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Localization, and the Mobility Edge 

The many forms of amorphous silicon, hydrogenated to a greater or lesser 
extent, appear to have widely differing structures and electrical properties. A 
major aim of theory in the field of amorphous materials must be to relate 
electrical, magnetic and optical properties to structure. The purpose of this 
chapter is to describe the extent to which this can be done. We shall ask, 
whether the concept of a mobility edge is theoretically justified and experi- 
mentally observed, what are the roles of short-range variations of potential, 
such as might exist in a continuous random network, relative to those of long- 
range fluctuations, caused either by charged defects or fluctuations in com- 
position. We describe the meaning of a "defect" in an amorphous material 
and give possible explanations of the double sign anomaly in the Hall effect, 
found in all amorphous silicons investigated up till now, and discuss the 
applications of the concept of a polaron to this material. 

4.1 Background 

Much of our understanding of the conduction bands of amorphous materials 
comes from the classical paper of Anderson [4.1] on "The Absence of Diffu- 
sion in Certain Random Lattices". In this and subsequent sections we shall 
see what can be deduced about conductivity from the model of Anderson's 
paper, and later in this chapter apply these results to amorphous silicon. In 
Anderson's paper a crystalline array of potential wells is considered, as 
shown in Fig. 4.1, with depths spread in a random way over a range of 
energies V0. If B is the tight-binding bandwidth in the absence of disorder, 
then Anderson showed that, if Vo/B exceeds a certain critical value (Vo/B)crlt, 
all states in the band are localized; that is to say, following later analysis [4.2], 
their wave functions may be written 

~/J = [ Z  C,, e i¢" ~p,,] e - a '  , (4.1) 

where ~p,, is an atomic wave function on the well n, qS,, a random phase and c,, 
a coefficient which, in its turn, will vary in some random way flom site to site. 
Each eigenstate gt is localized at some point in space, falling off exponen- 
tially with distance from it. The quantity varies with energy in the band and 
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Fig. 4.1. Potential energy V(x) 
of an electron in a lattice with 
diagonal disorder. (a) With 
V0 = 0; (h) With a finite value 
of V~. The density of states 
N(E) is also shown. B is tile 
bandwidth without disorder 

tends to zero as Vo/B tends to the critical value. This depends on the coordi- 
nation number z; for z = 6 it is probably [4.3] about 2, differing considerably 
from that in Anderson's original paper. 

If states are localized, then an electron can move from one state to 
another only through thermal activation, for instance, by phonons. The pres- 
ent author [4.4] first pointed out that if Vo/B were less than the critical value, 
a tail to the band would none the less exist and states in the band tail would 
still be localized, and for a rigid lattice, localized states would be separated 
from nonlocalized ones by a sharp ~ energy Ec; electrons with energies below 
Ec can move only through thermal activation, while those with energies 
above will have an unactivated mobility. For this reason, the energy Ec has 
been named the "mobility edge" [4.5]. 

A great deal of our understanding of the electrical properties of amor- 
phous and liquid semiconductors has been obtained through the application, 
to the conduction bands of these materials, of results obtained from the 
Anderson model of Fig. 4.1, although of course, the potential in real mate- 
rials is very different; the experimental situation nearest to the Anderson 
model is that of an impurity band in a doped and fairly heavily compensated 
( - 5 0 % )  semiconductor, though here there is the additional complication 
that the wells of Fig. 4.1 (the donors) are random in space. We shall then first 
outline the predictions of the Anderson model, with references when approp- 
riate to impurity conduction. 

The position of the mobility edge in this model has been calculated by 
Abou-Chacra and Thouless [4.6]. If Vo/B lies some way below the critical 
value, we expect a tail of localized states, as shown in Fig. 4.2, which illus- 
trates only the lower part of the band. The tail extends over a range of 
energies V0, and these authors show that if Vo/B ~ 1, practically the whole 
tail is localized. This is because no fluctuation of depth V0 will itself produce a 

1 If interaction with phonons is taken into account, a lifetime r will lead to a broadening h/v. 
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Fig. 4.2. Density of states in the 
conduction band of a noncrystalline 
material showing the mobility edge 
(ec) 

trap, but only groups of deep wells near together. Such groupings are rare 
and so extended states cannot be formed from them. Only when V o / B  ~ 1 

does Ec move down into the tail. 
As regards the conductivity, we may consider two cases: 
a) The Fermi energy lies in the band of localized and extended states; this 

case is appropriate to impurity bands. Then if E~ lies below Ev ,  the conductiv- 
ity will depend little on phonon scattering and be roughly constant except at 
high temperatures.  On the other hand, if EF lies below Eo  we expect two 
forms of conduction. These are: at high temperatures (by excitation to a 
mobility edge) when the conductivity will be of the form 

a =Omi . exp[ - (Ec - E F ) / k T ]  , (4.2) 

(the significance of Omi n being discussed below), and at low T (variable-range 
hopping by electrons with energies near the Fermi energy) where an a p p r o x i -  

m a t e  formula for the conductivity is 

cr = A e -e/r'" . (4.3) 

This is discussed in Sects. 4.5, 12. 
b) The Fermi energy lies below the band. Here  again, two forms of 

conduction are expected, one given by (4.2) and the other,  at low tempera-  
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Fig. 4.3. Typical behaviour of 
the resistivity co of a degenerate 
electron gas showing a metal-in- 
sulator transition of the Ander- 
son type. e denotes Ec-Er. The 
dotted line shows the behaviour 
if there is no minimum metallic 
conductivity 
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tures, resulting from hopping between band-edge localized states. This is a 
form of variable-range hopping, treated theoretically by Grant and Davis 
[4.7], but does not lead to a conductivity of the form (4.3). 

It may be noted that in case b, any lifetime broadening of the mobility 
edge will be a consequence of interaction with phonons, while in case a, the 
stronger Auger interaction with the degenerate electron gas in states below 
E F will be important, except when E F lies at Ec. 

Figure 4.3 shows the resistivity to be expected in case a if the relative 
positions of Er and E~ are moved, either through change of composition, 
magnetic field or in other ways. For comparison with experiment for impurity 
bands and inversion layers, see [4.2, 8-10]. A metal-insulator transition is 
observed. 

4.2 The Min imum Metallic Conductivity 

This quantity was introduced by the present author [4.11] and estimated to be 

O'mi n ~ C e2 /haE . (4.4) 

Here C is a numerical constant, which depends both on the coordination 
number and on the square of VUB for the Anderson localization criterion, 
and is probably in the range of 0.025-0.05. If the mobility edge lies near mid- 
gap, aE = a, where a is the distance between wells; otherwise [4.12], 

(a/a~) 3 = i N(E)dE/ ~f N(E)dE. (4.5) 

The quantity amin may be used in two ways. a) As the pre-exponential 
factor in (4.2). b) A smallest value of the unactivated conductivity. 

Early considerations by Cohen and Jortner [4.13] based on classical perco- 
lation theory, and a more recent approach due to G6tze [4.14] suggest that 
there is no discontinuous change in the mobility at E~; the present author 
believes these to be incorrect in the limit of high T, and that (4.2) is then 
valid. At the time of writing, however, there is considerable doubt [4.14-17] 
about whether crmi n exists in the limit of low T. In other words, do values of 
(EF -- E~) exist for which o behaves like the dotted line in Fig. 4.3, tending as 
T---~ 0 to a finite value much above 1/ami,,, and to infinity when EF = E~? The 
present author believes that the answer to this question, though of great 
theoretical interest and likely to be relevant to impurity bands at low temper- 
atures, will not affect the properties of amorphous silicon in any practical 
case. In [4.17] he related it to the properties of the coefficients c, in (4.1); 
a will tend to zero as E ~ Ec only if these show long-range fluctuations with 
changing position (i.e., with n), with a correlation length tending to infinity 
as E ~ Ec. This, in its turn, depends on the way a ~ 0 in (4.1) as E ~ Ec; if 
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this is as (IE - Ec[Y, these fluctuations will occur only if s < 2/3. Theoretical 
estimates of s are 0.6 or 2/3, so the question remains open at the time of 
writing. 

The conclusion that (4.2) is valid for conduction at a mobility edge is 
queried by some authors (e.g., G6tze [4.14], and Belize and G6tze [4.18] 
pointed out how difficult it is to use experimental data to test this. According 
to their analysis, a - X/(E - Ec) near a mobility edge, and they show this to 
be consistent with some of the earlier experimental work on the temperature- 
dependence of the conductivity. 

In what follows we shall, however, assume (4.1) to be valid for charge 
transport at a mobility edge. 

4.3 Hall Mobility and Thermopower for Charge Transport 
at a Mobility Edge 

The Hall mobility/~H has been calculated for electrons or holes with energies 
at a mobility edge by Friedman [4.19], using a method derived from the 
theory of polarons (Sect. 4.4). According to this analysis, 

]x~ = O. 1 ea2/h (4.6) 

and the sign should be negative (n-type), whether for electrons or holes. This 
is smaller than the "conductivity mobility" Be; if we write 

a = el~cN(E~)kTe -w/kr (4.7) 

and equate the pre-exponential term to amen ( -0 .0 5  eZ/haE), we see that 

/zc -- 0.05 ea 2 A E / k T ,  

or if N(Ec) ~ 1/AEa 3, 

Pc ~ 0.05 ea 2 A E / k T .  

(4.8) 

(4.9) 

Here AE is the range of localized states; if AE/kT > 1,/~c should be the 
larger. 

The thermopower when charge transport is by electrons at a mobility 
edge is given by [4.2, 20] 

s = k (  E~ EF ) 
e kT + 1 . (4.10) 
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If the Fermi energy shifts linearly with temperature, we may write 

(4.11) E c - E F = e - - 7  T . 

Then (4.2) becomes 

o = cr 0 e -c/kr , o0 = Crmin e 7/k . (4.12) 

There has been some dispute in the literature as to whether the same sub- 
stitution can be made in (4.12), but this appears to be the case [4.2]. The 
problem of the shift in the Fermi energy is discussed further in Sect. 4.10. 

4.4 Polarons 

The extent to which polarons play a role in charge transport in noncrystalline 
semiconductors has been a matter of controversy, and a few lines on their 
nature are added here [4.2, 21]. In crystalline materials, they are of two 
kinds. 

a) Dielectric polarons, limited to ionic crystals. An electron or hole will 
always polarize its surroundings outside a sphere having a "polaron radius" 
rp, creating a potential well for itself. In principle, this is found by minimizing 
the sum of the potential energy ( -  eZ/rr,)(1/K~ - lh¢) and the kinetic energy 
h2/2mor~. Here t¢~ and /¢ are the high-frequency and static dielectric con- 
stants. If rp is much greater than the lattice parameter a, a "large polaron" is 
formed which can increase the effective mass but is of little importance here. 
For large mef f (e.g., in d-bands), r r can be comparable with a, and the polaron 
is then called "small". 

b) Acoustic or molecular (small) polarons are formed when the carrier 
allows a bond to form between two adjacent atoms, or in molecular crystals 
when the presence of the carrier deforms a molecule. As shown in different 
ways by T o y o z a w a  [4.22], E m i n  [4.23], and M o t t  and S t o n e h a m  [4.24], no 
polaron of this type is formed at all unless the coupling between the carrier 
and the localized phonon is strong enough, and the effective mass large 
enough .2 

Small polarons of both types move at high temperatures (T > OD/2) by 
"hopping" with mobility of the form 

/~ =/.to exp ( -  W H / k T )  . (4.13) 

2 Towozawa [4.22], and also Molt and Stoneharn [4.24], have shown that there must be a delay 
in the formation of this kind of polaron involving an activation energy, which has been 
estimated numerically by Mott [4.25]. Molt and Stoneham [4.24] described evidencc for such a 
delay from the migration of excitons (an electron in the field of a hole which call be self- 
trapped). The first observation l'or holes was due to Laredo el al. [4.26] in AgCI. 
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At low temperatures, band motion is possible, with effective mass greatly 
enhanced, of order 

)]' mp ~ 5 m exp WH y ha) . (4.14) 

It is doubtful if this has been observed; such high values of the effective mass 
would lead to Anderson localization [4.27] if there were a very small random 
field, caused, for instance, by charged impurities. What has been observed, 
however, is a drop in WH to very low values (for instance, in vanadium 
phosphate glasses [4.2, 25]) where disorder does give some localization but 
the main activation energy for conduction is of polaron type. 

Some peculiarities of the acoustic polaron are worth mentioning. In one- 
dimensional systems a polaron will always form (because in one dimension 
any well, however shallow, will trap an electron). In three dimensions one 
expects an equilibrium between free and trapped carriers so that as the 
temperature rises, charge transport would be due to free carriers [4.29]. 

For polarons in the range of temperatures for hopping, the Hall effect is 
explained by a mechanism quite different from that for free carriers. Fried- 
man and Holstein [4.30] were the first to show, using a three-site model and 
assuming s-like wave functions, that 
a) the Hall effect would be n-type both for electrons and holes, and 
b) the activation energy in ktH is WH/3. 

We see therefore that, in contract to the behaviour of free carriers in a 
conduction band, there are different activation energies for conduction, ther- 
mopower and Hall mobility. The only material in which to our knowledge all 
three have been observed is slightly reduced LiNbO3 ([4.31] and [Ref. 4.2, 
p. 84]). 

A feature of a-Si-H is the double sign reversal of the Hall effect, electrons 
showing p-type behaviour and holes of n-type; this occurs also in amorphous 
III-V compounds (references are in Sect. 4.8). With a view to understanding 
this, Emin [4.32] considered polarons formed on bonds (rather than atoms) 
and showed that the anomaly could be explained by supposing that hopping 
was predominantly round the rings and that odd-membered rings predomi- 
nated. Some criticisms and refinements of the theory were given by 
Granewald et al. [4.33]. Whether these ideas can be related to amorphous 
silicon will be discussed in Sect. 4.8. 

The application of the polaron concept to noncrystalline materials in 
general is as follows. For band-edge localized states, as also for any bound 
states such as donors in crystals, there must be some deformation of the 
network or lattice by the carrier. If, however, the criterion for (acoustic) 
polaron formation in the corresponding crystal is not met by some margin, it 
seems to us unlikely that there will be polaron effects for carriers above the 
mobility edge. If, however, polarons are formed in the crystal (or would be if 
some softening of the phonons due to amorphicity were taken into account), 
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it will be appropriate to take the polaron in the noncrystalline material as a 
heavy quasiparticle and consider its behaviour in whatever random field 
exists in the material. If W n is large enough (> - 0.1 eV) for hopping motion 
to be observed when T > OD/2, the effective mass (4.9) for low temperatures 
will probably be large enough to ensure Anderson localization throughout 
the band, with no mobility edge; the mobility will behave like 

I( 1)]  exp - WH + -~ w /k  T T > @ OD 

exp ( - w / k T )  , T , ~ 1 0 D  

where w is a small hopping energy due to disorder. However, systems prob- 
ably exist where polaron formation gives some mass enhancement, but there 
is still a mobility edge; according to the present author, Lal_xSrxVO 3 is one 
[Ref. 4.2, p. 144]. 

4.5 Variable-Range Hopping 

Two forms must be distinguished. 
a) Hopping by electrons excited into localized states at a band edge; here 

an analysis was given by Grant  and Davis  [4.7]. 
b) Hopping by electrons with energies near the Fermi level; this is a 

phenomenon observed in impurity bands as well as in some amorphous semi- 
conductors. For this phenomenon, a theory which neglects electron-electron 
interaction can be shown by various methods [4.34-36] (see also [Ref. 4.2, 
p. 33]) to yield the law 

a = A exp [ - (To~T) '/41 . (4.15) 

However, if electron-electron interaction is taken into account, major 
changes in this behaviour are predicted, especially at low temperatures, 
which have not with certainty been observed and for which several theories 
exist [4.37, 38]. 

The thermopower S has been discussed by several authors [Ref. 4.2, 
p. 55]. It behaves like 

S = ( k / e ) ( W 2 / k T ) ( d  In N/dE)F = ~:,: . (4.16) 

Here W is the hopping energy given by W 2 / k T  = k (ToT)  112 for variable-range 
hopping, so that S is proportional to T v2. According to Whal l  [4.39], (4.13) is 
also valid for nearest-neighbour hopping, so S should decrease at high T. 
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The contribution of the spins to the thermopower is believed [4.10] to add 
a term 

(k/e) In 2 

if these are random. 
The Hall effect is expected to be small; recent theoretical approaches are 

not in complete agreement [4.41-43], but give the same order of magnitude. 
Since variable-range hopping is between localized states, there must 

always be some distortion of the surroundings when the occupation of a site 
changes, so effects of polaron type are present. According to Mott and Davis 
[Ref. 4.2, p. 87], in the limit of low T this will simply decrease the pre- 
exponential factor by exp (-4WH/hoJ) but will not greatly affect the term 
within the exponential. As the temperature is raised, however, an activation 
energy of the type of WH will gradually be introduced. 

In view of all there complications, it is hardly to be expected that a T TM law 
will always be observed, and it is perhaps surprising how accurately it repre- 
sents experimental data in some cases [4.2] and the corresponding T 1!3 law for 
two dimensions [4.8]. 

4.6 Application of Theory to Amorphous Silicon 

In seeking to apply theoretical models to amorphous silicon, the following 
are some of the relevant considerations: 

a) There is a wide variety in the properties of silicon films prepared by 
various methods, both as regards hydrogen content, concentration of defects 
and probably structure, and some at least cannot be regarded as 
homogeneous. 

b) All fihns show the double-sign anomaly in the Hall effect; that is, when 
they are n-type (according to thermopower measurements), the Hall effect is 
positive, and when p-type (for instance, through doping), the Hall effect is 
n-type. For Si, results are due to Le Comber et al. [4.44], Beyer et al. [4.45] 
and Dresner [4.46]; for Ge, Seager et al. [4.47]; and Beyer and Mell [4.48] for 
some amorphous III-V compounds. 

c) There is a wide variety in the pre-exponential factors a0 of (4.8) in the 
conductivity; a0, in general, increases with activation energy. 

d) In general, the activation energies for conduction (Eo) and ther- 
mopower (Es) are not equal, but Eo > Es, though they approach each other 
for "good" specimens. Whether this is so or not is conveniently tested by a 
plot of In c~ + (e/k)S versus 1/T. The temperature dependence of the activa- 
tion energy, namely - fiT, cancels out in this expression, as was first pointed 
out by Beyer et al. [4.49]. Figure 4.4, reproducing results from Jones et al. 
[4.50] and later work by Jones shows that specimens can be obtained in 
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Fig. 4.4. Plot of In cr + eS/k 
versus 1/T for a specimen of 
a-Si [4.59]. No difference be- 
tween Eo and Es is apparent ,  
but  if the high tempera ture  
point were in error, a differ- 
ence of up to 0.1 eV would be 
consistent with the data 

which, according to these workers, E~ ~ E~. On the other hand, if, as Beyer 
maintains, the high temperature results are not reliable, even the flattest 
curves may have a slope of (EG -- Es) in the range from 0.05 to 0.1 eV. In any 
case, a larger slope is observed when hydrogen is driven off, and indeed is 
seen frequently in other work. Thus, Beyer et al. [4.49] investigated glow- 
discharge-deposited silicon doped with lithium and found E, - Es in the 
range 0.1 to 0.2 eV, with no evidence for two-channel conduction above 
200 K. 

This last fact could, in principle, be explained in two ways. One is to 
assume that the carriers are small polarons, and this has been proposed. 
However, if this were so it is difficult to see why (Eo - Es) should vary from 
specimen to specimen and increase, for instance, on bombardment. The 
alternative explanation, developed particularly by Overhof and Beyer [4.51, 
52], is that silicon films normally contain long-range fluctuations of potential, 
caused either by charged defects, lack of homogeneity or fluctuations in the 
concentration of deep states, and that these should be treated as opaque to 
tunnelling, so that electrons travel along potential valleys and EG is deter- 
mined by the height of the passes separating them, while Es is determined by 
the height of the bottoms of the valleys above EF. We know of no other 
model which will explain the facts and shall adopt it in this chapter. 

If this is so, it might be tempting to abandon altogether the concept of a 
mobility edge treated as a consequence of Anderson localization; long-range 
fluctuations will, of course, lead to an activated mobility and as shown, for 
instance, by Pistolet [4.53] and by Dusseau [4.54], most of the electrical 
properties can be accounted for on this model; earlier models of this kind are 
by Fritzsche [4.55] and Shklovskii and Efros [4.56]. In our view, the strongest 
argument for not doing this is the double sign anomaly in the Hall effect. As 
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~ b  

Fig. 4.5. Showing schematically a percolation 
path (---) in a material with long-range fluctua- 
tions of potential 

shown below, although in terms of charge transport at a mobility edge we 
have no fully accepted the explanation of this phenomenon, it is predicted for 
polarons and is perhaps not unexpected; certainly classical behaviour in long- 
range fluctuations will not yield it. We shall, therefore, in this chapter, try to 
combine the idea of a mobility edge with that of long-range fluctuations in 
potential. 

We suppose also that the position of the Fermi energy EF is determined 
by a low density of gap states and is highly T-dependent, thus accounting for 
the abnormal values 3 of o0. These and other features of the gap states will be 
discussed in Sect. 4.10. 

4.7 Long-Range Fluctuations of Potential 

If a material contains long-range fluctuations of potential and no other scat- 
tering mechanism, then in our view the concept of a minimum metallic con- 
ductivity should be applicable with ~min given by (4.4) and with a equal to the 
linear dimensions of the fluctuations. There is evidence that this is so from 
the experiments of Abeles et al. [4.51] on the conductivity of metallic parti- 
cles of Ni, Pt and Au of size less than 100 A prepared by co-sputtering with 
SiO2 or A120~ [Ref. 4.2, p. 157]. 

If, on the other hand, there is, in addition, a scattering mechanism giving 
a mean-free path small compared with a, or polaron hopping, then classical 
percolation theory should apply; in the former case, the mobility should 
increase as (E-Ec)  16 as the energy rises above the height of the passes. If this 
scattering leads to a mobility edge at an energy AE above EA, then E~ should 
be the sum of AE and ( E - E v )  where E lies at the top of the passes. Although 
the model should lead to some decrease in the pre-exponential factor below 
amin, we do not think this should be important. If, in Fig. 4.5, a is the radius of 
the long-range fluctuations and b the width of the passes, then if o is the 
resistivity in the neighbourhood of the pass, the resistance of each pass is ob 
and the bulk resistivity is ~b/a. We might suppose that b is given by 

AW(b/a) 2 = AE  , (4.17) 

3 See, however, Sect. 4.10 for an alternative explanation due to Spear. 
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where AW is the magnitude of the long-range fluctuations, so b/a is unlikely 
to be small. 

We suggest then that the activation energy appearing in the drift mobility 
and conductivity is the sum of two terms: AE, as illustrated in Fig. 4.2; and 
AW, the difference in energies between valleys and passes. 

AW may have its origin in charged-point defects and fluctuations in defect 
density near EF (Sect. 4.9). It should be highly sensitive to the method of 
preparation. On the other hand, we believe that AE is characteristic of the 
disorder in a continuous random network, that is the result of random dihe- 
dral angles and perhaps stretched bonds. Obviously it will depend on com- 
position, but as we shall see below, it is rather insensitive to moderate hydro- 
gen content. 

We next ask, what evidence is there for a mobility edge in other noncrys- 
talline materials. In vitreous silica the mobility of electrons has been mea- 
sured and increases with temperature ([4.58]; cf. [Ref. 4.2, p. 572]), so if a 
mobility edge exists, AE is small compared with k T  down to liquid air tem- 
peratures. The same is true of the liquid rare gases [4.59]. The present author 
believes that this is to be expected if the wave function is s-like at the bottom 
of the band [4.2]. For holes in chalcogenides, the thermopower and Hall 
effect have been analysed first by Nagels et al. [4.60] and in detail by 
Mytil ineou and Davis [4.61] in terms of a mobility edge with AE - 0 . 1  eV. 
An equally satisfactory analysis was given by E m i n  and coworkers [4.62] in 
terms of the hypothesis that holes form small polarons. For the present 
author's arguments against this hypothesis, see [Ref. 4.2, Chap. 10]. 

In silicon various calculations exist; we first describe one by Davies [4.63]. 
The essence of this method is to calculate the scattering, and hence the mean 
free path in midband, to be expected from a random orientation of the silicon 
tetrahedra; that is to say, random values of the dihedral angle. It is then 
assumed that the relationship between the mean free path L and AE is the 
same as in the Anderson model, with [4.2] 

L ~ 4srb(B/V) 2 , (4.18) 

and AE, according to Abou-Chacra  and Thouless [4.6], given by 

A E / V  = (i2 b/L)i/2 + 4Jrb/3 L . (4.19) 

The first term is the important one, giving the displacement of the band edge 
due to disorder. In calculating L, a value of the effective mass rnef f in mid- 
band must be assumed; reasons are given for taking m e = reef f. The calculated 
value of AE is 0.28 eV. 

The observed effect of hydrogen is to widen the gap from 1.8 to 2.2 eV for 
15% hydrogen [4.64] but this, as shown in [4.71], is due to a shift of the 
valence band, the conduction band being little affected. By considering the 
maximum change in the level of the conduction band due to hydrogen and 
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estimating the scattering by a potential hill (or well) that would produce this 
displacement, Davies found that a 10% concentration of hydrogen would 
increase AE by 0.02 eV or less. It is known that the hydrogen is not uniformly 
distributed. We believe, however, that our conclusion (that the effect on the 
conduction band is small) is correct. 

The treatment given here neglects any effect on the mobility edge due to 
stretched bonds; the localized states are at regions in the CRN where varia- 
tions in the dihedral angle are abnormally small. The assumption that 
stretched bonds do not play a major role in determining the mobility edge is 
not proved [4.65]. What is clear, as we shall see, is that states (Ev in Fig. 4.7) 
exist above the valence band with no states of corresponding density below 
the conduction band, so that one assumption could be that there are about 
l019 cm -3 very stretched bonds which trap holes, but not electrons. Other 
models are possible, which on the whole we prefer (cf. [4.71] and Sect. 4.9). 

As regards other treatments of the band edge, Yonezawa and Cohen 
[4.66] using a tight-binding Hamiltonian found 0.1 eV for the tail; thus, if we 
accept from the work of Abou-Chacra and Thouless that the range of 
localized states fills most of the tail, the results agree as regards the order of 
magnitude with those of Davies. Bonch-Bruevich [4.67] found, however, a 
much smaller value. 

There is much evidence that in silicon the mobility is activated; Spear's 
work estimates the range of tail states to be - 0.2 eV [4.00]. In future work, 
an attempt to separate AE from AW, for instance, by determining (Eo-Es) ,  
would be valuable, as would also work on CVD material. Tiedje et al. [4.68] 
in recent work found that the mobility in hydrogenated silicon ranges 
between 0.05 and 0.8 cmZ/V s, that its temperature-dependence shows only 
minor variations, while the dispersion parameter ranged from 0. i to 0.7 with 
increasing hydrogen. 

By no means are all interpretations of the mobility based on the concept 
of a mobility edge. An exponential tail of localized states is assumed, for 
instance, by D6hler [4.60] and by Tiedje et al. [4.70]. 

4.8 The Hall Effect in Amorphous Silicon 

We turn next to the Hall effect and the double-sign anomaly described in 
Sect. 4.6. We have first of all the polaron hypothesis of Emin [4.32], namely, 
that the effect can be explained if small polarons of acoustic type are formed 
on Si-Si bonds and odd membered rings predominate. Against this it can be 
argued [4.71]: 

a) the phenomenon is also observed in III-V compounds [4.45] for which 
odd membered rings should be few; 

b) no argument is given to show why polarons should form in the amorphous 
material and not in crystals; 
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Fig. 4.6. Suggested form of bonds 
giving rise to the Hall effect in a-Si. 
The dotted line represents another 
bond in a ring above the plane of the 
paper 

c) the activation energy for hopping can be only a small fraction of the 
whole, since this is structure-dependent. If so, the arguments of Sumi 
[4.261 show that at high temperatures, transport should be by free carriers 
which would give a normal sign to the Hall constant. This has not been 
observed. 

Another possibility is to assume a random change of phase from bond to 
bond, as assumed by Friedman [4.72], which would allow the application of 
Emin's argument. However, this in our view would imply a zero bandwidth 
and would also necessitate the assumption of odd-membered rings. The pres- 
ent author [4.731 has suggested that Emin's argument could be combined 
with Friedman's discussion of conduction at a mobility edge by linking three 
sites at a distance aE with wave functions f(x,y,z)exp(-ar). The Hall anom- 
aly would follow i f fhad  odd parity and it was argued that for the conduction 
band this should be so. This suggestion is, however, highly speculative and 
we attempt another one here. 

In the sense of the tight-binding approximation, we may suppose that the 
phase ~p,, of the wave function changes slowly in moving from one bond to 
another along the rings, but that the Hall effect arises from three-site coinci- 
dence where there is sufficient overlap between antibonding orbitals on 
different rings. For the latter, we may well assume a random phase. We 
suppose, then, that such configurations are as illustrated in Fig. 4.6. We think 
that, in the spirit of Friedman's work of 1971 and that of Emin, the anomaly 
in the Hall constant might thus be explained ~. 

If long-range fluctuations exist, then according to Fritzsche [4.74], the 
Hall coefficient should be determined by electrons in the valleys rather than 
at the passes. Thus, the activation energy in the Hall mobility should be the 
same as (Eo- Es). Le Comber et al. [4.75] found that, for lightly doped n-type 
samples, /xH seems virtually independent of T, as in earlier work in chal- 

4 For an alternative discussion, see [4.78] 
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cogenides [4.76]; in silicon on doping an activation energy appeared. Further 
investigation to see if any relation exists between the (Eo-Es) and the Hall 
mobility would be useful. 

That the sign anomaly depends on short-range disorder seems to be sub- 
stantiated by the work of Spear et al. [4.77] who have investigated the Hall 
effect in microcrystalline silicon films as a function of crystallite size. It will 
be seen that the effect regains its normal sign at about 20/~. Although we are 
far from having a satisfactory theory of this effect, we conjecture that it 
shows that aE --20,~, for amorphous silicon and that the sign anomaly 
depends on having disorder within a smaller distance [4.78]. 

4.9 Defects and States in the Gap 

It has been argued in the literature that the concept of a point defect in an 
amorphous substance is not acceptable [4.79]. While we agree for a material 
such as a "metallic glass", for glasses and for deposited films for which the 
structure can be represented by a continuous random network, which we 
believe to be the case for amorphous silicon and oxide and chalcogenide 
glasses, defects seem to have a real existence. A true defect, in our view, will 
have either a spin (e.g., a dangling bond) ol- a charge (e.g., an unoccupied or 
doubly charged dangling bond). Examples are the singly (C1) and triply 
coordinated (C~-) chalcogens in the chalcogenide glasses, the threefold co- 
ordinated silicons in S i O  2 which are positively charged or neutral (E ~ 
centres), and the nonbridging oxygens. In silicon, a continuous random net- 
work will contain as part of the disorder of the "perfect" network odd and 
even-numbered rings, a random distribution of dihedral angles and doubtless 
stretched bonds. 

Defects analogous to vacancies and divacancies may exist, without spin in 
the neutral state. These are not to be sharply distinguished from fluctuations 
in density. 

Whether the concept of valence alternation pairs, with positive and nega- 
tive charges (negative Hubbard U), is applicable to a-Si is uncertain, though 
it has been suggested [4.80]. It should however, be noted that in crystalline 
silicon, Watkins and Troxell [4.81] have given evidence that the positively 
charged vacancy has this property; it it is denoted by V +, the reaction 

2V + --+ V ++ + V 

is found to be exothermic. A similar possibility exists for the amorphous 
material. 

The inhomogeneity of amorphous silicon films has been discussed by 
many authors [4.82] and will not be described in detail here. An important 
point made particularly by Revesz et al. [4.83] is that hydrogen renders the 
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network more flexible with a reduction in number of the stretched bonds and 
voids. We believe, however, that a strained network, containing dangling 
bonds, is a useful model with which to start. 

In amorphous silicon hydrogenated and otherwise, the esr signal shows a 
line with the 0-value 2.0055. This is clearly to be identified with the dangling 
bond and has been observed by Stuke and coworkers [4.84] at the interface 
between crystalline silicon and SiO 2. Its strength is enhanced when hydrogen 
is driven off [4.85]. Other lines observed under illumination are assigned by 
Street and Biegelson [4.86] as follows: 

O = 2.0043 

O = 2.010-2.013 

localized electrons in a conduction band tail state 

hole in the valence band tail states. 

Voget-Grote et al. [4.87] identified spin signals from positively and negatively 
charged vacancies in crystals with g = 2.011 and 2.0045, respectively. 

No density-of-states curve which neglects correlation (the Hubbard U) 
can be meaningful in a-Si (or in doped crystalline silicon for that matter). The 
fact that centres are singly occupied and thus show an esr signal and Curie 
behaviour is essentially dependent on correlation, as emphasized by 
Schweitzer et al. [4.88]. Thus, in a curve such as that of Fig. 4.7, A is the band 
of levels for dangling bonds, broadened by disorder; B is the band of levels 
for doubly occupied bonds of which only a few in specially low states will 
normally be occupied. If the zero-temperature Fermi energy is determined 
by the overlapping of these bands, we see that if conductivity is observable, 
fl = (Ec-EF)/kT must be such that e -# is not negligible, but that if new 
dangling bond states are introduced, for instance, by irradiation, Ev may 
change. 

The Ey state is though to be a hole trap associated with hydrogen [4.89]. 

cupled (B) 

singly occupied (A) 

NI~) 

Fig. 4.7. Density of states ill hydrogenated amor- 
phous silicon (schematic) 
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It has already been emphasized that for any trap, particularly a deep trap, 
some Stokes shift is to be expected. For the Ey state, Tsang and Street [4.90] 
gave some evidence for a Stokes shift in the photoluminescence line at 
1.6 eV, ascribed to transitions between band edge localized states in the 
conduction band and holes at Ey; the magnitude of the shift was found to be 
0.2 eV. 

Stokes shift, namely, a distortion of the surroundings, is, of course, rele- 
vant to the magnitude of the Hubbard U; for instance, that required to shift 
an electron from one occupied dangling bond to another, creating two 
charged states. This will always reduce U, and in chalcogenides it is normally 
negative. In crystalline silicon, as we have seen, Watkins and Troxell [4.81] 
show that a charged vacancy has this property though there is no firm evi- 
dence that this is so for any defect in amorphous silicon. However, if the 
Hubbard U is to be small enough for doubly charged dangling bond states to 
lie in the gap, then some deformation must be present to lower its value. 
Chakraverty [4.91] estimates this, without deformation, to be - 1.7 eV. This 
as too large to allow the doubly occupied dangling bond state to lie in the gap. 
Dersch et al. [4.84], however, concluded from the doping dependence of the 
spin density that the effective correlation energy of the dangling bond 
amounts to 0.4 to 0.5 eV. The model set out in great detail by Street [4.92] to 
describe luminescence also puts the doubly occupied dangling bond below 
the conduction band. 

The model of dangling bond or other states with energies overlapping so 
that positive and negatively charged states exist, is reinforced by much evi- 
dence, such as that of Anderson and Spear [4.93] on recombination in doped 
material. Further evidence comes from the effects of removing hydrogen 
from a-Si:H annealing. Fritzsche [4.85] and Z;ai et al. [4.94] showed that 
annealing increases the density of gap states and the paramagnetic suscepti- 
bility. The same process leads to a reduction in the photo-current [4.87] and 
in the luminescence [4.95J. It appears then that spin states act as recombina- 
tion centres, producing states at the Fermi energy to which electrons can fall. 
Hasegawa and Imai [4.96] traced the relationship between photoconductivity 
and ESR linewidth. 

We might add that pinning of the Fermi level is not necessarily due to 
overlap between the positively and negatively charged dangling bond states. 
Thus, Voget-Grote et al. [4.87] took into account both these and vacancy-like 
states. Chakraverty [4.91], as we have seen, considered that U is too large for 
the negative state to exist, so the pinning is due to a balance between neutral 
and positively charged dangling bond states and charged vacancy states. Such 
a model implies neutral and positively charged dangling bonds and neutral 
and negatively charged vacancies (V states). Stuke [4.84a], on the other 
hand, found evidence that overlap between neutral and negatively charged 
states is responsible for pinning, and that this fits his evidence on the Staeb- 
ler-Wronski effect which he ascribes to an enhancement of the dangling bond 
density [4.11]. 
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Street ([4.92] and private communication) considers that the best evidence 
for pinning by dangling bond states is that the ESR line at 9 = 2.0025 occurs 
in undoped material, but that in doped material in the dark it disappears but 
can be induced by illuminating at low temperatures. He also emphasizes the 
strong evidence that the line at 9 = 2.0055 is indeed from a dangling bond 
because the same #-value is observed at the interface between crystalline 
silicon and SiO2. 

4.10 The Pre-Exponential Factor in the Conductivity 

We have seen that the pre-exponential factor for a material without long- 
range fluctuations in potential should be 

O" 0 = Crmi n e/ilk , ( 4 . 2 0 )  

with Omin -- 200 ~-1 cm-1. In fact, very large ranges of % are observed, from 
1 to 10 ~' f~-i cm-1, and this will now be discussed. 

Solomon et al. [4.97, 98] have claimed that this variation is the result of 
the production of an accumulation layer by surface changes, giving some 
band bending downwards. They found that when corrections are made for 
this, o0 is sensibly independent of preparation conditions and of order 104 

~-1 cm-l. Other workers [4.99] claim to avoid these effects and still find a 
large variation of o0, and in certain cases that a0 obeys the Meyer-Nelden rule 
[4.100,102] in the form 

cr,~ = const e e°/kr (4.21) 

when E,, is varied by doping. 
As regards the variation of (Ec-Ev) with temperature and the term 

exp(fl/k), it has long been recognised [4.2] that the optical band gap changes 
with temperature, that this is probably due to a shift of the valence band and 
that if the Fermi energy is pinned to the valence band, a similar shift of 
Eo- EF should occur, linear above the Debye temperature. Such a shift could 
give at most exp(fi/k) - 100, but would account nicely for a value of order l 0  4 

Q-1 cm-1, since 100 ~) I cm-I is a reasonable estimate for O'mi n with aE 
10-20/~. TO account for larger variations, and particularly for large values 

of the order 106 ~-1 cm-' ,  there are two possibilities. 
a) Spear and co-workers [4.99, 1031 have given evidence to show that the 

quantity AE = Ec-EA, that is, the height of the mobility edge above the 
bottom of the band, decreases with temperature and disappears (or nearly 
so) at - 400 K. This only occurs for undoped specimens for which eo is in the 
range 0.65-0.8 eV and for which o0 has these high values (105-106 ~- t  cm-1). 
It does not occur for doped specimens for which the conduction channel 
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Fig. 4.8. Suggested temperature-depen- 
dence of the Fermi energy in amorphous 
siliccm 

seems to be in an impurity band. From the theoretical viewpoint, however, 
we have no satisfactory model to show why either AE or AW would be so 
sensitive to the temperature; if this behaviour is established, perhaps quite a 
new description of the mobility edge may be needed. 

b) Overhof and Beyer [4.104], on the other hand, pointed out the possi- 
bility of a strong temperature-dependence of the Fermi energy under certain 
conditions. Perhaps this is most easily seen by considering a semiconductor in 
which the Fermi energy is "pinned" by deep donors (ED below E,) with low 
compensation. Then at zero temperature, E~-E~; = ED. As the temperature 
is raised, EF will increase as (kT) 2 N '(Ev). At higher temperatures, however, 
it will move towards ±E2 D, as in Fig. 4.8; it should then drop on account of 
thermal expansion as shown by the dotted line 5. 

Determinations of the position of the Fermi energy by ultraviolet photo- 
emission spectroscopy (UPS) which compare its energy with that of inner 
levels [4.105] will reveal shifts due to thermal expansion but not the tempera- 
ture dependent effect shown here. 

Such a model does reproduce one feature of the Meyer-Nelden rule, that 
o0 is large for a large value of the gap. However, the temperature at which a 
linear regime should set it must depend on the degree of compensation. We 
think this could depend on the homogeneity of the specimen. Neither the 
hydrogen content nor the concentration of dangling bonds are thought to be 
homogeneous, so the Fermi energy would vary from one region to another if 
each region remained neutral. Charge will be transferred from one region to 
another, setting up fields and giving another kind of long-range potential 
fluctuation in the conduction band. This could well increase any overlap 
between the dangling-bond band E~ and the doubly charged band of Fig. 4.8, 
thus raising the temperature at which the linear regime occurs. 

In any case, then, we expect a, to be very sensitive to homogeneity. 
Possibly the Meyer-Nelden rule is normally to be accounted for by shifts 

in the Fermi energy of this type. There are, however, other models. Thus, 

5 An analysis of this behaviour was given by Roberts [4.101] 
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Roberts [4.101] postulated a conduction band with an exponential tail but 
constant mobility and shows that a Meyer-Nelden form can be reproduced. 
We think this explanation is open to the criticism that in an exponential tail, 
Anderson localization should occur and the mobility should be a strong 
function of energy. 

Deep level transient spectroscopy in the hands of Cohen et al. [4.106] and 
Lang et al. [4.107] has given evidence for a very low density of states 
(10t4-10 ~5 eV -1 cm -3) and a rapid variation with energy, of the kind which 
would produce a large change of Fermi energy with temperature. The results 
are not, however, confirmed by determination of N(Ev) from the space- 
charge limited current ([4.108] and Chap. 3), found values some 3-10 times 
smaller than that deduced from the field effect and thus of order - 10 I~ eV 1 
cm -3 and little dependent on energy, if these are correct, the large values of 
o0 cannot be due to a shift in the Fermi energy and the only explanation 
available is a dependence of E~ on temperature [4.109]. 

4.11 The Staebler-Wronski Effect 

A photoinduced ESR signal which is stable at low temperatures is found in 
many amorphous semiconductors; it was observed by Bishop et al. [4.110] in 
chalcogenides and interpreted in terms of the trapping of electrons in defects 
already existing, namely, the charged valence alternation pairs C~ and C~. In 
principle, any electron or hole trap could give rise to photoinduced ESR. 

Staebler and Wronski [4.111] report that when glow-discharge deposited 
a-Si is exposed at room temperature to broad band illumination (1.4 to 2.1 
eV), a decrease in the conductivity by four orders of magnitude is observed 
which can be annealed out by heating to 150°C with an activation energy of 
1.52 eV. The metastable state contains about double the density of unpaired 
spins. The effect was observed only in lightly doped samples. Completely 
undoped films have been observed to show an inverse effect, while heavily 
doped films do not show it. 

What has to be emphasized is that the trapped charges which produce the 
effect do not communicate with the conduction band, as do electrons at states 
near the Fermi energy at any temperature where the conduction is observed. 
It is also to be noted that the activation energy for annealing is greater than 
the band gap. We have to ask, then, whether electrons are trapped in a deep 
state stabilized by a large Stokes shift, or whether defects are formed. 

One interpretation is that light induces two T.~ states (dangling bonds). 
This, as stated in Sect. 4.9, is the view of the Marburg group. A model of this 
type is that of Elliott [4.112]. These models were criticised by Adler [4.78]. 
The energy of the exciting light seems much less than that required to break 
two bonds and the lack of any exchange narrowing in the photoinduced ESR 
line indicates that any photoinduced ~ centres must be more than 10 a, 
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apart. It seems to us likely that spinless traps exist, for instance, vacancies 
which do give very stable trapping. Adler postulates states with negative U, 
but this does not seem essential though we note that in crystalline silicon, two 
V ÷ (where V is a vacancy) should dissociate into V +÷ and V. 

As regards the mechanism of the effect, Adler suggests that more point 
charges of one sign than the other will be produced so that to preserve charge 
neutrality, the Fermi energy will be pushed one way or the other. The effect 
will thus only be significant if N(Ev) is small. 

Hirabayashi et al. [4.113] and Morigaki et al. [4.114, 115] reported that 
.prolonged irradiation produces - 1017 c m  -3 ESR centres; they claim that this 
IS evidence for defects because the .q-value indicates that these are dangling 
bonds. If illumination creates such bonds, e.g., by driving off hydrogen, it is 
not clear that they would produce the charge needed to give a considerable 
shift in the Fermi energy. They might, if N(EF) is very low, produce a shift for 
other reasons, namely, by changing the density of states. Strong evidence for 
this model was given by Dersch [4.84b, 116]. 

4.12 Variable-Range Hopping in Silicon 

Our discussion in Sect. 4.5 has shown that a Z 1t4 law is deduced on the 
assumption that N(E) is constant in the neighbourhood of E F and that the 
"Coulomb gap" caused by the interaction between carriers is neglected. 

If, as is generally supposed, variable-range hopping, when observed in 
!nsufficiently hydrogenated material, is a phenomenon in which electrons 
Jump from a singly occupied dangling-bond state to a charged one (empty or 
doubly occupied), then Fig. 4.8 shows 
a) no relationship between N ( E F )  and the number of spins is to be expected, 

and 
b) N(Ev) may well be far from constant. 

In the latter case, though calculations with particular models are missing, 
we think that a hopping formula of the form 

a = A exp( -  To~T) s (4.22) 

1 with ¼ < S < 1 is to be expected; the lower limit ~- comes from the calcula- 
tions of Hamilton [4.117] for the form for the density of states 

N(E) ~ (E - EF) 2 . (4.23) 

Observations seem to give, particularly in a-Ge, a fair approximation to 
the T 1/4 law, but with a much higher pre-exponential factor than can be 
expected from interaction with phonons. It may well be that this is sometimes 
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a consequence of forcing the observations to a T 1/4 law and that with a higher 
index, the prefactor  would be reasonable.  

Kalbitzer and co-workers [4.118,119], have made detailed investigations 
of hopping transport  in ion-bombarded  amorphous  silicon, determining the 
index in the expression exp [(T0/T)"] by a method due to Hill [4.120]. A value 
of n - ~- is frequently found. A mechanism similar to that of AbeIes et al. 
[4.57] for metallic particles dispersed in an insulator is proposed.  

The the rmopower  for materials in which variable-range hopping is 
observed appears  independent  of T and can be explained qualitatively by 
(4.12), though the value is normally smaller. A rise in S at low tempera tures  
observed by Lewis" et al. [4.121[ has been discussed by the present  author 
[4.35] in terms of the Coulomb gap. 

The Hall effect for hopping conduction has not been observed; for discus- 
sions of its magnitude see [4.41-43]. 

A relationship between the width of the ESR line with O - 0.0055 (due to 
dangling bonds) and hopping conduction has been found by the Marburg  
School, and Movaghar et al. [4.122] ascribe this to a locally fluctuating 
magnetic field due to the hopping,  giving a relation of the form 

6H(I 0 = C[o(T)]" ; (4.24) 

for further developments  see Dersch et al. [4.84b] and Gri;tnewald et al. 
[4.123] and Overhof  [4.124] who related the tempera ture-dependence  of the 
ESR line with 9 = 2.01 to the density of states that he assumes in order  to 
interpret  the shift in the Fermi level. 
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