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Abstract 

It is shown that all the universal properties of glasses can be explained in 
the framework of the Soft Potential Model (SPM). At low temperatures 
(below a few kelvin) this model is equivalent to the well-known model of 
two-level systems of Anderson, Halperin, Varma and Phillips, which 
explains quite well the universal low-temperature properties of glasses. The 
SPM predicts that in addition to two-level systems there are soft harmonic 
oscillators in glasses which are responsible for their universal behavior, 
especially at higher temperatures. 

Both the two-level systems and harmonic oscillators are described by 
anharmonic soft atomic potentials by the uniform way. They interact with 
phonons (or electric field) by means of bilinear terms with the same coup- 
ling constant for both types of low-energy excitations. The elastic inter- 
action between soft atomic potentials leads to a density of the low-energy 
excitations, which does not depend on the concentration of defects in the 
glass structure. 

1. Introduction 

During the last 20 years it was established that different 
glasses exhibit universal properties, which are usually 
regarded as anomalous compared to those of the crystalline 
counterparts [l]. They include low-temperature specific 
heat, thermal conductivity, propagation of ultrasound, 
dielectric losses, electric and acoustic echo, heat release, and 
some other properties governed by low-energy modes. 

The universal low-temperature properties of glasses 
(below a few kelvin) have been understood well in the frame- 
work of the model of Anderson, Halperin, Varma and Phil- 
lips (AHVP model) [2, 31. This model postulates the 
existence of two-level systems (TLS’s) in glasses with an 
almost constant density of states P. There are several review 
articles where experimental data and their interpretation in 
the framework of the AHVP model are given [4-81. 

However, above a few kelvin the universal properties of 
glasses deviate from the predictions of the AHVP model. 
The thermal conductivity shows a plateau around IOK, 
which cannot be understood in terms of a constant density 
of tunneling states [SI. The sound velocity decreases linearly 
with temperature above a few kelvin [IO]. In numerous 
experiments in different glasses and glasslike materials it has 
been observed the saturation of the heat release as a func- 
tion of the onset temperature [ I l ,  121. Furthermore, there 
are an additional increase in the specific heat, and in the low 
frequency Raman scattering [13] indicating the existence of 
still another kind of low-frequency modes. Recent neutron 
measurements [14] have shown these to be soft harmonic 
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vibrations with a crossover to anharmonicity at  the low- 
frequency end (at frequencies corresponding to several 
kelvin). 

All these experimental facts indicate that there is a 
common basis for the low-temperature (below a few kelvin) 
and the higher-temperature (above a few kelvin) universal 
properties of glasses. And that the AHVP model describes 
only one part of it. In addition to the TLS’s there are other 
low-energy excitations in glasses, which are also responsible 
for their universal properties at higher temperatures. In 
experiments of Grace and Anderson [l5] and Brand and 
Lohneysen [16] it has been demonstrated that TLS’s and 
these additional excitation have the same basic vibrational 
structure. The computer simulation of a glass of soft spheres 
shows clearly the existence of (quasi-) localized modes at the 
low-frequency end of the vibrational spectrum [17]. 

That is what just follows from the predictions of the soft 
potential model (SPM) which was proposed in [18] and 
developed further in [19-261. The SPM explains all the uni- 
versal low-temperature properties of glasses as well as the 
AHVP model [23]. But in this model besides the TLS’s, soft 
harmonic oscillators (HO) exist too and both these types of 
low-energy excitations have a common basis, namely soft 
atomic potentials. The TLS’s exist in the soft double-well 
potentials and the H O  in the soft single-well ones. The soft 
harmonic excitations are just the low-energy excitations, 
which are responsible for some universal properties of 
glasses at higher temperatures [24,25]. Both types of excita- 
tions are intimately related to each other. Due to the soft- 
ness of the potentials internal strains easily transform one 
type to another. 

Here we consider the universal properties of glasses and 
show that it is possible to describe all of them in the SPM. 

2. Soft potential model 

According to the soft potential model [18], the quasilocal 
low-frequency modes in glasses are described by the soft 
anharmonic oscillator potential 

Here x is the generalized coordinate of the soft mode having 
units of length, a is the characteristic length of the order of 
the interatomic spacing (a N 1 A), 8, is the binding energy 
of the order of M u z  = lOeV, M being the average mass of 
atoms constituting the glass, U is the sound velocity. The 
values of the dimensionless parameters q and 5 are random 



Soft Potential Model and Universal Properties of Glasses 181 

due to fluctuations of the structural parameters of a glass. 
The soft potentials correspond to I 9 I, I 5 I 4 1. The distribu- 
tion function of these parameters for I g 1, I I 4 1 is given by 
POI 

where Bo is a constant and the factor I g I describes so-called 
“sea-gull” singularity in the distribution of the parameter 9. 
Due to elastic interaction between soft atomic potentials 8, 
does not depend on the concentration of defects in the glass 
structure. It is determined by the normalized distribution 
function “(9) of the parameter 9 when the interaction 
among defects is switched off. Its order of the value is given 
by Bo N Y(0) /a3 ,  where Y(0) N 0.1 [23]. 

1 )  the two lowest levels in the potential ( 1 )  form a TLS with 
the energy distance E = d m 2 .  The tunneling splitting 
A. and asymmetry A are determined by : 

For I 5 V J r L  < 9L/I vl I ,  negative g and I rl I > 3 9 L  (see Fig. 

A,=Wexp[--(  4 u  ) 3 1 2 ] ,  A=--(gL) w I51  3/2. (3) 
3 V L  Jz V G L  

Here qL is an important small parameter of the model, and 
W is a characteristic energy in the potential (1) for 

qL = (k2/2Ma2b0)1i3  x lo-’, W = I,qt x k - 10 K. (4) 

Here M is an effective mass of the tunneling entity. The 
barrier height V between two minima in the double-well 
potential ( 1 )  for A Q V only depends on the value of I 9 I 

9 = 6 = 0  

2 

v=E(L) .  4 9L ( 5 )  

Just existence of the small parameter g L  in the model makes 
it possible to neglect all the higher order terms in the expan- 
sion ( 1 ) .  Therefore, all the soft atomic potentials in glasses 
can be described in this way. This remark means that the 
SPM is in fact a theory of quasilocal soft anharmonic exci- 
tations in glasses. 

Fig. I .  The interlevel distance in the potential (1) (in the units of W )  as a 
function of q/qL for < = 0. The arrows indicate the minimal distance 
between the levels EYP = 3.65, gp = 3. These are the points of the absolute 
minimum of the functions ~ ~ ~ ( ‘ 1 ,  c) and es2(q,  [) on the plane q, 5. The 
corresponding density of states makes a finite jump (from zero) at this 
energy - a  so-called van Hove singularity [19]. 

The density of states of TLS’s as a function of their energy 
E appears to be nearly a constant 

2 

p = (+) . 

It is only slightly (by the logarithmic factor) different from 
the corresponding distribution function in the AHVP model 
[5]. The order of its magnitude is determined by the value 
8,qi/2/W. The factor q;lz N Bo 1: 0.1/a3 and Wlk is 
of the order of a few kelvin. As a result, the concentration of 
TLS’s with energies below a few kelvin is of the order of 

from the concentration of atoms constituting the glass, 
That corresponds to the experimental data. The fundamen- 
tal physical reason for the small parameter gL is the small 
ratio of the electron mass me to the effective mass of the 
tunneling entity ylL N ( T ~ J M ) ’ ~ ~ .  In crystalline solids the 
parameter qL determines a smallness of anharmonic pro- 
cesses. Thus, the small anharmonicity in crystalline solids 
and small concentration of TLS’s in glasses have the same 
reason [23]. 

It is clear from Fig. 1, that the TLS’s picture is lost for 
sufficiently small I q  I N qL because the distance to the third 
level becomes comparable with the TLS energy E. This 
means that the TLS’s alone cannot be responsible for excita- 
tions with energies larger than W. For these excitations in 
glasses single-well potentials are responsible too. 

Besides the TLS’s corresponding to double-well potentials 
with g < 0, eq. (1) describes also quasi-local anharmonic 
oscillators in single-well potentials with positive q and 
g > 9c2/32. The excitations in the single-well potentials with 
q 9 g, are nearly harmonic ones, the interlevel spacing 
being 

7 

E = 2W d:. (7) 

The density of states (n(E) of these excitations sharply 
increases with the increasing energy E .  For E 9 W [20,22] 

The interaction of the soft atomic potentials (1) with a 
deformation E is described by the bilinear term [23,24] 

Fnt(X) = aoEi - E .  (3 (9) 

The dimensionless coefticient fi N 1 .  This term describes 
both the interactions of TLS’s and of HO with the strain 
field with the same coupling constant. 

3. Low-temperature properties, T 4 W/k 

In this section we consider the predictions of the SPM con- 
cerning the low-temperature properties of glasses. We show 
that with respect to these properties the SPM is equivalent 
to the AHVP model. Due to the existence of the absolute 
minimum distance between the second and the third levels 
in the potential (1) (see Fig. I), all the low-temperature 
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properties of glasses for T << W/k in the SPM are deter- 
mined by TLS’s only. We begin with contribution of them 
to the specific heat. 

3.1. Specijic heat 
Making use of distribution function (6) we obtain for TLS’s 
contribution to the specific heat 

where zmi,,(T) is the relaxation time of the TLS [see eq. (12)] 
with A = 0 and E = 2kT. The specific heat has an almost 
linear temperature dependence (which coincide with the 
results of the AHVP model). It depends only weakly on the 
time of experiment: C(T) N ( texp)  [instead of C(T) - In 
(tex,,) as in the AHVP model]. 

3.2. Ultrasonic properties 
3.2.1. TLS’s contribution to the ultrasonic absorption. 

There are two mechanisms of ultrasonic absorption in 
glasses: relaxation and resonant one. We begin with relax- 
ation absorption. For ho << kT it is due to the modulation 
of the TLS’s energy E by the sound wave. It is determined 
as usual [4-6,273 : 

where V is the volume of the glass, p is the mass density, w 
is the ultrasound frequency and z is the TLS relaxation time 
(determined by one-phonon processes) : 

E 
coth - 1 M2E3 

z 2nph4v5 2kT’ 
- 

The deformation potentials M and D of the TLS depend on 
the deformation potential y which describes variation of the 
asymmetry A under strain E 

From eq. (9) we have the absolute value of y [23,24] 

As it follows from eq. (14) I y I is of the order of I fi I W/q;/’ 
and logarithmically depends on the tunneling splitting A. . 
Therefore, in the tunneling region the deformation potential 
appears to be nearly a constant as in the AHVP model. For 
Ikl N 1, W/k N 10K and qr. N lo-’ we have I y I  N l e v .  
Thus, in the SPM I y I has the usual value for glasses of the 
order of 1 eV [4-61. 

Considering the relaxation ultrasound absorption (1 1) 
one usually discriminates between two limiting cases of 
ozmi,,(T) << 1 and ormin(T) S 1. 

(*) OT,~,,(T) << 1. In this case we have the usual result for 
the absorption coefficient to be independent of the tem- 
perature (“plateau region”) [23] : 

It depends linearly on o as in the AHVP model [4-6,271. 
(**) wzmin(T) % 1. In this case we have [23]: 

The absorption is proportional to T 3  ln2/3 (W/2kT) and 
independent of frequency. This result differs only slightly 
from the corresponding result of AHVP model [4-6, 271. 
There is an additional logarithmical temperature depen- 
dence due to the factor ln2I3 (WI2kT). 

For the resonant contribution to the sound absorption 
the TLS’s with energy E = ho are responsible [4-61. Calcu- 
lations give us the result [23] : 

CW ho 
v 2kT 

lrii TLS = 7c - tanh -. 

The frequency and temperature dependencies of the absorp- 
tion are identical with the results of the AHVP model [4-61. 

3.2.2. TLSS contribution to the sound velocity. As is well 
known, TLS’s also modify the sound velocity of glasses and 
determine its temperature dependence in the low- 
temperature region [4-61. Relative contribution of TLS’s to 
the sound velocity consists of two parts resonant and relax- 
ation one. In the (**) case the relaxation contribution is 
small enough. However, in the plateau region it is important 
and given by [23] 

T (,,,,,To)) = -#c In -, 
rel ,  TLS TO 

In contrast, the resonant contribution is always important 
for both cases (*) and (**) [23] : 

T 
= C In -. 

res. TLS TO 
So, in the SPM we have the same logarithmical temperature 
dependence of the sound velocity as in the AHVP model 
C4-61. 

We can see that for T 4 W/k the SPM reproduces all the 
results of the AHVP model and gives the limit of applicabil- 
ity of this model. Dimensionless parameter C determined in 
eq. (15) is equivalent to parameter Py2/pvz in the AHVP 
model. Another parameter Po r$’/ W determines the TLS’s 
density of states (6). In the SPM all the low-temperature 
properties of glasses are determined by these two param- 
eters only (as in the AHVP model). The characteristic 
energy W cannot be obtained from low-temperature data, 
but it governs the higher-temperature universal properties. 
And now we go to consideration of the properties of glasses 
at higher temperatures: T 9 W/k. 

4. Higher-temperature properties, T % W/k 

For the higher-temperature universal properties of glasses 
the excitations with energies bigger than W are responsible. 
It can be both TLS’s with E S W and HO with energies 
E 9 W .  

4.1. Specijic heat 
At temperatures T S W/k the main contribution to the spe- 
cific heat comes from the HO. The strongly rising density 
of states (8) leads to the specific heat of HO proportional 
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and therefore a minimum results in the temperature depen- 
dence of C(T)/T3 [20, 221. Such a minimum is usually 
observed for a large number of glasses. From the position of 
this minimum Tmin one can estimate the value of the charac- 
teristic energy W :  W x (2 - 2.5)kTmi,, For example, for 
S O 2 ,  W / k  x 4 - 5K. 
4.2. Ultrasonic properties 

4.2.1. Resonant absorption by HO. For the resonant 
absorption of phonons with energies ho W the HO with 
energies E = hw are responsible. The resonant absorption 
strongly depends on frequency o and does not depend on 
temperature [24] 

This result is also valid in the low-temperature region 
T 4 W/k.  

4.2.2. Relaxation absorption due to TLS’s. In this tem- 
perature region there are two sources of the relaxation 
absorption : due to TLS’s with high barriers and due to HO. 
We begin with TLS’s contribution to the relaxation absorp- 
tion. The physical reason for the absorption is the same as 
in the case of low temperatures. And it is determined by the 
same expression [eq. (ll)]. However, the relaxation pro- 
cesses are different. If at low-temperatures T < W/k  the 
relaxation was due to tunneling through the barrier, at  
higher-temperatures T 9 W/k it is due to thermal activation 
processes: z = zo exp (V/kT). In the SPM there is a charac- 
teristic crossover temperature r, between tunneling and 
activation processes where the rates of both processes coin- 
cide [21] : 

For T > T,  the thermal activated hopping over the barrier 
responsible for the relaxation of the TLS and instead of eq. 
(15) we have [24] 

It increases with temperature cc T3I4. 
4.2.3. Relaxation absorption due to H O .  The physical 

reason for the absorption is the same as for TLS’s: modula- 
tion of the interlevel distance of the HO. The absorption is 
given by a formula analogous to eq. (1  1) [25] 

(24) 
1 D 2  1 w2z 

l“Ho = 2 2 2 4kT sinh2 (E/2kT) 1 + i.0~2~’ 
Here z is the relaxation time of the H O  and D is the defor- 
mation potential of HO describing variation of energy (7) 
with deformation E 

D=-= BE - 12 kw 5 (33. 
B E  ?L 

The relaxation time z of the HO is determined by one- 
phonon processes, i.e., resonant absorption and emission of 

3 

Fn( x 1 

O V  
0 X 3 

Fig. 2. The plot of the functions F,(x) (n  = 1,2) [eq. (28)]. Inset: the plot of 
the functions F n ( G )  describing the frequency dependence of the ultra- 
sound absorption and sound velocity due to HO in glasses, hw, = 
W(EO/E,)*. 

phonons and does not depend on temperature: 

For example, for S O 2 ,  E, /k  x 50 K. 
As a result in the frequency region ho 4 W(2kT/EC)’ [25] 

lI&o = - l6 ~ - kT F l ( Z  /E) ,  
where (n = 1,2) 

9 v E ,  

x 2  - 1 

Here E ,  FZ 3 W is a crossover energy between TLS and H O  
description of the spectrum in the potential (1) (see Fig. 1). 
The absorption increases linearly with temperature in the 
whole frequency region under consideration.* The function 
F,(x) is shown in Fig. 2.  It is a non-monotonous function of 
its argument and has a maximum at x = x ,  % 0.6[F,(xm) x 
0.891. As a result the internal friction Q-’  = v / o l  is a non- 
monotonous function of the frequency w. It has a maximum 
in the Brillouin scattering region at h a ,  x 2.8W(E0/E,)2. At 
low frequencies hw 4 W(E0/E,)’, the absorption lI;i HO a 
o2 and small enough in comparison with contribution from 
TLS’s [eq. (23)]. However, at higher frequencies (in the Bril- 
louin scattering region) it can be comparable with TLS’s 
contribution. 

At still higher frequencies ho 9 W(2kT/EC)* the absorp- 
tion is proportional to the temperature squared and does 

* However, with increasing temperature two-phonon processes in relax- 
ation of HO become important and absorption saturates and becomes 
independent of temperature. 
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not depend on the frequency. 

Cd 

41 

4.2.4. Contribution of TLS’s to the sound velocity. In the 
thermal activated region T > T,  the contribution of TLS’s 
to the sound velocity is due to thermal activation processes 
and different from tunneling regime (18 )  [ 2 5 ]  

It decreases nearly linearly with temperature (a T314) and 
logarithmically depends on frequency. 

4.2.5. Contribution of H O  to the sound velocity. In the 
classical region kw << kT the contribution of HO to the 
sound velocity of glasses is due to modulation of the inter- 
level spacing (7) by the sound wave. It can be presented as a 
sum of two terms [25]  

D2 - 
4kT sinh’ (EI2kT) 1 + 

The first (non-inertial) contribution is independent of the 
HO relaxation time r and on the frequency w. It is analo- 
gous to the resonant contribution of the TLS’s to the sound 
velocity. The second (inertial) contribution depends on the 
HO relaxation time z. It is analogous to the relaxation con- 
tribution of the TLS’s. 

Non-inertial contribution is determined by HO with ener- 
gies E N E o :  

For the inertial contribution in the frequency range hw 4 
W(2kT/EC)’ we have [ 2 5 ]  : 

(33 )  

Both contributions are negative and linearly depend on 
temperature. The inertial contribution decreases mono- 
tonously with frequency and maximal at low frequencies 
Rw 4 W(E0/E,)’. In this region the total contribution of HO 
is 

28$ Ck 
= -  - (T  - TO). 

tot, HO 9 Eo 
(34) 

5. Comparison with experiment 

From the consideration presented above we can see that in 
the SPM all the universal properties of a particular glass are 
determined by three parameters only. The first one is 
Bo yl;I2/ W characterizing density of states of soft excitations 
(both TLS’s and HO). The second one is HW/yl;I2 determin- 
ing their deformation potential. And the third one is the 
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characteristic energy W .  First two of them can be deter- 
mined from low-temperature experiments as usual. The 
third one governs higher temperature properties. It can be 
estimated, for example, from position of the minimum in the 
specific heat C(T) /T3.  After that all three parameters 
become fixed and to explain other higher temperature 
properties we have no fitting parameters any more. Never- 
theless, this procedure gives startling results. It describes 
with a good accuracy the position of the plateau in the 
thermal conductivity of vitreous silica and amorphous sele- 
nium [24]. It reproduces quite well temperature dependence 
of ultrasonic and hypersonic attentuation and frequency 
dependence of the mean free path of high frequency 
phonons in a - SO2 and their absolute values [24]. 

The theory gives also the correct value for the slope in the 
linear temperature dependence of the sound velocity in chal- 
cogenide glasses a - As2&, a - As2Se3 and a - Se [28, 
291. In these glasses there are some reasons to believe that 
the linear temperature dependence of the sound velocity is 
due to H O  contribution (34) only [ 2 5 ] .  

The SPM by the natural way explains also the experimen- 
tal data on low-frequency inelastic light scattering in glasses. 
Quasilocal soft modes modulate the local dielectric suscepti- 
bility of the glass 8qk a t l ikx and therefore, causes the 
inelastic light scattering. As a consequence of the 
fluctuation-dissipation theorem the frequency and tem- 
perature dependence of the stokes Raman scattering inten- 
sity are determined by I(w, T )  cc [ l  + n(w)]l-’(w, T)/w.  
Here n ( o )  is the Bose distribution function n(w) = [exp (hw/ 
kT) - 1 3 - ’  for temperature T and I(w, T )  is the mean free 
path of phonons with frequency w at temperature T .  The 
inverse mean free path I-’ for T 9 W/k are determined by 
the sum of expressions (21), (23 )  and (27). And for reduced 
Raman scattering intensity lo - ’ [n(w)  + 1 3 - ’  cc l-’(u, 
T)/w2 we have a minimum in the frequency dependence. 
Position of this minimum is determined by value of W and 
slightly depends on temperature. For example, in a - Si02  
where one can neglect contribution of HO [eq. (27)] at these 
frequencies we obtain humin x 1.6W(kT/W)’’4. For 
T = 80K and W/k = 4 K  the minimum situated at w/ 
271 x 10cm-’ what coincides with experiment [ 1 3 ] .  This 
approach gives also the same depolarization ratio in the 
whole frequency region because tensor t l ik  is assumed to be 
nearly the same for all soft modes both TLS’s and H O  
[compare with eq. (9)].  

The SPM explains also the heat release experiments in 
glasses [26]. At low onset temperatures TI < T,  it leads to 
results that are only slightly different from predictions of the 
AHVP model. But they are in better agreement with experi- 
ment. At higher tempertures TI > T,  the SPM predicts the 
saturation of the heat release as a function of the onset tem- 
perature, The saturation has been observed in numerous 
experiments in glasses and glasslike materials [ l l ,  121. The 
reason is fast thermal activation processes at temperatures 
T > T, .  It is noteworthy that measurements of the heat 
release in glasses give the unique possibility to determine 
not only the characteristic energy W but its whole distribu- 
tion function. The distribution function has usually several 
peaks corresponding different types of TLS’s in the glass. 
The position of the main maximum in the distribution coin- 
cides quite well with the value of W obtained from specific 
heat data. 
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In the SPM it is possible to relate the TLS’s density of 
states P and the deformation potential y with the macro- 
scopic parameters of the glass: the sound velocity U ,  the 
mass density p and the average mass of the atoms a. If 
these macroscopic parameters are changed under pressure 
or due to changing of the chemical composition of the glass, 
or in some other ways, the corresponding variation of the 
TLS’s parameters coincides well with the prediction of the 
theory [23]. 

Strongly rising resonant scattering of phonons due to HO 
[eq. (21)] lead to that at  some energy E ,  the mean free path 
of phonons becomes equal to their wavelength [20, 301. The 
value of this energy is determined by expression [ 3 0 ]  

Ed x (0.6 - 0.75)WC-”3. (35 )  
For example, for a - S O z ,  Ed/k Q 45 K. At higher energies 
excitation from one oscillator can jump to other oscillators 
directly on the distance of the wavelength (compare with 
Einstein model [31]). The picture of independent quasilocal 
harmonic excitation in this case is lost. Phonons and HO 
with energies E > Ed cannot be considered independently 
any longer. They become intermixed with each other. Above 
this energy the total density of states should be recon- 
structed. One can believe that just this phenomenon 
responsible for the bump in the specific heat C(T)/T3 at 
temperature of the order Ed/5k ,  for the rise of the thermal 
conductivity above the plateau and for the “boson” peak at 
frequency ho N E ,  in the Raman scattering in glasses. 

6. Conclusion 

In the framework of the SPM it is possible by the uniform 
way to explain all the universal properties of glasses; many 
of them remained unexplained during the last 15 years. It 
brings in evidence that soft atomic potentials really exist in 
the glass structure and they are responsible for the universal 
properties of glasses. The SPM being in fact the theory of 
soft atomic potentials gives the adequate description of 
these properties. It is a powerful tool for understanding dif- 
ferent phenomena in glasses and its application very often 
brings about splendid results. 
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