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The anharmonic interaction (third-order elastic Hamiltonian) between fractons Cshort-length-scale
vibrational excitations) and phonons (long-length-scale vibrational excitations) is introduced. The re-
lationship between phonon-frncton scattering rates and the thermal conductivity tt is developed.
Two relevant anharmonic lifetimes are calculated: two phonons combining into a single fracton,
and one phonon combining with a fracton to produce a fracton. The former is important to the
behavior of a in the "plateau" regime; the latter to x at temperatures above the plateau regime. The
latter is interpreted in terms of phonon-assisted fracton hopping, and gives rise to an extra heat con-
ductance which increases linearly in the temperature T. This behavior appears to be in agreement
with recent high-temperature measurements of K in epoxy resin by de Oliveira and Rosenberg.

I. INTRODUCTION

The thermal conductivity tt of amorphous materials has
been shown to be of universal form. ' The lowest-
temperature regime is associated with phonon scattering
off two-level systems (TLS),t with a thermal conductivity
increasing as the square of the temperature. At higher
temperatures (typically 8—10 K), the thermal conductivity
fiattens off into a "plateau" regime, remaining relatively
constant for another 5—10 K. The plateau is "followed
by a continued slow rise at higher temperatures. "

A recent "fracton" model for the behavior in the vicini-

ty of the plateau region was formulated by Alexander
et al. and later amplified by Orbach and Rosenberg. ' It
suggests that phonons are responsible for the thermal con-
duction in amorphous materials at low temperatures. The
quadratic temperature dependence of the thermal conduc-
tivity at the lowest temperatures is thereby associated with
phonon scattering off the two-level systems. For higher
temperatures, the thermally excited vibrational excitations
crossover from phononlike to fractonlike at a temperature
T=Rco, /ktt, where ta, is the crossover frequency separat-
ing phonon from fracton excitations. Because the frac-
tons are spatially localized, they cannot contribute to the
heat current. In this temperature regime, kttT is larger
than the phonon energies. But only the phonons can car-
ry heat. Hence, one is in the DuLong-Petit regime for the
heat-carrying phonons, and for a temperature-independent
phonon mean free path, the thermal conductivity is a con-
stant. (We shall investigate the temperature dependence
of the phonon mean free path in this temperature regime
below. ) This explanation for the plateau in the thermal
conductivity is consistent with scaling tests where ~, is
altered by virtue of changes in material preparation pro-
cedures.

The question arises then, quite naturally: What hap-
pens at temperatures above the plateau region? How can
the spatially localized fractons contribute to the thermal
conductivity' The purpose of this paper is to examine the
anharmonic phonon-fracton interaction process. We shall
show that through this interaction, phonon-induced frac-

ton hopping can contribute to the heat current, generating
a thermal conductivity which increases linearly with in-
creasing temperature. Such behavior has been known ap-
proximately, ' with very recent experiments exhibiting a
thermal conductivity which increases linearly with tem-
perature much more clearly.

We shall divide our presentation into sections, with Sec.
II the formulation of the three vibrational quanta anhar-
monic interaction. Sec. III is a calculation of the phonon
and fracton lifetimes caused by the anharmonic processes:

phonon + phonon ~ fracton,

phonon + fracton~ fracton .

The resultant contribution to the thermal conductivity
is developed in Sec. IV. Section V will discuss the experi-
mental situation. We shaH show that the measurements
of de Oliveira and Rosenberg are consistent with the sub-
stance of our calculation. They measure the thermal con-
ductivity of epoxy resin through and above the plateau
temperature. They find a contribution to tt linear in tem-
perature above the plateau temperature which can be re-
garded as an addition to K at the plateau value. That is,
Kexpt Kp]ateau+ C 1, where C is a constant. This is con-
sistent with the concept of fracton hopping: an additional
contribution to the heat current for temperatures above
the plateau temperature.

An alternate picture of Karpov and Parshin9 for the
behavior of the thermal conductivity above the plateau
temperature introduces anharmonic modes which can car-
ry heat. These states scatter off the two-level systems
(TLS) which are common to atnorphous structures. At
temperatures above the plateau temperature, the relative
population of the TLS is inversely proportional to tem-
perature. Thus, the scattering of the anharmonic modes
decreases linearly with increasing temperature. Hence,
this model ascribes the linear temperature dependence of K

above the plateau temperature to a linear decrease in the
scattering rate of these heat-carrying states. This is to be
compared to the fracton-hopping concept introduced in
this paper which generates an additiona/ heat transport

34 2726 1986 The American Physical Society



PHONON-FRACTON ANHARMONIC INTERACTIONS: THE. . .

mechanism. While it will be difficult to choose between

models, it will be argued that the fracton approach has, at
the least, the fewest number of arbitrary parameters, and
provides a coherent picture of thermal transport over the
full temperature range. Our results are summarized in
Sec. VI.

II. THE PHONON-FRACTON
ANHARMONIC INTERACTION

The conventional anharmonic interaction is written as,

where y is the anharmonic interaction constant, V is the
volume, and u the displacement operator. %e use the
conventional normal-mode expansion for u(r),

u(r)= +[1/(2pco )]'~ e [P (r)b +P'(r)b ), (2)

83
r

where cz is the normal-mode index, p is the average mass
density, e is a unit vector in the polarization direction,
and P (r) the normalized vibrational wave function for
the ath mode. For ease of notation, we shall drop the
unit vector e in the subsequent calculations. There are
two principal anharmonic diagrams, pictured in Figs. 1(a)
and 1(b), representing respectively,

FIG. 1. The decay channels caused by vibrational anharmon-
icity: (a) phonon + phonon+ fracton, and (b) phonon
+ fracton~fracton. The wavy lines represent the phonons,
and the dashed double lines the fractons. The dashed circle
represents the interaction Hamiltonian Eq. (1}.

phonon + phonon ~ fracton, (3a)

phonon + fracton ~fracton . (3b)

The former will be important for the behavior of the
thermal conductivity at and above the plateau tempera-
ture regime; the latter for the fracton-"hopping" contribu-
tion to the thermal conductivity.

The process pictured in Fig. 1(a) [Eq. (3a)] generates a
phonon and a fracton lifetime. We shall calculate the for-
mal expressions for both below, and evaluate them expli-
citly in Sec. III. The process pictured in Fig. 1(b) [Eq.
(3b}] will be used to calculate the fracton-hopping rate,
and will be evaluated explicitly in Sec. IV.

(a) phonon + phonon+ fracton

where the matrix element A " ~ is

A ~, =[(1/Zpco )(1/2pco ~ )(1/2pcu )]'i2

X (I/V} f dr[c}P,(r)/c). ][c}y.. (r)/c}.]

X [c}P'(r)/c)r] .

The phonon lifetime can be extracted from the transi-
tion probability per unit time for the state a to combine
with a" to yield the state a'. Conventional second-order
time-dependent perturbation theory generates,

~'=2wy
~
A~ +" &' t n+n&'(1+n )

The interaction Hamiltonian associated with process
Eq. (3a) follows from Eqs. (1) and (2),

~=y g (A - b b b+A* - bb-b ~ ),
a,a', a"

X5(co~ —co~ —67~") .

This results in the time rate of change of the occupation
of state a,

dpi ~
=2m'y g ~

A ~ ~

~
[n (1+n ~ )(1+n ) —n n -(1+n ~ )]5(co +a) "—co ) .

This leads to an expression for the phonon lifetime,

(1/r )ph ——2my g ~

A ~ ~

~

5(cu co co -)(n " —n ~
—}, —(a)

(8)

where n~ is the equihbrium Bose factor [exp(%co~/k&T) 1] . For the remainder of—this paper, we shall set A'=1, for
ease of notation.
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The fracton lifetime associated with Fig. 1(a) [Eq. (3a)] is obtained in an analogous fashion. The time rate of change
of the number of fractons in the state ct' is given by,

2—2my g ~

A ~ ~ ~
[(1+n )n~n~- —n~(1+n )(1+n~-)]6{co c—o c—o ) .

dt

This leads to an expression for the fracton lifetime,

(1/r~ )t„=2my g ~
A~ o,

- ~ ~
5(co~ co~ co—~ )(1+n(z+n~ )".

a,a"

The matrix element for both lifetimes is found from Eq. {5):

= —k k [(1/2Mco )(1/2Mco ~ )(1/2Mco )]' (1/V)'~ I dr exp[i(k +k ) r][c)$'(r)/Br]

=(i/v, )[(1/2Mco )(co /2M)(co -/2M)]'~ (k +k ~ )(1/V)'~ f drexp[i(k +k ) r]P'(r),

(10)

(1) phonon + fracton ~ fracton

The interaction Hamiltonian associated with process
Eq. (3b) follows from Eqs. (1) and (2). We shall not gen-
erate the explicit expressions for the phonon and fracton
lifetimes associated with this diagram. They follow in a
manner similar to Eqs. (8) and (10). We shall evaluate
them in the next section.

I/I. PHONON AND FRACTON LIFETIMFS

(a) phonon(a) +phonon(a") ~ fracton(0, ')

Phonon lifetime (l /r )~q'

Evaluating the diagram of Fig. 1(a) [Eq. (3a)] from Eq.
(8), and using the matrix element for the interaction, Eq.
(12), we can find the lifetime of the phonon in the state a.
However, the evaluation of matrix element requires care-
ful consideration of the length scales in the problem. We
need to evaluate

I drexp[i(k~+k~-) r]P~(r) . (13)

The form for the fracton wave function, P (r} has been
posited by Alexander et ah

where U, is the phonon sound speed. %'e shall not carry
out the detailed angular integrations inherent in Eq. (11)
because of their algebraic complexity. Rather, we shall
obtain a reasonable estimate of the relaxation rates by us-

ing k =co /v, and k -=co -/v, . Then, by virtue of the
energy conserving delta function, k +k - =co /v, . Us-
ing Eqs. (8) and (10),

=(i/v, )(co~co~ -/SM )'~ (1 /V)'~

rexp&K "r ~ r, K = ~+ -. 12

The integral in Eq. (12) will turn out to be nontrivial be-
cause the phase factor will vary rapidly over the region of
integration (i.e., over the volume occupied by the fracton
of energy co ). We defer its evaluation until Sec. III.

i=a,o(con /QF'D)

where ao is the microscopic length scale, Q„D is the frac-

ton Debye frequency, d is the fracton dimensional-

ity, and d& is the exponent recognizing the "superlocali-
zation" of the fracton state. ' In general, d~ is
sandwiched between unity and d;„,where d;„ is defined

mirt
by 1.~R '", I. being the shortest connected path be-
tween two points on the fractal separated by a Pythagore-
an distance R. ' For a percolating network in d =2,
d;„=1.38. The localized nature of P ~ will result in r be-

ing no larger than 1, in Eq. (13), so that the exponent

will be of magnitude,

K, l„,-(co /v, )(co )
~ -(co /co, )

' + '&1, (16)

where we have used the relation d =2D/(2+8), where 8
is a measure of the range dependence of the diffusion con-
stant for diffusion on a fractal (8&0).' Here, co, is the
crossover frequency between phonon and fracton re-

gimes, and we have used the relation v, ~co, ' + '. '

This means that the exponential in (14) will oscillate over
the region of integration.

We handle the oscillations as follows. The fracton lo-
calization volume is (I„,) . We divide it into regions of~a'

volume (1/K~ ), over which the scattering is coherent.
The amplitude of the fracton wave function in this
volume is proportional to (l„} ~, and the number of
network sites in each region is (1/K~ ) . The contribu-
tion to the Fourier integral from each region is

g [exp(iK R„)]("1/I )
~

where R, is the position of the vth site in the region of
volume (1/K~ ) . Equations (8) and (10) require the ab-
solute square of the Fourier integral Eq. (13). Performing
the absolute square of Eq. (17) results in

(1/K~ ) (1/l„, ) 1+ g exp[iK~" (R —Rp)]

v'~v

P~(r) ~(1/r)' ' '(l„,) 'exp[ —,'(r/l„) e—] . (14) -(1/K~ ) (1/l, )

Here, D is the fractal dimensionality, " I„, is the charac-
cx

teristic length associated with the localized fracton:
Multiplying by the number of such regions, (l„,K ), we~a'
find for the absolute square of the Fourier integral,
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(I/K ~ )~D(1/I„, ) (/„,K ) =(I/&

Inserting Eq. (18) into the absolute square of Eq. (12),

(18)

where we have used for the phonon and fracton densities
of states,

N~b(co) = [1/(u, /ao)"]co

Xt,(co)=[1/(QFD) ]co

(19)

Inserting Eq. (19) into Eq. (8), we obtain the expression
for the phonon lifetime for the anharmonic process Eq.
(3a):

The evaluation of the integral in Eq. (2{)) is tedious, but
can be shown to equal (for co «& co, )

(I/r )P,'~y (u, /au) QFD co~

CO +N
Cx dcoc (co~ —co~) co~'

~c

X [n (co~ co~} —n(co—, )], (20)

(I lkttT)co, +
co exp( —Pco, ), @co, & 1 .

Inserting this expression into Eq. (20) yields our final re-
sult for the phonon lifetime for the process Eq. (3a):

ksTQFD/co~, Pco~ & 1

( I/re)pg' ——y (co~/QFD)(ug /auQFD) (co, /QFD) + X Q ( p )/k T p
(22}

This result should be measurable in acoustic attenuation experiments.

Fracton lifetime {1/r )t„"

An entirely analogous procedure can be followed for the fracton lifetime. Here, the phonon density of states enters

twice, so that d in Eq. (20} is replaced by 2d, and there is no d left in the exponent. Omitting the algebra, we find,

ktt T/QFD, pco ~ & 1

(I/r )t,
"——(y /QFD)(u, /aoQFD) (co /QFD) +'X '

Q a (23)
co~ QFD, Pco~ ) 1 ~

{b) phonon(a) + fracton{a") ~fracton{ct')

&honon lifetime (1/v~)p~g'

The calculation follows that for process Eq. (3a), with the exception of the matrix element. Simplifying Eq. (5), we

have

~ =i[(1/2pco )(I/Zpco -)(co / ZM)]'~ (1/u, V) I dr exp(ik .r)[c)Q (r)/Br][c)$ (r)/Br] .

Using Eq. (14}for the fracton wave function, we obtain,

A~ ~ ~ =i[(1/Zpco~ )(1 /Zpc~o)( ~co/ZM)]'~ (1/ gVuau)(co~co~-/QFD)e[1/l~, l~ „]

(24)

(25)

where q =ddt, /D. The integral in Eq. (25) can be approximated by

l„,exp[ik .R ——,
' ((R —R ~ )/l„„~ e]+I exp-[ik R —-,

' —
~

(R —R )/l„,
~

e] .

The absolute square of the matrix element, Eq. (24), then becomes

~

A ~ ~

=(aoQFD/u, ) (co~/QFD)(co~co~ /QFD) e

)&I(l„,/l„) exp[ —
)
{R —R -)/l „) e]+(l„,/l, ) exp[ —((R —R ~ }/l„,

~

e]I . (26)

Note that Eq. {26) is dirnensionless, as it should be. %'e now insert this expression into a form closely paraHehng Eq.
(20). Here, however, we can make explicit use of a small phonon energy compared to the fracton energies. That is,
~ &&~,~ -. %e therefore can take m -m - in our subsequent discussion. The phonon relaxation rate for process Eq.
(3b) can be found in a manner analogous to Eq. (20). One finds, using Eq. (26) for the absolute square of the matrix ele-
ment,

{1/i )pt,'-y2(aoQFD/u, ) (co /QFD)(co /QFD)+ ~(@co /5}(n +1)n exp[ —
~

(R —R -)/l„,
~

e] . (27)
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The factor 5 represents the sum of the energy widths of the fracton states. This quantity enters the "golden-rule" equa-
tion because of the localized character of the fracton wave functions. An extensive discussion of the role played by 5
can be found in Ref .10.

Th«esult Eq (27) must be averaged ove«he probability densities for finding fractons of energy co =cu - at positions
R ' and R " respix:tively. The probabihty density for finding the first (a ) fracton at R,R +dR ~ with energy in the
'nte~» cu c0 +dc', is DR dR &(,(cu )dcu . The probability density for finding the second (n") fracton at

R~"+dRa" w'th ~~~~gy in the i«erv» cu~-, co~-+&, is' DR~- 'dR~-&(, (cu~-)6. We transform the integrations
over R ~ and RN- into an integration over the difference in position of the two fractons, R =

~
R —R

~

. Equation (27)
becomes

(1/r~)pi, '-y (aoQpD/u, ) (pcs~/QpD) f DR 'dRNf„(cu~)dc'~(co~/QpD)v

Xexp(Pc0 )[exp(Pco ) —1] exp[ —(R/1„) ~] .

The R integration yields ( 1„,/ao) I [(D!d&)+1]. Performing the cu ~ integration yields

ks T/co„Pcu, & 1

(1/r~)pi, '-y (aoQpD/u, ) (Pc0~/QpD)(cu, /QpD) + ksTx '

exp —Picu, Pco & 1

Fracton lifetime ( I /rN- }(,'

N(, (co,-)c0, [R (cu -)] —1 . (30)

Here, cu, reflects the maximum phonon energy, and we

This process has been referred to in the Introduction as
phonon-assisted fracton hopping. For the evaluation of
the rate, we make use of the absolute square of the matrix
element, Eq. (26), under the conditions that cue -a@ -.
However, we now must sum over the final positions of the
fracton, RN. We do this by requiring that there be a
probability unity to find the final-state fracton at a dis-
tance R(cu, ) away from the initial fracton at R~ . This
distance is given by the relation,

are assuming that the fracton "hop" distance R (co -) &g,
the length scale associated with fracton-phonon crossover.
For fracton hopping over larger length scales, the ex-
ponmt »n Eq. (30) is replaced by the Euclidean dimen-
sion d. We shall exhibit results for the latter condition
below Eq. (32). Using our expression for 1„„from Eq.
(15), Eq. (30) results in the ratio

R (cu )/1„„-(cu ~ /cu, )'~D& 1 .

We see, therefore, that the fracton is "hopping" a distance
greater than the fracton localization distance. This dis-
tance will enter into our expression for the thermal con-
ductivity in Sec. IV. Using the interaction Hamiltonian
Eq. (4), we obtain

I 1/~ ~ [R (cu») & g] I(, '=y (1/2Mu, ')(aulu, ) co, 'ks T(c0 -/Qpn)+ exp[ (cu -/cu, ) ~ —], (32)

using Eq. (31). When the reverse is true, R (co~-) & g, the mean hopping distance is given by [see Eq. (30) for the opposite
limit

N(„(coN-)cu, [R (c0 ~ )]"-1 .

Again, the ratio R (co~ )/I„„&1 [upon replacing D by d in Eq. (31)]. This results in

(33)

I 1/r ~ [R(cu~ ) &g]J(, '=y (I/2Mu, )(aulu, ) c0, ksT(cog-/QpD)s exp[ (co~-/cu, )—~ ] . (34)

This completes our calculation of the phonon and frac-
ton lifetimes according to the anharmonic decay processes
exhibited in Fig. 1 and Eq. (3). We shall now use Eqs.
(32} and (34} to calculate the extra thermal conductivity
brought about by phonon-assisted fracton hopping.

IV. FRACTON-HOPPING CONTRIBUTION
TO THS THSRMAI. CONDUCnVITV

K — 8co "Xf QP " C QP " D co (35)

where N(, (co~-) is the fracton energy density of states, '

C(c0 -) the specific heat of the a" mode, and D (ca -) the
diffusion constant for fracton hopping.

%'e start with the diffusion constant. For fracton hop-
ping,

D~-(cu~-)=(1/r~-)R (a) -}, (36)
We have derived the phonon-assisted fracton-hopping

rates in Sec. III. We shall use them to construct the dif-
fusion constant for heat in this section, and proceed to
calculate the concomitant contribution to the thermal
conduction. The thermal conductivity x is given by

where I/r~- is the phonon-assisted fracton-hopping rate
[Eqs. (32) and (34)], and R (co~ ) the mean hopping dis-
tance [Eqs. (30) and (33), respectively]. We can rewrite
Eq. (36) for the two limits R(c0 ) &g,
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X I„„(co ~ /co, )

I:D (~ -)]R( ) g=(1«-[~(~ )&k]j

X&'„,(co -/co, )

The specific heat carried by the cc" mode is,

(37a)

(38)

It will turn out that the principal contribution to the
thermal conductance will arise from fractons near the
phonon-fracton crossover energy co, . Because co, /ks is of
the order of the plateau temperatures, and we are interest-
ed primarily in temperatures well above the plateau tem-
peratures, C(co -)-ks. Inserting this value into Eq. (35),
and then using Eq. (37a), we obtain the thermal conduc-
tivity arising from fracton hopping:

k~T
&

I R(u -I&/ f d~ "+f.(co')4r'(4T/2~U')[~' '/(U, /c)0)"juo(~. /II»)

X(co ~ /co ) (co -/0 ) ' + 'exp[ —(co /co, ) ~ j .d /D
(39)

usiilg Eq. (15). We obtain

k~T
&

I )t( „) g=y ksT(1/2MQFD)(co, /QFD) ' f dco ~ (co /co, )
' exp[ —(co /co, ) ~ ], (40)

where

s) ——4q —2—[4/(2+(9)]+d —1 —[e(d +2)/(2+8) j

(4la)

and

s() ——4q —2 —[4/(2+ 8)j+(2/D) .

For Pco, & 1, the integral is a number times co, :
'/I c s+a ] d~/8

co, f dxx' exp( —x ~ )

=co,(D/dy)l [(Did/)(so+d )j .

Inserting into Eq. (40), we obtain our final result,

&
I ~( .„) g=(y'/2~IIFD)(co, /0»)"+

X (D/dp)I [(D/dp)(so+d )]ks T .

This important result shows that the phonon-assisted
fracton-hopping contribution to the thermal conductivity
is linear in temperature. The origin of the linear tempera-
ture dependence of )c as exhibited in Eq. (42) lies with the
dispersion law for fractons, Eq. (15). The superlocahza-
tion for fracton excitations means that the greatest contri-
bution to the thermal conductivity will arise from those
fractons which hop the greatest distance for a given

I

fracton-fracton overlap. This occurs for the lowest-
energy fractons, i.e., at the phonon fracton crossover fre-
quency co, . But by supposition, )))co, «ks T for tempera-
tures above the plateau temperature. Hence, the fracton
states which contribute most to the heat transport are
those which lie lowest in energy, and therefore have ener-
gies much less than k&T. This means the integral in Eq.
(40) is dominated by its lower limit, and is therefore in-
dependent of temperature. This results in the simple pro-
portionality of a to T, independent of the high-energy
form for the fracton density of states.

Because the phonon-assisted fracton is an additional
contribution to the thermal conductance, it should "add"
to the value of the thermal conductivity at the plateau, on
the assumption that the phonon mean free path does not
change. This condition will depend on the size of the
terms calculated in Sec. III, and we shall return to this
question later. Given this condition, one would expect to
find experimentally that the high-temperature thermal
conductivity could be written in the form

&expt =&phteau+ CT ~ (43)

where C is a constant for a particular material, given by
Eq. (42). The onset of the linear term in temperature will
be more gradual than predicted by Eq. (43) because of the
smooth nature of the phonon-fracton crossover. '

The opposite limit (the fracton hopping length ~ g) can
be found using Eq. (37b) in Eq. (35). We find

&
I z(~. ))g=(r'/„2~IIFD)(~. /IIFD) '+ (d/d~) ( 1+[2/(2+e)](d —D) j-'

XI [(d/dyI1+[2/(2+8)](d —D) j)(so+1)]ksT, (44)

so ——4q —2+(2/d) —(2d/d) .

Apart from numerical factors, this expression for )c has

t

the same functional form as for the opposite limit, Eq.
(42)

This completes our calculation of the fracton-hopping
contribution to the thermal conduction of fractal net-
works. %'e discuss the experimental situation in the next
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section (Sec. V), and another model for the observed
behavior of the thermal conductivity above the plateau
temperature.

V. COMPARISON %'ITH EXPERIMENT
AND AN ALTERNATE THEORETICAL MODEL

x=CT . (47)

That is, the extrapolation of the high-temperature thermal
conductivity back to T=O should pass through the origin.

We exhibit in Fig. 2 some very recent measurements of
the thermal conductivity of epoxy resin in the temperature

020

0.)5

0.10

0,05-
I

20
i

P0
l

60
I

80 ~00

FIG. 2. The thermal conductivity (~) of epoxy resin, mea-

sured as a function of temperature by J. E. de Gliveira and H.
M. Rosenberg (private communication). The circles represent
the experimental points; the solid line is drawn to show that the

high-temperature values of x extrapolate to the value of x at the
plateau, Kp)~tati, at T=O.

Radiation corrections to measurements of the thermal
conductivity at temperatures above the plateau tempera-
ture make the extraction of ii difficult in this temperature
range. Our theoretical model (see Sec. IV) suggests that
one should observe an additional contribution to a which
should simply "add on" to the plateau value of Ir. Assum-

ing that the low-frequency (co&co, ) phonon mean free
path remains constant at higher temperatures, one would
expect the extrapolation of a back to T=O to strike the
ordinate at the plateau value of z, ~&i«„„. That is,

&=&platcau+C~~ ~ & ~ptateau ~

where C is a constant, in the temperature regime above
the plateau temperature. However, the low-frequency
phonon mean free path may decrease with increasing tem-
perature, as we have shown in Sec. III. It is difficult to
assess the strength of this decrease in the absence of expli-
cit measurements. One such test is a decrease in ~ within
the plateau temperatures (i.e., the plateau has negative
slope). There are examples of such behavior in the litera-
ture. ' If one assumes that the decrease of the low-

frequency phonon mean free path with increasing tem-
perature is sufficiently strong, then at temperatures well
above the plateau temperature, the form for a. should be

range of interest to this paper. There are a number of
features of these measurements which deserve comment.
First, the linear temperature dependence of Ir above the
plateau temperature is quite clear. Second, it will be not-
ed that plateau is relatively "flat," suggesting that the
low-frequency phonon mean free path might be expected
to remain relatively constant up to the highest tempera-
ture of measurement ( T=90 K). The solid line in Fig. 2
is the extrapolation of ~ back to T=O. One sees, remark-
ably, that the line intersects the ordinate at precisely the
value zz~„„, in agreement with Eq. (46). Third, the "on-
set" of the contribution to v which is linear in tempera-
ture "turns on" much slower than a simple addition of
CT to x'~~„„„would suggest. Instead, there is a gradual
transition for a between a constant value, vz„«,„, and

a~~„„„+CT. We believe this is caused by the smooth
crossover of the vibrational excitations in epoxy resin
from phonon to fracton character. This smooth change
has been anticipated in a scaling approach to the crossover
problem (see Fig. 1 of Ref. 16).

The results exhibited in Fig. 2 have not been available
in the literature, so it is difficult to know their relevance
to another model for the linear increase of x above the
plateau temperature. Karpov and Parshin take into ac-
count the anharmonicity of the local atomic potentials in
amorphous materials. They find a logarithmic divergent
van Hove singularity in the TLS density of states. The
energy at which the singularity occurs is w-30 K (not
far from the crossover energy we have previously intro-
duced for phonon-fracton crossover). The observed'
peak in the reduced specific heat, C(T)/T, is ascribed to
this singularity. Their calculation shows that the contri-
bution of phonons with energies fico~~w to the thermal
conductivity, which stems from the resonant scattering of
these phonons by quasilocal harmonic modes, is indepen-
dent of the temperature at k+T ~~a. The anharmonic
modes with energies much less than m make a contribu-
tion to the thermal conductivity at kttT ~&w which in-
creases linearly with temperature. The peaks in the ener-

gy density of states (caused by the van Hove singularities)
should give rise to a plateau in the thermal conductivity at
ktt 7-w/3 because of resonant scattering of phonons in
these states.

Their model has some striking similarities to our own.
The singularity which they attribute to a van Hove singu-
larity occurs in the same energy region where we expect
the crossover to occur between phonon and fracton excita-
tions. The crossover is accompanied by a rather smooth
peak in the vibrational density of states. ' The linear tem-
perature dependence for a. arises in their model from vi-
brational states with energies less than m The dispersion
relation for fractons causes the majority of the contribu-
tion to a. to arise froin fractons close to the crossover fre-
quency ~, . They attribute the plateau to a resonant
scattering of phonons. The smooth crossover between
fractons and phonons results in precisely the same
phenomenon. ' One might be tempted to argue that their
formulation is simply an explicit representation of fracton
dynamics. However, the origin of the linear temperature
dependence for ~ above the plateau temperature arises
from very different processes in the two models. For the
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model of Karpov and Parshin, the anharmonic modes
with energies less than m can carry heat. They are scat-
tered by the two-level systems (TLS). The linear tempera-
ture increase of ~ is ascribed by a decreased scattering of
the quasilocalized states by the TLS with increasing tem-
perature for k~ T && ro because of the reduction in relative
population of the TLS. The fracton-hopping formulation
introduces an additional heat ca-rrying channel, thereby
generating an increase in the thermal conductivity with
increasing temperature. Thus, the increase of a with tem-
perature above the plateau is argued to arise from an addi-
tional contribution to the heat current, not from a reduc-
tion in the scattering cross section for the heat-carrying
modes. One will have to wait for detailed comparisons
with experiment to determine which model is more
relevant. We recognize that our own stake in the fracton-
hopping concept may make us less than objective. How-
ever, the three features of the experiments detailed at the
beginning of this section which appear to be described so
satisfactorily by our model do give us some confidence
that the fracton-hopping model may be relevant to the
thermal transport properties of amorphous materials.

VI. SUMMARY AND CONCLUSIONS

We have introduced the third-order anharmonic in-

teraction between phonons and fractons using the conven-
tional form for vibrational anharmonicity. We have
developed expressions for phonon and fracton lifetimes re-

sulting from this interaction. Superlocalization' of the
fracton states suggests that they should not contribute to
thermal conduction. We have shown how the anharmonic
interaction can give rise to an additional contribution to
the thermal conductivity from phonon-assisted fracton
hopping. This process is somewhat analogous to Mott's
"variable-range-hopping" conduction mechanism for elec-
trons, though in the fracton case there is no variability in

the hopping distance. The fracton dispersion law, in con-
junction with superlocalization, results in a linear tem-
perature dependence for the thermal conductivity for tem-
peratures above the crossover energy ( T & co, /kz). This
prediction agrees well with known experimental results
for amorphous materials.

The approach of Karpov and Parshin to the high-
temperature thermal conductivity of amorphous materials
was outlined. It was shown that there was a fundamental
difference between their calculation and our own. They
attributed the linear temperature dependence of ~ above
the plateau temperature to a decrease in scattering of
anharmonic modes off the TLS. We instead attribute the
linear temperature dependence of a to an additional heat-
conduction channel which becomes important when frac-
ton states are thermally occupied. Which is the more
relevant model must await detailed comparison with ex-
periment. For the moment, the phonon-assisted fracton-
hopping model does seem to be consistent with all known

experimental data for the thermal conductivity of amor-

phous materials above the plateau temperature.
Note added in proof. After submission of our

manuscript, the full paper of V. G. Karpov and D. A.
Parshin appeared [Sov. Phys. —JETP 61, 1308 (1985)],
following on their previous letter (our Ref. 9). Their argu-
ment for the linear increase in ~ above the plateau tem-

perature is centered on the contribution to ~ of phonons of
low energy, ~&, (co& &co/R in their notation). They state:
"The origin of the a., 0: T relation lies in the fact that pre-
thermal (Aco &&k~T} phonons are scattered by TLS with
level population differences which decrease with increas-

ing T proportionally with T '. The mean free path then

grows linearly with increasing T. . . and their contribu-
tion to the thermal conductivity varies in the same way. "

The problem with this origin for ~ above the plateau
temperature is that it appears inconsistent with data for
ultrasonic attenuation in glasses [S. Hunklinger and W.
Arnold, in Physica/ Acoustics, edited by W. P. Mason and
R. N. Thurston (Academic, New York, 1976), Vol. 12, p.
1SS; J. T. Krauss and C. R. Kurkjian, J. Am. Ceram. Soc.
51, 226 (1968};and C. K. Jones, P. G. Klemens, and J. A.
Rayne, Phys. Lett. 8, 31 (1964)]. The acoustic attenuation
was found to increase monotonically with increasing tem-
preature, with a region of lesser slope (but always positive)
between roughly 5—20 K. The mechanism of Karpov and
Parshin would require that the acoustic attenuation
should diminish with increasing temperature for tempera-
tures above the plateau temperature. The highest frequen-

cy used in the experiments of Jones et al. was 930 Mc/s
(or an equivalent temperature of roughly 0.05 K). It is
conceivable that acoustic attenuation experiments at fre-
quencies an order of magnitude higher (of the order of the
plateau energy) would exhibit the behavior required by
Karpov and Parshin, but the trend of the acoustic at-
tenuation experiments (Jones et al. ) is in the opposite
direction. Increasing frequency leads to a larger increase
of attenuation with increasing temperature.

We argue, therefore, that there are experimental obser-
vations which are unfavorable for the Karpov and Parshin
mechanism for the linear increase of a. above the plateau
temperature, while, so far at least, our proposal (fracton
hopping) appears consistent with all known experimental
results.
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