̂ non
ij (~x) =

δĤnon

δeij(~x)
(6.6)

The non-elastic stress-stress susceptibility is then defined as χnon
ijkl(~x− ~x′; t− t′) = δ〈T̂ non

ij 〉(~x, t)/δekl(~x′, t′).

In the rest of this chapter we will always use Ĥ0, χijkl and T̂ij to stand for non-elastic part of Ĥnon
0 ,χnon

ijkl

and T̂ non
ij .

To calculate the space-averaged non-elastic stress-stress susceptibility χijkl(ω) = 1
L3

∫
d3xd3x′χijkl(~x −

~x′;ω) let’s denote |m〉 and Em to be the eigenbasis and eigenvalues of unperturbed non-elastic Hamiltonian

Ĥ0. The space-averaged susceptibility is volume independent. The eigenbasis |m〉 is a generic multiple-

level-system. By putting in external weak intrinsic strain field eij(~x, t) the system receives a perturbation∫
d3x

∑
ij eij(~x, t)T̂ij(~x). Using linear response theory on 〈T̂ij〉(~x, t) with respect to perturbation eij T̂ij , we

obtain (the imaginary part of resonance) non-elastic susceptibility as follows:

Imχres
ijkl(T, ω) =

∑
m

e−βEm

Z
Imχ

(m)
ijkl(ω)

Imχ
(m)
ijkl(ω) =

π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉

[−δ(En − Em − ω) + δ(En − Em + ω)] (6.7)
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Please note, that the above definition of imaginary susceptibility is self-consistent with (1) the definition

of susceptibility in “Theory of Quantum Liquids” by David Pines and Phillipe Nozieres[61] and (2) the

definition of non-elastic susceptibility in chapters 4 and 5 in this thesis. For ω > 0, the imaginary part of

non-elastic susceptibility is negative-definite (in the book by David Pines, the imaginary susceptibility is

negaitve-definite as well). Z =
∑
n e
−βEn is the partition functionn of unperturbed non-elastic Hamiltonian

Ĥ0, and we set ~ = 1. Because for arbitrary quantum number n we always have En ≥ E0, the definition

of Imχ
(m)
ijkl(ω) in Eq.(6.7) is only valid when Em ≥ ω ≥ −Em; when Em < ω or −Em > ω, in the above

definition of imaginary part of resonance susceptibility, one of the delta-functions will vanish. Therefore

when Em < ω or −Em > ω, the imaginary part of resonance susceptibility is simplified as follows,

Imχ
(m)
ijkl(ω) =

π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉 [+δ(En − Em + ω)] if ω < −Em

Imχ
(m)
ijkl(ω) =

π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉[−δ(En − Em − ω)] if ω > Em (6.8)

it is convenient to rewrite the imaginary resonance susceptibility Eq.(6.7) into reduced imaginary suscepti-

bility Im χ̃ijkl as follows for future use:

Imχres
ijkl(T, ω) =

(
1− e−β~ω

)
Im χ̃ijkl(T, ω)

Im χ̃res
ijkl(T, ω) =

∑
m

e−βEm

Z
Im χ̃

(m)
ijkl(ω)

Im χ̃
(m)
ijkl(ω) =

π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉[−δ(En − Em − ω)] (6.9)

Please note, that by definition Im χ̃res
ijkl(T, ω) is also a negative-definite quantity. Again, for an arbitrary

isotropic system the reduced non-elastic susceptibility must satisfy the genetic form

Im χ̃res
ijkl(T, ω) = ( Im χ̃res

l (T, ω)− 2 Im χ̃res
t (T, ω))δijδkl + Im χ̃res

t (T, ω)(δikδjl + δilδjk) (6.10)

According to the negative-definite property of Im χ̃res
ijkl(T, ω), the newly-defined quantities Im χ̃res

l,t (T, ω) are

negative-definite as well. Please note we use Im χ̃res
l,t (T, ω) to stand for imaginary part of reduced non-elastic

longitudinal/transverse susceptibility Im χ̃res non
l,t (T, ω). The real part of reduced non-elastic susceptibility

Re χ̃res
ijkl(T, ω) can be obtained by Kramers-Kronig relation from the imaginary part of it. Therefore after

the Kramers-Kronig transformation, the real part of reduced non-elastic susceptibility Re χ̃res
ijkl(T, ω) is also

a negative quantity.
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6.2 Virtual Phonon Exchange Interactions

From the definition Eq.(6.6), within the consideration of single generic block, non-elastic stress tensor T̂ij(~x)

and non-elastic unperturbed Hamiltonian Ĥ0 are simply generalizations from 2-level-systems to multiple-

level-system (see Eq.(6.1)). Nothing non-trivial will be obtained within single block considerations. However,

if we combine a set of such blocks together to form a super block, the interaction between single blocks will

be taken into account. Since the stress-strain interacting term eij T̂ij contains phonon field eij , the exchange

of virtual phonons will give an effective RKKY-type interaction between blocks via stress tensor products:

V̂ =

∫
d3xd3x′

∑
ijkl

Λijkl(~x− ~x′)T̂ij(~x)T̂kl(~x
′) (6.11)

where the coefficient Λijkl(~x − ~x′) has been carried out in Appendix (A). We call Eq.(6.11) non-elastic

stress-stress interaction. In the rest of this thesis we always use the approximation to replace ~x − ~x′ by

~xs − ~xs′ for the pair of the s-th and s′-th blocks, when ~xs denotes the center of the s-th block, and that∫
V (s) T̂ij(~x)d3x = T̂

(s)
ij is the uniform stress tensor of the s-th block. Also, from now on we use e

(s)
ij (t) to

denote the phonon strain field eij(~x, t) located at the s-th block. By combining N0 × N0 × N0 identical

L × L × L unit blocks to form a N0L × N0L × N0L super block, the Hamiltonian without external strain

field is written as

Ĥsuper =

N3
0∑
s

Ĥ
(s)
0 +

N3
0∑

s6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl (6.12)

From now on we make the important assumption that these block space-averaged stress tensors T̂
(s)
ij are

diagonal in spacial coordinates: Im χ̃
(ss′)
ijkl (T, ω) = 1

L3 〈T̂ (s)
ij T̂

(s′)
kl 〉 = Im χ̃ijkl(T, ω)δss′ .

Next, let us consider glass Hamiltonian with the presence of external strain field eij(~x, t) as a perturbation.

Please note that we have defined non-elastic stress tensor and non-elastic stress-stress susceptibility with

the help of intrinsic phonon strain field, in this section e(~x, t) stands for the external real phonon field. It

seems the Hamiltonian Eq.(6.12) simply adds a stress-strain interacting term
∑
s

∑
ij e

(s)
ij (t)T̂

(s)
ij . However,

more questions arise with the appearance of external strain field.

First of all these non-elastic stress tensors T̂
(s)
ij might be modified. A familiar example is that external

strain field can modify electric dipole moments by changing relative positions of positive-negative charge pairs

(to the leading order of external strain): ∆pi(t) =
∑
j(∂ui(t)/∂xj)pj where i, j are cartesian coordinates,

and ~u(~x, t) is phonon field. In principle we need to obtain the modification of stress tensors, ∆T̂
(s)
ij (t) to

the leading order in e
(s)
ij (t) for the resonance energy absorption contribution. However, we only qualitatively
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know the expansion of ∆T̂
(s)
ij (t) in orders of external strain e = Ak is ∆T̂

(s)
ij (t) ∼ e(t)T̂

(s)
ij +O(e2). Within

qualitative Taylor series technique we calculate the energy absorption contribution in Eq.(6.21). We will

show this energy absorption contribution is renormalization irrelevant at experimental length scale in section

4 via scaling analysis.

There is a second problem arising from external phonon strain field: the relative positions of unit blocks

~xs−~xs′ can be changed, resulting in the modification of stress-stress interaction coefficient Λ
(ss′)
ijkl (e). To the

first order expansion in external strain field the modification of Λ
(ss′)
ijkl is

∆Λ
(ss′)
ijkl =

(
xss′

∆xss′
∆Λ̃

(ss′)
ijkl − 3Λ̃

(ss′)
ijkl cos θss′

)
∆xss′

x4
ss′

∆Λ̃
(ss′)
ijkl =

{
3

4

[
2
(
njnlδik + njnkδil + ninkδjl + ninlδjk

)
cos θss′

−[(mjnl +mlnj)δik + (mjnk +mknj)δil + (mink +mkni)δjl + (minl +mlni)]δjk

]
−3α cos θss′

(
nknlδij + njnlδik + nknjδil + ninlδjk + ninkδjl + ninjδkl

)
+

3

2
α

[
mi (nlδjk + nkδjl + njδkl) +mj (nlδik + nkδil + niδkl)

+mk (nlδij + niδjl + njδil) +ml (nkδij + niδjk + njδik)

]
−15

2
α

(
minjnknl +mjninknl +mkninjnl +mlninjnk

)
+ 30αninjnknl cos θss′

}
∆xss′

xss′
(6.13)

where α = 1−c2t/c2l , xss′ = |~xs−~x′s|, ∆~xs = ~u(~xs, t), ∆xss′ = |∆~xs−∆~x′s|, cos θss′ = (∆~xss′ ·~xss′)/∆xss′xss′

is the angle between ∆~xss′ and ~xss′ , and ~m = ∆~xss′/∆xss′ is the unit vector of ∆~xss′ . Finally by taking

everything into account the total Hamiltonian for super block amorphous solid with the presence of external

weak strain field e(~x, t) reads

Ĥsuper(e) =

N3
0∑
s

Ĥ(s)
0 +

∑
ij

e
(s)
ij (t)T̂

(s)
ij


+

N3
0∑

s6=s′

∑
ijkl

(
Λ

(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl + ∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl + 2Λ

(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)
(6.14)

where e
(s)
ij (t) is real phonon field here.
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6.3 Second Order Perturbation Theory to Energy Absorption of

Super Block

In previous discussions we know within TTLS model the resonance energy absorption per unit time is

proportional to coupling constant squared: Ėl,t ∝ γ2
l,t. In this section we use generic coupled block

model to consider it from longitudinal and transverse phonons. We first consider a single-block amorphous

solid with dimension L × L × L, with the unperturbed Hamiltonian Ĥ0 and perturbation
∑
ij eij(t)T̂ij ,

so the total Hamiltonian is Ĥ = Ĥ0 +
∑
ij eij(t)T̂ij . We denote |n〉 and En to be the n-th eigenstate

and eigenvalue of unperturbed Hamiltonian Ĥ0. Thus the single-block energy absorption rate is Ėsingle
l,t =

∂
∂t

∑
n
e−βEn

Z

(
〈nI , t|ĤI(t)|nI , t〉 − 〈n|Ĥ0|n〉

)
, where |nI , t〉 = e−

i
~
∫ t
−∞

∑
ij eij(t)T̂ij(I)(t

′)dt′ |n〉 is the interaction

picture wavefunction, and ĤI(t) and T̂ij(I)(t
′) are interaction picture operators. For an arbitrary interaction

picture operator ÂI(t) we have ÂI(t) = eiĤ0t/~Â(t)e−iĤ0t/~. The resonance energy absorption per unit time

of single-block is

Ėsingle
l,t = −2L3A2k2ω

(
1− e−β~ω

)
Im χ̃res

l,t (T, ω) (6.15)

For details of calculations, please see Appendix (C). In the above result, according to the negativity of

Im χ̃res
l,t (T, ω), the single block energy absorption rate is a positive quantity. Ak is the strength of external

strain field eij , ω is phonon frequency. With the argument by D. C. Vural and A. J. Leggett[25] and the

experiment by R. O. Pohl, X. Liu and E. Thompson[34] we assume that within a certain extent of frequency

ω < ωc below 1K the longitudinal and transverse imaginary susceptibility can be approximately treated

as a constant of frequency Im χ̃res
l,t (T, ω) ≈ Im χ̃res

l,t (T ). In section 4, Eq.(5.27) we will discuss the order of

magnitude of ωc in details. Given the external phonon field amplitude A and wave number k the energy

absorption per unit time for single-block amorphous solid is proportional to longitudinal and transverse

imaginary susceptibility Im χ̃res
l,t (T ): Ėsingle

l /Ėsingle
t = Im χ̃res

l (T )/ Im χ̃res
t (T ). Compare this with energy

absorption rate from TTLS model, i.e., Ėsingle
l /Ėsingle

t = γ2
l /γ

2
t , we get the relation between imaginary

susceptibility and coupling constant Im χ̃res
l (T )/ Im χ̃res

t (T ) = γ2
l /γ

2
t .

Within single-block considerations one cannot extract more information from generic block model than

TTLS. However, the exchange of virtual phonons allows non-elastic stress-stress interaction between blocks.

Let’s think about a set of N3
0 identical single blocks with the dimension L×L×L combined together to form

a super block N0L ×N0L ×N0L. The presence of many-block interaction V̂ affects the energy absorption

of super block. To explore this problem we follow three steps: (1) turn off stress-stress (many-block)
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interaction V̂ . These N3
0 identical single blocks are non-interacting. Thus the Hamiltonian for super block

is the summation of single block Hamiltonians Ĥ0 =
∑
s Ĥ

(s)
0 , where s denotes the s-th block which runs

over s = 1, 2, ...N3
0 . We denote |n〉 =

∏
s |n(s)〉 and En =

∑
sE

(s)
n to be the n-th eigenstate and eigenvalue

for Hamiltonian Ĥ0; (2) turn on non-elastic stress-stress interaction V̂ =
∑
ss′
∑
ijkl Λ

(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl as static

perturbation. The eigenstate and eigenvalue change as follows:

|n∗〉 = |n〉+
∑
l 6=n

〈l|V̂ |n〉
En − El

|l〉+ ... E∗n = En + 〈n|V̂ |n〉+
∑
l 6=n

|〈l|V̂ |n〉|2

En − El
+ ... (6.16)

where |n∗〉 and E∗n are the n-th eigenstate and eigenvalue for Ĥ0 + V̂ ; (3) take Ĥ0 + V̂ as static Hamiltonian

of interaction picture, we turn on time-dependent perturbation

Ĥ ′(t) =
∑
s

∑
ij

e
(s)
ij (t)T̂

(s)
ij +

∑
ss′

∑
ijkl

(
∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl + 2Λ

(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)
(6.17)

to calculate the energy absorption rate of super block Hamiltonian Ĥ0 + V̂ :

Ėsuper
l,t (L) =

∂

∂t

∑
n

e−βE
∗
n

Z∗
(
〈n∗I , t|Ĥ0I(t) + V̂I(t)|n∗I , t〉 − 〈n∗|Ĥ0 + V̂ |n∗〉

)
(6.18)

where Z∗ =
∑
n e
−βE∗n is the distribution function for static Hamiltonian Ĥ0+V̂ ; |n∗I , t〉 = e−

i
~
∫ t
−∞ Ĥ′I(t′)dt′ |n∗〉

is the interaction picture wavefunction, where Ĥ ′(t) =
∑
s

∑
ij e

(s)
ij (t)T̂

(s)
ij ; Ĥ ′I(t), V̂I(t) and Ĥ0I are interac-

tion picture operators: for arbitrary operator Â(t) the interaction picture version is

ÂI(t) = ei(Ĥ0+V̂ )t/~Â(t)e−i(Ĥ0+V̂ )t/~ (6.19)

By expanding up to the second order in phonon external strain field eij(~x, t) there are four terms in

total energy absorption rate Eq.(6.18). Three of them come from perturbation Ĥ ′(t), the last one comes

from non-elastic stress-stress interaction V̂ . We first consider the energy absorption rate due to pertur-

bation Ĥ ′(t). It contains three terms, one is quadratic in operator
∑
s

∑
ij e

(s)
ij (t)T̂

(s)
ij , giving the en-

ergy absorption rate Ė
(1)
l,t (L) = N3

0 Ė
single
l,t (L). The second term is quadratic in the expectation value of
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∑
ss′
∑
ijkl ∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl :

Ė
(2)
l (L) =

(
1− e−β~ω

) [
(55 + 176α+ 688α2) + 44(1 + 4α+ 4α2)x(T, ω)

]
A2k2N3

0 lnN0

40π3(ρc2t )
2
ω

∫
Im χ̃res

t (T,Ω) Im χ̃res
t (T, ω − Ω)dΩ

Ė
(2)
t (L) =

(
1− e−β~ω

) [
(35 + 112α+ 656α2) + 28(1 + 4α+ 4α2)x(T, ω)

]
A2k2N3

0 lnN0

40π3(ρc2t )
2
ω

∫
Im χ̃res

t (T,Ω) Im χ̃res
t (T, ω − Ω)dΩ (6.20)

For details of calculations, please see Appendix (C). Please note, that the above two results are of the

“quadratic order” of the imaginary part of resonance susceptibilities. So they are positive quantities. α =

1− c2t
c2l

and x(T, ω) =
Im χ̃res

l (T,ω)
Im χ̃res

t (T,ω) − 2. Again we assume Im χ̃res
l,t (T, ω) ≈ Im χ̃res

l,t (T ) is weakly dependent on

frequency within a certain extent ω < ωc for T < 1K. For details of discussions regarding ωc, please refer to

section 4, Eq.(6.25). Eq.(6.20) are given by the convolution between Im χ̃res
t (T,Ω) and Im χ̃res

t (T, ω − Ω).

By substituting qualitative first order expansion ∆T̂ij ∼ eT̂ij + O(e2) the energy absorption rate due to

external phonon is

Ė
(3)
l,t (L) ∼ Kl,t

(
1− e−β~ω

) A2k2N3
0 lnN0

π3(ρc2t )
2

ω

∫
Im χ̃res

t (T,Ω) Im χ̃res
t (T, ω − Ω)dΩ (6.21)

For details of calculations, please see Appendix (C). The above result is also positive. Kl,t are constants for

longitudinal and transverse cases, of order ∼ 1. By comparing Eq.(6.20) and (6.21), the energy absorption

from ∆Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl and Λ

(ss′)
ijkl ∆T̂

(s)
ij T̂

(s′)
kl have the same scale dependence. In the next section we will

demenstrate both of them are renormalization irrelevant at experimental length scale. Finally we consider

the fourth contribution of energy absorption from non-elastic stress-stress interaction V̂ : by expanding it to

the second order of eij(~x, t), the energy absorption rate contribution from V̂ is given as follows

V̇l,t(L) =
(
1− e−β~ω

) 4N3
0L

3A2k2 lnN0

ρc2t,l
ω Im χ̃res

t,l (T, ω)Re χ̃res
t,l (T, ω) (6.22)

where we define “real part reduced non-elastic resonance susceptibility”, Re χ̃res
l,t (T, ω) = 2

πP
∫∞

0

Ω Im χ̃res
l,t (T,Ω)dΩ

Ω2−ω2 .

For details of calculations, please see Appendix (C). Also please refer to Appendix (C) for the details of

definitions of Re χ̃res
l,t (T, ω). Since both of real and imaginary parts of resonance susceptibilities are neg-

ative quantities, the above many-body interaction’s contribution to energy absorption is positive. The

total energy absorption of super block is given by the summation of the above four terms Ėsuper
l,t (L) =
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Ė
(1)
l,t (L) + Ė

(2)
l,t (L) + Ė

(3)
l,t (L) + V̇l,t(L). Because “super block” at length scale L is the “single block” at

length scale N0L, we have the important relation Ėsingle
l,t (N0L) = Ėsuper

l,t (L). Super block energy absorp-

tion ratio due to longitudinal and transverse input phonon is therefore Ėsingle
l (N0L)/Ėsingle

t (N0L). The

Meissner-Berret ratio at length scale N0L is γ2
l /γ

2
t = Ėsingle

l (N0L)/Ėsingle
t (N0L) which is different from that

at length scale L, γ2
l /γ

2
t = Ėsingle

l (L)/Ėsingle
t (L). This implies that Meissner-Berret ratio is not a constant

with the increase of length scale because of non-elastic stress-stress interaction. To study the universality of

Meissner-Berret ratio we need to obtain energy absorption rate Ėl,t at experimental length scale R.

6.4 Renormalization Procedure of Susceptibility

In this section we want to get the energy absorption rate at experimental length scale by repeaing renormal-

ization procedure of combining single blocks into a super block. From the argument by D. C. Vural and A.

J. Leggett[25] we start the renormalization procedure at length scale L1 ∼ 50Å. Since the final result only

logarithmically depends on this choice, it will not be sensitive. In the n-th step renormalization, we combine

N3
0 single blocks with the dimension Ln × Ln × Ln to form a n-th step super block with the dimension

N0Ln × N0Ln × N0Ln. In the next step single block dimension is Ln+1 = N0Ln. By plugging in a weak

phonon, the n-th step single and super block energy absorption rates are Ėsingle
l,t (Ln) and Ėsuper

l,t (Ln). From

the relation Ėsuper
l,t (Ln) = Ėsingle

l,t (Ln+1) we get the following recursion of energy absorption rate from step

n to n+ 1:

N3
0 Ė

single
l,t (Ln) + Ė

(2)
l,t (Ln) + Ė

(3)
l,t (Ln) + V̇l,t(Ln) = Ėsingle

l,t (Ln+1) (6.23)

It is convenient to define “energy absorption rate per volume”: ε̇single
l,t (Ln) = L−3

n Ėsingle
l,t (Ln), ε̇

(2,3)
l,t (Ln) =

L−3
n+1Ė

(2,3)
l,t (Ln), v̇l,t(Ln) = L−3

n+1V̇l,t(Ln) and ε̇single
l,t (Ln+1) = L−3

n+1Ė
single
l,t (Ln+1). Repeat renormalization

procedure logN0
(R/L1) times from unit block length scale L1 ∼ 50Å to experimental length scale R, the

energy absorption rate per volume is

ε̇l,t(R) =
(
ε̇l,t(L1) + ε̇

(2)
l,t (L1) + ε̇

(3)
l,t (L1)

)
+ v̇l,t logN0

(
R

L1

)
(6.24)
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First of all we compare the volume dependence of ε̇
(2)
l,t (L), ε̇

(3)
l,t (L) and v̇l,t:

ε̇
(2,3)
l,t (L)

v̇l,t
=

1

ρc2l,tL
3

∫
Im χ̃res

l,t (T,Ω) Im χ̃res
l,t (T, ω − Ω)dΩ

Im χ̃res
l,t (T, ω)

∫ Ω Im χ̃res
l,t (Ω)dΩ

Ω2−ω2

∼ 1

ρc2l,tL
3

ωc∫ ωc ΩdΩ/(Ω2 − ω2)

∼ 1

ρc2l,tL
3

ωc
ln(ωc/ω)

(6.25)

where L is length scale. In the above result we use the assumption that susceptibility Im χ̃l,t(T, ω) is roughly

a constant of frequency for ω < ωc below temperature 1K. ε̇
(2,3)
l,t (L) and v̇l,t have the same unit (energy per

volume per unit time), however the upper limit of integrals ωc in Eq.(6.25) does not increase with the

increase L, ε̇
(2)
l,t (L) and ε̇

(3)
l,t (L) are L−3 volume dependent while v̇l,t is scale invariant. With the increase

of length scale eventually v̇l,t will be greater than ε̇
(2,3)
l,t (L) beyond critical length Lc. We use ultrasonic

frequency ω ∼ 106rad/s, amorphous solid mass density ρ ∼ 103kg/m3 and speed of sound c ∼ 103m/s to

estimate the critical length scale when ε̇
(2,3)
l,t (L) and v̇l,t become comparable. The upper limit of ωc is of order

1015rad/s corresponding to temperature 104K, so the largest possible Lc is of order ∼ 10Å, even smaller

than starting length of renormalization procedure L1 ∼ 50Å. Therefore throughout the entire process of

renormalization, ε̇
(2,3)
l,t (L) is always negligible compared to v̇l,t. We conclude ε̇

(2,3)
l,t (L1) is renormalization

irrelevant in Eq.(6.24).

Next let us compare the renormalization relevance between ε̇l,t(L1) and v̇l,t logN0
(R/L1). The input

ultrasonic phonon frequency usually takes the order ∼ 106Hz, corresponding to wavelength R ∼ 10−3m.

Therefore the experimental length scale R is the wavelength of external phonon, because it is smaller than

the actual size of amorphous samples. With this choice lnN0 logN0
(R/L1) = ln(R/L1) ∼ 20 � 1, so we

assume the energy absorption rate per volume of unit block ε̇l,t(L1) is much smaller than that from stress-

stress interactions v̇l,t logN0
(R/L0). At experimental length scale the energy absorption rate is dominated

by v̇l,t, independent of material microscopic nature. The ratio between longitudinal and transverse energy

absorption rate per volume at experimental length scale is given as follows:

ε̇l(R)

ε̇t(R)
=
v̇l
v̇t

(6.26)

Note the r.h.s. of Eq.(6.26) is functional of Im χ̃res
l,t (T, ω); for the l.h.s., at experimental length scale the

entire amorphous sample can be treated as a huge block, with the energy absorption rate per volume

ε̇l,t(R) = 2A2k2ω(1 − e−β~ω) Im χ̃res
l,t (T, ω). So the l.h.s. of Eq.(6.26) equals to

Im χ̃res
l (T,ω)

Im χ̃res
t (T,ω) . Eq.(6.26)

together with Eq.(6.22) is a self-consistent equation for Im χ̃res
l,t (T, ω). The only parameter enters it is speed

of sound ratio cl/ct and it is a non-adjustable quantity. The self-consistent equation for Meissner-Berret

69



ratio
√

Im χ̃res
l (T, ω)/Im χ̃res

t (T, ω) turns out to be

Im χ̃res
l (T, ω)

Im χ̃res
t (T, ω)

=
c2t
c2l

Im χ̃res
l (T, ω)Re χ̃res

l (T, ω)

Im χ̃res
t (T, ω)Re χ̃res

t (T, ω)
⇒ Re χ̃res

l (T, ω)

Re χ̃res
t (T, ω)

=
c2l
c2t

(6.27)

Eq.(6.27) only tells us that the ratio between real part of non-elastic resonance susceptibility is sound

velocity ratio squared. But please note that the ratio between Re χ̃res
l (T, ω) and Re χ̃res

t (T, ω) turns out to

be always c2l /c
2
t , regardless of their frequency. We can obtain the imaginary part susceptibility ratio via

Kramers-Kronig relation from this frequency-independent property:

Im χ̃res
l,t (T, ω) = − 2

π
P
∫ ∞

0

ωRe χ̃res
l,t (T,Ω)

Ω2 − ω2
dΩ ⇒ Im χ̃res

l (T, ω)

Im χ̃res
t (T, ω)

=
c2l
c2t

(6.28)

Finally we get the ratio between longitudinal and transverse reduced version of imaginary non-elastic suscep-

tibilities:
√

Im χ̃res
l (T )/ Im χ̃res

t (T ) = cl/ct (and so as
√

Imχres
l (T )/ Imχres

t (T ) = cl/ct). On the other hand

by comparing TTLS energy absorption Ėl,t ∝ γ2
l,t we have

√
Im χ̃res

l (T )/ Im χ̃res
t (T ) = γl/γt, so theoretical

Meissner-Berret ratio γl/γt = cl/ct.

This result is in fairly good agreement with 13 materials we list below. Experimental coupling constants

γl,t, Meissner-Berret ratio (γl/γt)
exp

and speed of sound cl,t are from the data by Meissner and Berret[45];

(γl/γt)
theo

is our self-consistent result:

Material γl(eV) γt(eV) (γl/γt)
exp

cl(km/s) ct(km/s) (γl/γt)
theo

= cl/ct
theo−exp

exp

a-SiO2 1.04 0.65 1.60 5.80 3.80 1.53 −4.38%

BK7 0.96 0.65 1.48 6.20 3.80 1.63 +10.1%

As2S3 0.26 0.17 1.53 2.70 1.46 1.85 +20.9%

LaSF-7 1.46 0.92 1.59 5.64 3.60 1.57 −1.26%

SF4 0.72 0.48 1.50 3.78 2.24 1.69 +12.7%

SF59 0.77 0.49 1.57 3.32 1.92 1.73 +10.2%

V52 0.87 0.52 1.67 4.15 2.25 1.84 +10.4%

BALNA 0.75 0.45 1.67 4.30 2.30 1.87 +12.0%

LAT 1.13 0.65 1.74 4.78 2.80 1.71 −1.72%

a-Se 0.25 0.14 1.79 2.00 1.05 1.90 +6.14%

Zn-Glass 0.70 0.38 1.84 4.60 2.30 2.00 +8.70%

PMMA 0.39 0.27 1.44 3.15 1.57 2.01 +39.6%

PS 0.20 0.13 1.54 2.80 1.50 1.87 +21.4%
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Among 13 materials, the theoretical results of As2S3, PMMA and PS deviate more than 20% compared to

their experimental measurements. We give below a further discussion on these three materials. For now

let’s investigate the statistical significance between theoretical and experimental Meissner-Berret ratio. We

use least square method. For 13 materials including large deviations of As2S3, PMMA and PS, the fitted

linear relation is
(
γl
γt

)theo

= 1.102
(
γl
γt

)exp

with the correlation coefficient r = 0.261, which means linear

fitting is not good for them; for 10 materials excluding As2S3, PMMA and PS, the fitted linear relation is(
γl
γt

)theo

= 1.061
(
γl
γt

)exp

with the correlation coefficient r = 0.745, which means except for large deviations

As2S3, PMMA and PS, cl/ct is a moderate fitting for other 10 materials. We plot these data as follows,

where x and y-axis represent experimental and theoretical Meissner-Berret ratio:

Figure 6.1: Least square fitting for experimental-theoretical Meissner-Berret ratio. The linear fitting is
y = 1.06x; correlation coefficient r = 0.261 for 13 materials’ data; r = 0.745 for 10 materials’ data excluding
PMMA, PS and As2S3. The dashed line is our anticipation on theory (γl/γt)

exp = cl/ct.

Instead of resonance energy absorption measurements, the original experiment of Meissner-Berret ratio[45]

was to measure relative speed of sound shift to temperaure, ∆cl,t/cl,t = Cl,t ln(T/T0), where the experimen-

tal measured constant Cl,t is derived by TTLS parameters Cl,t = P̄ γ2
l,t/ρc

2
l,t. The definition of P̄ is[10]: in

TTLS model the diagonal matrix element ∆ and tunneling parameter λ = ln(~Ω/∆0) are assumed to be

independent of each other and to have a constant distribution P (∆, λ)d∆dλ = P̄ d∆dλ. By measuring Cl,t,

cl,t and P̄ one can experimentally calculate coupling constants γl,t. However, it may not always be true that

∆, λ exactly obeys constant distribution. We search experimental data for low-temperature specific heat:

As2S3 measured by R. B. Stephens[48]; PMMA and PS measured by R. B. Stephens, G. S. Cieloszyk and

G. L. Salinger[49]; PMMA measured by R. C. Zeller and R. O. Pohl[1]. At temperatures T < 1K their

heat capacity temperature dependences largely deviate from Cv(T ) = AT + BT 3, where A and B are ex-

perimentally determined parameters. Their huge deviations from “linear temperature dependence” implies

that TTLS assumptions may not be a suitable description below 1K, especially when meansuring quantities
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sensitive to distribution constant P̄ like γl,t. We think this might be one of the reasons why theoretical

Meissner-Berret ratio γl/γt for As2S3, PMMA and PS deviate more than 20% from experimental data.

We also suggest the possibility that As2S3, PMMA and PS may not possess universal low-temperature

glass properties observed in typical glass materials (e.g. a-SiO2, (KCl)x(KCN)1−x etc.): for example,

quadratic temperature dependence of thermal conductivity κ ∼ T 2 below T < 1K[48]; universal ther-

mal conductivity plateau between 4K and 20K[48]; universal sound velocity shift discussed in chapter 4[33],

and so on. We hope more experiments of low-temperature thermal and acoustic properties on these three

materials could be carried out to test our predictions.

6.5 The Modification of Meissner-Berret Ratio from Electric

Dipole-Dipole Interactions

Electrc dipole moments interact with each other via r−3 long range interaction similar with non-elastic

stress-stress interactions. In this section we take electric dipole moments as operators which interact like

non-elastic stress stress interactions. The input mechanical waves (not electromagnetic waves) can change

the relative positions ~xs − ~xs′ of dipole moments at ~xs and ~xs′ ; on the other hand, electric dipole moment

is proportional to the separation of positive-negative charges: ~p = q~l. Thus external phonons also modify

dipole moments by changing charge separation ~l → ~l + ∆~l. Finally, external phonons will change electric

dipole interations, resulting in the change of amorphous material energy absorption.

However, as we will see at the end of this section, the influence of electric dipole-dipole interaction on

phonon energy absorption is renormalization irrelevent, because of the following reason. From section 3,

we know the non-elastic stress-stress interaction V̂ has four contributions to the resonant phonon energy

absorption rate Ėl,t: Eqs.(6.20), Eq.(6.21) and Eq.(6.22). Eqs.(6.20) and Eq.(6.21) are renormalization

irrlevant, while Eq.(6.22) is the only renormalization relevant term for phonon energy absorption. Let us

give a short review on Eqs.(6.20, 6.21, 6.22): Eqs.(6.20) is generated by the change of non-elastic stress-stress

interaction coefficient ∆Λ
(ss′)
ijkl (e) = Λ

(ss′)
ijkl (e) − Λ

(ss′)
ijkl due to external strain field; Eq.(6.21) is generated by

the change of non-elastic stress tensor operator ∆T̂ij = T̂ij(e)−T̂ij . These two terms generate phonon energy

absorptions which are renormalization irrelevant; Eq.(6.22) is generated by the single block wave function

change δ|n〉 due to the coupling between stress tensor and strain field eij T̂ij . This term is renormalization

relevant. When we consider the resonant phonon energy absorption contribution from electric dipole-dipole

interaction, we get the following contributions: (1) electric dipole-dipole interaction coefficient µ
(ss′)
ij could

be modified by external phonon field, thus we have the change of interaction coefficient ∆µ
(ss′)
ij = µ

(ss′)
ij (e)−
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µ
(ss′)
ij . The contribution to phonon energy absorption from this term is renormalization irrelevant, which

is similar with Eq.(6.20); (2) electric dipole moments p̂i could be changed by external phonon strain field,

resulting in the change ∆p̂i = p̂i(e)− p̂i. The phonon energy absorption contribution from this term is also

renormalization irrelevant, similar to Eq.(6.21); (3) while elastic strain field can couple to non-elastic stress

tensor with eij T̂ij and electric field can couple to electric dipole moment with −Eip̂i, there is not a term,

that elastic strain field can couple to electric dipole moment. The phonon resonant energy absorption from

the coupling eij T̂ij is the renormalization relevant term, which does not exist in electric dipole moments

with the coupling to external phonon strain field.

Let’s first qualitatively compare the order of magnitude for the influence of phonon energy absorption

between electric dipole interaction and non-elastic stress-stress interaction. We use M to denote the value of

off-diagonal matrix element for two-level-system and use n0 to denote the density of states for TTLS system.

We also use µ to denote the electric dipole moment and use ne to denote the density of states for electric

dipole two-level-system. In the theory of tunneling-two-level-system model, the quantity n0M
2

ρc2 represents

the average of the imaginary part of non-elastic resonance susceptibility of two-level-system divided by ρc2,

while neµ
2

ε represents the average of the imaginary part of dielectric resonance susceptibility divided by

ε. On the other hand, the quantities n0M
2

ρc2 and neµ
2

ε correspond to Imχt
ρc2t

and Imχ
ε in our generic coupled

block model. Since the “resonant phonon energy absorption rate” Ėl,t is proportional to
(

Imχl,t
ρc2l,t

)2

via non-

elastic stress-stress interaction, and is proportional to
(

Imχ
ε

)2

via electric dipole-dipole interaction (we will

prove this below), the ratio between n0M
2

ρc2 and neµ
2

ε gives us the order of magnitude comparison on phonon

energy absorption rate via non-elastic stress-stress interaction and electric dipole-dipole interaction. With

the measurement from S. Hunklinger and M. V. Schickfus[46] we discuss the ratio between n0M
2

ρc2 and neµ
2

ε

for two dielectric materials, BK7 and SiO2 below.

For BK7, TTLS parameters are of order n0M
2 ∼ 108erg/cm3; dielectric constant ε = 3.7; neµ

2 = 6×10−3;

mass density ρ = 2.51g/cm3; speed of sound c = 6.5× 105cm/s. From these data we find the following ratio

between electric dipole-dipole interaction and non-elastic stress-stress interaction is (neµ
2/ε : n0M

2/ρc2) ∼

(1.62 × 10−3 : 0.94 × 10−4), which means the influence on phonon energy absorption due to electric dipole

interaction is one order of magnitude greater than that of non-elastic stress-stress interaction for BK7.

For SiO2, TTLS parameters n0M
2 = 2.04 × 108erg/cm3; ε = 3.81; electric dipole moment parameters

neµ
2 = 1.46 × 10−4; ρ = 2.2g/cm3; c = 5.8 × 105cm/s; the strength of electric dipole interaction versus

non-elastic stress-stress interaction is (neµ
2/ε : n0M

2/ρc2) ∼ (3.83 × 10−5 : 2.76 × 10−4), which means for

SiO2, the influence of phonon energy absorption due to electric dipole interaction is one order of magnitude

smaller than that of non-elastic stress-stress interaction.
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The above qualitative arguments suggest electric dipole interaction in dielectric materials is roughly of

the same order of non-elastic stress-stress interactions. However, after a detailed calculation we demonstrate

the energy absorption contribution of electric dipole interaction is renormalization irrelevant. We use the

approximation to replace ~x − ~x′ by ~xs − ~xs′ for the pair of the s-th and s′-th blocks, when ~xs denotes the

center of the s-th block, and
∫
V (s) p̂i(~x)d3x = p̂

(s)
i is the uniform electric dipole moment for s-th block. By

combining N0×N0×N0 identical L×L×L unit blocks to form a N0L×N0L×N0L super block, the electric

dipole interaction

V̂dipole =

N3
0∑

s6=s′

3∑
i,j=1

µ
(ss′)
ij p̂

(s)
i p̂

(s′)
j (6.29)

in the above equation we define the coefficient µ
(ss′)
ij

µ
(ss′)
ij =

(δij − 3ninj)

8πε|~xs − ~x′s|3
(6.30)

in Eq.(6.29, 6.30) i, j runs over 1, 2, 3 cartesian coordinates and ~n is the unit vector of ~xs − ~xs′ . The input

phonon field ~u(~x, t) can modify (1) dipole interaction coefficient µ
(ss′)
ij by changing relative positions of blocks

~xs − ~xs′ . We deonote it ∆µ
(ss′)
ij :

∆µ
(ss′)
ij =

3∆xss′

8πεx4
ss′

[(5ninj − δij) cos θss′ − (njmi + nimj)] (6.31)

where xss′ = |~xs − ~x′s|, ∆~xs = ~u(~xs, t), ∆xss′ = |∆~xs − ∆~x′s|, cos θss′ = (∆~xss′ · ~xss′)/∆xss′xss′ and

~m = ∆~xss′/∆xss′ . (2) Phonon field can also change dipole operators p̂(s), because positive negative charges

in electric dipole are driven from original positions ~xs± 1
2
~ls to new positions ~xs± 1

2
~ls+~u(~xs± 1

2
~ls, t), leading

to the change of dipole operators ∆p̂(s)

∆p̂i(~x, t) =
∑
k

∂ui(~x, t)

∂xk
p̂k(~x) (6.32)

Therefore with the presence of external phonon field the total electric dipole interaction is given by

V̂dipole(e) =

N3
0∑

s6=s′

3∑
i,j=1

(
µ

(ss′)
ij p̂

(s)
i p̂

(s′)
j + ∆µ

(ss′)
ij (t)p̂

(s)
i p̂

(s′)
j + 2µ

(ss′)
ij ∆p̂

(s)
i (t)p̂

(s′)
j

)
(6.33)
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Let’s define electric dipole-dipole susceptibility χij(T, ω) for future use:

Imχij(T, ω) =
(
1− e−β~ω

)
Im χ̃ij(T, ω)

Imχ̃ij(T, ω) =
∑
m

e−βEm

Z
Im χ̃

(m)
ij (ω)

Imχ̃
(m)
ij (ω) =

π

L3

∑
n

〈m|p̂(s)
i |n〉〈n|p̂

(s)
j |m〉[−δ(En − Em − ω)] (6.34)

Since the dipole-dipole susceptibility must be invariant under SO(3) group transformations, it takes the

generic form Im χ̃ij(T, ω) = Im χ̃(T, ω)δij .

To consider energy absorption we follow two steps: (1) turn off stress-stress interaction V̂ and dipole

interaction V̂dipole. These N3
0 non-interacting blocks’ Hamiltonian is Ĥ0 =

∑
s Ĥ

(s)
0 . We denote |n〉 =∏

s |n(s)〉 and En =
∑
sE

(s)
n to be the eigenstates and eigenvalues for Ĥ0; (2) turn on time-dependent

perturbation

Ĥ ′(t) =
∑
s

∑
ij

e
(s)
ij (t)T̂

(s)
ij +

∑
ss′

∑
ijkl

(
∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl + 2Λ

(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)
+

∑
ss′

∑
ij

(
∆µ

(ss′)
ij (t)p̂

(s)
i p̂

(s′)
j + 2µ

(ss′)
ij ∆p̂

(s)
i (t)p̂

(s′)
j

)
(6.35)

and static interaction V̂ + V̂dipole to consider energy absorption of super block Hamiltonian Ĥ0 + V̂ + V̂dipole:

Ėsuper
l,t (L) = ∂t

∑
n

e−βEn

Z

(
〈nI , t|Ĥ0 + V̂I(t) + Ĥ ′I(t)|nI , t〉 − 〈n|Ĥ0 + V̂ |n〉

)
(6.36)

with |nI , t〉 = e−
i
~
∫ t
−∞ Ĥ′I(t′)dt′ |n〉, and Ĥ ′I(t) and V̂I(t) are interaction picture wavefunction and operators

we discussed previously. Besides the energy absorption terms we have obtained in Eq.(6.20), Eq.(6.21) and

Eq.(6.22), there is one extra term from electric dipole interactions. Expand the extra contribution to energy

absorption in orders of eij(~x, t) the first order vanishes; the second order expansion is

Ėdipole
l =

94A2k2N3
0 lnN0

960π2ε2
(
1− e−β~ω

)
ω

∫
Im χ̃(T,Ω) Im χ̃(T, ω − Ω)dΩ

Ėdipole
t =

53A2k2N3
0 lnN0

960π2ε2
(
1− e−β~ω

)
ω

∫
Im χ̃(T,Ω) Im χ̃(T, ω − Ω)dΩ (6.37)

Next we need to plug the above contribution, Eq.(6.37) into the renormalization procedure of phonon

resonant energy absorption between differnet length scales, Eq.(6.23). We repeat the RG steps, and obtain

experimental length scale self-consistent equation for Meissner-Berret ratio γl/γt =
√

Im χ̃l(T )/ Im χ̃t(T ).

However, let’s stop for the moment and discuss the scale dependence of Eq.(6.37). It is convenient to define

75



“energy absorption per volume” ε̇dipole
l,t = (N0L)−3Ėdipole

l,t . From the qualitative order of magnitude analysis,

ε̇dipole
l,t has the same order of magnitude as ε̇

(2,3)
l,t (see Eq.(6.20, 6.21) divided by volume). It also has the

same volume dependence as ε̇
(2,3)
l,t . To illustrate this property, let us compared the quantities ε̇dipole

l,t and v̇l,t

(see Eq.(6.22) divided by volume) as follows

ε̇dipole
l,t

v̇l,t
≈

( Im χ̃)2

ε2 ωc
L3( Im χ̃t)2

ρc2l,t
ln(ωc/ω)

(6.38)

where in the above result we assume dipole-dipole susceptibility Im χ̃(T, ω) ≈ Im χ̃(T ) is roughly a constant

of frequency within a certain range ω < ωc. Eq.(6.38) indicates that the term ε̇dipole
l,t is inversely proportional

to L3 when compared to v̇l,t. Since ε̇dipole
l,t decreases cubically with the increase of length scale, we assume

beyond the critical length scale Lc =
(

(Im χ̃)2ρc2l,tωc
ε2(Im χ̃t)2 ln(ωc/ω)

)1/3

, v̇l,t becomes much greater than ε̇dipole
l,t . The

upper limit of Lc can be obtained by letting ωc to take an extremely high value, ωc ∼ 1015rad/s. We

obtain Lc ∼ 10Å, even smaller than the starting length scale of real space renormalization procedure 50Å.

Throughout the entire renormalization procedure the influence of electric dipole-dipole interaction on phonon

resonant energy absorption is always negligible.
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Chapter 7

Conclusions

In this thesis we develop a generic coupled block model to explore three universal properties of low-

temperature glass. They are: universal shift on glass sound velocity and dielectric constant, mechanical

avalanche phenomena and universal Meissner-Berret ratio. The assumption we specify in this model is the

correlation function (susceptibility) between non-elastic stress tensors and eletric dipole moments are diag-

onal in spacial coordinates: 〈T̂ (s)
ij T̂

(s′)
kl 〉 = χijklδss′ , 〈p̂(s)

i p̂
(s′)
j 〉 = χijδss′ . The exchange of virtual phonon

and photon allows 1/r3 long-range interactions. With the increase of system size, the increasing number

of unit blocks compensate 1/r3 decreasing behavior. The number of interactions increases quadratically

with unit block numbers, while the number of single block Hamiltonian is proportional to it. Eventually at

large length scale many body interaction dominate glass Hamiltonian. We use renormalization technique to

iterate non-elastic and dielectric susceptibilities from small length scale to experimental length scale.

We want to set up a generic glass model to prove the universal slope ratio of temperature dependence on

sound velocity shift, in relaxation and resonance regimes. We hope our renormalization technique would lead

to the universal shift of sound velocity and dielectric constant, but in fact the renormalization equations in

chapter 4 lead to the increasing behavior of relaxation and resonance susceptibilities rather than the expected

decreasing behavior as the length scale increases. Moreover, the fixed point which gives the relation between

relaxation and resonance susceptibilities at experimental length scale, χrel = −2χres(ω = 0) can never be

reached, due to the fact that both of relaxation and zero-frequency resonance susceptibilities are negative —

they will always have the same sign throughout the entire renormalization process. It is at this point that

our renormalization technique cannot explain the universal sound velocity and dielectric constant shift.

The second goal of this thesis is to use our generic coupled block model to understand the mechanical

avalanche behavior of three-dimensional insulating glass. The reader should be aware that it is the first time

to apply our model in glass mechanical avalanche problem. Therefore our purpose is not to solve the entire

glass avalanche problem from microscopic point of view; instead we want to provide some first-step results

for future people to continue studying this problem. We consider a block of amorphous material under the

deformation of static, uniform strain. With the slowly increasing strain the bulk glass behaves elastically
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until it reaches critical strain value. After that the stress (T ) suddenly drops to a lower value. A more

convenient quantity is the mechanical stress-stress susceptibility χijkl = δTij/δekl. At critical strain field

when irreversable process happens, stress-stress susceptibility presents an abrupt positive-negative transition

when strain field passes through critical value. Our main goal is to prove the existence of such positive-

negative transition, and to obtain the exact value of critical strain value when avalanche happens. However,

since the elastic susceptibility −(ρc2l − 2ρc2t )δijδkl − ρc2t (δikδjl + δilδjk) does not show such kind of positive-

negative transition (which means it does not have a singularity), and the non-elastic susceptibility keeps

negative throughout the entire renormalization procedure (which means it does not have a singularity as

well), it is impossible to find a singularity in glass total mechanical susceptibility. It is at this point that our

theory cannot explain the glass mechanical avalanche problem.

Among 13 materials measured by Meissner and Berret[45], 10 of them agree faily good with theoretical

results while other 3 are not. At first we thought this is because of huge electric dipole interactions. However

qualitative measurements from Thomas, Ravindran and Varma[47] indicate that electric dipole interaction

is too weak to affect Meissner-Berret ratio. We believe their huge deviations come from the reason that

experimental data γl/γt were inferred from TTLS parameters. R. B. Stephens[48], G. S. Cieloszyk, G. L.

Salinger[49], R. C. Zeller and R. O. Pohl[1]’s measurements on heat capacity indicate that constant parameter

distribution for As2S3, PS and PMMA may not be a suitable description below 1K, so (γl/γt)
exp inferred

from TTLS parameters for them may deviate from their original natures.
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Appendix A

Derivation Details of Non-Elastic
Stress-Stress Interaction Coefficient

It was Joffrin and Levelut[42] who firstly gave the detailed derivation of amorphous solid non-elastic stress-

stress interaction coefficient Λ
(ss′)
ijkl . We give a further correction to their results. To compare their result

with ours, let us denote
(

Λ
(ss′)
ijkl

)
Joffrin

for their stress-stress interaction coefficient :

V̂ =

N3
0∑

s6=s′

∑
ijkl

(
Λ

(ss′)
ijkl

)
Joffrin

T̂
(s)
ij T̂

(s′)
kl

(
Λ

(ss′)
ijkl

)
Joffrin

= −

(
Λ̃ijkl(~n)

)
Joffrin

8πρc2t |~xs − ~x′s|3(
Λ̃ijkl(~n)

)
Joffrin

= −2(δjl − 3njnl)δik

+2α

{
− (δijδkl + δikδjl + δjkδil)

+3(ninjδkl + ninkδjl + ninlδjk + njnkδil + njnlδik + nknlδij)− 15ninjnknl

}
(A.1)

where α = 1 − c2t/c2l . We consider long wavelength limit. We will derive Λ
(ss′)
ijkl starting from amorphous

solid Hamiltonian written in the summation of phonon part, phonon-stress tensor coupling and non-elastic

part of Hamiltonian:

Ĥ =
∑
~qµ

(
|pµ(~q)|2

2m
+

1

2
mω2

~qµ|uµ(~q)|2
)

+
∑
s

∑
ij

e
(s)
ij T̂

(s)
ij + Ĥnon

0 (A.2)

where µ is phonon polarization, i.e., longitudinal and transverse; ~q is momentum and m the mass of

elementary block, pµ(~q) and uµ(~q) are momentum and displacement operators, respectively for phonon

modes in wave vector ~q and polarization µ. Strain field e
(s)
ij is defined the same as Eq.(3.2), e

(s)
ij =

1
2

(
∂u

(s)
i /∂xj + ∂u

(s)
j /∂xi

)
. The relation between displacement operator ~u(s) and ~uµ(~q) is set up by Fourier

transformation:

u
(s)
i =

1√
N

∑
~qµ

uµ(~q)eµi(~q)e
i~q·~xs (A.3)
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where ~eµ(~q) is the unit vector representing the direction of vibrations, N is the number density of unit block,

and by definition we automatically get Nm = ρ. For longitudinal mode µ = l, eli(~q) = qi/q, whereas for

transverse modes t1 and t2, we have,

~et1(~q) · ~q = ~et2(~q) · ~q = ~et1(~q) ·~et1(~q) = 0∑
µ=t1,t2

eµi(~q)eµj(~q) = δij −
qiqj
q2

(A.4)

the strain field is therefore written as e
(s)
ij = 1

2
√
N

∑
~qµ iuµ(~q)ei~q·~xs [qjeµi(~q) + qieµj(~q)]. Since for an arbitrary

function f(~q) we always have the following relation,
∑
~q f(~q) =

∑
~q

1
2 [f(~q) + f(−~q)], and the displacement

ui(~x) is real, i.e., ui(~x) = u∗i (~x), we have uµi(~q) = u∗µi(−~q). With these properties of uµ(~q) operators we can

rewrite the stress-strain coupling term as follows,

∑
s

∑
ij

e
(s)
ij T̂

(s)
ij =

1

4
√
N

∑
ij

∑
s

∑
~qµ

[(
iuµ(~q)ei~q·~xs

)
+
(
iuµ(~q)ei~q·~xs

)∗]
(qjeµj(~q) + qjeµi(~q))T̂

(s)
ij (A.5)

Because the stress-strain coupling term is linear in displacement operators uµ(~q), we can absorb it into terms

quadratic in uµ(~q), i.e., the quadratic displacement term of phonon Hamiltonian, by completing the square.

An extra term comes out as follows:

Ĥ =
∑
~qµ

(
|pµ(~q)|2

2m
+
mω2

~qµ

2
|uµ(~q)− u(0)

µ (~q)|2 −
mω2

~qµ

2
|u(0)
µ (~q)|2

)
+ Ĥnon (A.6)

where the “equilibrium position” u
(0)
µ (~q) is

u(0)
µ (~q) =

i

2
√
Nmω2

~qµ

∑
ij

∑
s

[
qjeµi(~q) + qieµj(~q)

]
T̂

(s)
ij e

−i~q·~xs (A.7)

The extra term left out after completing the square is the effective interaction between non-elastic stress

tensors. It can be rewritten into two parts, the first part represents non-elastic stress-stress interaction

within the same block, while the second part represents the interaction between different blocks:

−
∑
~qµ

(
mω2

~qµ

2
|u(0)
µ (~q)|2

)

= −
∑
~qµ

1

8Nmω2
~qµ

∑
ijkl

[
qjeµi(~q) + qieµj(~q)

][
qkeµl(~q) + qleµk(~q)

]∑
s

T̂
(s)
ij T̂

(s)
kl

−
∑
~qµ

1

8Nmω2
~qµ

∑
ijkl

[
qjeµi(~q) + qieµj(~q)

][
qkeµl(~q) + qleµk(~q)

]∑
s6=s′

T̂
(s)
ij T̂

(s′)
kl cos(~q · (~xs − ~x′s))(A.8)
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We denote the second term in Eq.(A.8) as V̂ , non-elastic stress-stress interaction. Applying the properties

of unit vector for longitudinal and transverse phonons, it is further simplified as

V̂ =
1

2Nm

(
1

c2t
− 1

c2l

)∑
s6=s′

∑
ijkl

∑
~q

(
qiqjqkql
q4

)
cos(~q · ~xss′)T (s)

ij T
(s′)
kl

− 1

8Nm

1

c2t

∑
s6=s′

∑
ijkl

∑
~q

(
qjqlδik + qjqkδil + qiqlδjk + qiqkδjl

q2

)
cos(~q · ~xss′)T (s)

ij T
(s′)
kl (A.9)

where ~xss′ = ~xs− ~x′s. If we assume the inter-atomic distance is much smaller than phonon wavelength (long

wavelength limit), we can use integral to replace summation over momentum ~q. For convience of discussion

we write V̂ into two parts, V̂ (1) and V̂ (2):

V̂ (1) =
a3

2Nm

(
1

c2t
− 1

c2l

)∑
s 6=s′

∑
ijkl

{∫
d3q

(2π)3

(
qiqjqkql
q4

)
cos(~q · ~xss′)

}
T̂

(s)
ij T̂

(s′)
kl

V̂ (2) = − a3

8Nm

1

c2t

∑
s6=s′

∑
ijkl

{∫
d3q

(2π)3

(
qjqlδik + qjqkδil + qiqlδjk + qiqkδjl

q2

)
cos(~q · ~xss′)

}
T̂

(s)
ij T̂

(s′)
kl

(A.10)

In the above two equations, we need to evaluate the following two integrals:

f
(1)
ijkl =

∫
d3q

(2π)3

qiqjqkql
q4

cos(~q · ~x)

f
(2)
jl =

∫
d3q

(2π)3

qjql
q2

cos(~q · ~x) (A.11)

Let us introduce a new parameter λ and take the limit λ→ 0 eventually

f
(1)
ijkl(λ) =

(
∂

∂xi

∂

∂xj

∂

∂xk

∂

∂xl

)∫
d3q

(2π)3

1

(q2 + λ2)2

1

2

(
ei~q·~x + e−i~q·~x

)
f

(2)
jl (λ) = −

(
∂

∂xj

∂

∂xl

)∫
d3q

(2π)3

1

(q2 + λ2)

1

2

(
ei~q·~x + e−i~q·~x

)
(A.12)

Using contour integral, and choose the pole at q = −iλ, we have,

f
(1)
ijkl(λ) =

(
∂

∂xi

∂

∂xj

∂

∂xk

∂

∂xl

)
1

8πλ
e−λx

f
(2)
jl (λ) = −

(
∂

∂xj

∂

∂xl

)
1

4πx
e−λx (A.13)
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Finally, take the derivatives and we obtain,

lim
λ→0

f
(1)
ijkl(λ) =

1

8πx3

{
(δijδkl + δikδjl + δjkδil)

−3(ninjδkl + ninkδjl + ninlδjk + njnkδil + njnlδik + nknlδij) + 15ninjnknl

}
lim
λ→0

f
(2)
jl (λ) =

1

4πx3
(δjl − 3njnl) (A.14)

Finally, plugging the above results of integrals, we eventually get our non-elastic stress-stress interaction

coefficient Λ
(ss′)
ijkl

V̂ =
∑
s6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl

Λ
(ss′)
ijkl = − Λ̃ijkl(~n)

8πρc2t |xs − x′s|3

Λ̃ijkl(~n) =
1

4
{(δjl − 3njnl)δik + (δjk − 3njnk)δil + (δik − 3nink)δjl + (δil − 3ninl)δjk}

+
1

2
α

{
− (δijδkl + δikδjl + δjkδil)

+3(ninjδkl + ninkδjl + ninlδjk + njnkδil + njnlδik + nknlδij)− 15ninjnknl

}
(A.15)

Compare Λ
(ss′)
ijkl in Eq.(A.15) and

(
Λ

(ss′)
ijkl

)
Joffrin

in Eq.(A.1), there are 4 differences between our result and

Joffrin and Levelut’s result:

(1). The first term without α in Λ
(ss′)
ijkl , is 1

4 {(δjl − 3njnl)δik + (δjk − 3njnk)δil + (δik − 3nink)δjl + (δil − 3ninl)δjk},

while it is (δjl − 3njnl)δik in
(

Λ
(ss′)
ijkl

)
Joffrin

. This difference is fine, because in Joffrin and Levelut’s calcu-

lation their strain tensor eij is defined as ∂ui/∂xj , while ours is symmetrized: (∂ui/∂xj + ∂uj/∂xi)/2.

Using the definition eij = ∂ui/∂xj at the start of our calculation will give the same unpermutated result

(δjl − 3njnl)δik;

(2). Our Λ
(ss′)
ijkl is smaller by a total factor of 1/2 compared to

(
Λ

(ss′)
ijkl

)
Joffrin

;

(3). We do not have the negative sign in the term not multiplied by α, while Joffrin and Levelut’s term has:

−(δjl − 3njnl)δik;

(4). The second term which is multiplied by α has an extra factor of 1/2 in our Λ
(ss′)
ijkl compared to(

Λ
(ss′)
ijkl

)
Joffrin

.
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Appendix B

Derivations of Renormalization
Equation of Non-elastic Stress-Stress
Susceptibility
We have super block susceptibility given as follows,

χsuper
ijkl (ω) =

1

L′3
β

1− iωτ∗

( ∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|T̂ super

ij,cc |n
∗〉〈m∗|T̂ super

kl |m∗〉

−
∑
n∗

e−βE
∗
n

Z∗
〈n∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |n∗〉
)

+
1

L′3
2

~
∑
n∗l∗

e−βE
∗
n

Z∗
〈l∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |l∗〉 ω∗l − ω∗n
(ω + iη)2 − (ω∗l − ω∗n)2

(B.1)

where L′ = N0L. We want to find the relation between super block susceptibility χsuper
ijkl (ω) and single block

susceptibility χijkl(ω). Please note: in the following calculations (renormalization procedures) we are only

interested in the first and second orders of susceptibility, which means we only take 2nd and 4th order in

T̂ij into account. We will drop terms in 3rd order of stress tensor T̂ij .

We treat V̂ as perturbation. By using time-independent perturbation theory, we obtain

|n∗〉 = |n〉+
∑
p

〈p|V̂ |n〉
En − Ep

|p〉+ . . . E∗n = En + 〈n|V̂ |n〉+
∑
p 6=n

|〈p|V̂ |n〉|2

En − Ep
+ . . . (B.2)

Therefore we have to expand the distribution function and probability function up to the second order in V̂ :

e−βE
∗
n = e−βEn

1− β〈n|V̂ |n〉 − β
∑
p 6=n

|〈p|V̂ |n〉|2

En − Ep
+ ...


Z =

∑
l

e−βEl

1− β〈l|V̂ |l〉 − β
∑
p 6=l

|〈p|V̂ |l〉|2

El − Ep
+ ...

 (B.3)
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The following definitions are much more useful in details of calculations:

χ
rel(1)
ijkl =

1

L3
β
∑
nm

PnPm〈n|T̂ij |n〉〈m|T̂kl|m〉

χ
rel(2)
ijkl =

1

L3
β
∑
n

Pn〈n|T̂ij |n〉〈n|T̂kl|n〉

χres
ijkl(ω + iη) =

1

L3

1

~
∑
nl

(Pn − Pl)
〈n|T̂ij |l〉〈l|T̂kl|n〉
ω + ωnl + iη

(B.4)

hence

χijkl(ω) =
1

1− iωτ

(
χ

rel(1)
ijkl (ω)− χrel(2)

ijkl (ω)
)

+ χres
ijkl(ω + iη) (B.5)

In the following of this appendix we want to expand three parts of super block non-elastic susceptibility,

χ
super rel(1)
ijkl , χ

super rel(2)
ijkl and χsuper res

ijkl (ω + iη) up to the first order of interaction V̂ (i.e., the second order

of unit block susceptibility). From Eq.(3.16) we know there is an extra term in super block stress tensor

generated by the strain field dependence of coefficient Λ
(ss′)
abcd (e). Let’s denote

∑
s e

i~k·~xs T̂
(s)
ij = T̂ij , so we

have T̂ super
ij = T̂ij +

∑
s6=s′

∑
abcd e

i~k· ~xs+~x
′
s

2
δΛ

(ss′)
abcd (e)

δeij
T̂

(s)
ab T̂

(s′)
cd . We will discuss higher order expansions from

the extra term in stress tensor
∑
s6=s′

∑
abcd e

i~k· ~xs+~x
′
s

2
δΛ

(ss′)
abcd (e)

δeij
T̂

(s)
ab T̂

(s′)
cd in the last section of this appendix.

Currently we consider higher order expansions of super block susceptibility with stress tensor T̂ij .

B.1 Expansion details for χ
super rel(1)
ijkl

β

(N0L)3

∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|T̂ij,cc|n∗〉〈m∗|T̂kl|m∗〉

=
β

(N0L)3

∑
nm

e−β(En+Em)

Z2
〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

term(1) +
β

(N0L)3

∑
nm

e−β(En+Em)(−βδEn − βδEm)

Z2
〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

term(2) +
β

(N0L)3

∑
nm

e−β(En+Em)(−2δZ)

Z3
〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

term(3) +
β

(N0L)3

∑
nm

e−β(En+Em)

Z2

[
(δ〈n|) T̂ij,cc|n〉〈m|T̂kl|m〉+ 〈n|T̂ij,cc (δ|n〉) 〈m|T̂kl|m〉

+〈n|T̂ij,cc|n〉 (δ〈m|) T̂kl|m〉+ 〈n|T̂ij,cc|n〉〈m|T̂kl (δ|m〉)
]

(B.6)

84



where T̂ij,cc is the complex conjugate of T̂ij . δZ and δEn represents first and second order expansions with

respect to many body interaction V̂ . Now we begin to calculate every expansions in the above result.

Expansion for term(1):

− β2

(N0L)3

∑
nm

e−β(En+Em)(δEn + δEm)

Z2
〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

= − β2

(N0L)3

∑
nm

e−β(En+Em)

Z2

(
〈n|V̂ |n〉+ 〈m|V̂ |m〉

)
〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

= − β2

(N0L)3

∑
nm

e−β(En+Em)

Z2

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (u)

ab T̂
(u′)
cd |n〉+ 〈m|T̂ (u)

ab T̂
(u′)
cd |m〉

)
〈n|T̂ (s)

ij |n〉〈m|T̂
(s′)
kl |m〉

= − β2

(N0L)3

∑
nm

e−β(En+Em)

Z2

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (u)

ab

∑
l

|l〉〈l|T̂ (u′)
cd |n〉+ 〈m|T̂ (u)

ab

∑
l

|l〉〈l|T̂ (u′)
cd |m〉

)
〈n|T̂ (s)

ij |n〉〈m|T̂
(s′)
kl |m〉

We only defined the relaxation susceptibility, which is the product between diagonal matrix elements of T̂ij ,

and the resonance susceptibility which is the product of off-diagonal matrix elements of T̂ij . We have never

defined the product between diagonal and off-diagonal matrix elements of T̂ij . The reason is if we average

over spacial coordinate such kind of diagonal-off-diagonal matrix element product will vanish for the random

distribution of matrix element values if glass. In other words, there is no specific relation between diagonal

and off-diagonal matrix elements. In addition, the diagonal matrix element 〈n|T̂ (s)
ij |n〉 ∝ δ〈Ĥnon〉/δeij which

is the “total” stress tensor minus elastic stress tensor. It is highly plausible that the non-elastic stress tensor

expectation value tends to vanish for large enough block of glass. Because we want to pair the matrix

elements in the above equation, the only choices for quantum number l is l = n,m. Because u 6= u′ for

Λ
(uu′)
ijkl , we also have to pair u with s or s′. So we have two choices, u = s, or u = s′.

= − β2

(N0L)3

∑
abcd

∑
ss′

∑
n(s)n(s′)m(s′)

e−β(E(s)
n +E(s′)

n +E(s′)
m )

Z(s)Z(s′)2
Λ

(ss′)
abcd e

−ik(xs−x′s)

{
〈n(s)|T̂ (s)

cd |n
(s)〉〈n(s)|T̂ (s)

ij |n
(s)〉〈m(s′)|T̂ (s′)

kl |m
(s′)〉〈n(s′)|T̂ (s′)

ab |n
(s′)〉

+〈n(s)|T̂ (s)
ij |n

(s)〉〈m(s)|T̂ (s)
ab |m

(s)〉〈m(s′)|T̂ (s′)
cd |m

(s′)〉〈m(s′)|T̂ (s′)
kl |m

(s′)〉
}

= − L6

(N0L)3

∑
abcd

∑
ss

Λ
(ss′)
abcd e

−ik(xs−x′s)
(
χ

rel(2)
cdij χ

rel(1)
abkl + χ

rel(2)
cdkl χ

rel(1)
abij

)
(B.7)
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Expansion for term(2):

− 2β

(N0L)3

∑
nm

e−β(En+Em)

Z3
δZ〈n|T̂ij,cc|n〉〈m|T̂kl|m〉

=
2β2

(N0L)3

∑
lmn

e−β(En+Em+El)

Z3

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)〈l|T̂ (u)
ab T̂

(u′)
cd |l〉〈n|T̂

(s)
ij |n〉〈m|T̂

(s′)
kl |m〉

=
2β2

(N0L)3

∑
lmn

e−β(En+Em+El)

Z3

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)

〈l|T̂ (u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |l〉〈n|T̂

(s)
ij |n〉〈m|T̂

(s′)
kl |m〉

=
2β2

(N0L)3

∑
l(s)l(s′)m(s′)n(s)

e−β(E(s)
n +E(s′)

m +E
(s)
l +E

(s′)
l )

Z(s)2Z(s′)2

∑
abcd

∑
ss′

Λ
(ss′)
abcd e

−ik·(xs−x′s)

〈l(s
′)|T̂ (s′)

cd |l
(s′)〉〈m(s′)|T̂ (s′)

kl |m
(s′)〉〈n(s)|T̂ (s)

ij |n
(s)〉〈l(s)|T̂ (s)

ab |l
(s)〉

=
2L6

(N0L)3

∑
abcd

∑
ss

Λ
(ss′)
abcd e

ik·(xs−x′s)χ
rel(1)
cdij χ

rel(1)
abkl (B.8)

where in the above calculation we need to pair diagonal matrix elements 〈n|T̂ (s)
ij |n〉 and 〈m|T̂ (s′)

kl |m〉, so

the choice of k have to be k = l, to make the matrix element 〈l|T̂ (u)
ab |k〉 diagonal. Then it could be paired

to 〈n|T̂ (s)
ij |n〉 or 〈m|T̂ (s′)

kl |m〉. The reason it must be pair to 〈n|T̂ (s)
ij |n〉 or 〈m|T̂ (s′)

kl |m〉 is because from the

coefficient Λ
(uu′)
ijkl , n 6= u′ so the matrix elements 〈l|T̂ (u)

ab |k〉〈k|T̂
(u′)
cd |l〉 cannot be paired. Finally, we have two

choices for u, u′: u = s and u′ = s′, or u = s′ and u′ = s.
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Expansion for term(3):

β

(N0L)3

∑
nm

e−β(En+Em)

Z2

[
(δ〈n|) T̂ij,cc|n〉〈m|T̂kl|m〉+ 〈n|T̂ij,cc (δ|n〉) 〈m|T̂kl|m〉

+〈n|T̂ij,cc|n〉 (δ〈m|) T̂kl|m〉+ 〈n|T̂ij,cc|n〉〈m|T̂kl (δ|m〉)
]

=
β

(N0L)3

∑
lmn

∑
abcd

∑
uu′

∑
ss′

1

En − El
e−β(En+Em)

Z2
Λ

(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (u)

ab T̂
(u′)
cd |l〉〈l|T̂

(s)
ij |n〉〈m|T̂

(s′)
kl |m〉+ 〈n|T̂ (s)

ij |l〉〈l|T̂
(u)
ab T̂

(u′)
cd |n〉〈m|T̂

(s′)
kl |m〉

)
+

β

(N0L)3

∑
lmn

∑
abcd

∑
uu′

∑
ss′

1

Em − El
e−β(En+Em)

Z2
Λ

(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (s)

ij |n〉〈m|T̂
(u)
ab T̂

(u′)
cd |l〉〈l|T̂

(s′)
kl |m〉+ 〈n|T̂ (s)

ij |n〉〈m|T̂
(s′)
kl |l〉〈l|T̂

(u)
ab T̂

(u′)
cd |m〉

)
=

β

(N0L)3

∑
lmn

∑
abcd

∑
uu′

∑
ss′

1

En − El
e−β(En+Em)

Z2
Λ

(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (u)

ab

∑
k

|k〉〈k|T̂ (u′)
cd |l〉〈l|T̂

(s)
ij |n〉〈m|T̂

(s′)
kl |m〉+ 〈n|T̂ (s)

ij |l〉〈l|T̂
(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |n〉〈m|T̂

(s′)
kl |m〉

)

+
β

(N0L)3

∑
lmn

∑
abcd

∑
uu′

∑
ss′

1

Em − El
e−β(En+Em)

Z2
Λ

(uu′)
abcd e

−ik·(xs−x′s)

(
〈n|T̂ (s)

ij |n〉〈m|T̂
(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |l〉〈l|T̂

(s′)
kl |m〉+ 〈n|T̂ (s)

ij |n〉〈m|T̂
(s′)
kl |l〉〈l|T̂

(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |m〉

)

=
2β

(N0L)3

∑
abcd

∑
ss′

∑
l(s)m(s′)n(s)n(s′)

e−β(E(s)
n +E(s′)

n +E(s′)
m )

Z(s)Z(s′)2
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈m(s′)|T̂ (s′)
kl |m

(s′)〉〈n(s′)|T̂ (s′)
cd |n

(s′)〉
〈l(s)|T̂ (s)

ij |n(s)〉〈n(s)|T̂ (s)
ab |l(s)〉

E
(s)
n − E(s)

l

+
2β

(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s′)n(s)m(s)

e−β(E(s)
n +E(s)

m +E(s′)
m )

Z(s)2Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
ij |n

(s)〉〈m(s)|T̂ (s)
ab |m

(s)〉
〈m(s′)|T̂ (s′)

kl |l(s
′)〉〈l(s′)|T̂ (s′)

cd |m(s′)〉
E

(s′)
m − E(s′)

l

=
L6

(N0L)3

∑
abcd

∑
ss′

Λ
(ss′)
abcd e

−ik·(xs−x′s)
(
χ

rel(1)
cdkl χ

res
abij(0) + χ

rel(1)
abij χ

res
cdkl(0)

)
(B.9)

where in the above calculations we insert the identity between T̂
(u)
ab and T̂

(u′)
cd :

∑
k |k〉〈k|. Because of the

coefficient λ
(uu′)
abcd we know u 6= u′. Therefore if we want to make matrix elements in pairs, the only choices

are u = s and u′ = s′ or u = s′ and u′ = s. Since the matrix element for the s-th block stress tensor is

diagonal, while for the s′-th block it is off-diagonal, we need to pair on diagonal matrix element to the s-th

block stress tensor, and pairt a off-diagonal matrix element to the s′-th block stress tensor. For example,

we could pair u = s and u′ = s′, another case is similar. Therefore the wavefunction |m〉 must equal to |k〉:
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δmk for the diagonal matrix element pairing, on the other hand, the wave function |k〉 must equal to |m〉 for

the off-diagonal matrix element pairing.

B.2 Expansion details for χ
super rel(2)
ijkl

− β

(N0L)3

∑
n∗

e−βE
∗
n

Z∗
〈n∗|T̂ij,cc|n∗〉〈n∗|T̂kl|n∗〉

= − β

(N0L)3

∑
n

e−βEn(1− βEn)

Z + δZ
(〈n|+ δ〈n|) T̂ij,cc (|n〉+ δ|n〉) (〈n|+ δ〈n|) T̂kl (|n〉+ δ|n〉)

= − β

(N0L)3

∑
n

e−βEn

Z
〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

term(4) − β

(N0L)3

∑
n

e−βEn(−βδEn)

Z
〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

term(5) − β

(N0L)3

∑
n

−e−βEn
Z2

δZ〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

term(6) − β

(N0L)3

∑
n

e−βEn

Z

[
(δ〈n|) T̂ij,cc|n〉〈n|T̂kl|n〉+ 〈n|T̂ij,cc (δ|n〉) 〈n|T̂kl|n〉

+〈n|T̂ij,cc|n〉 (δ〈n|) T̂kl|n〉+ 〈n|T̂ij,cc|n〉〈n|T̂kl (δ|n〉)
]

(B.10)

Expansion for term(4):

β2

(N0L)3

∑
n

e−βEn

Z
δEn〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

=
β2

(N0L)3

∑
n

e−βEn

Z
∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)〈n|T̂ (u)
ab T̂

(u′)
cd |n〉〈n|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉

=
β2

(N0L)3

∑
n

e−βEn

Z
∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)〈n|T̂ (u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |n〉〈n|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉

=
β2

(N0L)3

∑
n

e−βEn

Z
∑
abcd

∑
ss′

Λ
(ss′)
abcd e

−ik·(xs−x′s)〈n(s)|T̂ (s)
ab |n

(s)〉〈n(s)|T̂ (s)
ij |n

(s)〉

〈n(s′)|T̂ (s′)
kl |n

(s′)〉〈n(s′)|T̂ (s′)
cd |n

(s′)〉

=
L6

(N0L)3

∑
abcd

∑
ss′

Λ
(ss′)
abcd e

−ik·(xs−x′s)χ
rel(2)
abij χ

rel(2)
cdkl (B.11)

where in the above calculation we insert the identity
∑
k |k〉〈k|. Because of the coefficient Λ

(uu′)
abcd we have

u 6= u′ so if we want to make the matrix element come in pairs, we need to pair u = s and u′ = s′ or u = s′

and u′ = s. Since the matrix elements for stress tensor T̂ (s) and T̂ (s′) are diagonal, we must pair diagonal

matrix elements from T̂ (u) and T̂ (u′) onto them. Therefore the only choice for k is k = n.
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Expansion for term(5):

β

(N0L)3

∑
n

e−βEn

Z2
δZ〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

= − β2

(N0L)3

∑
nl

e−β(En+El)

Z2
〈l|V̂ |l〉〈n|T̂ij,cc|n〉〈n|T̂kl|n〉

= − β2

(N0L)3

∑
nl

e−β(En+El)

Z2

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)〈l|T̂ (u)
ab T̂

(u′)
cd |l〉〈n|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉

= − β2

(N0L)3

∑
nl

e−β(En+El)

Z2

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)

〈l|T̂ (u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |l〉〈n|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉

= − β2

(N0L)3

∑
lmn

e−β(En+El)

Z2

∑
abcd

∑
uu′

∑
ss′

Λ
(uu′)
abcd e

−ik·(xs−x′s)

〈l|T̂ (u)
ab |m〉〈m|T̂

(u′)
cd |l〉〈n|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉

= − β2

(N0L)3

∑
ss′

∑
l(s)l(s′)n(s)n(s′)

e−β(E(s)
n +E(s′)

n +E
(s)
l +E

(s′)
l )

Z(s)2Z(s′)2

∑
abcd

Λ
(ss′)
abcd e

−ik·(xs−x′s)

〈l(s)|T̂ (s)
cd |l

(s)〉〈n(s)|T̂ (s)
ij |n

(s)〉〈l(s
′)|T̂ (s′)

ab |l
(s′)〉〈n(s′)|T̂ (s′)

kl |n
(s′)〉

= − L6

(N0L)3

∑
ss′

∑
abcd

Λ
(ss′)
abcd e

−ik·(xs−x′s)χ
rel(1)
abij χ

rel(1)
cdkl (B.12)

where in the above calculations we have inserted the identity
∑
k |k〉〈k|. Because of the coefficient Λ

(uu′)
abcd

we have u 6= u′. So we have to pair the matrix element of T̂ (u) with T̂ (s) and T̂ (s′), and the same for T̂ (u′).

Since the matrix elements for T̂ (s) and T̂ (s′) are diagonal matrix elements, we also have to pair the diagonal

matrix elements of T̂ (u) and T̂ (u′). Thus the only choice for k is k = l.
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Expansion for term(6):

− β

(N0L)3

∑
nm

1

En − Em
e−βEn

Z[
〈n|V̂ |m〉〈m|T̂ij,cc|n〉〈n|T̂kl|n〉+ 〈n|T̂ij,cc|m〉〈m|V̂ |n〉〈n|T̂kl|n〉

+〈n|T̂ij,cc|n〉〈n|V̂ |m〉〈m|T̂kl|n〉+ 〈n|T̂ij,cc|n〉〈n|T̂kl|m〉〈m|V̂ |n〉
]

= − β

(N0L)3

∑
nml

∑
abcd

∑
uu′

∑
ss′

1

En − Em
e−βEn

Z
Λ

(uu′)
abcd e

−ik·(xs−x′s)

{
〈n|T̂ (u)

ab

∑
k

|k〉〈k|T̂ (u′)
cd |m〉〈m|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |m〉〈m|T̂
(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |n〉〈n|T̂

(s′)
kl |n〉

+〈n|T̂ (s)
ij |n〉〈n|T̂

(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |m〉〈m|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |n〉〈n|T̂
(s′)
kl |m〉〈m|T̂

(u)
ab

∑
k

|k〉〈k|T̂ (u′)
cd |n〉

}
= − β

(N0L)3

∑
nml

∑
abcd

∑
uu′

∑
ss′

1

En − Em
e−βEn

Z
Λ

(uu′)
abcd e

−ik·(xs−x′s)

{
〈n|T̂ (u)

ab |l〉〈l|T̂
(u′)
cd |m〉〈m|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |m〉〈m|T̂
(u)
ab |l〉〈l|T̂

(u′)
cd |n〉〈n|T̂

(s′)
kl |n〉

+〈n|T̂ (s)
ij |n〉〈n|T̂

(u)
ab |l〉〈l|T̂

(u′)
cd |m〉〈m|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |n〉〈n|T̂
(s′)
kl |m〉〈m|T̂

(u)
ab |l〉〈l|T

(u′)
cd |n〉

}
= − β

(N0L)3

∑
nml

∑
abcd

∑
ss′

1

En − Em
e−βEn

Z
Λ

(ss′)
abcd e

−ik·(xs−x′s)

{
〈n|T̂ (s′)

ab |l〉〈l|T̂
(s)
cd |m〉〈m|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |m〉〈m|T̂
(s)
ab |l〉〈l|T̂

(s′)
cd |n〉〈n|T̂

(s′)
kl |n〉

+〈n|T̂ (s)
ij |n〉〈n|T̂

(s)
ab |l〉〈l|T̂

(s′)
cd |m〉〈m|T̂

(s′)
kl |n〉+ 〈n|T̂ (s)

ij |n〉〈n|T̂
(s′)
kl |m〉〈m|T̂

(s′)
ab |l〉〈l|T̂

(s)
cd |n〉

}
= − 2β

(N0L)3

∑
abcd

∑
ss′

∑
n(s)n(s′)m(s)

1

E
(s)
n − E(s)

m

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s′)|T̂ (s′)
kl |n

(s′)〉〈n(s′)|T̂ (s′)
ab |n

(s′)〉〈m(s)|T̂ (s)
cd |n

(s)〉〈n(s)|T̂ (s)
ij |m

(s)〉

+ − 2β

(N0L)3

∑
abcd

∑
ss′

∑
n(s)n(s′)m(s′)

1

E
(s′)
n − E(s′)

m

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
ij |n

(s)〉〈n(s)|T̂ (s)
ab |n

(s)〉〈n(s′)|T̂ (s′)
cd |m

(s′)〉〈m(s′)|T̂ (s′)
kl |n

(s′)〉

= − L6

(N0L)3

∑
abcd

∑
ss′

Λ
(ss′)
abcd e

−ik·(xs−x′s)
(
χ

rel(2)
abkl χ

res
cdij(0) + χ

rel(2)
abij χ

res
cdkl(0)

)
(B.13)

where in the above second step we insert the identity
∑
k |k〉〈k|. Since the presence of coefficient Λ

(uu′)
abcd , u

cannot equal to u′. So we need to pair stress tensors in u-th and u′-th block to the s-th and s′-th block stress

tensors. The matrix element for the s-th and s′-th block stress tensor is one diagonal, one off-diagonal. We

need to pair one diagonal matrix element and one off-diagonal matrix element for stress tensors at block

position u and u′. For example, we consider u = s and u′ = s′. The other case is similar. The term
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〈n|T̂ (u=s)
ab

∑
k |k〉〈k|T̂

(u′=s′)
cd |m〉〈m|T̂ (s)

ij |n〉〈n|T̂
(s′)
kl |n〉 does not vanish only when 〈k|T̂ (u′=s′)

cd |m〉 is diagonal,

and it can be paired to 〈n|T̂ (s′)
kl |n〉, and when 〈n|T̂ (u=s)

ab

∑
k |k〉 is off-diagonal, and it can be paired to

〈m|T̂ (s)
ij |n〉. Therefore it is required that k = m. Other three terms in the second step has similar results.

B.3 Expansion details for χsuper res
ijkl

2

(N0L)3~
∑
n∗l∗

e−βE
∗
n

Z∗
〈l∗|T̂ij,cc|n∗〉〈n∗|T̂kl|l∗〉

ω∗ln
(ω + iη)2 − ω∗2ln

=
2

(N0L)3~
∑
nl

e−βEn

Z
〈l|T̂ij,cc|n〉〈n|T̂kl|l〉

ωln
(ω + iη)2 − ω2

ln

term(7) +
2

(N0L)3~
∑
nl

e−βEn(−βδEn)

Z
〈l|T̂ij,cc|n〉〈n|T̂kl|l〉

ωln
(ω + iη)2 − ω2

ln

term(8) +
2

(N0L)3~
∑
nl

e−βEn(−δZ)

Z
〈l|T̂ij,cc|n〉〈n|T̂kl|l〉

ωln
(ω + iη)2 − ω2

ln

term(9) +
2

(N0L)3~
∑
nl

e−βEn

Z
〈l|T̂ij,cc|n〉〈n|T̂kl|l〉

(ω + iη)2 + ω2
ln

[(ω + iη)2 − ω2
ln]2

δωln

term(10) +
2

(N0L)3~
∑
nl

e−βEn

Z

[
(δ〈l|) T̂ij,cc|n〉〈n|T̂kl|l〉+ 〈l|T̂ij,cc (δ|n〉) 〈n|T̂kl|l〉

+〈l|T̂ij,cc|n〉 (δ〈n|) T̂kl|l〉+ 〈l|T̂ij,cc|n〉〈n|T̂kl (δ|l〉)
]

ωln
(ω + iη)2 − ω2

ln

(B.14)

where please note we use the simplified notation (El − En)/~ = ωl − ωn = ωln. Thus the change of ωln,

δωln = (δEl − δEn)/~.

91



Expansion for term(7):

− 2β

~(N0L)3

∑
nl
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= 0 (B.15)

where in the above term’s calculations we insert the identity
∑
k |k〉〈k|. Since we have the coefficient Λ

(uu′)
abcd ,

u 6= u′ so the matrix elements muct be paired to stress tensors T̂ (s) and T̂ (s′). Since both of the matrix

elements of T̂ (s) and T̂ (s′) are off-diagonal, we need to pair the off-diagonal matrix elements for T̂ (u) and T̂ (u′)

with them. First we choose u = s′ and u′ = s. Since |n〉 =
∏
s |n(s)〉 and the wave function at block position

s has nothing to do with the operator which belongs to the block s′, we always have T̂ (s′)|n(s)〉 = |n(s)〉T̂ (s′).

Thus we can rewrite Tr
[
T̂

(s)
cd |n〉〈l|T̂

(s)
ij |n〉〈n|T̂

(s′)
kl |l〉〈n|T̂

(s′)
ab

]
into

Tr
[(
T̂

(s)
cd |n

(s)〉〈l(s)|T̂ (s)
ij |n

(s)〉〈n(s)|l(s)〉〈n(s)|
)(
|n(s′)〉〈l(s

′)|n(s′)〉〈n(s′)|T̂ (s′)
kl |l

(s′)〉〈n(s′)|T̂ (s′)
ab

)]

we automatically get the constraints |n(s)〉 = |l(s)〉 and |n(s′)〉 = |l(s′)〉. On the other hand we choose u = s

and u′ = s′, we have to rewrite Tr
[
T̂

(s′)
cd |n〉〈l|T̂

(s)
ij |n〉〈n|T̂

(s′)
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]
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[(
|n(s)〉〈l(s)|T̂ (s)

ij |n
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kl |l
(s′)〉〈n(s′)|

)]

we still automatically get the constraints |n(s)〉 = |l(s)〉 and |n(s′)〉 = |l(s′)〉. With these constraints we finally

reach the 0 result of the above term(7).

However, there is an additional qualitative argument which leads us to the same result for term(7) very

quickly: suppose s 6= s′ and l 6= n in the second step of Eq.(B.15). The operator for the s-th block T̂ (s)

changes state |l〉 → |n〉 and the s′-th block operator T̂ (s′) changes state |n〉 → |l〉. However, since the s-th
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block operator and the s′-th block operator only operate on wavefunctions which belong to the s-th block

and s′-th block, it is impossible to change |l〉 → |n〉 and |n〉 → |l〉 simultaneously via two different block

operators. The only possibility is |n〉 = |l〉, which means the wave functions are not changed by both of T̂ (s)

and T̂ (s′). This argument also leads to the same result of term(7), because the factor ωln = ωl − ωn = 0

makes term(7) to vanish.
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= 0 (B.16)

where again we insert the identity
∑
k |k〉〈k| and use the same procedure and constraints as we mentioned

in term(7) calculations.
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Expansion for term(9):
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= 0 (B.17)

where again we insert the identity
∑
k |k〉〈k| and use the same procedure and constraints as we mentioned

in term(7) calculations.

Expansion for term(10):
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(B.18)
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where in the third step of the above calculation we insert the identity
∑
k |k〉〈k|. Because of the coefficient

Λ
(uu′)
abcd , we have u 6= u′. In the final result of the above Eq.(B.18) we get 4 summations. Let us discuss the

first summation for example.
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(B.19)

The pairing rule for the other three summations are the same. In the summation, Eq.(B.19), the matrix

elements 〈l|T̂ (u)
ab |k〉, 〈k|T̂

(u′)
cd |m〉must be paired with 〈m|T̂ (s)

ij |n〉, 〈n|T̂
(s′)
kl |l〉. We get two candidates of pairing:

first, 〈l|T̂ (u)
ab |k〉 is paired with 〈m|T̂ (s)

ij |n〉, and 〈k|T̂ (u′)
cd |m〉 is paired with 〈n|T̂ (s′)

kl |l〉; second, 〈l|T̂ (u)
ab |k〉 is paired

with 〈n|T̂ (s′)
kl |l〉, and 〈k|T̂ (u′)

cd |m〉 is paired with 〈m|T̂ (s)
ij |n〉.

In the first candidate, we have u = s, u′ = s′. According to the factor ωln/((iη)2 − ω2
ln) which requires l 6=

n, the matrix element 〈n|T̂ (s′)
kl |l〉 must be off-diagonal. Therefore, the matrix element 〈k|T̂ (u′=s′)
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Therefore in the first candidate case, the first term in Eq.(B.19) is simplified as
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(B.20)

where in the last step, we exchange the indices (ab) and (cd) in the stress tensors T̂
(s)
ab and T̂

(s′)
cd . The

exchange of indices is correct, because the coefficient Λ
(ss′)
abcd have the symmetry property: Λ

(ss′)
abcd = Λ

(ss′)
cdab .

Next we consider the second candidate, with u = s′, u′ = s. Actually the second candidate equals to first

candidate, because with the exchange of indices (ab), (cd) and (s), (s′), the coefficient
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Repeat the same process for the other three summations in Eq.(B.20), we procede our calculation of

term(10) as follows,
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(B.21)

There are 4 terms above. The 3rd and 4th terms are similar with the 1st and 2nd terms. There-

fore let us focus on the first two terms: for the 1st term we exchange the indices l,m and s, s′, because∑
ss′ Λijkle

ik·(xs−x′s) =
∑
ss′ Λijkle

−ik·(xs−x′s) and we assume 〈n|T̂ |m〉〈m|T̂ |n〉 is independent of the block
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number. We find after the exchange of indices lm and ss′ the 1st term is invariant:

4

~(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)
ω

(s′)
ln

(ω + iη)2 − ω(s′)2
ln

〈n(s)|T̂ (s)
cd |m(s)〉〈m(s)|T̂ (s)

ij |n(s)〉〈n(s′)|T̂ (s′)
kl |l(s

′)〉〈l(s′)|T̂ (s′)
ab |n(s′)〉

(E
(s)
n − E(s)

m ) + (E
(s′)
l − E(s′)

n )

=
4

~(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

ik·(xs−x′s) ω
(s)
mn

(ω + iη)2 − ω(s)2
mn

〈n(s′)|T̂ (s′)
cd |l(s

′)〉〈l(s′)|T̂ (s′)
ij |n(s′)〉〈n(s)|T̂ (s)

kl |m(s)〉〈m(s)|T̂ (s)
ab |n(s)〉

(E
(s′)
n − E(s′)

l ) + (E
(s)
m − E(s)

n )

=
4

~(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

ik·(xs−x′s) ω
(s)
nm

(ω + iη)2 − ω(s)2
nm

〈n(s′)|T̂ (s′)
cd |l(s

′)〉〈l(s′)|T̂ (s′)
ij |n(s′)〉〈n(s)|T̂ (s)

kl |m(s)〉〈m(s)|T̂ (s)
ab |n(s)〉

(E
(s′)
l − E(s′)

n ) + (E
(s)
n − E(s)

m )
(B.22)

Use the identity

(
1

ω − x
− 1

ω + y

)
1

x+ y
=

1

ω − x
1

ω + y
(B.23)

and let us denote

ω
(s′)
ln = x ω(s)

nm = y (B.24)

and use the following identity

ω
(s′)
ln

(ω + iη)2 − ω(s′)2
ln

=
1

2

(
1

ω + iη − ω(s′)
ln

− 1

ω + iη + ω
(s′)
ln

)
ω

(s)
nm

(ω + iη)2 − ω(s)2
nm

=
1

2

(
1

ω + iη − ω(s)
nm

− 1

ω + iη + ω
(s)
nm

)
(B.25)

we can use the above identities to derive

(
1

ω + iη − ω(s′)
ln

− 1

ω + iη + ω
(s)
nm

)
1

ω
(s′)
ln + ω

(s)
nm

=
1

ω + iη − ω(s′)
ln

1

ω + iη + ω
(s)
nm

(B.26)
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Finally the 1st term equals to

1

~2(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
cd |m

(s)〉〈m(s)|T̂ (s)
ij |n

(s)〉〈n(s′)|T̂ (s′)
kl |l

(s′)〉〈l(s
′)|T̂ (s′)

ab |n
(s′)〉[

1

(ω + iη − ω(s′)
ln )

1

(ω + iη + ω
(s)
nm)

+
1

(ω + iη + ω
(s′)
ln )

1

(ω + iη − ω(s)
nm)

]
(B.27)

Similarly the 2nd term is

1

~2(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
cd |l

(s)〉〈l(s)|T̂ (s)
ij |n

(s)〉〈n(s′)|T̂ (s′)
kl |m

(s′)〉〈m(s′)|T̂ (s′)
ab |n

(s′)〉[
1

(ω + iη − ω(s)
ln )

1

(ω + iη + ω
(s′)
nm )

+
1

(ω + iη + ω
(s)
ln )

1

(ω + iη − ω(s′)
nm )

]
(B.28)

3rd term,

− 1

~2(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
cd |m

(s)〉〈m(s)|T̂ (s)
ij |n

(s)〉〈n(s′)|T̂ (s′)
kl |l

(s′)〉〈l(s
′)|T̂ (s′)

ab |n
(s′)〉[

1

(ω + iη + ω
(s′)
ln )

1

(ω + iη + ω
(s)
nm)

+
1

(ω + iη − ω(s′)
ln )

1

(ω + iη − ω(s)
nm)

]
(B.29)

4th term

− 1

~2(N0L)3

∑
abcd

∑
ss′

∑
l(s′)m(s)n(s)n(s′)

e−β(E(s)
n +E(s′)

n )

Z(s)Z(s′)
Λ

(ss′)
abcd e

−ik·(xs−x′s)

〈n(s)|T̂ (s)
cd |l

(s)〉〈l(s)|T̂ (s)
ij |n

(s)〉〈n(s′)|T̂ (s′)
kl |m

(s′)〉〈m(s′)|T̂ (s′)
ab |n

(s′)〉[
1

(ω + iη + ω
(s)
ln )

1

(ω + iη + ω
(s′)
nm )

+
1

(ω + iη − ω(s)
ln )

1

(ω + iη − ω(s′)
nm )

]
(B.30)

Sum them up we obtain

V

N3
0

∑
abcd

∑
ss′

Λ
(ss′)
abcd e

ik·(xs−x′s)χres
cdij(ω + iη)χres

klab(ω + iη) (B.31)
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The summation over space with respect to Λ
(ss′)
abcd is:

−L3
n

∑
ss′

Λ
(ss′)
ijkl e

−ik·(xs−x′s) =
N3

0

ρc2t
(κjκlδik − κiκjκkκl) (B.32)

where Ln is the unit block’s dimension in the n-th step renormalization, and ~κ is the unit vector of momem-

tum ~k.

B.4 Derivations of the Effect of δV̂ (t)’s contribution to

Susceptibility Renormalization

Finally let’s consider the higher order corrections to super block non-elastic susceptibility due to super block

stress tensor correction in Eq.(3.16). There are two kinds of extra expansions in super block susceptibility, (1)

the product between T̂ij =
∑
s e

i~k·xs T̂
(s)
ij and

∑
s 6=s′

∑
abcd T̂

(s)
ab T̂

(s′)
cd ei

~k·(~xs+~x′s)/2(δΛ
(ss′)
abcd (e))/δeij , and (2) the

super block susceptiblity expansion quadratic in the operator
∑
s6=s′

∑
abcd T̂

(s)
ab T̂

(s′)
cd ei

~k·(~xs+~x′s)/2(δΛ
(ss′)
abcd (e))/δeij .

The susceptibility correction of the first kind is in odd orders of stress tensor matrix elements. Bare in mind

that the stress tensors are a highly frustrated system, the expectation values of stress tensors are random

quantities functional of spacial coordinates and it’s quantum numbers (n,m) in 〈n|T̂ (s)
ij |m〉. Those terms in

odd orders of stress tensor matrix elements vanish after integrating over spacial coordinates, because it does

not come out in pairs of stress tensors matrix element products. For the super block susceptibility expansion

of the second kind, we calculate it’s contribution to the first, second part of relaxation susceptibility, and

the resonance susceptibility separately. The stress tensor for super block is by definition given by

T̂ij =
δH(t)

δeij(t)
=
∑
s

eik·xs T̂
(s)
ij +

∑
ss′

eik·
xs+x

′
s

2

∑
abcd

δΛ
(ss′)
abcd

δeij
T̂

(s)
ab T̂

(s′)
cd (B.33)

where we choose the phonon strain field to be

e
(s)
ij (t) = ei(k·x−ωt)eij eij(t) = e−iωteij (B.34)
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Which means it has a second contribution proportional to the quadratic in T
(s)
ij operators. Since the super

block susceptibility by definition is given by

χsuper
ijkl (ω) =

1

(N0L)3

β

1− iωτ∗

( ∑
n∗m∗

e−β(E∗n+E∗m)

Z∗2
〈n∗|T̂ super

ij,cc |n
∗〉〈m∗|T̂ super

kl |m∗〉

−
∑
n∗

e−βE
∗
n

Z∗
〈n∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |n∗〉
)

+
1

(N0L)3

2

~
∑
n∗l∗

e−βE
∗
n

Z∗
〈l∗|T̂ super

ij,cc |n
∗〉〈n∗|T̂ super

kl |l∗〉 ω∗l − ω∗n
(ω + iη)2 − (ω∗l − ω∗n)2

(B.35)

We need to take the term which is quadratic in T̂
(s)
ij into account as well. Note that we are only interested

in the 1st and 2nd order in susceptibility χ, we only take quadratic and quatic order in T̂ij into account.

The contribution from this quadratic operator term results in the change of susceptibility as follows,

1

(N0L)3

β

1− iωτ

(∑
nm

e−β(En+Em)

Z2
〈n|
∑
ss′

e
−i
(
k· xs+x

′
s

2

)∑
abcd

δΛ
(ss′)
abcd

δeij
T̂

(s)
ab T̂

(s′)
cd |n〉

〈m|
∑
uu′

e
i

(
k· xu+x′u

2

) ∑
efgh

δΛ
(uu′)
efgh

δekl
T̂

(u)
ef T̂

(u′)
gh |m〉

)

+
1

(N0L)3

β

1− iωτ

(
−
∑
n

e−βEn

Z
〈n|
∑
ss′

e
−i
(
k· xs+x

′
s

2

)∑
abcd

δΛ
(ss′)
abcd

δeij
T̂

(s)
ab T̂

(s′)
cd |n〉

〈n|
∑
uu′

e
i

(
k· xu+x′u

2

) ∑
efgh

δΛ
(uu′)
efgh

δekl
T̂

(u)
ef T̂

(u′)
gh |n〉

)

+
1

(N0L)3

2

~
∑
nl

e−βEn

Z
ωl − ωn

(ω + iη)2 − (ωl − ωn)2

〈l|
∑
ss′

e
−i
(
k· xs+x

′
s

2

)∑
abcd

δΛ
(ss′)
abcd

δeij
T̂

(s)
ab T̂

(s′)
cd |n〉〈n|

∑
uu′

e
i

(
k· xu+x′u

2

) ∑
efgh

δΛ
(uu′)
efgh

δekl
T̂

(u)
ef T̂

(u′)
gh |l〉 (B.36)
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Again, we calculate them one by one. The 1st term is

1

(N0L)3

β

1− iωτ
∑
ss′uu′

∑
abcdefgh

∑
nm

e−β(En+Em)

Z2
e
−i
(
k· xs+x

′
s

2

)
e
i

(
k· xu+x′u

2

)

δΛ
(ss′)
abcd

δeij

δΛ
(uu′)
efgh

δekl
〈n|T̂ (s)

ab T̂
(s′)
cd |n〉〈m|T̂

(u)
ef T̂

(u′)
gh |m〉

=
1

(N0L)3

β

1− iωτ
∑
ss′

∑
abcdefgh

∑
nm

e−β(En+Em)

Z2

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl
〈n|T̂ (s)

ab T̂
(s′)
cd |n〉〈m|T̂

(s)
ef T̂

(s′)
gh |m〉

=
1

(N0L)3

β

1− iωτ
∑
ss′

∑
abcdefgh

∑
nm

e−β(En+Em)

Z2

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl

〈n|T̂ (s)
ab

∑
k

|k〉〈k|T̂ (s′)
cd |n〉〈m|T̂

(s)
ef

∑
k′

|k′〉〈k′|T̂ (s′)
gh |m〉

=
1

(N0L)3

β

1− iωτ
∑
ss′

∑
abcdefgh

∑
nm

e−β(En+Em)

Z2

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl∑
kk′

〈n(s)|T̂ (s)
ab |k

(s)〉〈k(s)|n(s)〉〈m(s)|T̂ (s)
ef |k

′(s)〉〈k′(s)|m(s)〉

〈n(s′)|k(s′)〉〈k(s′)|T̂ (s′)
cd |n

(s′)〉〈m(s′)|k′(s
′)〉〈k′(s

′)|T̂ (s′)
gh |m

(s′)〉

=
1

(N0L)3

β

1− iωτ
∑
ss′

∑
abcdefgh

∑
n(s)n(s′)m(s)m(s′)

e
−β
(
E(s)
n +E(s′)

n +E(s)
m +E(s′)

m

)
Z(s)2Z(s′)2

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl

〈n(s)|T̂ (s)
ab |n

(s)〉〈m(s)|T̂ (s)
ef |m

(s)〉〈n(s′)|T̂ (s′)
cd |n

(s′)〉〈m(s′)|T̂ (s′)
gh |m

(s′)〉

=
L3

N3
0

β−1

1− iωτ
∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl
χ

rel(1)
abef χ

rel(1)
cdgh (B.37)

where in the above calculations we inserted the identities
∑
k |k〉〈k| and

∑
k′ |k′〉〈k′|.
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The 2nd term is

− 1

(N0L)3

β

1− iωτ
∑
n

e−βEn

Z
∑
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∑
abcdefgh

e
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(
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δΛ
(uu′)
efgh
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∑
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∑
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∑
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∑
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e−βEn
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ef |k
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∑
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e
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∑
abcdefgh
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∑
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abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
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abef χ
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cdgh (B.38)

where in the above calculations we inserted the identities
∑
k |k〉〈k| and

∑
k′ |k′〉〈k′|.
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The 3rd term is

1

(N0L)3
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~
∑
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∑
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(u)
ef T̂

(u′)
gh |l〉
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∑
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∑
ss′

∑
abcdefgh
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∑
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∑
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∑
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cd |n〉〈n|T̂

(s)
ef T̂

(s′)
gh |l〉

(
1

ω + ωnl
− iπδ(ω + ωnl)

)

=
1

(N0L)3

1

~
∑
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∑
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∑
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∑
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∑
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(s′)〉〈n(s′)|T̂ (s′)

gh |l
(s′)〉

(
1

ω + ωnl
− iπδ(ω + ωnl)

)

=
1

(N0L)3

∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl∑
n(s)n(s′)l(s)l(s′)

(Pn − Pl)

(
1

~ω + ~ω(s)
nl + ~ω(s′)

nl

− iπδ(~ω + ~ω(s)
nl + ~ω(s′)

nl )

)
∫
〈n(s)|T̂ (s)

ef |l
(s)〉〈l(s)|T̂ (s)

ab |n
(s)〉δ(E(s)

l − E
(s)
n − ~ωs)d(~ωs)∫

〈n(s′)|T̂ (s′)
gh |l

(s′)〉〈l(s
′)|T̂ (s′)

cd |n
(s′)〉δ(E(s′)

l − E(s′)
n − ~ω′s)d(~ω′s)

=
L3

N3
0π

2

∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl
(1− e−β~(ωs+ω

′
s))

(
1

~ω − ~ωs − ~ωs′
− iπδ(~ω − ~ωs − ~ωs′)

)
∫

Imχres
abef (ωs)

1− e−β~ωs
d(~ωs)

∫
Imχres

cdgh(ω′s)

1− e−β~ω′s
d(~ω′s)
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= − L3

N3
0π

2

∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl∫
(1− e−β~(ωs+ω

′
s))

Imχres
abef (ωs)Imχres

cdgh(ω′s)

(1− e−β~ωs)(1− e−β~ω′s)(~ωs + ~ωs′ − ~ω)
d(~ωs)d(~ω′s)

−i L3

N3
0π

2

∑
ss′

∑
abcdefgh

δΛ
(ss′)
abcd

δeij

δΛ
(ss′)
efgh

δekl
(1− e−β~ω)

(
π

∫
Imχres

abef (ωs)Imχres
cdgh(ω − ωs)

(1− e−β~ωs)(1− e−β~ω′s)
d(~ωs)

)
(B.39)

The super block susceptibility extra expansion terms Eq.(B.37, B.38, B.39) are the terms in the third

and fourth lines of susceptibility renormalization equation.
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Appendix C

Derivation Details of Resonance
Phonon Energy Absorption in
Generic Coupled Block Model

C.1 Resonant Phonon Energy Absorption of Single Block Glass

In this chapter we want to give a detailed calculation on all of the resonant phonon energy absorption terms

which appeared in chapter 6: Eq.(6.15, 6.20, 6.21, 6.22). First of all, in this section we calculate single block

phonon energy absorption. Consider a single block of glass with the size L and non-elastic Hamiltonian

Ĥ. As we have mentioned ealier in chapter 6, Eq.(6.6), we can expand non-elastic Hamiltonian in orders of

phonon long-wavelength strain field eij(~x):

Ĥ = Ĥ0 +

∫
d3x

∑
ij

eij(~x)T̂ij(~x) +O(e2
ij) (C.1)

We define the eigenvalues and eigenstates for unperturbed non-elastic Hamiltonian Ĥ0 to be En and |n〉.

The genetic multiple-level-system Ĥ0 can resonantly absorb phonon energy when a certain pair of energy

levels En − Em matches ~ω. At the same time, such a pair of eigenstates |n〉, |m〉 spontaneously emit

phonon energy. Taking both of the emission/absorption processes into account, the net resonant phonon

energy absorption is given by considering the entire set of eigenstates of Ĥ0, and by using Fermi golden rule:

Esingle(t) =
2πωt

~
∑
nm

e−βEn

Z
|〈m|

∑
ij

eij T̂ij |n〉|2δ(En − Em − ~ω) (C.2)

where Z =
∑
m e
−βEm is the partition function for unperturbed non-elastic Hamiltonian Ĥ0. In the rest

of this chapter we use the simplification ~ = 1.To calculate Eq.(C.2) we need to make use of imaginary

non-elastic resonance susceptibility, with the definition given in Eq.(6.7, 6.10),

Imχres
ijkl(T, ω) =

∑
m

e−βEm

Z
Imχ

(m)
ijkl(ω)

Imχ
(m)
ijkl(ω) =

π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉

[−δ(En − Em − ω) + δ(En − Em + ω)] (C.3)
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Please note, that the imaginary part of resonance non-elastic susceptibility is negative-definite. This def-

inition is self-consistent with the definition of non-elastic susceptibility in chapters 4 and 5. Also, it is

convenient to rewrite the imaginary resonance susceptibility Eq.(C.3) into reduced imaginary susceptibility

Im χ̃res
ijkl as follows for future use:

Imχres
ijkl(T, ω) =

(
1− e−β~ω

)
Im χ̃res

ijkl(T, ω)

Im χ̃res
ijkl(T, ω) =

∑
m

e−βEm

Z
Im χ̃

(m)
ijkl(ω)

Im χ̃
(m)
ijkl(ω) = − π

L3

∫
d3xd3x′

∑
n

〈m|T̂ij(~x)|n〉〈n|T̂kl(~x′)|m〉δ(En − Em − ω) (C.4)

For an arbitrary isotropic system the reduced non-elastic susceptibility must satisfy the genetic form

Im χ̃res
ijkl(T, ω) = ( Im χ̃res

l (T, ω)− 2 Im χ̃res
t (T, ω))δijδkl + Im χ̃res

t (T, ω)(δikδjl + δilδjk) (C.5)

where please note we use Im χ̃res
l,t (T, ω) to stand for imaginary part of reduced non-elastic longitudinal trans-

verse susceptibility Im χ̃res non
l,t (T, ω). By definition they are negative quantities. The real part of reduced

non-elastic susceptibility Re χ̃res
ijkl(T, ω) can be obtained by Kramers-Kronig relation from the imaginary

part of it. With the above definitions, we can directly calculate Eq.(C.2) to obtain resonant phonon energy

absorption per unit time in single block glass

Ėsingle
l,t = −2L3A2k2ω

(
1− e−β~ω

)
Im χ̃res

l,t (T, ω) (C.6)

This term appears in Eq.(6.15) in chapter 6. Again, the reduced version of the imaginary part of resonance

susceptibility is negative definite. So the “energy absorption” for a single block glass is always positive. This

is result is intuitively correct.

C.2 Resonant Phonon Energy Absorption of Super Block Glass

Now let’s combine N3
0 L×L×L single blocks to form a N0L×N0L×N0L super block, and turn on virtual

phonon exchange interactions between these single blocks: V̂ =
∑
s6=s′ Λ

(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl . From chapter 6 the

super block non-elastic Hamiltonian is given by the “super block unperturbed Hamiltonian Ĥsuper
0 ”, which is

static, and the “super block time-dependent perturbation Ĥ ′(t)”, which is the summation of (1) stress-strain

coupling, (2) the modification of Λ
(ss′)
ijkl due to external real phonon strain field, and (3) the modification of
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stress tensor T̂ij via external phonon strain:

Ĥsuper(e) = Ĥsuper
0 + Ĥ ′(t)

Ĥsuper
0 =

N3
0∑
s

Ĥ
(s)
0 +

N3
0∑

s 6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl

Ĥ ′(t) =

N3
0∑
s

∑
ij

e
(s)
ij (t)T̂

(s)
ij +

N3
0∑

s 6=s′

∑
ijkl

(
∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl + 2Λ

(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)
(C.7)

for details of getting this Hamiltonian, please see chapter 6. We apologize for so many unnecessary definitions,

but if not, the following calculations and equations will be super lengthy. We require a further definition for

future simplicity, that the “change of virtual phonon exchange interaction
∑N3

0

s6=s′
∑
ijkl

(
∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl +

2Λ
(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)
” is denoted as δV̂ (t):

δV̂ (t) =

N3
0∑

s6=s′

∑
ijkl

(
∆Λ

(ss′)
ijkl (t)T̂

(s)
ij T̂

(s′)
kl + 2Λ

(ss′)
ijkl ∆T̂

(s)
ij (t)T̂

(s′)
kl

)

⇒ Ĥ ′(t) =

N3
0∑
s

∑
ij

e
(s)
ij (t)T̂

(s)
ij + δV̂ (t) (C.8)

Our main purpose here is to calculate resonant phonon energy absorption from the “super block time-

dependent perturbation Ĥ ′(t)”. If we define En and |n〉 to be the eigenvalues and eigenstates of single block

unperturbed Hamiltonian
∑N3

0
s Ĥ

(s)
0 , and E∗n and |n∗〉 to be the eigenstates and eigenvalues for super block

unperturbed Hamiltonian,
∑N3

0
s Ĥ

(s)
0 +

∑N3
0

s6=s′
∑
ijkl Λ

(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl , the relations between En and E∗n, and

|n〉 and |n∗〉 are given by

|n∗〉 = |n〉+
∑
l 6=n

〈l|V̂ |n〉
En − El

|l〉+ ... E∗n = En + 〈n|V̂ |n〉+
∑
l 6=n

|〈l|V̂ |n〉|2

En − El
+ ... (C.9)

where we assume virtual phonon exchange interaction V̂ is relatively weak compared to single block unper-

turbed Hamiltonian
∑
s Ĥ

(s)
0 , so V̂ can be treated as a static perturbation. The formal way to calculate

resonant phonon energy absorption via Hamiltonian Ĥsuper
0 +Ĥ ′(t) is to use interaction picture. For arbitrary

operator Â and wave function |n∗〉, their interaction picture version are given by
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ÂI(t) = eiĤ
super
0 t/~Âe−iĤ

super
0 t/~

|n∗I , t〉 = e−
i
~
∫ t
−∞ Ĥ′I(t′)dt′ |n∗, t〉 (C.10)

where please be careful that in the definition of wave function interaction picture |n∗I , t〉, the perturbation

Ĥ ′I(t
′) is also the interaction picture version of Ĥ ′(t).

After all of the above preparations, finally the formal form of resonant phonon energy absorption per

unit time is given by

Ėsuper
l,t (L) =

∂

∂t

∑
n

e−βE
∗
n

Z∗
(
〈n∗I , t|Ĥ0I(t) + V̂I(t)|n∗I , t〉 − 〈n∗|Ĥ0 + V̂ |n∗〉

)
(C.11)

where Z∗ =
∑
n e
−βE∗n is the partition function for super block unperturbed Hamiltonian Ĥsuper

0 . Let us

expand the first term in Eq.(C.11),
∑
n
e−βE

∗
n

Z∗ 〈n
∗
I , t|Ĥ0I(t) + V̂I(t)|n∗I , t〉 up to the second order in phonon

strain field.

∑
n

e−βE
∗
n

Z∗
〈n∗I , t|Ĥ0I(t) + V̂I(t)|n∗I , t〉

=
∑
n

e−βE
∗
n

Z∗
〈n∗|e−

1
i~
∫ t(∑

ij

∑
s e

(s)
ij,I(t′)T̂

(s)
ij,I(t′)+δV̂I(t′)

)
dt′

(∑
s

Ĥ
(s)
0,I (t) + V̂I(t)

)
e

1
i~
∫ t(∑

ij

∑
s e

(s)
ij,I(t′′)T̂

(s)
ij,I(t′′)+δV̂I(t′′)

)
dt′′ |n∗〉

=
∑
n

e−βE
∗
n

Z∗
E∗n +

1

~2

∑
n

e−βE
∗
n

Z∗

∫ t

dt′dt′′
∑
l∗

e−i(E
∗
l −E

∗
n)(t′−t′′)/~(E∗l − E∗n)

〈n∗|
∑
ij

∑
s

e
(s)
ij (t′)T̂

(s)
ij + δV̂ (t′)|l∗〉〈l∗|

∑
ij

∑
s′

e
(s′)
ij (t′′)T̂

(s′)
ij + δV̂ (t′′)|n∗〉

=
∑
n

e−βE
∗
n

Z∗
E∗n

term[1] +
1

~2

∑
n

e−βE
∗
n

Z∗

∫ t

dt′dt′′
∑
l∗

e−i(E
∗
l −E

∗
n)(t′−t′′)/~(E∗l − E∗n)

〈n∗|
∑
ij

∑
s

e
(s)
ij (t′)T̂

(s)
ij |l

∗〉〈l∗|
∑
ij

∑
s′

e
(s′)
ij (t′′)T̂

(s′)
ij |n

∗〉

term[2] +
1

~2

∑
n

e−βE
∗
n

Z∗

∫ t

dt′dt′′
∑
l∗

e−i(E
∗
l −E

∗
n)(t′−t′′)/~(E∗l − E∗n)〈n∗|δV̂ (t′)|l∗〉〈l∗|δV̂ (t′′)|n∗〉

(C.12)
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where in the last step of the above calculation, we did not take the cross-over term between δV̂ and∑
ij eij T̂ij into account, because the we assume that the expectation value of three stress tensor prod-

uct, 〈n|T̂ij T̂klT̂mn|n〉 vanishes if we average over the randomness of glass. The phonon resonance energy

absorption, Eq.(C.11) is therefore simplified as Ėsuper
l,t (L) = ∂t (term[1] + term[2]). Our main purpose of this

chapter is to calculate term[1] and term[2] then.

C.2.1 Calculation Details of Term[1]: Eq.(6.15, 6.22) in Chapter 6

We expand term[1] up to the second order of phonon strain field. Please note that we are only interested in

the terms up to the second order of non-elastic susceptibility.

term[1]
1

~2

∑
n

e−βE
∗
n

Z∗

∫ t

dt′dt′′
∑
l∗

e−i(E
∗
l −E

∗
n)(t′−t′′)/~(E∗l − E∗n)

〈n∗|
∑
ij

∑
s

e
(s)
ij (t′)T̂

(s)
ij |l

∗〉〈l∗|
∑
ij

∑
s′

e
(s′)
ij (t′′)T̂

(s′)
ij |n

∗〉

=
1

~2

∑
n

e−βE
∗
n

Z∗
∑
ijkl

∑
ss′

eijekl
∑
l∗

(E∗l − E∗n)〈n∗|T̂ (s)
ij |l

∗〉〈l∗|T̂ (s′)
kl |n

∗〉

∫ t

dt′dt′′e−i(ω
∗
l −ω

∗
n)(t′−t′′)/~

[
ei(ωt

′−kxs)−i(ωt′′−kx′s) + e−i(ωt
′−kxs)+i(ωt′′−kx′s)

]
=

2πωt

~
∑
n

e−βE
∗
n

Z∗
∑
ijkl

∑
ss′

eijekl
∑
l∗

〈n∗|T̂ (s)
ij |l

∗〉〈l∗|T̂ (s′)
kl |n

∗〉e
−ik·(xs−x′s)

[
1

π
Im

(
1

ω − ω∗l + ω∗n − iη

)
− 1

π
Im

(
1

ω + ω∗l − ω∗n − iη

)]
(C.13)

where we define ωn = En/~ and ω∗n = E∗n/~. Next we apply the relations Eq.(C.9). Please note that the

expectation value of virtual phonon exchange interaction 〈n|V̂ |n〉 is always zero when |n〉 =
∏
s |n(s)〉 stands

for the eigenstates for single block Hamiltonians
∑
s Ĥ

(s)
0 . Therefore, in Eq.(C.9) the first order correction

to E∗n (ω∗n) always vanishes. We need to expand E∗n (ω∗n) to the second order in V̂ to calculate the imaginary

part of (ω − ω∗l + ω∗n − iη)−1 to calculate Eq.(C.13). However, if we try to expand (ω − ω∗l + ω∗n − iη)−1 in

orders of V̂ , the lowest order is the second order expansion. Together with the term 〈n∗|T̂ (s)
ij |l∗〉〈l∗|T̂

(s′)
kl |n∗〉

in the last step of Eq.(C.13), we will get a term written in the third order of non-elastic susceptibility.

Because we are only interested in the terms up to the second order of non-elastic susceptibility, the order of

(ω − ω∗l + ω∗n − iη)−1 expansion is too high. Hence in the following calculation we use the approximation

1

π
Im

(
1

ω − ω∗l + ω∗n − iη

)
≈ 1

π
Im

(
1

ω − ωl + ωn − iη

)
1

π
Im

(
1

ω + ω∗l − ω∗n − iη

)
≈ 1

π
Im

(
1

ω + ωl − ωn − iη

)
(C.14)
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We further apply the approximation that 1
π Im

(
1

ω−ωl+ωn−iη

)
≈ δ(ω − ωl + ωn) and 1

π Im
(

1
ω+ωl−ωn−iη

)
≈

δ(ω+ ωl − ωn). On the hand, the n∗-th level probability e−βE
∗
n/Z∗ can be expanded in orders of V̂ as well.

However, since both of e−βE
∗
n and Z∗ expansions come from the higher order corrections of E∗n, the lowest

order expansion for e−βE
∗
n/Z∗ is in the second order of V̂ . Combining with 〈n∗|T̂ (s)

ij |l∗〉〈l∗|T̂
(s′)
kl |n∗〉 we still

get a term which is in the third order of non-elastic susceptibility. Therefore we use the approximation that

e−βE
∗
n/Z∗ ≈ e−βEn/Z. Therefore Eq.(C.13) can be further simplified as

2πωt

~
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekl
∑
l∗

〈n∗|T̂ (s)
ij |l

∗〉〈l∗|T̂ (s′)
kl |n

∗〉e
−ik·(xs−x′s)

δ(ω − ωl + ωn)

(C.15)
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then we continue the calculation of Eq.(C.15):

2πωt

~
(
1− e−β~ω

)∑
n

e−βE
∗
n

Z∗
∑
ijkl

∑
ss′

eijekl
∑
l∗

〈n∗|T̂ (s)
ij |l

∗〉〈l∗|T̂ (s′)
kl |n

∗〉δ(ω − ωl + ωn)e
−ik·(rs−r′s)

=
2πωt

~
(
1− e−β~ω

)∑
n

e−βE
∗
n

Z∗
∑
ijkl

∑
ss′

eijekl
∑
l(

〈n|+
∑
m

〈n|V̂ |m〉
En − Em

〈m|

)
|T̂ (s)
ij

(
|l〉+

∑
p

〈p|V̂ |l〉
El − Ep

|p〉

)
(
〈l|+

∑
N

〈l|V̂ |N〉
El − EN

〈N |

)
|T̂ (s′)
kl

(
|n〉+

∑
M

〈M |V̂ |n〉
En − EM

|M〉

)
δ(ω − ωl + ωn)e

−ik·(rs−r′s)

term(1) = 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
l

〈n|T̂ (s)
ij |l〉〈l|T̂

(s′)
kl |n〉δ(~ω − El + En)

term(2) + 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
lm

〈n|V̂ |m〉
En − Em

〈m|T̂ (s)
ij |l〉〈l|T̂

(s′)
kl |n〉δ(~ω − El + En)

term(3) + 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
lm

〈n|T̂ (s)
ij |m〉

〈m|V̂ |l〉
El − Em

〈l|T̂ (s′)
kl |n〉δ(~ω − El + En)

term(4) + 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
lm

〈n|T̂ (s)
ij |l〉

〈l|V̂ |m〉
El − Em

〈m|T̂ (s′)
kl |n〉δ(~ω − El + En)

term(5) + 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
lm

〈n|T̂ (s)
ij |l〉〈l|T̂

(s′)
kl

〈m|V̂ |n〉
En − Em

|m〉δ(~ω − El + En) (C.16)

There are 5 terms need to be calculated. Term(1) is actually single block glass phonon energy absorption.

We have already calculated it before:

2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
l

〈n|T̂ (s)
ij |l〉〈l|T̂

(s′)
kl |n〉δ(~ω − El + En)

= −2N3
0L

3A2k2ω
(
1− e−β~ω

)
Im χ̃res

l,t (T, ω) (C.17)
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Again, Eq.(C.17) is positive-definite. This is Eq.(6.15) in chapter 6. Term(4) equals to term(2), and term(5)

equals to term(3). Therefore we are only required to calculate term(2) and term(3). Term(2):

2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
lm

〈n|V̂ |m〉
En − Em

〈m|T̂ (s)
ij |l〉〈l|T̂

(s′)
kl |n〉δ(~ω − El + En)

= 2πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑

ijklabcd

∑
ss′uu′

Λ
(uu′)
abcd eijekle

−ik·(rs−r′s)

∑
lm

δ(~ω − El + En)

En − Em
〈n|T̂ (u)

ab T̂
(u′)
cd |m〉〈m|T̂

(s)
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(s′)
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= 4πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
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ijklabcd

∑
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Λ
(ss′)
abcd eijekle

−ik·(rs−r′s)

∑
lmp
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En − Em
〈n|T̂ (s′)

ab |p〉〈p|T̂
(s)
cd |m〉〈m|T̂

(s)
ij |l〉〈l|T̂

(s′)
kl |n〉

= 4πωt
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
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∑
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Λ
(ss′)
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∑
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Tr
(
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(s)
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(s′)
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)
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(
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)∑
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Z
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∑
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Λ
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abcd eijekle

−ik·(rs−r′s)

∑
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∑
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∑
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∑
E

(r)
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)
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kl |n
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)
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)∑
n

e−βEn
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∑
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∑
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∑
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π
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) ∑
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Λ
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abkl(T, ω)

∫ ∞
0
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cdij(T,Ω)

ω + Ω
dΩ (C.18)

where in the above calculation we insert the identity
∑
p |p〉〈p|.
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Term(3):

2πωt
(
1− e−β~ω

)∑
m

e−βEm

Z
∑
ijkl

∑
ss′

eijekle
−ik·(rs−r′s)

∑
ln

〈m|T̂ (s)
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∑
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cd |l〉〈l|T̂

(s′)
kl |m〉

= 4πωt
(
1− e−β~ω
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∑
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abcd eijekle

−ik·(rs−r′s)

∑
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∑
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∑
l(s)l(s′)l(r)n(s)n(s′)n(r)

δ(~ω − E(s)
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∑
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∑
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kl |m
(s′)〉〈m(s′)|n(s′)〉〈n(s′)|

)
Tr
(
|l(s)〉〈l(s)|m(s)〉〈m(s)|T̂ (s)

ij |n
(s)〉〈n(s)|T̂ (s)
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)
= 4πωt

(
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)∑
m

e−βEm

Z
∑
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∑
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Λ
(ss′)
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∑
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n
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cd |l
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ab |m
(s)〉

= −4
L3

0

π
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(
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) ∑
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∑
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Λ
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∑
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m
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cdkl (ω)

∑
m(s)

e−βE
(s)
m

Z(s)

∑
n(s)

1

~ω − E(s)
n

〈m(s)|T̂ (s)
ij |n

(s)〉〈n(s)|T̂ (s)
ab |m

(s)〉

= −4
L6

0

π
ωt
(
1− e−β~ω

) ∑
ijklabcd

∑
ss′

Λ
(ss′)
abcd eijekle

−ik·(rs−r′s)
Im χ̃res

cdkl(T, ω)

∫ ∞
0

Im χ̃res
ijab(T,Ω)

Ω− ω
dΩ (C.19)

Finally we sum term(2-5) together. Their summation is given as follows, which turns out to be

V̇l,t(L) = ω
(
1− e−β~ω

) 8N3
0L

3A2k2 lnN0

πρc2t,l
Im χ̃res

t,l (T, ω)

∫ ∞
0

Ω Im χ̃res
t,l (T,Ω)

Ω2 − ω2
dΩ

= 4
(
1− e−β~ω

)
ω
N3

0L
3A2k2 lnN0

ρc2t,l
Im χ̃res

t,l (T, ω)Re χ̃res
t,l (T, ω) (C.20)

where please note that the reduced imaginary part of resonance susceptibility is negative, and the reduced

real part of resonance susceptibility is negative as well. Therefore the above result, Eq.(C.20) is positive.
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This is Eq.(6.22) in chapter 6. In the above calculations we made use of the definition for “real part reduced

resonance susceptibility” Re χ̃res
l,t (T, ω):

Re χ̃res
l,t (T, ω) =

2

π
P
∫ ∞

0

Ω Im χ̃res
l,t (T,Ω)

Ω2 − ω2
dΩ (C.21)

Also, the “imaginary part reduced resonance susceptibility” can be easily transformed back from that of real

part:

Im χ̃res
l,t (T, ω) = − 2

π
P
∫ ∞

0

ωRe χ̃res
l,t (T,Ω)

Ω2 − ω2
dΩ (C.22)

This relation will be useful in deriving the Meissner-Berret ratio self-consistent equation.

C.2.2 Calculation Details of Term[2]: Eq.(6.20, 6.21) in Chapter 6

Again, we are only interested in the quadratic order of non-elastic susceptibility. Because term[2] is the

expectation value of operator of quadratic δV̂ , the leading order of term[2] is already in terms of quadratic

non-elastic susceptibility. Thus we can use the approximations |n∗〉 → |n〉, E∗n → En and Z∗ → Z.

1

~2

∑
n

e−βE
∗
n

Z∗

∫ t

dt′dt′′
∑
l∗

e−i(E
∗
l −E

∗
n)(t′−t′′)/~(E∗l − E∗n)〈n∗|δV̂ (t′)|l∗〉〈l∗|δV̂ (t′′)|n∗〉

≈ 1

~2

∑
n

e−βEn

Z

∫ t

dt′dt′′
∑
l

e−i(El−En)(t′−t′′)/~(El − En)〈n|δV̂ (t′)|l〉〈l|δV̂ (t′′)|n〉

term(6) =
1
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∑
n

e−βEn

Z

∫ t
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∑
l
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∑
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(
∆Λ
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(s)
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)
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∑
abcd

(
∆Λ
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(u)
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|n〉

term(7) +
1
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∑
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Z
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∑
l

e−i(El−En)(t′−t′′)/~(El − En)

〈n|
N3

0∑
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∑
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(
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∑
abcd

(
2Λ
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(u)
ab (t′′)T̂
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term(8) +
2
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∑
n

e−βEn

Z

∫ t
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∑
l
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∆Λ

(ss′)
ijkl (t′)T̂

(s)
ij T̂

(s′)
kl

)
|l〉〈l|
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(u)
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)
|n〉 (C.23)

Let’s analyze them one by one. First of all we are able to calculate term(6). Before doing it’s calculation let

us first try to transform the matrix element product
∑
l〈p|T̂

(s)
ij T̂

(s′)
kl |l〉〈l|T̂

(s)
ab T̂

(s′)
cd |p〉δ(~ωl − ~ωp − ~ω) into
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the product of non-elastic susceptibilities:

∑
l

〈p|T̂ (s)
ij T̂

(s′)
kl |l〉〈l|T̂

(s)
ab T̂

(s′)
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∑
l

∑
nm

〈p|T̂ (s)
ij |n〉〈n|T̂
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∑
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∑
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∑
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∏
t6=s,s′

|l(t)〉〈l(t)|
)
δ(~ωl − ~ωp − ~ω)

=
∑
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 ∏
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∑
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∫
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Since the phonon wave displacement ~u(~x, t) = ~A cos(ωt − k · x), we have ∆xss′ = |~u(~x, t) − ~u(~x′, t)| =

A(k · (xs − x′s))| sin(ωt − k · (xs + x′s)/2)|. So ∆xss′/xss′ = A
∑
i kini| sin(ωt − k · (xs + x′s)/2)|. We can

further denote ∆Λ̃ijkl = λijkl| sin(ωt− k · (xs + x′s)/2)|:
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λ
(ss′)
ijkl =

{
3

4

[
2
(
njnlδik + njnkδil + ninkδjl + ninlδjk

)
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3
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−15

2
α

(
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+ 30αninjnknl cos θss′

}
A~k · ~n (C.25)

Hence term(6) can be simplified as
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∑
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∑
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(Longitudinal) ×((55 + 176α+ 688α2) + 44(1 + 4α+ 4α2)x(T, ω))

(Transverse) ×((35 + 112α+ 656α2) + 28(1 + 4α+ 4α2)x(T, ω)) (C.26)

116



where α = 1− c2t/c2l and x(T, ω) = χl(T, ω)/χt(T, ω)− 2. This result appears as Eq.(6.20) in chapter 6.

I feel really exausted here... anyway let’s continue to write the details of obtaining Eq.(6.21) in chapter

6. Because we only qualitatively know the behavior of the change of stress tensor operator is ∆T̂ij ∼ e(t)T̂ij ,

we are only able to give a qualitative calculation to term(7) and term(8):

term(7)
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Λ
(ss′)
ijkl Λ

(ss′)
abcd δ(~ω − El + En)〈n|T̂ (s)

ij T̂
(s′)
kl |l〉〈l|T̂

(s)
ab T̂

(s′)
cd |n〉

= A2k2πtω
(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ss′

∑
ijklabcd

Λ
(ss′)
ijkl Λ

(ss′)
abcd

L6

π2

∫
Im χ̃

(ns)
ijab(ωs)Im χ̃

(n′s)
cdkl(ω − ωs)d(~ωs)

= A2k2πtω
(
1− e−β~ω

)∑
ss′

∑
ijklabcd

Λ
(ss′)
ijkl Λ

(ss′)
abcd

L6

π2∫
Im χ̃res

ijab(T, ωs)Im χ̃res
cdkl(T, ω − ωs)d(~ωs)

∼ K
(1)
l,t ~ωt

N3
0A

2k2 lnN0

π3ρ2c4t

(
1− e−β~ω

) ∫
Im χ̃res

t (T,Ω) Im χ̃res
t (T, ω − Ω)dΩ (C.27)

where K
(1)
l,t are constants for longitudinal and transverse cases, of order ∼ 1. The calculation for term(8) is

similar:
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term(8)
2

~2

∑
n

e−βEn

Z

∫ t

dt′dt′′
∑
l

e−i(El−En)(t′−t′′)/~(El − En)

〈n|
N3

0∑
s6=s′

∑
ijkl

(
∆Λ

(ss′)
ijkl (t′)T̂

(s)
ij T̂

(s′)
kl

)
|l〉〈l|

N3
0∑

u6=u′

∑
abcd

(
2Λ

(uu′)
abcd ∆T̂

(u)
ab (t′′)T̂

(u′)
cd

)
|n〉

∼
∣∣∣∣ sin(ωt′ − k · xs + x′s

2

) ∣∣∣∣e(t′′) 1

~2

∑
n

e−βEn

Z

∫ t

dt′dt′′
∑
l

e−i(El−En)(t′−t′′)/~(El − En)

〈n|
N3

0∑
s6=s′

∑
ijkl

(
λ

(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl

)
|l〉〈l|

N3
0∑

u 6=u′

∑
abcd

(
2Λ

(uu′)
abcd T̂

(u)
ab T̂

(u′)
cd

)
|n〉

=
1

2
A2k2πtω

(
1− e−β~ω

)∑
n

e−βEn

Z
∑
l

∑
ss′

∑
ijklabcd

λ
(ss′)
ijkl Λ

(ss′)
abcd δ(~ω − El + En)〈n|T̂ (s)

ij T̂
(s′)
kl |l〉〈l|T̂

(s)
ab T̂

(s′)
cd |n〉

=
1

2
A2k2πtω

(
1− e−β~ω

)∑
n

e−βEn

Z
∑
ss′

∑
ijklabcd

λ
(ss′)
ijkl Λ

(ss′)
abcd

L6

π2

∫
Im χ̃

(ns)
ijab(ωs)Im χ̃

(n′s)
cdkl(ω − ωs)d(~ωs)

=
1

2
A2k2πtω

(
1− e−β~ω

)∑
ss′

∑
ijklabcd

λ
(ss′)
ijkl Λ

(ss′)
abcd

L6

π2∫
Im χ̃res

ijab(T, ωs)Im χ̃res
cdkl(T, ω − ωs)d(~ωs)

∼ K
(2)
l,t ~ωt

N3
0A

2k2 lnN0

π3ρ2c4t

(
1− e−β~ω

) ∫
Im χ̃res

t (T,Ω) Im χ̃res
t (T, ω − Ω)dΩ (C.28)

where K
(2)
l,t are constants for longitudinal and transverse cases, of order ∼ 1. In Eq.(6.21), chapter 6 we

define Kl,t = K
(1)
l,t +K

(2)
l,t .
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Appendix D

The Details of the Matrix Form of the
Inverse of Elastic Susceptibility

The elastic susceptibility is usually written as the form as follows.

χel
ijkl = (ρc2l − 2ρc2t )δijδkl + ρc2t (δikδjl + δilδjk) (D.1)

We want to reexpress it in the form of 6 × 6 matrix representation, where we take the basis as (xx), (xy),

(xz), (yy), (yz), (zz). In the following discussions we use 1, 2, 3 to represent x, y, z. To calculate the matrix

form of elastic susceptibility, we let the double indices (ij) and (kl) in elastic susceptibility χel
ijkl to take (ij)

and (kl) equal to (11), (12), (13), (22), (23), (33) and obtain the 36 matrix elements of χel
ijkl:

χel =



χel
1111 χel

1112 χel
1113 χel

1122 χel
1123 χel

1133

χel
1211 χel

1212 χel
1213 χel

1222 χel
1223 χel

1233

χel
1311 χel

1312 χel
1313 χel

1322 χel
1323 χel

1333

χel
2211 χel

2212 χel
2213 χel

2222 χel
2223 χel

2233

χel
2311 χel

2312 χel
2313 χel

2322 χel
2323 χel

2333

χel
3311 χel

3312 χel
3313 χel

3322 χel
3323 χel

3333


(D.2)

We can calculate every of these matrix elements by putting indices ijkl into Eq.(D.1). The inverse of the

above Eq.(D.2) is actually the 6×6 matrix form of the inverse of elastic susceptibility, and it is further given

as follows,

(
χel
)−1

=
1

ρc2t



α
4α−1 0 0 − 2α−1

2(4α−1) 0 − 2α−1
2(4α−1)

0 1 0 0 0 0

0 0 1 0 0 0

− 2α−1
2(4α−1) 0 0 α

4α−1 0 − 2α−1
2(4α−1)

0 0 0 0 1 0

− 2α−1
2(4α−1) 0 0 − 2α−1

2(4α−1) 0 α
4α−1


(D.3)
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Appendix E

Details of Calculations of Sound
Velocity Shift as the Function of
Logarithmic of Temperature
In this chapter we want to give a detailed calculation of Eq.(4.26) in chapter 4, with the assumption that the

reduced imaginary resonance susceptibility Im χ̃res
l,t (ω, T ) =

(
1− e−β~ω

)−1
Imχres

l,t (ω, T ) is approximately a

constant of frequency and temperature up to ωc ∼ 1015Hz and around the temperature of order 1K[34, 25].

We write Eq.(4.26) in the following,

∆cl,t(T )−∆cl,t(T0)

cl,t(T0)

∣∣∣∣
res

=
2

2πρc2l,t
P
∫ ∞

0

Ω
(

Imχres
l,t (Ω, T )− Imχres

l,t (Ω, T0)
)

Ω2 − ω2
dΩ = Cl,t ln

(
T

T0

)
(E.1)

Let us use the reduced imaginary resonance susceptibility Im χ̃res
l,t (ω, T ) ≈ Im χ̃res

l,t in the above integral,

1

πρc2l,t
P
∫ ∞

0

Ω
(

Imχres
l,t (Ω, T )− Imχres

l,t (Ω, T0)
)

Ω2 − ω2
dΩ

=
Im χ̃res

l,t

πρc2l,t
P
∫ ∞

0

Ω

Ω2 − ω2

[(
1− e−β~Ω

)
−
(
1− e−β0~Ω

)]
dΩ

=
Im χ̃res

l,t

πρc2l,t
P
∫ ∞

0

Ω

Ω2 − ω2

(
e−β0~Ω − e−β~Ω

)
dΩ (E.2)

where we define β0 = (kBT0)−1 and take the “frequency and temperature independent quantity” Im χ̃res
l,t out

of the integral. Such frequency and temperature independence of Im χ̃res
l,t (ω, T ) is observed in experiments[34,

33]. Also, according to the argument by D. C. Vural and A. J. Leggett[25], the frequency dependence of

imagnary part of non-elastic susceptibility Imχres
l,t (ω) does not differ that much for tanh(ω/2kBT ) function

dependence (derived from TTLS model) and
(
1− e−β~ω

)
function dependence (derived by multiple-level-

system model). Therefore one would intuitive expect that the “logarithmic temperature dependence of

sound velocity shift” should also be proven in arbitrary multiple-level-system similar with TTLS results.

Please note the above integral Eq.(E.2) has many nice properties: (1) it converges exponentially fast with

the increase of frequency variable Ω; (2) the “principle value” removes the divengence when Ω approaches

ω. We will evaluate this principle integral in details as follows.

The ultrasonic sound velocity shift experiments are measured around the temperatures of order 1K, which
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means the input ultrasonic phonon energy ~ω ∼ 10−28J is much smaller than kBT ∼ 10−23J. Thus when

the integral variable Ω approaches singularity ω, the function e−β~Ω ≈ 1. The following principle integral

P
∫ ω>

0

Ω

Ω2 − ω2
e−β~ΩdΩ = lim

ε→0

(∫ ω−ε

0

Ω

Ω2 − ω2
e−β~ΩdΩ +

∫ ω>

ω+ε

Ω

Ω2 − ω2
e−β~ΩdΩ

)
=

1

2
lim
ε→0

(
ln
ε

ω
+ ln

ω>
ε

)
=

1

2
ln
(ω>
ω

)
(E.3)

where ω> is “some” integral upper cut-off. From the exponentially decay behavior of function e−β~Ω, we

know this upper cut-off is some constant times temperature T : ω>(T ) ∝ T . Back to Eq.(E.2) we need to

calculate both of the two parts in the bracket, it turns out to be

∆cl,t(T )−∆cl,t(T0)

cl,t(T0)

∣∣∣∣
res

=
Im χ̃res

l,t

πρc2l,t
P
∫ ∞

0

Ω

Ω2 − ω2

(
e−β0~Ω − e−β~Ω

)
dΩ

=
Im χ̃res

l,t

2πρc2l,t

[
ln

(
ω>(T0)

ω

)
− ln

(
ω>(T )

ω

)]
= −

Im χ̃res
l,t

2πρc2l,t
ln

(
ω>(T )

ω>(T0)

)
= −

Im χ̃res
l,t

2πρc2l,t
ln

(
T

T0

)
(E.4)

this is the details of Eq.(4.26) calculations, where − Im χ̃res
l,t

2πρc2l,t
is the constant Cl,t which appears in Eq.(4.26).
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Appendix F

Calculation Details of the Coefficient
Renormalization Equations (4.18)

In the renormalization eqations, Eqs.(4.18),

χsuper
ijkl (ω) =

1

1− iωτ

{
χrel
ijkl −

L3
n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−i

~k·(~xs−~x′s)

] (
χrel
ijabχ

rel
cdkl + 2χrel

ijabχ
res
cdkl(0)

)}

+ χres
ijkl(ω + iη)− L3

n

N3
0

[
−
∑
abcd

∑
ss′

Λ
(ss′)
abcd (0)e−i

~k·(~xs−~x′s)

]
χres
ijab(ω + iη)χres

cdkl(ω + iη) (F.1)

We are required to calculate the linear term expansion
∑
abcd χijab

L3
n

N3
0

[
−
∑
ss′ Λ

(ss′)
abcd (0)e−i

~k·(~xs−~x′s)
]
χcdkl,

and simplify it into the following renormalization equations,

χsuper rel
t,l = χrel

t,l −
1

ρc2t,l

[(
χrel
t,l

)2
+ 2χrel

t,lχ
res
t,l (0)

]
χsuper res
t,l (ω + iη) = χres

t,l (ω + iη)− 1

ρc2t,l

[
χres
t,l (ω + iη)

]2
(F.2)

First of all, let us give a short review of the process of calculating Λ
(ss′)
abcd : the non-elastic stress-stress

interaction is defined as follows,

V̂ =
∑
s6=s′

∑
ijkl

Λ
(ss′)
ijkl T̂

(s)
ij T̂

(s′)
kl (F.3)

where the coefficient Λ
(ss′)
ijkl is the term Λ

(ss′)
abcd in Eq.(F.1). In Appendix (A) the non-elastic stress-stress

interaction is obtained by “completing the square of phonon Hamiltonian”, and it is given as follows,

V̂ =
1

2Nm

(
1

c2t
− 1

c2l

)∑
s6=s′

∑
ijkl

∑
~k

(
kikjkkkl

k4

)
cos(~k · ~xss′)T (s)

ij T
(s′)
kl

− 1

8Nm

1

c2t

∑
s6=s′

∑
ijkl

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
cos(~k · ~xss′)T (s)

ij T
(s′)
kl (F.4)
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where ~xss′ = ~xs − ~x′s. Since we have the relation cos(~k · ~x) = 1
2

(
e−i

~k·~x + ei
~k·~x
)

, the above Eq.(F.4) can be

rewritten as

V̂ =
1

2Nm

(
1

c2t
− 1

c2l

)∑
s 6=s′

∑
ijkl

∑
~k

(
kikjkkkl

k4

)
1

2

(
e−i

~k·~xss′ + ei
~k·~xss′

)
T

(s)
ij T

(s′)
kl

− 1

8Nm

1

c2t

∑
s6=s′

∑
ijkl

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
1

2

(
e−i

~k·~xss′ + ei
~k·~xss′

)
T

(s)
ij T

(s′)
kl

(F.5)

Now, let us compare the following two pairs of summations:

1

2

∑
~k

(
kikjkkkl

k4

)
e−i

~k·~xss′

1

2

∑
~k

(
kikjkkkl

k4

)
e+i~k·~xss′

1

2

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
e−i

~k·~xss′

1

2

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
e+i~k·~xss′ (F.6)

please note, that in the above summations over momentum ~k, the components ki, kj , kk, kl are the x, y, z

components of ~k when i, j, k, l equal to x, y, z. Therefore, the first pair of summations are equal to each

other, and the second pair of summations are equal to each other as well. We prove these equal relations as

follows. In the summation 1
2

∑
~k

(
kikjkkkl

k4

)
e+i~k·~xss′ we define ~k′ = −~k. Thus the summation is given by

1

2

∑
~k

(
kikjkkkl

k4

)
e+i~k·~xss′ =

1

2

∑
−~k′

(−k′i)(−k′j)(−k′k)(−k′l)
k′4

e−i
~k′·~xss′

=
1

2

∑
~k′

(
k′ik
′
jk
′
kk
′
l

k′4

)
e−i

~k′·~xss′

=
1

2

∑
~k

(
kikjkkkl

k4

)
e−i

~k·~xss′ (F.7)

In the summation 1
2

∑
~k

(
kjklδik+kjkkδil+kiklδjk+kikkδjl

k2

)
e+i~k·~xss′ we define ~k′ = −~k as well. The summation

is simplified as:
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1

2

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
e+i~k·~xss′

=
1

2

∑
−~k′

(
(−k′j)(−k′l)δik + (−k′j)(−k′k)δil + (−k′i)(−k′l)δjk + (−k′i)(−k′k)δjl

k′2

)
e−i

~k′·~xss′

=
1

2

∑
−~k′

(
k′jk
′
lδik + k′jk

′
kδil + k′ik

′
lδjk + k′ik

′
kδjl

k′2

)
e−i

~k′·~xss′

=
1

2

∑
~k′

(
k′jk
′
lδik + k′jk

′
kδil + k′ik

′
lδjk + k′ik

′
kδjl

k′2

)
e−i

~k′·~xss′

=
1

2

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
e−i

~k·~xss′ (F.8)

Therefore the non-elastic stress-stress interaction can be rewritten as

V̂ =
∑
s6=s′

∑
ijkl

Λ
(ss′)
ijkl T

(s)
ij T

(s′)
kl

=
1

2Nm

(
1

c2t
− 1

c2l

)∑
s6=s′

∑
ijkl

∑
~k

(
kikjkkkl

k4

)
ei
~k·~xss′T

(s)
ij T

(s′)
kl

− 1

8Nm

1

c2t

∑
s6=s′

∑
ijkl

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
ei
~k·~xss′T

(s)
ij T

(s′)
kl (F.9)

where

Λ
(ss′)
ijkl =

1

2Nm

(
1

c2t
− 1

c2l

)∑
~k

(
kikjkkkl

k4

)
ei
~k·~xss′

− 1

8Nm

1

c2t

∑
~k

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
ei
~k·~xss′ (F.10)

The above Eq.(F.10) is the most original definition of Λ
(ss′)
ijkl . Now let us begin to calculate the linear term∑

abcd χijab
L3
n

N3
0

[
−
∑
ss′ Λ

(ss′)
abcd e

−ik·(xs−x′s)
]
χcdkl. For notation simplicity let us denote

fijkl(~k) =
1

2Nm

(
1

c2t
− 1

c2l

)(
kikjkkkl

k4

)
− 1

8Nm

1

c2t

(
kjklδik + kjkkδil + kiklδjk + kikkδjl

k2

)
(F.11)

So Λ
(ss′)
ijkl =

∑
~k fijkl(

~k)ei
~k·(~xs−~x′s). The linear term

∑
abcd χijab

L3
n

N3
0

[
−
∑
ss′ Λ

(ss′)
abcd e

−ik·(xs−x′s)
]
χcdkl is calcu-

lated as follows,
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∑
abcd

χijab
L3
n

N3
0

[
−
∑
ss′

Λ
(ss′)
abcd e

−i~k·(~xs−~x′s)

]
χcdkl

=
∑
abcd

χijab
1

8

L3
n

N3
0

− ∑
(~xs+~x′s)

∑
(~xs−~x′s)

Λ
(ss′)
abcd e

−i~k·(~xs−~x′s)

χcdkl
=

∑
abcd

χijab
1

8

L3
n

N3
0

− ∑
(~xs+~x′s)

∑
(~xs−~x′s)

∑
~p

fabcd(~p)e
i~p·(~xs−~x′s)e−i

~k·(~xs−~x′s)

χcdkl
=

∑
abcd

χijabL
3
n

−∑
~p

fabcd(~p)
∑

(~xs−~x′s)

ei~p·(~xs−~x
′
s)e−i

~k·(~xs−~x′s)

χcdkl
=

∑
abcd

χijabL
3
n

−∑
~p

fabcd(~p)δ~p,~k

χcdkl
=

∑
abcd

χijabL
3
n

[
−fabcd(~k)

]
χcdkl

= −
∑
abcd

χijab

[
1

2ρ

(
1

c2t
− 1

c2l

)(
kakbkckd

k4

)
− 1

8ρ

1

c2t

(
kbkdδac + kbkcδad + kakdδbc + kakcδbd

k2

)]
χcdkl

=
1

2ρc2t

∑
abcd

χijab

[
−α

(
kakbkckd

k4

)
+

1

4

(
kbkdδac + kbkcδad + kakdδbc + kakcδbd

k2

)]
χcdkl (F.12)

where α = 1 − c2t/c2l . Next we use the assumption, that single block susceptibility lim~k→0 χijkl(
~k) should

approximately be independent of the direction of momentum ~k/k at small wave number limit lim~k→0.

Therefore, we assume that the single block susceptibility take the generic isotropic form, χijkl = (χl −

2χt)δijδkl + χt(δikδjl + δilδjk). Let us define a new quantity, the “change of non-elastic susceptibility from

single block to super block, δχijkl = χsuper
ijkl − χijkl”.

In the renormalization equations, the “change of non-elastic susceptibility from single block to super

block” is equal to Eq.(F.12). In Eq.(F.12) both of “χijab” and “χcdkl” are independent of the direction

of momentum, “~k/k” at small wave number limit. After the summation over indices
∑
abcd, the quantity

1
2ρc2t

∑
abcd χijab

[
−α

(
kakbkckd

k4

)
+ 1

4

(
kbkdδac+kbkcδad+kakdδbc+kakcδbd

k2

)]
χcdkl is independent of the direction of

momentum as well.

Therefore, the terms with odd orders of momentum components kx, ky, kz must vanish (because if we

reverse the direction of momentum ~k, the signs of odd terms are reversed); for even orders of momentum

components kx, ky, kz, they take their average values (because if we change the direction of momentum from

~k to ~k′, the “change of non-elastic susceptibility δχijkl” in small wave number limit is independent of such
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momentum direction change). For example,

kakb =

∫
d3k

(2π)3 kakb∫
d3k

(2π)3 k
2

=
1

3
δab kakbkckd =

∫
d3k

(2π)3 kakbkckd∫
d3k

(2π)3 k
4

=
1

15
(δabδcd + δacδbd + δadδbc) (F.13)

Finally we plug Eq.(F.13) into Eq.(F.12), and sum over the 81 summations to obtain the following result.

This result implies that “the change of non-elastic susceptibility δχijkl takes the generic isotropic form in

small wave number limit lim~k→0: δχijkl = (δχl − 2δχt)δijδkl + δχt(δikδjl + δilδjk)”,

δχijkl =
∑
abcd

χijab
L3
n

N3
0

[
−
∑
ss′

Λ
(ss′)
abcd e

−i~k·(~xs−~x′s)

]
χcdkl =

(
χ2
l

ρc2l
− 2

χ2
t

ρc2t

)
δijδkl +

χ2
t

ρc2t
(δikδjl + δilδjk)

(F.14)

which gives the simplified RG equations Eqs.(F.2).
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