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Refevenees 

1. Introduction 

Any improvement to the electronic properties and structure of disordered systems requires 
a proper theoretical understanding of certain fundamental questions, namely: 

- the nature of the spectrum, 
- the nature of the eigenstates with the possibility of disorder inducing localization, 
- the existence and the nature of the mobility edge separating the localized from the 

- the nature of the density of states, 
- the nature of the quantum diffusion. 

Most of our knowledge on the subject is probably coming from the one-band Anderson 
Hamiltonian [l] on a d-dimensional hypercubic lattice which is static in time but random 
in space. The conclusion obtained from this model is of universal validity: a critical value 
of the degree of disorder W ,  W, may exist such that all the eigenstates are localized for 
W 2 W,. This phenomenon known as Anderson localization is by now more than 30 years 
old but still alive. 

In the sixties, Mott [2,3] analyzed the consequence of localization putting forward the 
concept of the mobility edge E,, originally suggested by Banyai [4], i.e. a sharp transition 
separating localized states in the band tails from extended states in the middle of the band, 
which applies when W < W,*. As a result generated by this work and because of the 
expansion of the range of technological applications (see Fig. l), the beginning of the 
seventies saw a significant number of attempts for both the numerical value of the critical 
disorder and the phase diagram mobility edge E,  versus degree of disorder W .  Obviously, 
in spite of the over-simplifications present in Anderson's model, various assumptions and 
approximations are needed to obtain solutions. Except the Id case [5],  it was assumed that 

extended states, 
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the localization depends only on the nature of disorder and the structure of the lattice. This 
period was somewhat troubled: quantitative discrepancies for W,, dramatic surprises, and 
many hot debates have been reported. With the self-consistent theory [6, 71, an “exact 
approximate solution” has been provided and from 1974 begins the “era of belief” [8]. 
However, in the absence of a detailed picture of the localization transition and convincing 
experimental results at very low temperature, few predictions for physical quantities have 
been proposed, one of the exceptions is the concept of minimum metallic conductivity (nmln) 
suggested by Mott [9]. 

1979 is the year of the revolution. From this period the subject becomes quantitative 
and related to experiments. By now, a detailed picture of the localization phenomenon 
exists involving two fundamental mechanisms: the ideas of universal scale-dependent 
conductance and the singular backscattering [lo]; and also a quantitative theory of weak 
localization [ l l ]  has been put forward. The main results obtained at T = 0 are that the 
conductivity goes to zero at the transition with a universal exponent and the effect of the 
dimension on the localization phenomenon, namely the existence of a lower critical 
dimension d* such that for d 5 dr = 2 there is no metallic disordered system. On the other 
hand, a number of spectacular novel effects such as magnetoresistance oscillation with half 
a flux quantum period and universal conductance fluctuations have been predicted and 
checked experimentally. 

During this period, Altschuler and Aronov [12] analyzed the contribution of the 
electron-electron interaction in disordered metals and concluded on the existence of 
profound differences from the pure ones. These results are greatly appreciated in describing 
the metal-insulator transitions in doped semiconductors in which both the electron 
correlations and the disorder play a significant role. 

Therefore, much progress has been achieved and the subject has maturated, new questions 
have been also posed. The aim of this paper is to present an overview on the theory of 
localization through particular unresolved problems. 

2. Electronic Properties 

2.1 Electrons in crystals 

Probably much of our understanding about electronic states in solid state physics is acquired 
from the picture of an independent electron moving in a periodic potential. 

Mathematically, we refer to invariance under the translational operations of a lattice 
which in turn implies the condition of the validity of the Bloch theorem. Mainly the 
eigenstates are extended, and are distributed in energy bands separated by gaps where no 
solutions exist. The states are labelled by a band index and a quasi-momentum and the 
gaps arise from the destructive wave interference. All this is a standard theory for crystalline 
materials. 

Deviations from periodicity, estimated as perturbation for the potential, introduce 
localized states with discrete energy levels lying within the gap. This is the situation for 
shallow donor states (e.g., Si slightly doped with phosphorus), surface states at any interface, 
and highly localized trap levels in semiconductors (e.g., Cu in Si). As the number of these 
levels increases, new effects appear. A typical case is the appearance of an impurity band 
when shallow impurity states in the semiconductor overlap and the system undergoes a 
transition from insulator to metallic behaviour. 
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2.2 Mott localization 

It is well known for a long time that the above Bloch (or more properly the Bloch-Peierls- 
Wilson) theory of electrons in crystals fails qualitatively in describing NiO which is viewed 
as metal but is an antiferromagnetic insulator [13]. Mott [14] proposed a simple hypothetical 
model of a lattice of hydrogen atoms, with the lattice constant as the only variable, 
to isolate the qualitative effects of correlation. In the limit of small values of the lattice 
constant, the wave functions overlap considerably and the system, with one electron per 
atom, is a half-filled band metal. For large values of the lattice constant the same system 
is constituted by weakly interacting hydrogen atoms and becomes an insulator. To move 
an electron from one site to another one needs an activation energy U = I - A, where I 
denotes the energy required to ionize a hydrogen atom and A the electron afinity, 
respectively. 

In this case, electrons are localized due to correlation. The nature of this transition 
occurring for a large class of systems is not yet understood in detail. In many of these 
systems disorder plays a significant role implying the low mobility of electrons on the 
metallic side of the metal-insulator transition. 

2.3 Disorder system clussifcation 

Bloch theory fails also in describing disordered solids as long as the latter cannot be derived 
perturbatively from the perfect crystal and randomness cannot be treated in a finite order 
of perturbation. Thus we have to look for a theory of electronic and structure properties 
of disordered systems. 

One would tend to think that crystals are all alike but every disordered system is disordered 
in its own way. As said by Brodsky [15]: “it is easier to define the amorphous state by 
starting what it is not than precisely specifying what it is”. Therefore it appears relevant 
to define a certain class of disordered systems [16]. An example of classification of disordered 
systems is reproduced in Table 1. 

2.4 Some universal feutures of disordered systems 

Disordered solids lack the periodicity of the crystalline solids, i.e. the basic symmetry 
element. However, they also display certain universal characteristics which are clearly 
distinct from those of the crystals. These universal features are actually fairly well established 
experimentally and also predicted theoretically. Basing on the ideas originally due to 
Anderson [I], Mott [2] ,  and Cohen et al. [17] have proposed the following simple model 
referred as the Mott-CFO model. Here the energy spectrum consists of bands which may 
overlap. Within each band there are two characteristic energies (see Fig. 2): the so-called 
“mobility edges”, whose position depends on the degree of disorder. At these mobility edges 
the nature of the electronic states changes abruptly from being localized in band tails to 
being extended in the middle of the band. The sharpness of the mobility edge has however 
been a subject of controversy [16, 18, 191. Thus the system should behave as a metal or an 
insulator (semiconductor) depending on whether the Fermi level lies in the region of the 
extended or the localized states. As the degree of disorder is increased the mobility edges 
move towards the centre of the band. For a critical disorder they coincide and the system 
undergoes a transition to an insulating phase termed “Anderson transition”. We briefly 
mention the universal features predicted by the Mott-CFO model: 
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I 1 

- low temperature behaviour of dc conductivity, 

due to variable-range hopping [20] between localized states, where a(0) is the minimum 
metallic conductivity [21]; 
- low frequency ac conductivity, 

due to exponential tailing of the envelope of the localized states [21]. This law is verified 
over several decades of temperature variation; 
- exponential tailing [22] in the optical absorption similar to the Urbach tail, but due to 
nonvanishing density of states in the gap; 
- fairly large concentration of the paramagnetic centres [23] (unpaired electrons due to 
large Coulomb correlation energy unfavouring double occupancy) in the localized states; 
also possibly a large diamagnetism associated with doubly-occupied states which are not 
too localized [24]; 
- it also predicts sharp change in the conductivity when E ,  is made to sweep across the 
mobility edge as realized in inversion layers at the reverse-biased semiconductor-insulator 
interfaces [25,26]. Experimental results do bear out these predictions to a great extent [3]. 
Some typical examples of electronically disordered systems include amorphous semi- 
conductors, impurity band semiconductors, suitably doped covalent glasses, random binary 
alloys and metallic glasses, incommensurate charge-density-wave, liquid semiconductors, 
electron solvation [27]. 

In his pioneering and overquoted paper entitled “Absence of Diffusion in Certain Random 
Lattices”, Anderson [ 11 introduced the concept of disorder induced localization. 

It is well established within Anderson’s model that a critical value of W ,  W,*, may exist 
such that all the eigenstates are localized for W > W,*. This disappearance of extended 
states has been referred to as Anderson transition. Most of the theoretical attention has been 
focussed on the Anderson model since the latter includes some universal properties 
characterizing disordered systems. 
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In spite of the oversimplifications present in Anderson’s model various assumptions and 
approximations are needed to obtain solutions. Although the approaches lead to the same 
qualitative conclusions, they differ appreciably in their quantitative results for the critical 
disorder W,* (see Table 2).  

For a long time, the quantitative discrepancies in the numerical value of W,* have been 
given incidental attention. Since there was no way in checking experimentally the results. 
The exact value of W,* became a relevant quantity with the suggestion by Mott “211 that 

Table  2 
Critical disorder W,* from different models for a cubic lattice ( K  = 4.68) (in units of V )  for 
a uniform distribution of site energies 

model w,* 
Anderson 
Ziman 
Kikuchi 
Economou and Cohen 
Herbert and Jones 

Khor and Smith 
Economou et al. 
Schonhammer and Brenig 
Bishop 

Abou-Chacra and Thouless 
Licciardello and Economou 

Brouers and Kumar 
Efros 
Lukes 
Domany and Sarker 
Thouless 
Pichard and Sarma 
Aoki 
Prelovsek 
Mac Kinnon and Kramer 
Kotov and Sadovski 
Mc Kinnon and Kramer 
Elyutin et al. 
Soukoulis and Economou 
Bulka et al. 
Pastawski et al. 
Singh and Mc Millan 
Gotze 
Zekri and Brezini 
Bulka et al. 
Schreiber et al. 
Kroha et al. 

62 
32.6 
62 
32.4 
62 
41.9 
25.4 
49.7 
24 
24 
20.4 

5 25.2 
62 
22 
19.8 
14.5 
18.5 
14.4 
20.4 
24 
7.8 

19 IfI 0.5 
15 
10 
16 0.5 
13.91 to 19.67 
16.5 IfI 0.5 
19.2 
17 f 2 
16.5 f 0.5 
16 
14.9 & 0.4 
15 
19.9 
16.3 0.5 
16.5 
15.8 
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a minimum metallic conductivity exists at T = 0 when the Fermi level E ,  lies at the mobility 
edge. Using the Kubo-Greenwood formula, one can show [3] that 

0 = 0,,g2 > (3 )  

where the factor g describes the reduction 

and gIR z 5 e2/ha [28]. When E ,  lies at the mobility edge, (3) gives a conductivity gmin where 

gmin = 0.03e2/ha. ( 5 )  

Since cmin, if it exists, is a measurable quantity, the exact value of W,* appears to be a 
relevant quantity. 

3. Anderson Hamiltonian 

Anderson [l] introduced the concept of localization which may be formulated in terms of 
the one-body, tight-binding one-band Anderson Hamiltonian on a &dimensional hypercubic 
lattice (Fig. 3), 

Disorder is described in a particularly simple way, the static randomness is introduced 
through the site energies { E ~ } ,  i.e. the so-called diagonal disorder, and/or the transfer matrix 
elements { K j ) ,  or off-diagonal disorder. Here the set {ti)) stands for the atomic ‘%”-like 
orbital centred at the lattice point 3”. Indeed there are often many orbitals at each site. 

It should be noticed here that the continuum analogue of this problem may be described 
by the Lorentz model, 

The scatterers positioned at R, are distributed at random. However, mathematically IfAnd 
and IfLor are somewhat different in the sense that HLor is an unbounded operator in contrast 

x -  

Fig. 3. Anderson random potential 
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localized 

f d  Fig. 4. Actual consensus on the Anderson transition 
for d = 1, 2, and 3 

strongly localized weakly localized 

Pd - 
localized extended 

to IfAnd. A possible model Hamiltonian that interpolates between HAnd and HLor is the 
n-band Hamiltonian 

The nice advantage is that Hnaband may describe various situations: 
- the statistical nuclear model of Wigner in the limit d = 0 and n 4 co; 
- the Anderson problem for d >= 1 and n = 1; 
- the Lorentz model for d 2 1 and n -+ co. 
The following discussion will be limited, however, to the Anderson Hamiltonian. In this 

case the problem may be seen as a competition between the two terms of (6) which could 
in isolation create localized and extended states. According to recent developments on the 
subject, Fig. 4 presents the actual consensus on the Anderson transition in one, two, and 
three dimensions. The important remark is that the Anderson theorem has survived in 
three, but not in two dimensions. 

4. Nature of the Spectrum 

The spectral theory [29, 301 provides a formal description for the localization theory. The 
Hamiltonian H leads to a unique and invariant direct sum decomposition of Hilbert space 
H ,  into three different orthogonal complements, 

2 = P D  0 z s c  0 H A c ;  (9) 

here D means discrete, SC singularly continuous, and AC absolutely continuous, respectively. 
The state in which the electron is initially prepared may also be separated as 

= WD + WSC + V A C .  (10) 

This decomposition arises from the representation of the Hamiltonian H via its spectral 
measure SM defined by 

00 

H = J ES,(dE), 
- m  

which yields 

18 physica (b) 169/2 
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Since the term (we S,(dE) wj)  displays the mathematical feature of a measure, it leads to 
a decomposition in three parts D, SC, and AC which in turn yields the corresponding 
decomposition of H .  

Under the scheme of these three pure cases, it may be shown [30]: 
- a discrete spectrum means localization, absence of diffusion, reality of the Green’s 

function for all the energies except a set of measure zero. This dense set corresponds to the 
Anderson localized states; 
- a singularly continuous spectrum implies no “localization”, fast or slow diffusion, 

and reality of the Green’s function; 
- an absolutely continuous spectrum implies no localization, fast diffusion, sometimes 

slow diffusion, and no reality of the Green’s function. 
Thus one will associate the discrete spectrum with a truly bound-like state in the Lifshitz 

tail, the absolutely continuous spectrum with extended states in the middle of the band, 
and the singularly continuous spectrum with the disorder induced localized states. 

Miller and Simon [31] have given an explicit example where such a spectral decomposition 
exists. Anderson [8] defined the localization “as an unrecognizable monster: e.g. singularly 
continuous spectra have no physical applications”. Indeed while some situations of SC 
spectra exist, its relation to the localization problem is still far from being achieved. 

So far, we have discussed only the situation of pure cases. It is generally believed that 
localized and extended states with the same energy do not exist: the main argument is that 
admixture would delocalize the former but without any rigorous proof [32]. Recently, 
Srivastava [33] has cast doubt on this point by examining the possibility and the consequences 
of the presence of the poles of the Green’s function in the Riemann sheets of a cut z-plane. 
In particular, it is found that such poles lack the pure-point nature and are associated with 
states constituted by a “confluence” of degenerate extended and localized states. The nature 
of these states is shown to be different from the pure extended and localized states. They 
constitute a new regime of “slow” diffusion in the energy spectrum suggesting strongly the 
possibility of the existence of a new mobility edge separating the new regime from the 
absolutely continuous spectrum. Recalling the Anderson probability P: ( t ) ,  the time-integral 
F of P:(t) is given by 

W 

F = f P,“(t)dt 
0 

and the new spectrum is reported in Table 3. 
In summary, a pole of the Green’s function describes a localized state in the Anderson 

picture only if it is isolated from the branch cut of the Green’s function. A pole can appear 

Table  3 
Nature of the eigenstates following the behaviour of the Anderson probability and its 
time-integral 

lim P;(t) F nature of diffusion nature of state 

0 finite fast extended state 
0 infinite slow confluence state 
0 infinite absence localized state 

2-<0 
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in the branch cut losing therefore its discrete character. Such a pole cannot describe an 
extended state in the strict meaning since it still retains a property related with the pole 
representing a localized state, i.e. the divergence of T.  Such a particular localized state 
diluted in its nature from the coupling with the extended state may produce the “absence 
of diffusion” only in a weak sense. 

Obviously, such a picture of the spectrum opens new questions: 
- does the new regime, where the poles and the branch cut of the Green’s function 

- is there any relationship between the confluence states and the power-law states [34]? 
The analysis of Srivastava is particularly relevant for special types of disorder appearing 

in the quantum percolation model and in systems where the random potential can become 
infinite at some sites with a given probability. In such models, a special class of localized 
states has been reported: “the molecular states” which are not only localized but appear 
at energies which are dense in the spectrum [35]. 

coexist in the same energy domain, correspond to the singular continuous spectrum? 

5. Nature of the Eigenstates 

The nature of the eigenstates indeed “approximate” eigenstates of disordered systems also 
permits a classification of the various possibilities. 

5.1 Asymptotic spatial behaviouv 

If the energy E corresponds to’the discrete spectrum, then the associated eigenstate y(r )  is 
normalizable, i.e. the integral 

j lv(r)I2 ddr (14) 

v(r) exp (-r/t) 9 (15) 

is finite. In most cases, y(r )  is known to behave exponentially [21], 

where 5 holds for the localization length. It should be noticed that the possibility of the 
existence of power-law localized states has been predicted in 2d systems [34, 361. 

If the energy E belongs to the continuous spectrum, y(r )  is no longer normalizable and 
the integral 

j lw(r)I2 ddr (16) 

diverges. While the states in the case of an absolutely continuous spectrum appear to be 
extended over the whole system, the states corresponding to the singular spectrum tend to 
present some kind of self-invariant structure vanishing over very large regions and taking 
over again much further. 

5.2 Asymptotic tempoval behaviouv 

From time evolution, various classes of spectra and states correspond to different behaviour 
of an initially prepared wave function. In particular following the decay of the eigenstates 
different possibilities arise: 

18* 
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- exponential decay (or algebraic decay of rapid slope) implies normalizable, finite 
variance and the quadratic mean-square behaves like 

lim (x2(t)) - o(t) 
f+lZ 

and therefore 

lim oac(co) - w 
10-0 

These states cannot escape to infinity; 
- algebraic decay of slower descent implies normalizable and infinite variance. The limit 

lim (x2(t)) - O(tJL1) 
1-r'U 

with 0 < p1 < 1 yields: 

these states can escape to infinity; 

Then the limit 
- algebraic decay of still slower slope implies not normalizable and infinite variance. 

lirn ( x 2 ( t ) )  - O(tW*) 
1-x 

with p1 < p2 < 1 gives 

and the states can again escape to infinity; 

limit 
- no decay, i.e. extended states, implies not normalizable and infinite variance with the 

lim ( x 2 ( t ) )  - o ( t p 3 )  (23) 
t - x  

with presumably p3 = 1, hence a finite nonzero diffusion constant 

Table  4 
Nature of the eigenstates from their asymptotic temporal behaviour 

nature of the lim (xZ( t ) )  normali- variance lim ua,(o) 
decay f - m  zation W - 0  

exponential -W) Yes finite -w 

algebraic - 0 ( t F 2 )  no infinite ,w1-c2 

N W 1  -!A1 algebraic - O ( P )  Yes infinite 
o < p , < 1  

(of still slower slope) 
no decay - o(t.3) no infinite - const =# 0 

pl < p2 < 1 

(with p3 = 1) 
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t 
‘0 

6nlm 

Fig. 5. Comparison of the possible behaviour of the 
conductivity as a function of the energy. gmin denotes 
the minimum metallic conductivity, E,  and E,  the 
mobility edge and the pseudo-mobility edge. (a) 
Mott’s prediction, (b) results of most of the experi- 
ments 

While from the consensus (Fig. 4), power-law localized states may exist in 2d systems 
[17], they are not included in 3d systems and there is no general theorem proving their 
absence. 

Comparison between Tables 3 and 4 seems to indicate the following correspondences: 

a) localized state + exponential decay, 
b) confluence state + algebraic decay (or power-law state), 
c) extended state + not decaying. 

This remark suggests the possibility of the existence of two ‘‘pseudo”-mobility edges: 
one separating a) from b) and the other b) from c). A similar conclusion has been reached 
by Schreiber [37] giving a support to the analysis of Srivastava [33] (see Fig. 5). Probably 
the discrete nature of the one-band lattice Hamiltonian vis-a-vis the continuum (random 
potential) Hamiltonian is relevant here. 

5.3 Fractal character 

A new way in characterizing the wave functions of disordered systems is by their fractal 
dimensionality. It has been shown [38 to 421 that the localized eigenfunctions, in addition 
to their exponential decay, fluctuate widely with a fragmented character suggesting that 
they may be fractal objects. The fractal dimensionality D of such an object embedded in 
d-dimensional space has been determined by Mandelbrot [43] from the relation 

where e(u )  is the density and L the linear size of the object, respectively. Such a relation 
has no bearing in strongly disordered systems, mainly due to the strong dependence of the 
integral on the origin. Towards avoiding this difficulty, Soukoulis and Economou [44] 
proposed an alternative by averaging over all possible choices of origin, each weighted by 
the density itself, namely 

A(L)  = 
L 

@(yo) ddro 1 e(r  + ro) rd-’ dr - c L D ,  (25) 
0 
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where c is a constant. The eigenfunctions are found to have a self-similar (fractal) behaviour 
up to length scales roughly equal to the localization length. Similar conclusions have 
been reported from an analysis of the inverse participation ratio in weakly disordered 
systems [37]. 

For extended states, Aoki [45] argued that the wave function at the mobility edge, which 
occupies an infinitesimal fraction of the volume, should have a self-similar filamentary 
structure with a scale invariance. Therefore, it is expected that above the mobility edge, 
the extended states exhibit strong amplitude fluctuations up to a length x and for a length 
scale above they look uniform. The existence of x is a consequence of the scaling theory 
[lo] and serves as a support of a continuous transition. 

However, a recent analysis [46] of the fluctuations of localized wave functions in d has 
shown the following: 
- the non-self-similarity of the fluctuations in space for a single wave function which 

disproves the claims of fractal character; 
- the multifractal character of the fluctuations with respect to disorder configurations. 
So, the situation on this point is still somewhat controversial and needs further 

investigations to be clarified. 
Even if the above classification of both spectrum and nature of the eigenstate is complete 

and unambiguous, its relation to the physical problem of Anderson localization is still 
very remote. This is mainly because one still has to bring in the probabilistic element 
described in the random potential. 

6. Definition 

We consider a system at T = 0. For a classical particle in a random potential (Fig. 6), 
it is relatively easy to decide whether its motion is confined within finite portions of space. 
If the energy E of the particle is greater than E,, it can move through the whole space. 
In the other case, if E < E ,  the motion is confined within finite intervals (xl, x2), (xi, xi), 
etc. 

x ,  x* x i  x i  

Fig. 6.  Random potential 
x -  
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For the equivalent quantum mechanical situation, the problem is more complicated for 
two reasons: 
- the tunnel effect which allows the particle to tunnel through the potential wells and 

contributes to delocalization of the particle for E < E,; 
- the interference effects within the wave functions scattered by the random potential 

which in turn may lead to the localization of the particle via destructive superposition for 
E > E,. 

Therefore, a difficulty arises in distinguishing localized from extended states and criteria 
of localization are needed in this context. 

From a mathematical point of view: an eigenstate q ( r )  in the representation { I r ) }  of a 
Hamiltonian H is localized in a space ad if and only if a subspace A of gd exists with the 
property: 

where € is a small positive quantity and gd - A the complement of A in gd, otherwise 
q ( r )  is extended. 

In order to appreciate the localization criteria, we would like to precise the physical 
definition of the localized states which is based on normalization arguments. Towards this 
end, we consider a microscopically disordered, but macroscopically homogeneous, system 
of &dimensional volume v and boundary surface S. Let AV E V, be a volume element, then 
we define 

as the probability of finding the particle in the volume element AU with the eigenstate y,(r) 
and eigenenergy E,. Following the behaviour of P,, we have 

lim P,(Av E U )  + 0 - * y,(r) , extended state, 
Avfixed u+m (:I 

lim P,(Av E U )  --t 0 6) => y,(r), localized state, 
u+m 

Aufixed 

where L may be defined as the localization length. These statements stand also for the 
discrete analogue. Obviously zy,(r) and E, change in the limit v 4 60, but we assume here 
that continuity allows one to keep the track of the given eigenstate. At this stage, one can 
make a comparison between the localized (extended) states induced by disorder and the 
negative (positive energy scattering) states of the well-known potential scattering theory. 
A deterministic potential tends to a well-defined value (vacuum level) asymptotically in the 
r infinite limit. Therefore, the negative energy state is bound and naturally localized. On 
the other hand, the random potential of a statistically disordered system does not tend to 
any reference value. Indeed the localized states in the Anderson sense are the "positive" 
energy bound states induced by interference effects. 
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7. Criteria of Localization 

The problem of calculating the mobility edge systematically for the Anderson Hamiltonian 
requires some operationally well-defined and formally exact localization criterion. No 
wonder therefore, that diverse localization criteria have been proposed and are not 
necessarily equivalent in strict sense [29,30]. In the following we briefly discuss some of 
the different localization criteria. 

7.1 Criteria derived from the depnition of the localization 

These criteria are purely formal in the sense that no solution of the Schrodinger equation 
with random potential actually exists. In this light we examine here the problem of 
localization by presenting and comparing different localization criteria: 

Criterion I 

The most intuitive definition of a localized state y(r) requires the existence of the integral 

s lw(r)I2 ddr 9 (30) 

namely a localized state is normalizable. 

Criterion 2 

Demanding a more stringent test, one could use the existence of the integral 

as a definition of a localized eigenstate. This integral corresponds to the second-order 
moment of the wave function. 

Criterion 3 

Another definition of a localized eigenstate is the existence of the integral [47] 

s iY(r)i4 ddr .  (32)  

Criterion 4 

In cases where the wave function has been evaluated, i.e. usually in one dimension, y(r) is 
known to behave exponentially, 

where 5 is the localization length, 5 - E,aJIE - E J ”  [28]. The amplitude must also be 
modulated by a sinusoidal factor since different localized states are orthogonal to one 
another. 
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Criterion 5 

For any point r and localized eigenstates, the spectral density 

s IYv(r)12 - E") dE 

is discrete but dense. (For a review about these criteria see [48,49]). 

(34) 

Criterion 6 

One way of distinguishing between the localized and extended states is to examine the 
mean fourth power of the amplitude which is the reciprocal of the quantity introduced by 
Bell and Dean [50], the inverse participation ratio 9: defined by 

i iW114 
i- 1 9; = I 1 by Schwartz inequality, 

( 2  i = l  - 

(35) 

where yy is the amplitude at the site i of the eigenstate y', i.e. ( i  I y'), which measures the 
spread of the eigenstate. From the behaviour of ( i  I v'), one derives 

lim 9; -+ O ( N - ' )  + y' , extended state, 
N + m  

lim 9; + O(No)  -+ yv  , localized state. 
N +  w 

For the wave equation, 9; may also be written as 

(37) 

St has been used extensively in numerical work using computer simulation. 
Weaire and Williams [51] showed how the equation-of-motion method in which quantities 

of interest are extracted from the time dependence of a random wave vector, could be 
applied. The quantity which converges most naturally from this approach is the "inverse 
participation ratio" which is, roughly speaking, the inverse of the number of sites over 
which a localized state has a significant amplitude. The average inverse participation ratio 
has been used for locating the mobility edge in the numerical work of Weaire and Williams 
[51], measuring the spread of the eigenstate. 

Criterion 7 

Another definition of the inverse participation ratio has been given by Kramer and Weaire 
[521, 

N 

9; = c IYYI" (39) 
i =  1 
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with 
lim 9; -+ O ( N - ' )  -+ yv , extended state, 

lim 9; -+ O(No)  -+ y" , localized state. 

A variant may also be defined as follows: 

N - t m  

N + m  

p; = N-l(p;)-l 

implying 

lim 9% -+ 1 -+ y " ,  extended state, 

lim 9; + 0 -+ v V ,  localized state. 

N+CC 

N + m  

(43) 

(44) 

7.2 Absence of self-diffusion 

The above statements are taken to require vanishing dc conductivity G~~ at T = 0 which 
sometimes is used as a criterion of localization and appears to be a more realistic one since 
it may be checked experimentally. 

7.2.1 Criterion based on absence of self diffusion 

As a direct consequence of the Kubo-Greenwood conductivity formula the contribution to 
conductivity is related to the variance of x for the eigenstate in question, 

cc 

For exponential localized states, the variance is certainly finite and for a finite integral on 
the left a(w) must go to zero faster than w in the limit w -+ 0 and therefore ~ ( 0 )  = 0. 
However, the possibility of weakly (algebraically) localized states makes the converse not 
true. 

Mott argued that the main contribution to the right-hand side of (45) in the limit 
of small values of o comes from coupling of states very closely together in energy such 
as the energy difference is much less than tiw and for exponentially localized states the 
conductivity is of the form 

G~~ - o2 (In ~ 0 ) ~ .  (46) 

7.2.2 Ioffe-Regel criterion 

A well-known criterion is that of Ioffe and Regel [53]. In particular, Mott [21] made use 
extensively of this criterion. They argued that since the mean free path 1 corresponds to 
the distance over which the electron wave function loses its phase coherence 271, a wavelength 
greater than 1 would be unphysical which in turn leads to the inequality 

i k >  1 .  (47) 
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If this condition is not satisfied, the states are localized. From this criterion, Mott predicted 
the “minimum metallic conductivity” in two and three dimensions, 

e2k, 
3x2h d3d > __ 

and 

However, according to Souillard [54], the Ioffe-Regel criterion seems to be certainly not 
exact, but gives a qualitative rather than a quantitative picture of the phase diagram. 

7.3 Criteria based on the analytic properties of the one-particle propagator 

7.3.1 Criterion based on the dependence of the propagator on the distance 

The question of localization has been examined by Herbert and Jones [55]  via the dependence 
of the propagator 

Gij(z) = (il ( Z  - H ) - ’  l j }  

G.. 11 - RZ‘ V 

Gij - exp (- Rij/Rd),  

(50) 

on the distance Rij in the limit Rij 4 co. For extended states it is expected that 

(51) 

as Rij -+ co, while for localized states exhibiting exponential decay 

( 5 2 )  

where Rd is defined as the localization length. 

complicated quantity like G, and requires additional approximations. 
Such an approach, although more direct, has the disadvantage of dealing with a more 

7.3.2 Criterion based on the analytic properties of the propagator 

We consider a finite N-site system described by a complete set of local states 
l i}, i = 0, 1,2, ..., N ,  each one associated with a given site i of the lattice. We examine the 
evolution of the electron wave packet Iw(t)) prepared initially at the site 0, i.e., 

The propagator Gc(t )  which measures the 

i 
h 

G:(t) = - - ( j l  exp 

= o  

amplitude for the transition i --f j is defined as 

for t 2 0 ,  (54) 

for t < 0 ,  ( 5 5 )  
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and its complex Fourier transform 

Gi”i(z) = ( j l  ( z  - H)-l li) (56) 

is analytic for Im (z) > 0, i.e. in the upper half-plane. It is convenient to introduce the 
spectral representation 

where E t  is the exact eigenenergy associated to the eigenstate Iv ) .  
G; is analytic everywhere on the complex z-plane except at the eigenvalues of the 

Hamiltonian H where a simple pole behaviour is exhibited. In the present situation the 
quantities E t  and I(i I v)l’ are random variables since they are functions of the random 
variables Hii = (il H l i ) .  Thus the singularities of G:(z) give the spectrum of H and the 
residues I(i I v)l’ evaluated at the poles of G:(z) give the overlap of the state Iv) with the 
site orbital li). Obviously we are interested in the limit N --f co. In such a limit and for a 
given but compact disorder, the spectrum of H is bounded and therefore saturates to some 
finite energy interval. The number of states scales as N and then the set of poles becomes 
dense. 

7.3.3 Criterion bused on the residue 

If the eigenstate I v )  is extended as N -+ co, i.e. the overlap (i I v) is relatively appreciable 
for an infinite number of states li), the renormalization implies 

I(i I v) l ’  - O(N-’ )  ( 5 8 )  

for all states l i). Thus the dense set of poles of Gii(z) forms a fixed branch cut along the 
real axis. 

On the other hand, for localized states ( i  I v) is appreciable only for a finite number of 
states li) as N + co which defines the domain of localization and then 

I(i I \ , ) I 2  - O ( N o ) .  (59) 

Thus, only a finite number of sites i with residue I(i I v)1’ exceeds a preassigned quantity 
describing the domain of localization. The dense set of poles constitutes a natural boundary. 

7.3.4 Criterion bused on the line of singularities 

As N + co the spectrum of the Hamiltonian turns to lines of singularities for G z ( z ) .  In 
other words, the limit 

I 
does not exist, where z = E + is and E belongs to the energy band. Because of the different 
behaviour of I(i I v)12 as N + co, the lines of singularities are of different nature. 

In the case of extended states the parts of the spectrum become branch cut as N + co. 
The limit 

1 
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exists. On the other hand, the parts of the spectrum associated with localized eigenstates 
become natural boundaries as N + co, because the limit 

I lim f lim G!(z) 
S + O  I N - C ~  

does not exist due to the fact that the residue I(i I v)I2 remains finite as N --f co. 
In summary, the side limits 

s+o 1 
exist and are nonzero in the extended regime, while the side limits are zero almost everywhere 
in the localized regime, except if E corresponds to the eigenvalue where these do not exist. 

7.3.5 Criterion bused on absolute squared propugutor 

The above discussion on the overlaps ( i  I v)  yields the following condition: 

lim lim i Im z \GC(z)12 = K \(i 1 v)lz \ ( j  1 v)I2 F(E - E,) (64) 
I V - . ~  I s-n 1 "  

if the limit vanishes as O ( N - ' ) :  Iv) is an extended state and if the limit is a nontrivial 
function of the distance Ji  - j l ,  Iv) is then a localized state [56]. 

7.3.6 Criterion based on absolute squared locator (11 

Localization implies a nonzero probability Pto( t )  of finding the particle where it was initially 
prepared (t  = 0) after an infinite time ( t  --+ co) has elapsed in the limit N + 00. It may be 
shown 

lim lim P&(t) = lim lirn - IGto(t')12 dt' 
[ t - m  ] N-.m [ f + m  1 = ,/ F,",(E)dE' 

N-. Q 
n 

where 

Gto(E + is) Gtn(E  - is) 

Therefore, one can deduce: 

Ftn(E)  = 0 + extended state at E ,  

F&(E) > 0 + localized state at E .  

7.4 Criteria based on convergence in probability of series 

7.4.  I Criterion based on convergence of the diugonul matrix element Gii(z) 

Another way to distinguish between extended and localized states is to consider the 
convergence of G!(z) in the limit N --f co [57]. Since I(i I v)12 and E t  are random variables, 
the convergence must be examined in terms of probability. The locator is given by 
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Each term of the series I( i I v)I2/(z - E t )  becomes important in the limit z + E ,  where E 
belongs to the spectrum only if 

IE - Etl 5 A I( i I v>I2, (69) 

namely if E E I,, where I, is the interval 

[E;  - A I(i I v)I2 ; E; + A I(i I v)12] (70) 

with A < 1. Within the interval I, one can define the union U,, of I ,  such as the contribution 
of all the terms with v > v o  is dominant. 

G:(z) may be developed such that the terms in the sum (68) are in the order of decreasing 
I ( i  I v>I2. For localized states, the extent of the integral I ,  decreases exponentially in the 
limit v + 00 or equivalently N + co. Consequently the extent of the union U,, goes to zero 
as v o  + 00. Thus the probability of E belonging to U,, goes to zero as vo -+ co and the 
series for G:(z) converges as N + co with probability distribution for G!(z) which converges 
a s N - t c o .  

For extended states, the union U,, goes to a nonzero value as v o  + 00 implying that 
the series for G!(z) diverges as N + co with probability unity, i.e. the probability distribution 
of G:(z) diverges as N + co. 

7.4.2 Criterion bused on convergence of the perturbation series for the self-energy 

No review of localization is complete without a discussion of the approach based on the 
convergence in probability of the renormalized perturbation series (RPS) of the site-diagonal 
self-energy, due originally to Anderson. 

The analytic properties of the diagonal matrix elements G:(z) may be re-expressed in 
terms of the self-energy S"z) defined by 

1 
G:(z) = 

z - E i  - S"z) 

with the property 

sgn Im {ST(z)} = -sgn Im { z }  . (72) 

One verifies S"z) to be analytic in the whole complex z-plane except for a possible cut on 
the real axis corresponding to the extended states. This implies nonconvergence of any 
series representation as the energy approaches the localized to delocalized transition, i.e. 
the mobility edge E,. 

The problem may be solved by expressing the self-energy So(z) in the well-known 
Brillouin-Wigner perturbation series (PS), 

Since the PS contains random terms, i.e. the set { E ~ } ,  the convergence has to be treated in 
terms of probability. The PS may diverge apparently because of vanishing denominators 
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involving multiple scattering on a finite number of sites. From the Feenberg theory this 
simply shifts the energy levels and therefore the PS may be rearranged as a renormalized 
perturbation series (RPS), 

where the superscripts 0, i, . . . denote that the corresponding quantity, has been calculated 
for c0 = . . . = .zi = . . . = co. The RPS can be represented by all paths whiqh start and end 
at the site 0 without visiting the same site more than once, i.e. the self-avoiding walks. Now 
the RPS can diverge for two distinct reasons: 

- as an infinite series; 
- because a given term itself may diverge due to iterations implicit in the S,!-)(Z) 

occurring in the denominators. 
The quantities S,!-)(Z) may be expressed through relations similar to (69). Iterating this 

procedure to eliminate all the unknown quantities yields an infinite continued fraction in 
each term of the RPS of the form 

i.e. the renormalized perturbation expansion (RPE) (75) constitutes an explicit closed 
solution for the self-energy So(z) for a finite system. For a finite system of N sites S,(z) may 
be written as 

N 

where S;(p)(z) describes the sum of all diagrams visiting p sites. Following the nature of 
the eigenstates, the RPE and the RPS display different properties. 

The absence of extended states implies that: 

- the probability distribution of S:(p)(z) converges as N + co; 
- the contribution of all terms S;(p)(z) where p > p o  are negligible as p + co. 
If both these two conditions are satisfied, the states at E are localized. 
Divergence of the RPE implies divergence of the RPS but not the other way around. 

However, it is generally assumed that the convergence of the RPS is equivalent to the 
convergence of the RPE, in order to examine the convergence of the former and to eliminate 
mathematical complications, but without rigorous proof. Most model calculations on the 
statistical convergence in probability of the RPS must introduce additional approximations: 
- omit altogether the self-energies in the propagators; 
- assumption of statistical independence or strong correlations of the diagrams, etc. 

At this stage, Anderson [l] suggested to study the self-energy itself rather than any series 
representation. This has been somewhat achieved through the self-consistent theory. 
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7.4.3 Criterion of Abou-Chacra et al. 

In this self-consistent theory [6,7], the RPS for the self-energy So is truncated after its 
leading term 

In this analysis the equation is treated by a self-consistent method in the sense that a given 
probability distribution for ei and an assumed probability distribution for Sjo)(z) must 
generate the same for So, since So and Si0)(z)  are defined by similar equations. 

So may be used wether or not states are localized by separating real and imaginary parts, 
then 

z = E + i y  (78) 

implies 

So(E + i y )  = Ro - id, .  (79) 

For extended states 4, tends to a constant d“ as y + 0, physically d” is a measure of the 
rate at which a particle with energy E at the site 0 will escape. For localized states, do  is 
proportional to y and one can define the ratio 

which describes the extent of the localization domain of the eigenstate Iq). 
In the limit of small y, we get for the localized states 

IVoi12 
R o =  c 

i + o  E - ~i - Ri 

and 

In this approximation the Laplace transform f ( s )  of the probability distribution P(d/y) is 
given by 

K 

f(s) = [ 1 P(E - x) frs) exp (- $) dx] , 
-02  

where P ( x )  is the probability distribution of xi = E~ + Ri. For extended states, one can 
expect to reach solutions of this equation by iteration collapsing to the trivial solution 
which is unity for s = 0 and zero otherwise, while for localized states there should be a 
nontrivial solution. 
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7.4.4 Criterion of Logan and Wolynes 

In their model [%I, the self-consistency conditions of Abou-Chacra et al. [6,7] are simplified 
in such a way that they analyse algebraic equations rather than integral equations by 
demanding only the most probable value of the self-energy to be self-consistently determined 
instead of its probability distribution. 

7.4.5 Criterion of Kumar et al. 

A criterion for the existence of localized states overlapping with a given site 0 may be 
obtained by considering the diagonal element of the Green's function [59], 

Goo = (E  - c0 - S 0 ( E ) ) - ' .  (84) 

The pole E ,  = c0 + So(E)  describes the energy of a localized state Jrp) of the system and 
the residue 

evaluated at this pole gives the overlap between the localized state (rp) and the site wave 
function 10). For extended states Irp), the residue I(0 I rp)lz with any site 0 vanishes as 
O ( N - ' )  and goes to O(No)  for localized states with probability. Therefore, the mobility 
edge E, may be defined as the energy for which the derivative of the self-energy becomes 
infinite with probability unity. Defining Yo = -dSo/dE and differentiating S o @ )  yields 

V2(1 + K) 
yo= c 

i*o (E  - ci - Si)' 

The problem is also treated by a self-consistent method in the sense that given probability 
distributions P,(Si) and Pr( x) must generate the same for P y (  Yo). The Laplace transform 
of the self-consistent probability distribution Pr( Y )  satifies the general non-linear integral 
equation 

In comparing with the model of Abou-Chacra et al., one can conclude a perfect equivalence. 

7.4.6 Criterion of Heinrichs 

The model of Kumar et al. has been simplified by Heinrichs [60] by demanding only the 
average value of the derivative Yo to be self-consistently determined rather than the 
probability distribution at the cost presumably of loss of localization properties. 

These models are exact for the Bethe lattice (Fig. 7) because of its particular topology: 
the only self-avoiding walk which returns to the initial point is the walk with two steps 
and both these theories may be viewed as the high-dimensional limit of the localization 
theory. 

19 physica (b) 169/2 
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Fig. 7. Bethe lattice of connectivity K = 3 / 

7.5 Sensitivities of eigenvalues to boundary variations 

This criterion [61,62] is also related to the normalized behaviour in the limit N -+ co. As 
a matter of fact an extended state is spread out over the whole lattice and thus questions 
the boundaries. The change of boundary conditions, namely from periodic to antiperiodic 
to avoid surface effects, shifts the energy levels. More generally the convenient form of 
boundary conditions is the generalized periodic condition in a box of size L. The variation 

adds a term 

to the Hamiltonian. The result is that the energy shift AE; will behave like 

in the limit N ---t GO for extended states and, on the other hand, 

AE; - O(exp (-uN'Id)) (91) 

for localized states, where a stands for the inverse localization length. This criterion has 
been shown powerful in numerical work. The main advantage is that the sensitivity to 
boundary conditions of the energy levels may be related to the conductance of the system 
at that energy which is in turn a measurable quantity and may be checked against 
experimental results. 
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7.6 Boundary conditions and resistance 

In a hypothetical experiment [63] we assume an electron initially prepared (t = 0) in a 
wave packet at the centre of a system which is supposed to be many mean free paths large. 
Until it has reached the boundary at a distance L,/2 from the centre its motion is insensitive 
to boundary conditions. Once it has reached the boundary, its motion will be perturbed. 
If AT is the time to travel through a distance L,  and D the diffusion constant, we have from 
the uncertainty relation 

Combining it with the Einstein relation yields the conductivity 

e2 dn 
g = -D- 

2 dE’ 
(93) 

here n stands for the density of states. The sensitivity of the energy levels to boundary 
conditions in a system defined by L,, L,, and L,  is given by 

2h oL2L3 1 dE AE=---- 
e2 L,  L,L,L, dn’  

2h dE 
e2r dn 

AE = -  -, 

(94) 

(95) 

where r is the resistance of the system and dEldn the average spacing between energy levels. 
Thus the ratio of the spacing between energy levels to the sensitivity to the boundary 
conditions is linear to the resistance of the system. 

If instead of changing periodic by antiperiodic boundary conditions, but the original cell 
being surrounded by statistically similar cells, the sensitivity to the boundary conditions 
AE gives the strength V’ of a given level on one cell to its neighbours and the spacing 
dE/dn measures the amount W‘ by which a given energy level on one cell fails to match 
the nearest level on its neighbours (Fig. 8). Therefore, the original Anderson problem is 
rescaled: 

W W’ re2 
I/ V’ 2h 
-+-=---.  

This result may be viewed as a localization criterion, i.e. the resistance per cell determines 
whether or not states are localized: 
- if AE/(dE/dn) = W‘jV’ is exponentially small, the eigenstate of the (2(L,, L,, L3))d 

sample will be localized mainly in one of the (L,, L,, L,)d samples. 
- if AE/(dE/dn) = W’jV’ is large, the eigenstate of the (2(L,, L,, L3))d sample will be 

spread out over all the ( L l ,  L,, L,)d samples and thus be extended. 
The essential point is that the resistance r or the conductance G are physically measurable 

quantities directly related to the ratio AE/(dE/dn) and appears to be the a simple parameter 
determining the behaviour of the localization properties of the system as it grows in size. 

19’ 
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Fig. 8. Evolution of the critical ratio WFjZV 

7.7 Discussion 

7.7.1 Analytical results 

We mention briefly that Anderson [l] examined the Green's function in the "locator 
expansion", as termed by Ziman [64], where the Green's function is given by 

1 
E - E ,  - S , ( E )  ' 

G.. = 
' I  (97) 

Information about localization may be obtained from the single-particle correlation function 

dE exp (- iEt/h) s exp (E/k,T + s) [E - E ,  - S , ( E ) ]  
(ai(t) a'(t) 10) = Im 

in the limit t -+ co. If S,(E) is real, the correlation function simply oscillates, but if S, (E)  is 
complex, it damps out with time. Therefore, the reality of S,(E) is a condition for localization. 
Since averaging over configurations throws out the crucial information retained in Si, 
Anderson studied the most probable Si at the centre of the band where the self-energy of 
the denominators of (98) may be neglected and found that the critical value of SjW for 
localization is about five or ten times larger than the crude argument would suggest 
[55, 561. 

In particular he noted that the L-th-order term in the locator expansion contained a 
number of paths of order KL. A crude estimate of this order of magnitude for a typical 
term of order K L  in the series yields 

( K  W ) L  = ( 2 e / ~ i ) ~ -  (99) 

giving convergence, i.e. localization, for 

A 
- > 2eK 
W 
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Assuming statistical independence of the K L  terms, Anderson showed that the sum of the 
K L  was dominated by the largest term which gave a factor In (d/W) and hence the criterion 
becomes 

W,* = 2ekV In (eK)  . (101) 

Herbert and Jones [55] and Economou and Cohen [65] argued that statistical independence 
was impossible and considered very strong statistical correlation such that the crude estimate 
was better. 

Economou and Cohen [65] introduced an approximate theory of the mobility edge E,  
by means of a localization function L(E,) such that L ( E )  + 1 indicates extended (localized) 
states at E,  and L ( E )  = 1. They find 

L ( E )  = L,(E) = ZV exp (-(In/ E - E ,  I)), (102) 

where the average is taken over the probability distribution of E .  L, was firstly introduced 
by Ziman [64]. Within the framework of an effective medium theory [66] a more sophisticated 
approximation to L(E)  retains the self-energies in the denominators of (98), the localization 
function (102) is then replaced by 

where C ( E )  is the effective medium site energy. This is referred to as an exact estimate of 
the region of localized eigenstates. 

Their results, in the ordered limit, lead to extended states in the band and localized states 
outside the band, and in the general situation yields the same criterion in terms of the 
renormalized energy in the effective medium E - C(E).  

Bishop [67,68] examined more carefully the Economou-Cohen criterion by using a more 
relevant approximation for C ( E )  obtained for the CPA calculation. 

Abou-Chacra et al. [6,7] have developed a self-consistent localization criterion referred 
to as exact on the Cayley tree equivalent to the Anderson criterion in terms of the analycity 
of the RPS for the self-energy. In particular this gives a qualitatively similar behaviour to 
Bishop's evaluation of the Economou-Cohen criterion, at least for a uniform distribution 
for site energies { c }  (see Fig. 11). 

Indeed, the Economou-Cohen criterion given by (102) is in fact a way to estimate whether 
localization exists from the average one-particle Green's function. Thouless [48, 691 suggested 
that (102) is not a localization criterion in the same sense as, say, the vanishing of the 
conductivity is, but it is an estimate of whether localization is likely. 

Licciardello and Economou [70] have attempted to obtain a more sophisticated 
approximation to L(E) ,  

where the 1 indicates summation over all the indices nl ,  n,, . . . , ny with the restrictions 
corresponding to all self-avoiding paths of order M starting and ending at the site 0 
and at the same time estimated the errors introduced thereby. A general scheme for 
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evaluating the average in (102) is to introduce an effective Hamiltonian satisfying the 
relation 

Using the single-site CPA [66] according to which H is determined by a single effective 
energy Z ( E )  and additional approximations leads to a new criterion, 

The localization function LI (E)  is referred and expected to be a definite improvement over 
the old localization criterion. 

7.7.2 Numerical results 

The first numerical attempts simply calculate eigenvectors of the Anderson Hamiltonian 
for some large array of sites. In the outstanding example, Yoshino and Okazaki [38] used 
a method of matrix diagonalization and obtained eigenvectors of a 2d system with 10' x lo2 
sites. Licciardello and Thouless [71,72] used a more powerful approach, where only 
eigenvalues were calculated, the degree of localization being related to the sensitivity of the 
eigenvalues to changes in the boundary conditions. 

Various attempts to develop still more refined methods have been proposed. Weaire and 
Williams [51] showed how the equation of motion method, in which the quantities of interest 
are extracted from the time dependence of a random wave vector, could be applied to the 
localization problem. The quantity which emerges most naturally from this approach is 
the "inverse partition ratio". The recursion method has much in common with the equation 
of motion method [73]. 

However, difficult questions of interpretation [74] arise. The essence of the method is the 
transformation of the Hamiltonian into one which has the topological structure of a 
semi-infinite chain [75]. 

Prelovsek [76] has developed another simulation equivalent to the equation of motion 
in the sense that the time-dependent Schrodinger equation is to be integrated. However, 
he simply takes a wave packet which admits a Gaussian envelope in space and consists of 
eigenvectors from a particular energy range and looks at its spread with time. For extended 
states, it expands in the manner characteristic of diffusion ( r  N t'''), otherwise the wave 
packet remains localized. 

All the above methods may be adapted to the calculation of the conductivity from the 
Kubo-Greenwood formula [77] except the method of Licciardello and Thouless which yields 
the conductivity rather directly. 

8. Theories of Localization 

A vast amount of literature has been accumulated during recent years on the approach to 
Anderson localization based on the analogy with the phase transition problem, even though 
no cooperative effects are involved here. We just briefly mention the underlying ideas of 
some of these not very successful approaches. It is well-known that the classical analogue 
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of the Anderson localization problem is the percolation [78 to 801, which can be treated as 
a particular case of magnetic phase transition [81]. The localization problem itself bears 
similarity to the problem of self-avoiding random walks on a lattice which in turn is 
equivalent to the excluded-volume problem of polymers. As pointed out by de Gennes [82] 
the latter may be mapped onto the problem of statistical mechanics of a nonrandom system 
of n-component classical fields in the limit n + 0. This idea was further explored by Emery 
[83], Des Cloizeaux [84], and others within the framework of the renormalization group 
theory [85]. 

However, the failure of these approaches was essentially due to the fact that the sign of 
the quartic term in the effective free energy function was negative. Physically, the failure 
could be traced to the fact that the equivalence was based on the configurationally-averaged 
one-particle propagator which has no bearing on the localization problem. Motivated by 
this realization, Nitzan et al. [86] examined the renormalization group properties of the 
averaged absolute squared single propagator and found no fixed point. Similar conclusions 
have been obtained by Aharony et a]. [87] who mapped the localization problem to a 
nonrandom nm spin model, where the effective Hamiltonian has n spins each having m 
components at each lattice site and the limit n + 0 and m = 1 is to be taken at the end. 
Their negative results only showed that the localization problem is much more subtle [MI. 
Less controversial are the scaling theories which borrow only the general style of thinking 
associated with the renormalization group approach to the analysis of phase transitions 
[89 to 941. 

Abrahams et al. [lo] developed a scaling theory of localization in analogy with the scaling 
theories of critical phenomena. The first step is that a large disordered system can be divided 
into blocks large compared with the mean free path for electrons, but small compared with 
the size of the system. 

8.1 Scaling theory 

Let us consider an electron in a disordered medium. The phase of its wave function is 
modified at random. The length over which the fluctuation is about 27t defines the mean 
free path 1. The averaged one-particle propagator is 

For the localization problem, the microscopic length scale of interest is 1. The conductance 
go at this length scale is a signature of the amount of disorder. 

In the limit 1 % kF ’, i.e. the Fermi wavelength, the conventional transport theory leads 
to a conductivity of the form 

where n is the electron density and 7 = l /k ,  the relaxation time. The conductance for a 
hypercube of linear dimension L % 1 in this “ohmic” regime is given by 

g(L) = oLd-2. 

On the other hand, for localized states the microscopic length scale is the localization length 
5 which in general is greater than unity. 
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In this regime and for L 9 5,  the conductance for exponentially localized states is 

g(L) = g c  exp ( - L / O .  (110) 

Abrahams et al. [lo] argued that the Gell-Man-Low function 

d In g 
P k )  = 

is depending on only one parameter g which in turn leads to three regimes for p:  
- large conductance g % g,: p = d - 2, 
- small conductance g -4 g,: fl  = In (g/g,), 
- perturbative regime: since a conduction in a disordered system is never quite ohmic, 

the perturbative theory yields in the limit of weak disorder, p(g) = d - 2 - a/g. 
The scaling curve may be constructed (see Fig. 9) involving (110) and (111) under the 
assumptions that p(g) is continuous and monotonic. Physically j(g) has been assumed 
monotonic in g with respect to the fact that greater disorder means more localization. 
Therefore, the only singularities are the fixed points corresponding to p = 0. The 
consequences are the following: 
- for d 5 2 all the states are localized; 
- for d > 2 near the transition the conductivity behaves as 

v ( d - 2 )  

0 N ( ! ! )  
with v < 1. 

problem : 
The “revolution of the gang of IV” has pointed out two new features on the localization 

- the effect of the dimension; 
- the conductivity vanishes continuously at the mobility edge with a universal exponent 

and the transition is thus a second-order transition in disagreement with the previous 
prediction of the Mott concept of cmin. 

I I 1 

Fig. 9. Scaling curve of conductance b(g)  for 
ferent dimensions d = 1, 2,  and 3 

dif- 

ln i s )  - 
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8.2 Scaling near the mobility edge 

Earlier, Wegner [89] has considered the correlations of wave functions in an ensemble of 
disordered electronic systems. In this theory, the fundamental idea is to perform successive 
orthogonal transformations which mix nearby states in such a way that the transfer energies 
V decrease. For localized states, this procedure converges and the limit of convergency 
corresponds to the mobility edge. Additional to this elimination process, a transformation 
is needed to rescale both distances and energies. Two kinds of fixed point distributions are 
proposed: one homogeneous and the other one inhomogeneous. 

The eigenstates of the Hamiltonian 

are obtained by iterating the orthogonal transformations 

In this elimination procedure the transfer matrix elements VCf) in terms of the states lr(l))l  
are weaker than the elements V('-').  The matrices U are required to be localized, i.e. 
U,($,r,l-,, for fixed r ( ' )  decays faster than any power law in r ( ' - l )  and reciprocally. With the 
help of a judicious choice of the matrix U ,  the localized states are reached as limit of lr('))l 
as 1 + co. On the other hand, one cannot expect convergency for extended states. 

8.2.1 Homogeneous fixed point ensemble 

This ensemble is homogeneous in energy E. During the elimination process, the matrix 
elements V connect smaller and smaller energy differences, on the opposite, the orthogonal 
transformation increases the matrix elements V connecting nearly degenerate states. 
Therefore, the scale transformation 

1115) = b- l r ( f -  11 

since the density of states has to be conserved during the renormalization group 
transformation. Thus V becomes smaller under the elimination process and has to be 
multiplied by a factor bd as the energy. Therefore if for a given disorder, the increase of V 
being due to the elimination process, the fixed point ensemble is reached it is characterized 
by the dimensionless quantity 

with fixed point value 
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Now, let us consider a deviation from criticality 

t = K - K * ,  (1 19) 

i.e., V are slightly different from those of a fixed point ensemble. During one step of the 
renormalization group, z grows as 

zI  = bYzI-  I . ( 120) 

Under the assumption of linear behaviour near the critical point, i.e. the mobility edge E,, 
one has 

zl  = cf(&( ' )  - E'") c >  (121) 

and after one step 

(122) zI  = ~ Y T , - ~  = bYC I - 1  I ( c ( I - 1 )  - E ( f - 1 ) )  = c ( E ( ' )  - E(')) 

which determines 

Therefore, if y < d the gradient 

- _  - Cl  
dT, 
d&l 

vanishes in the limit 1 + 00 implying that the iteration of the group renormalization leads 
to an ensemble more and more similar to the homogeneous one near the mobility edge. 
Otherwise if y > d, i.e. c diverging in the limit I -+ 00, there would be an abrupt transition 
from localized to extended states. 

8.2.2 Inhomogeneous fixed point ensemble 

The inhomogeneous fixed point ensemble differs from the homogeneous one in two points: 
- the energy scale changes by a factor by, 
- the absence of a relevant perturbation and E ,  is located at E = 0. 

The main results from this theory are the power laws near the mobility edge for the density 
of states, 

and for the conductivity 

o ( ~ - ~ ) ~ ~  (homogeneous), 
(inhomogeneous) , 

in the extended regime in agreement with other theories. 
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8.3 Field theory for localization 

Wegner [92] was the first to develop the correct field theory mapping of the localization 
problem which has been achieved more precisely later [93]. In this context literature provides 
a large number of ways and most of them use n fields in the limit n + co. Finally in order 
to eliminate physical processes related to closed electron loops, let us consider here Wegner’s 
point of view. 

The Green’s function of an electron moving in a potential may be written in the 
configurational average as 

(129) 

in terms of the classical fields cpi(r) and q i ( r ) ,  with p = 1, 2, introduced for E + iy and 
E - iy. Here the average is taken with respect to the Hamiltonian function, namely 

G(r,  r‘;  E & iy) = T i  (cp,”(r) cp:*(r’)) 

where 
H = H o  + H ,  

with 

v,,. is a nonlocal random potential and the configurational average has to be carried out. 
In this description there are n field replicas, i.e. d = 1,2,3, . . . , n. As a matter of fact the 
order of the limit n -+ 0 and the configurational averaging may be inverted. 

The density-density correlation function is given by 

K(r ,  r’) = (@A(r) @;*(r‘) @p2(r) @p2*(r’))X (134) 

with Fourier transform in the limit of weak scattering 

where D describes the constant diffusion: D = h(lk,)/(md). 
These results may termed “classical” since known for some time. At this stage, the main 

contribution came from Wegner’s analysis with the identification of the broken symmetry 
in the present context. In particular it has been shown that Z0 is invariant under 
transformations leaving the term 

a 

invariant, namely hyperbolic symmetry O(n, n). On the other hand, the term X I ,  invariant 
under O(2n) transformations acts in breaking the symmetry. By analogy, with the phase 
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transition where an external magnetic field breaks the rotational symmetry with magnetiza- 
tion as order parameter, y is identified with the symmetry breaking field. In this context, 
the conjugate variable is the local density of states, 

n ( E )  = ' { G r r ( E  2 - i q )  - G r r ( E  + i q ) ] ,  (137) 

i.e. the order parameter. The term K(q,  y) plays a role similar to the transverse magnetic 
susceptibility in a field y and D is the bare spin wave stiffness. Therefore, the basic field 
variable may be identified with 

(138) 1/2 P* cp:i'(r) = ( S p S p , )  cpa (r)  cpi'(r) 
with S ,  = i and S ,  = - i. The components of cp correspond to those of spin. A given unit 
length system with components S , ( r )  (3, = 1, 2, ..., n) displays a transition in the limit of 
low temperatures to a broken symmetry phase where one of the components is unity, i.e. 
So = (1, 0, 0, . . . , 0). In particular, the low-energy fluctuations are associated with rotations 
slightly varying in space S ( r )  = O(r)  So. The effective free energy function describing these 
fluctuations is given by 

Here K is a measure of the resistance of the system to inhomogeneous tilting of the spin 
and always by analogy 

where t - '  = Do denotes the bare diffusion constant. 
The main results may be summarized as follow: 
- the field theory is renormalizable with only one effective coupling constant t. The 

scaling function p(g)  measures the variation of t as a function of the upper scale cut-off b 
of the field theory and in particular 

d In t 
d In b 
~- - - &  + 2t + o(t4) 

with E = d ~ 2. Hikami [95] has demonstrated the absence of the term of order t3; 
- the correlation function is of the form 

K ( q )  - q v p 2  - q - d  - [ D ( q ) q 2 ] - '  ( 142) 

D(q)  N q ,  i.e., D(L) - L-' , (143) 

or equivalently, 

exhibiting a slow diffusion at the mobility edge; 
- the wave function near the mobility edge presents strong fluctuations measured by 

ek = C I ~ ( r ) l ~ ~  6 ( E  - E,) - ( E  - E,)"' . 
V 
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The critical exponent has been found [92] to be 

71k = ( k  - 1)(2&-1 - k )  

in 2 + E dimension. 

289 

(145) 

8.4 The self-consistent theory 

In a different theoretical approach, Vollhardt and Wolfle [96,97] have described the 
conductivity behaviour as well as the transition and critical properties. The novelty of this 
theory lies in the fact it does not rely on scaling assumptions but on self-consistency. The 
spirit of this technique was first suggested by Gotze [98]. Within this method one attempts 
to express the frequency dependent conductivity, or the diffusion coefficient D(w), in terms 
of a nontrivial, generally approximate, relation involving the same quantity. 

The equation of interest is, therefore, 

D(w)  = B[D(w)]  (146) 

whose solution yields D(w) for all values of o and disorder parameters W .  Since D ( o )  
vanishes at the transition, the inverse D,/D(w) diverges. Using a diagrammatic theory 
Vollhardt and Wolfle performed a self-consistent calculation of the quantity D,/D(o) by 
summing up the largest contributions of perturbation theory. The self-consistent equation 
has the structure 

where nF is the density of states at the Fermi level and the integral goes over a diffusion 
pole involving the diffusion coefficient itself rather than the diffusion constant Do. 

We mention here some of the results obtained from the solution of (133): 
- for d 5 2 the dc conductivity a(0) is always zero, no matter how small the disorder 

is. However, for d = 2, the localization length is exponentially large for W 4 1 

5 exp ((2W)r1) ; (148) 

- for d > 2, there exists a critical value of the degree of disorder W, below which a(0) 
is finite, i.e. a metallic regime and for larger values it vanishes corresponding to the insulating 
regime. In this formulation, the challenging point is the limit w -+ 0 which can be explicitly 
performed. Therefore, the results obtained go beyond the domain of validity of the scaling 
theory of Abrahams et al. [lo] while one obtains complete agreement with the latter. Equation 
(147) itself displays scaling properties and thus leads in a natural way to a scaling theory. 
In particular, integration of (147) with appropriate units leads to a “scaling equation” 

a - 2  2 - d  2 -d  
G = + Z d  + G T .  

yd 
(149) 

Here G and Z are dimensionless quantities instead of D and o, the plus (minus) corresponds 
to the metallic (insulating) phase and Td is a dimension-dependent constant. This equation 
describes a universal dependence of the conductivity on frequency whose solution determines 
a complete and smooth curve for the B-function. 
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Fig. 10. The possible types of the p-function for 
a 2d system 

--. 
9 

/ 

I I 

8.5 Discussion 

In summary, metal-insulator transition in 3d and its absence in Id seemed well established 
a long time ago, whereas the marginal 2d case remains still controversial [99]. Recent 
developments on the subject include: 
- the first numerical studies in the orthogonal case (zero magnetic field) by Pichard 

[loo] suggest a Kosterlitz-Thouless transition corresponding to an algebraic zero of the 
fl-function supported by an analogy with the X Y  model [loll; 
- the field theory of Wegner [lo21 for both the orthogonal and the unitary (B =k 0) 

ensembles implies complete localization in either situation. However, it predicts a breakdown 
of one-parameter scaling close to transitions occurring in 2 + E dimensions; 
- the self-consistent theory of Vollhardt and Wolfle [96,97] leads to the same conclusions 

for the orthogonal case; 
- the numerical proof of Mc Kinnon and Kramer [lo31 shows that the critical dimension 

is d 5 2 for zero field. However, recent indications suggesting that some usual transition 
might take place in 2d remained persistent [104]. 

Following the typical nature of the eigenstate as defined previously three types of p-func- 
tion may be proposed for d = 2 (Fig. 10). Curve a stands for the “classical” exponential 
eigenstates deduced from the scaling theory which, however, is lacking a serious proof. The 
fl-function, curve b displays an algebraic zero but without support, curve c describes a 
standard transition to “quasi-extended”, “power-law localized”, and probably multifractal 
states [43] occurring at W,. The region > 0 corresponds to extended states which are 
assumed to show up in the symplectic (spin-orbit) case [105]. 

9. Phase Diagram and Critical Behaviour 

9.1 Mott-Anderson transition 

Disordered systems with dimension larger than two display a transition from localized to 
extended states, i.e. the so-called mobility edge E ,  or the Mott-Anderson transition. A 
challenging point is the phase diagram E,  versus the degree of disorder W .  As a matter of 
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fact, the approximate position of the mobility edge is strongly dependent on the model 
considered, i.e. both criteria of localization and additional approximations. This is clearly 
shown in Table 2 where the critical disorder W, has been reported from different theories 
for a uniform distribution of site energies. The amusing remark is that as the subject has 
maturated, the famous ratio Wy/ZV seems to go to e (see Fig. 8)! 

The two overquoted models for which E ,  has been examined analytically to some extent 
are the Anderson model on a Bethe lattice [6 ,7 ]  and the sophisticated treatment of 
Licciardello and Economou [70] using CPA-like partial summation techniques for the 
one-particle Green’s function. The results of the former referred to as an “exact solution” 
correspond to a translation of the Anderson model to an infinite-dimensional space. The 
authors have shown the existence of localized states for all values of the disorder parameter 
W .  Fig. 11 summarizes universal characters in the case of a uniform probability distribution 
of site energies for the trajectory of E,  as a function of disorder: 
- the existence of extended states outside the unperturbed band B(W = 0); 
- in the limit of small disorder, E ,  behaves like 

W 2  
E ,  = B(W = 0)  + 

~ ( B ( w  = 0))’ 

- the number of extended states increases up to a disorder W’ near to W,. 
These results underline and measure the competition between quantum tunneling and 

quantum interference in inducing localization. In the limit or weak disorder, the states are 
firstly localized in the band tails due to a broadening of the band, the perturbed band edge 
behaves like 

which in turn implies an increase of the density of states at a given energy. Therefore, 
spatially the states come closer such that the tunneling probability is enhanced and quantum 
tunneling can act in delocalizing the states near the band edge. While quantum tunneling 

Fig. 11. Mobility edge trajectory as a function of the 
disorder parameter W .  Case of a uniform distribution 
of site energies 

W- 
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seems to be the essential mechanism near the band edge, quantum interference is the 
dominant process for energies near the centre of the band. 

From this phase diagram, two domains appear delimited by W < W‘. It is not yet clear 
how this picture can be compatible with the one-parameter scaling hypothesis which asserts 
that “the function p(g) is monotonic in the conductance g since greater disorder surely 
always means more localization”. This point has to be related to the magnitude of critical 
exponents near the transition which is subject obviously to some controversies both 
theoretically and experimentally (see Table 3 and 4). 

9.2 Critical exponents 

Similarly to the study of critical points in phase transition theory, critical exponents may 
be defined: 
- for localized states, the characteristic length, i.e. the localization length, diverges like 

W )  - IE - E,I-” (152) 

near the mobility edge; 

disordered insulator goes as 
- polarizability a, being related to the square of the localization length, near E ,  in a 

a I(% - E c ) / W 2 ”  (153) 

implying the same behaviour for the dielectric constant 8; 

- for extended states, the dc conductivity at T = 0 at the Fermi level vanishes as 

4 3  IE - EcIS, (154) 

the inverse participation ratio defines a critical exponent near E,  

P ( E )  - IE - E,IP. (155) 

As usual, relations exist between these exponents. In particular, linearizing the a-function 

(156) 

near the critical point yields a hyperscaling relation 

s = (d - 2 ) ” ,  

firstly outlined by Wegner [92]. 
The best-quoted exponents are predicted from the field-theory approach using an 

expansion in the parameter E = d - 2 in the limit of small E (see Fig. 12) and lead to the 
following values: 

p = 2E-l - 1 + O(&). (159) 

For the three exponents the first correction in the expansion has been found to vanish. The 
self-consistent theories agree with these predictions. The challenging numerical results have 
been performed through finite size scaling arguments [ 1031 for the exponent v. 

More information on the critical exponents is of great interest. Indeed a proper 
understanding requires an expansion of the exponent near the upper critical dimension 
which is suspected to be d,* = 4. In the localization problem, this has still to be achieved. 
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In this context, exact results have been reported only on the Bethe lattice which may be 
viewed as a lattice with an infinite dimensionality (see Table 7). In particular one finds 

v =  1 ,  (160) 

which has to be reinterpreted as 

v = 0.5. 

Table  5 
Critical exponent v from different models 

model V 

Cohen 
Freed 
Lukes 
Abram and Edwards 

Anderson 
Mott 
Wegner 

Licciardello and Thouless 
Weaire and Srivastava 

Yoshino and Okazaki 

Aharony and Imry 
Gotze 
Schuster 
Domany and Sarker 

Oppermann and Wegner 

Wegner 

Abrahams et al. 

Stein and Kray 

Allen 

Hikami 

Brezin et at. 
Vollhardt and Wolfle 
Pichard and Sarma 

Prelovsek 

Mc Millan 
Mott 
Kotov and Sadovski 

1.6 

0.6 
d = 2 :  0.75 
d = 3: 0.6 
0.6 
> 213 
a) 0 > l/v > d 
b) 1/v < d 
d = 2 : 1  

213 

d = 2: vM = 1 

d = 2: vM = 

0.59 
0.5 
d = 2 : 1  
1.25 5 v 5 1.75 

1 
d - 2  

d > 2':- 

d = 2': 0.5 
d = 3  : 1  
t l  

d = 2: 
vM = 0.80 f 0.05 
vE = 1.30 0.10 
vM = 0.66 & 0.05 
vE = 1.25 _+ 0.10 d = 3: 

d > 4: 0.5 

0.5 
v ( 0 )  = 1 orth. case 
v ( H )  = 0.5 unit. case 
1 
1 
d = 2: vM = 0.5 f 0.1 
d = 3: v = 0.66 _+ 0.02 
d > 4: VM = 0.5 
d < 2 5 4: VM = l/(d - 2) 
0.96 
1 
d > 2: VM = l/(d - 2) 

d, < d 6 4: l/(d - 2) 
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Table 5 (continued) 

model V 

Mc Kinnon and Kramer 

Kunz and Souillard 
Frolich and Spencer 
Singh and Mc Millan 
Chayes et al. 

Bernreuther and Wegner 

[lo31 vM = 1.2 & 0.3 
estimation 
vM = 1.50 0.05 
calculation 

[144] d > 2: v l/(d - 2) 
[145] 

[146] 

[147] 

d > df = 0.5 

d = 1: v = 2 
d >  1 : v , 2 2  
42  - 3/4 + O(E) 
~ ~ 4 - d  

[123] VM = 1.78 & 0.15 

Shapiro [167] has proposed from an approximate model an exponent (also found by Souillard 
[W) 

p = 0 .  ( 162) 

Finally, Chayes et al. [146] have demonstrated the existence of a constraint for the ex- 
ponent v which has to satisfy the inequality 

dv 2 2 .  (163) 

However, the numerical values for the critical exponents are difficult to evaluate. Such a 
remark holds both for theory as well as for experiments. The main difficulty is that the 
power-law behaviour can only be expected in the real limit of phase transition. Most of 

Table  6 
Critical exponent v from different experimental data and different materials 

authors 

Pepper et al. 
Sayer et al. 
Pollit 
Rosenbaum et al. 
Dodson et al. 
Thomas et al. 
Nishida et al. 
Ionov et al. 
Hertel et al. 
Epstein et al. 
Yamagushi et al. 
Bishop et al. 
Ludwig and Micklitz 
Y 0s hizumi 
Morita et al. 
Long and Pepper 
Shafarman et al. 

material V 

Si/Si02 
La,-,Sn,VO, 
Si/Si02 
Si :P 
a-GeAu 
GeSb 
a-Au,Si - , 
Si : As 
a-N b,Si , - , 
Xe-Hg 
a-SiAu 
a-SiAu 
a-Bi,Kr - , 
a-GeMo 
Ga : As/In : Sb 
Si : Sb 
Si : As 

0.75 
0.6 or 213 
0.75 
0.5 
1 
0.5 
1 
0.5 
1 
0.6 
1 
1 
1.07 0.1 
1 
1 
0.5 
W l  

20* 
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Table  7 
Critical exponent 11 for the Bethe lattice 

model V 

Mookerjee and Choudry [165] 1 
Srivastava et al. I1661 1 
Shapiro 11671 1 
Kunz and Souillard I1441 1 
Brezini I1681 1 

analytical theories work only in the asymptotic regime: weak and/or strong scattering. They 
are not necessarily correct in the regime of the transition. Numerical estimates are confronted 
with the problem of accuracy. Difficulties arise also in experimental work; the critical 
exponent is comprised between 0.5 and 1.7 (see Table 6). On the other hand, the interaction 
effects (Table 8) and/or external fields complicate seriously the critical behaviour. There are 
two essential questions on this point: 

- why does v = 1 work so well in most cases? 
- why does v = 0.5 work so well for Si: P? 

These questions are actually the challenge in the localization problem. 

9.3 Metal-insulatov transition 

Several fundamental mechanisms play a significant role in the metal-insulator transition: 
disorder, short-range correlation, excitonic effects, electron-lattice interaction, etc. In a real 
situation all these effects are present to different degrees. 

In the present paper we have been concerned with the metal-insulator transition induced 
by increasing disorder. This transition is continuous, characterized by transport anomalies 
and by the divergence of the dielectric constant from the insulating side. Experimentally, 
one of the best examples is the transition in phosphorus-doped silicon, Si: P. 

Table  8 
Critical exponent v in the presence of electron-electron interaction 

model V 

Mc Millan I1421 1 
Finkelstein 

Kaveh 

Anderson 

[169] 1 
interaction at 
infinite order 

exchange term 
0.5 
Hartree term 

I1721 0.5 
fluctuation of spin 

[171] 1 

Lee and Ramakrishnan [991 1 
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Si : P presents a continuous zero temperature transition from insulator to metal in the 
impurity band due to overlap of hydrogen donor wave functions for phosphorus concentra- 
tions n 2 3.7 x 10I8 cmP3. The donor wave functions being large z3 nm compared to the 
lattice parameter (z 0.25 nm) the electron-lattice interaction may be neglected. Si : P is an 
intrinsically disordered system since phosphorus and thus the effects of disorder are assumed 
to be important. On the other hand, in uncompensated Si:P there is one electron per 
impurity site and the Mott-Hubbard correlation effects are relevant. 

Many high-quality experimental results are available in the close vicinity of the 
metal-insulator transition at very low temperature (zmK).  In the following, we summarize 
some of them [173]: 

9.3.1 dc conductivity 

The dc conductivity transition is continuous. The extrapolated zero-temperature conduc- 
tivity o(O), as a function of the dopant density n, goes to zero as 

where CT, is about 200,~~. The exponent 1/2 is quite different from the value 1 expected 
from the theory of localization of a noninteracting electron system (Fig. 13). Actually there 
is no theory leading to this value. Anderson [8] suggested that this exponent is due to the 
development of magnetic moments. For such situation the transition takes its origin from 
a random potential inducing localization with adding magnetic impurities and the 
Gell-Man-Low function transforms as 

P(g) = d - 2 - b g - 2 ,  

Fig. 13. 
theory; Si: P 

Discrepancy between experiment and 
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which implies a conductivity exponent 112 [174]. While the exponent is 112 for uncompensated 
doped semiconductors, it crosses over to unity with compensation [ 1751, i.e. if correlation 
effects are not crucial. 

9.3.2 uc conductivity 

The ac conductivity cr(w) of Si : P has been measured on the insulating side [176]. In particular, 
it has been observed that at very low temperature and near the critical concentration 

o(o) = A m S ,  (166) 
where s 2 1 and the factor A diverges similarly to the static dielectric constant ~ ( 0 ) .  

The ac conductivity from the Anderson model has been calculated by Mott (41) predicting 
a term proportional to o2 (In 0.1)~ and another one like ok,T (In o)~ .  Unfortunately such 
results do not fit the experimental data: the prefactor is temperature independent. The 
prefactor in the Mott formula goes as tfocn as ~ ( 0 ) ~ ”  while experiment predicts a different 
behaviour. 

Shklovski and Efros [177] have suggested that Coulomb interaction qualitatively changes 
the ac conductivity. n(o) depends on the number of electronic pair states in such a way 
that one is occupied and the other one not, energetically the difference being ho. In the 
absence of interaction, this number is proportional to t iwN(E,)  leading to the Mott formula. 
In the presence of Coulomb interaction the number of pair states singly occupied increases, 
since double occupancy requires an extra Coulomb energy e2/Kr,. The density of such 
states behaves as (e2/Kr,) N ( E , )  leading to an ac conductivity going as o Iln (o)I3. Bhatt 
and Ramakrishnan [178] have shown that this mechanism is continuous to be operative 
even near the divergence of tlo0 the ratio corresponding to the Mott criterion n113uH 2 0.25. 

9.3.3 Dielectric constant 

The static dielectric constant ~ ( 0 )  has been also measured on the insulating side [176]. It 
diverges as n --f n, with an exponent of value near unity, i.e. twice the conductivity exponent. 
The one-parameter scaling theory predicts this ratio by identifying ~ ( 0 )  = ti,, but the 
exponents are different. 

10. Conclusion 

It is apparent from bits and pieces of experimental finding and theoretical understanding 
that disorder, long-range Coulomb interaction, as well as spin correlation effects are of 
great importance in metal-insulator transitions. Obviously there are again rather large 
subjects such as amorphous semiconductors [ 179, 1 SO] where short-range disorder acting 
on electron near the band-edge leads to the Meyer-Neldel rule [179] and to a density of 
states depending exponentially on energy [180]. 

In summary we have presented here the onset of electron localization and its consequences 
studied during the last three decades. Our understanding on this area has developed 
considerably. During the eighties it has become quantitative since experimental data are 
available and the theoretical model may be checked. In this context for the nineties the 
field seems still promising in presenting nice extensions in different domains such as 
quasiperiodic systems (for a review see [lSl], quantum chaos 1182, 1831, metal-insulator 
transitions [99], non-electrical analogues such as propagation of light and sound in random 
media [184]). Our feeling is that the best has still to come. 
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