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The stability of matter 
Elliott H. Lieb* 

Department of Mathematics and Department of Physics, Princeton University, Princeton, New Jersey 08540 

A fundamental paradox of classical physics is why matter, which is held together by Coulomb forces, does 
not collapse. The resolution is given here in three steps. First, the stability of atom is demonstrated, in the 
framework of nonrelativistic quantum mechanics. Next the Pauli principle, together with some facts about 
Thomas-Fermi theory, is shown, to account for the stability (i.e., saturation) of bulk matter. 
Thomas-Fermi theory is developed in some detail because, as is also pointed out, it is the asymptotically 
correct picture of heavy atoms and molecules (in the Z—• oo limit). Finally, a rigorous version of screening 
is introduced to account for thermodynamic stability. 
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INTRODUCTION 

Some features of the physical world are so common­
place that they hardly seem to deserve comment. One 
of these is that ordinary matter, either in the form of 
atoms or in bulk, is held together with Coulomb forces 
and yet is stable. Nowadays we regard this truly re ­
markable phenomenon as a consequence of quantum me­
chanics, but it is far from obvious how the conclusion 
follows from the premise. It is not necessary to ponder 
the question very long before realizing that it is a subtle 
one and that the answer is not to be found in any text­
book. 

Although the SchrSdinger equation is half a century old, 
it was only in the last few years that the proof of stabil­
ity was completed. The aim of this paper is to present 
the full story in a simple and coherent way, highlighting 
only the main physical and mathematical ideas. 

The sense of profound unease about the problem just 
before the dawn of quanlum mechanics is exemplified 
by this quotation (Jeans, 1915): 

''. . . there would be a very real difficulty in sup­
posing that the law 1/r^ held down to zero values 
of r . For the force between two charges at zero 
distance would be infinite; we should have charges 
of opposite sign continually rushing together and, 
when once together, no force would be adequate to 
separate them. . . Thus the matter in the universe 
would tend to shrink into nothing or to diminish 
indefinitely in size. . . We should however prob­
ably be wrong in regarding a molecule as a clus­
ter of electrons and positive charges. A more 
likely suggestion, put forward by Larmor and 
others is that the molecule may consist, in part 
at least, of rings of electrons in rapid orbital 
motion.'' 

*Work partially supported by U. S. National Science Founda­
tion grant MCS 75-21684. 

Jeans' words strike a contemporary chord, especially 
since one aspect of the problem that worried him has not 
yet been fully resolved. This is that electrons and nu­
clei have a magnetic dipole-dipole interaction whose 
energy goes as r"^. Although the angular average of 
this interaction vanishes, the interaction can cause the 
collapse that Jeans feared, even with Schrodinger me­
chanics. A proper quantum electrodynamics is needed 
to describe the dipolar interaction at very small dis­
tances. For that reason spin dependent forces will be 
ignored in this paper; only nonrelativistic quantum me­
chanics will be considered. 

It is difficult to find a reliable textbook answer even to 
the question: How does quantum mechanics prevent the 
collapse of an atom? One possibility is to say that the 
Schrodinger equation for the hydrogen atom can be 
solved and the answer seen explicitly. This is hardly 
satisfactory for the many-electron atom or for the 
molecule. Another possible answer is the Heisenberg 
uncertainty principle. This, unfortunately, is a false 
argument, as shown in Sec. I. There is, however, a 
much better uncertainty principle, formulated by So-
bolev, which does adequately describe the intuitive fact 
that a particle's kinetic energy increases sufficiently 
fast, as the wave function is compressed, to prevent 
collapse. (See Kato, 1951). 

The next question to consider is well stated in this quo­
tation from Ehrenfest (in Dyson, 1967): 

''We take a piece of metal. Or a stone. When we 
think about it, we are astonished that this quantity 
of matter should occupy so large a volume. Ad­
mittedly, the molecules are packed tightly to­
gether, and likewise the atoms within each mole­
cule. But why are the atoms themselves so 
b ig? . . . Answer: only the Pauli principle, 'No 
two electrons in the same state.' That is why 
atoms are so unnecessarily big, and why metal 
and stone are so bulky.'* 

Dyson then goes on to say that without the Pauli prin­
ciple 

"We show that not only individual atoms but mat­
ter in bulk would collapse into a condensed high-
density phase. The assembly of any*two macro­
scopic objects would release energy comparable 
to that of an atomic bomb.'' 

Two distinct facts are involved here. One is that mat­
ter is stable (or saturates), meaning that the ground 
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state energy is bounded below by a constant times the 
first power, and not a higher power, of the particle 
number. This was proved for the first time by Dyson 
and Lenard (Dyson and Lenard, 1967, and Lenard and Dy­
son, 1968), in a beautiful series of papers. Their me­
thod is quite complicated, however, and a simpler proof 
is given in Sec. IV. In addition, they used sufficiently 
many inequalities that their estimate (for hydrogen 
atoms) is about -lO^'^ Ry/particle. We will obtain a 
bound of about -23 Ry/particle. The second fact is that 
matter would definitely not be stable if electrons were 
bosons (Dyson, 1967). The energy would increase at 
least as fast as -N^^^. 

Therefore, Ehrenfest^s surmise that the Pauli prin­
ciple plays a crucial role in preventing collapse is cor­
rect. The problem is to display the essence of the Pauli 
principle in a clear, succinct and mathematically pre­
cise way. Unless this is done the physics of stability 
will.remain unclear. 

The key fact is developed in Sec. II: If p{x) is the one-
particle density of any fermion wave function then the 
total kinetic energy is bounded below by (constant) 
jp{xy^^dx.^ This inequality may be termed the un­
certainty principle for fermions. It is simple yet pow­
erful enough to establish stability. 

Given this bound, it is then necessary to show how the 
kinetic energy eventually overcomes the r"^ Coulomb 
singularity. It turns out that Thomas-Fermi (TF) theory 
is exactly what is needed for this purpose because, as 
Teller discovered in 1962, atoms do not bind in TF the­
ory. Thus TF theory immediately implies saturation. 
The necessary facts about TF theory are developed in 
Sec. III. 

There is also another good reason for understanding 
TF theory in detail. The theory used to be regarded as 
an uncertain approximation in atomic physics, but it is 
now known that it is more than that. It happens to be an 
asymptotically correct theory of atoms and molecules 
as the nuclear charges tend to infinity. In short, TF 
theory and the theory of the hydrogen atom constitute 
two opposite, but rigorous foundations for the many 
electron problem. 

After putting together the results of Sec. II and III in 
Sec. IV, and thereby proving the stability of bulk matter, 
we address the third main topic of this paper in Sec. V. 
Does a sensible thermodynamic limit exist for matter? 
The problem here centers around the long range r"^ 
nature of the Coulomb potential, not the short range 
singularity. Put another way, the question is that if 
matter does not implode, how do we know that it does 
not explode? Normally systems with potentials that fall 
off less slowly than r"^"^ for some £ >0 cannot be ex­
pected to have a thermodynamic limit. The crucial 
physical fact was discovered by Newton in 1687: outside 
an isotropic distribution of charge, all the charge ap­
pears to be concentrated at the center. This fact is the 
basis for screening, but to use it a geometric fact about 
the packing of balls will be needed. Quantum mechanics 
as such plays almost no role in Sec. V. 

The content of this paper can be summarized as fol­
lows: 

(i) Atoms are stable because of an uncertainty prin­
ciple, 

(ii) Bulk matter is stable because of a stronger un­
certainty principle that holds only for fermions; 

(iii) Thermodynamics exists because of screening. 

My hope is that the necessary mathematics, which is 
presented as briefly as possible, will not obscure these 
simple physical ideas. 

This paper is based on research carried out over the 
past few years, and it was my good fortune to have had 
the benefit of collaboration with J. L. Lebowitz, B. 
Simon, and W. E. Thirring. Without their insights and 
stimulation probably none of this would have been car­
ried to fruition. Sees, n and IV come from Lieb and 
Thirring (1975), Sec. Ill from Lieb and Simon (1977), 
and Sec. V from Lieb and Lebowitz (1972). 

Lectures given in 1976 at the Centro Internazionale 
Matematico Estivo in Bressanone were the impetus for 
writing this paper. The bibliography is not intended to 
be scholarly, but I believe no theorem or idea has been 
quoted without proper credit. 

I am doubly grateful to S. B. Treiman. He kindly in­
vited me to submit this paper to Reviews of Modeyri 
Physics, and he also generously devoted much time 
to reading the manuscript and made many valuable sug­
gestions to improve its clarity. 

1. THE STABILITY OF ATOMS 

By the phrase ''stability of an atom'' is meant that the 
ground state energy of an atom is finite. This is a wea­
ker notion than the concept of H stability of matter, to 
be discussed in Sec. IV, which means that the ground 
state energy of a many-body system is not merely 
bounded below but is also bounded by a constant times 
the number of particles. This, in turn, is different 
from thermodynamic stability discussed in Sec. V. 

Consider the Hamiltonian for the hydrogenic atom: 

H = - A - Z | ; c | - (1) 

(using units in which ^V2 = 1, m = l, and |^ | = 1). / / ac t s 
on L^(R^), the square integrable functions on 3-space. 
Why is the ground state energy finite, i.e., why is 

(il),Hip)^E,{ilj,il)) (2) 

for some EQ> -oo? The obvious elementary quantum 
mechanics textbook answer is the Heisenberg uncer­
tainty principle (Heisenberg, 1927): If the kinetic en­
ergy is defined by 

^Jf{x)dXy or simply Jf, always denotes a three-dimensional 
integral. 

T^^J\Vip{x)\'dx, 

and if 

{\x\'),^f\x\'\m\'dx, 

then when 

{iP,U^)-\\il>\\l=J\^i^)\'dx = l, 

(3) 

(4) 
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The intuition behind applying the Heisenberg uncer­
tainty principle (4) to the ground state problem (2) is 
that if the electron tries to get within a distance R of the 
nucleus, the kinetic energy T̂  is at least as large as 
R'^. Consequently (ip, Hip) ^i?"^ - Z/R, and this has a 
minimum -Z^/A for R =2/Z. 

The above argument is false \ The Heisenberg uncer­
tainty principle says no such thing, despite the endless 
invocation of the argument. Consider a 0 consisting of 
two parts, ip = ipi+ip2' 01 is a narrow wave packet of 
radius R centered at the origin with J\ip^\^ = ^. ^2 ^^ 
spherically symmetric and has support in a narrow shell 
of mean radius L and /1 ^21^ =i- If ^ is large then, 
roughly J \xf\ip{x)\^dx-L^/2, whereas I \x\^'\ip{x)\^ dx 
'-1/2R. Thus, from (4) we can conclude only that 
T^> 9/2L^ and hence that (0, Hip) ^ 9/2L^ - Z/2R. With 
this wave function, and using only the Heisenberg un­
certainty principle, we can make E^ arbitrarily negative 
by letting i2 -0 . 

A more colorful way to put the situation is this: an 
electron cannot have both a sharply defined position and 
momentum. If one is willing to place the electron in 
two widely separated packets, however, say here and 
on the moon, then the Heisenberg uncertainty principle 
alone does not preclude each packet from having a sharp 
position and momentum. 

Thus, while Eq. (4) is correct it is a pale reflection 
of the power of the operator -A to prevent collapse. A 
better uncertainty principle (i.e., a lower bound for the 
kinetic energy in terms of some integral of ip which does 
not involve derivatives) is needed, one which reflects 
more accurately the fact that if one tries to compress a 
wave function anywhere then the kinetic energy will in­
crease. This principle was provided by Sobolev (1938) 
and for some unknown reason his inequality, which is 
simple and goes directly to the heart of the matter, 
has not made its way into the quantum mechanics text­
books where it belongs. Sobolev's inequality in three 
dimensions [unlike (4) its form is dimension dependent] 
is 

T^-j\^^{x)\^dx^K,<^ fp^{xfdxY'=K,\\p^\l , (5) 

where 

P^x)^\<p{x)\' (6) 

is the density and 

X, =3(71/2)^/^^5.478 

is known to be the best possible constant. Equation (5) 
is nonlinear in p, but that is unimportant. 

A rigorous derivation of (5) would take too long to 
present but it can be made plausible as follows (Rosen, 
1971): K^ is the minimum of 

^^ i\Vip{x)\'dx 
\i\^{x)\'dxY^^ 

Let us accept that a minimizing }p exists (this is the 
hard part) and that it satisfies the obvious variational 
equation 

-{i^ip){x)^aip{xf =0 

with a >0. Assuming also that there is a minimizing \p 

which is nonnegative and spherically symmetric (this 
can be proved by a rearrangement inequality), one finds 
by inspection that 

^(;c)=(3^)2/3(l + |;, |2)-l/2 ^ 

When this is inserted into the expression for K"^ the re ­
sult is K^ =3(7r/2)^ . The minimizing (p is not square 
integrable, but that is of no concern. 

Now let us make a simple calculation to show how 
good (5) really is. For any ip 

{ip, HiP)^K, ( ^p^ixYdx^ ' ' - zf\x\''p^{x)dx^h{p), 

and hence when {ip^ ip) = l 

{ip, Hip) ^ min < h{p): p{x) ^0, Jp = 1 

(7) 

(8) 

The latter calculation is trivial (for any potential) since 
gradients are not involved. One finds that the solution 
to the variational equation is p{x)=a[\x\''^-R^'^y^^ for 
|;c|^/? andp(x)=0 for \x\^R, with R =K^Tr'''^^^Z'\ 
Then 

h{p) = Z'{ir/2Y^'/K, = -±Z'Ry. 
(Recall that one Rydberg =Ry = ^ in these units.) Thus, 
Eq. (5) leads easily to the conclusion 

• I ^ ^ R y (9) 

and this is an excellent lower bound to the correct 
EQ =-Z^ Ry, especially since no differential equation 
had to be solved. 

In anticipation of later developments, a weaker, but 
also useful, form of Eq. (5) can be derived. By Hol­
der's inequality^ 

jpixf' dx ^ I jp{xf d^y \ jp{x)dx \ ' ' (10) 

and, since we always take j\ip\^ = l, 

(11) 

Note that there is now an exponent 1 outside the integral. 
Although Kg is the best constant in (5) it is not the best 
constant in (11). Call the latter K^. K^ is the minimum 
of 

ip{xf'^dx 

subject to \p{x)dx = \. This leads to a nonlinear Schro-
dinger equation whose numerical solution yields (J. F. 
Barnes, private communication) 

In any event 

ii:i>/i:"H(f)(67r2)2/3«9.116, 

^Holder's inequality states that 

J/(x)̂ (x)rfjc| <i j \f(x)\''dxy Ij\g(x)\''dxr 

when^"* +q~'^ = l and P^l. To obtain (10) taKe 
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and hence 

•dx^l. (12) 

K^ is much bigger thsniK^; it is the classical value and 
will be encountered again in Sec. II and in Sec. Ill, 
where its significance will be clarified. 

We can repeat the minimization calculation analogous 
to Eq. (8) using the bound (12) and the functional 

h'{p) = K' Jp{x)^^^dx-- Z f \x\''p{x)dx. 

(We could, of course, use the better constant/ir^.) This 
time 

(13) p{x) = [Uz/Kn{\x\'^^R''')Y -l\L3/2 

for jx| </?. R is determined by /p= 1 and one finds that 
R = {K'/Z){4/n^f^ and 

12/3 _ . Q l / S ? £;,^-(9ZV5i^^)(7rV4)^ -S^/^Z^ Ry. (14) 

The quantity 3̂ ^̂  is only 8.2% greater than f. 
The Sobolev inequality (5) or its variant (12) is, for 

our purposes, a much better uncertainty principle than 
Heisenberg^s—indeed it is also fairly accurate. We 
now want to extend (12) to the iV-particle case in order 
to establish the stability of bulk matter. The impor­
tant new fact that will be involved is that the N particles 
are fermions; that is to say the TV-particle wave func­
tion is an antisymmetric function of the A^-space, spin 
variables. 

II. EXTENSION OF THE UNCERTAINTY 
PRINCIPLE TO MANY FERMIONS 

A well known elementary calculation is that of the 
lowest kinetic energy, T^ of N fermions in a cubic box 
of volume V. For large N one finds that 

r^q' 
where p = N/V and q is the number of spin states avail­
able to each particle {q =2 for electrons). Equation 
(15) is obtained by merely adding up the N/q lowest 
eigenvalues of -A with Dirichlet (^=0) boundary condi­
tions on the walls of the box. The important feature of 
(15) is that it is proportional to N^^^ instead of N, as 
would be the case if the particles were not fermions. 
The extra factor N^^^ is essential for the stability of 
matter; if electrons were bosons, matter would not be 
stable. 

Equation (15) suggests that Eq. (12), with a factor 
"̂̂ ^̂  ought to extend to the A^-particle case if p{x) is in­

terpreted properly. The idea is old, going back to Lenz 
(1932), who got it from Thomas-Fermi theory. The 
proof that something like (12) is not only an approxima­
tion but is also a lower bound is new. 

To say that the N particles Rve fermions with q spin 
states means that the iV-particle wave function 
^Ui? . . . ,%;cri, . . • ,a;^) defined for;f,.eR^and 
a^GJl, 2 , . . . <7} is antisymme tricinthe ipsiirs {Xi^ a J . The 
norm is given by 

<̂ , >̂ =22 / l^Ui, .. . ,%;a„ . . .,o^)\'dx,. .dXfs 

Q 

(16) 

to be the usual kinetic energy of ip and define 

p^{x)^N ^ J \ip{x,X2,.. . ,Xf^;a^,. . . ,a^)|^^X2. ..dx^^ 

"'""' (17) 
to be the single particle density, i.e., the probability of 
finding a particle at x. The analog of (12) is the follow­
ing (Lieb and Thirring, 1975): 

Theorem 1. If <;/;, e/)> = 1 then 

T^^{^T^q)-'''j<'^p,{xYfUx. (18) 

Apart from the annoying factor (47r)"^/^~ 0.185, (18) says 
that the intuition behind considering (15) as a lower 
bound is correct. We believe that (47r)"^/^ does not be­
long in (18) and hope to eliminate it someday. Recent 
work (Lieb, 1976) has improved the constant by a factor 
(1.83)^/^= 1.496, so we are now off from the conjectured 
constant q-^^^K^ only by the factor 0.277. 

The proof of Theorem 1 is not long but it is slightly 
tricky. It is necessary first to investigate the negative 
eigenvalues of a one-particle Schrodinger equation when 
the potential is nonpositive. 

Theorem 2. Let V{x) < 0 be a potential for the one-
particle, three dimensional Schrodinger operator H=- A 
+ V{x) on L^(R^). For £ < 0 let N^iV) be the number of 
eigenstates of H with energies < E. Then 

N^iV)^ {4ir)-'{2\E\)-'/^ J I V{x)-E/2\l dx, (19) 

(15) where \f{x)\_ = \f{x)\ if/(jt) ^ 0 and |/(^)|_ = 0 otherwise. 

Corollary. If ê  < 2̂ < • • • < 0 are the negative eigen­
values of H (if any) then 

J:\'j\^-^^\\n-)\'''dx. (20) 

Proof. J2\ej\=f^N_JV)da. Insert (19) and do the a 
integration first and then the x integration. The result 
is (20). I 

We believe the factor {4TT) does not belong in (20). 

Proof of Theorem 2. From the Schrodinger equation 
Hip = e4) it is easy to deduce that N^{V) is equal to the 
number of eigenvalues which are ^ 1 of the positive de­
finite Birman-Schwinger operator (Birman, 1961; 
Schwinger, 1961) 

B^iV)-- ''{-A-E)-'\V\ 1 / 2 (21) 

Define 

Essentially Eq. (21) comes from the fact that M Hip^eip 
t\ven{-A-e)}p = \V\ip. If one defines \V\\^^^^(p, then 
Sg0 =^. Thus Bg has an eigenvalue 1 when e is an eigen­
value. However, B^ is a compact positive semidefinite 
operator on L (̂R )̂ for £ < 0 and, as an operator, BE is 
monotone increasing in E. Thus, if B^ has k eigenval­
ues > 1, there exist k numbers e^^ e2^ ef^^E such that 
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Bg. has eigenvalue 1. 
6onsequently N^iV) < TrB^iVf. On the other hand, 

N^{V)^ N^/zi- I V-E/2\_) by the variational principle 
(draw a graph of V{x)-E/2). Thus, since BE{V) has a 
kernel, Bs{x,y) = \V{x)\'/^exp{-\E\'^^\x-y\}[4TT\x-y\]-' 
x\V{y)\^^^, one has that 

N^{V)^TrB^/,{-\V-E/2\y 

= {4n)-' J J dxdy I FU) -E/2\_\ V{y) - E/2\_ 

xexp{-(2 |£ | )^/^ |x-y |} |x-3; | -^ (22) 

Equation (19) results from applying Young's inequality^ 
to Eq. (22). Alternatively, one can do the convolution 
integral by Fourier transforms and note that the Fourier 
transform of the last factor has a maximum at/? =0, 
where it is 47r(2|£|)-^/^ • 

Using (20), which is a statement about the energy lev­
els of a single particle Hamiltonian, we can, surprising­
ly, prove Theorem 1, which refers to the kinetic ener­
gy of ATfermions. 

Proof of Theorem i . i^ and hence pj^x) are given. 
Consider the non-positive single particle potential V{x) 
= - ap^ixf^ where a is given by (2/37r)^Q! /̂̂  = 1. Next 
consider the following iV-particle Hamiltonian: 

N 

^N=J2^i> hi=-^i+V{Xi) 
i = i 

on L (̂R ;̂ C)^. If EQ is the fermion ground state energy 
of Hff, we have that Eo^qJ^ej, where the Cj are the neg­
ative eigenvalues of the single particle Hamiltonian h. 
(We merely fill the lowest negative energy levels q 
times until the AT particles are accounted for; if there 
are k such levels and M N<kq then E^yq^je^. U N>kq, 
the surplus particles can be placed in wave packets far 
away from the origin with arbitrarily small kinetic ener­
gy.) On the other hand, EQ < {^, Hf^ip) = T^-a fp^{xf^^dx 
by the variational principle. If these two inequalities 
are combined together with (20), which says that 2^ ê ^̂  
- {A/\%Tj)a^/^ fp^ixf^^dx, then (18) is the result. • 

It might not be too much out of place to explain at this 
point why IC is called the classical constant. The name 
does not stem from its antiquity, as in the ideal gas 
kinetic energy (15), but rather from classical mechan­
ics—more precisely the semiclassical approximation to 
quantum mechanics. This intuitive idea is valuable. 

As the proof of Theorem 1 shows, the constant in (18) 
for T̂  is simply related to the constant in (20) for the 

sum of the eigenvalues. The point is that the semiclas­
sical approximation to this sum is 

^Young's inequality states that 

\ j j f{x)g(x -y)h{y)dxdy\^^n \f{x)\Uxi '^ 

U\g{x)\'^\"' 

\{\h(x)Vdx^' 

Ei^Xi50-^Ji^wi'^'^^> 
and this, in turn, would yield (18) without the (47r)"^/^ 
factor. The semiclassical approximation is obtained by 
saying that a region of volume (27r)̂  in the six-dimen­
sional phase space (/>, x) can accommodate one eigen-
state. Hence, integrating over the set B{H), in which 
il{p,x)=p^+ V{x) is negative, 

J2^j^{2ir)-'jjdxc^{p'+V{x)} 

= (27r)-'J dxA-n ^ p^dp [p^ + V{x)] 

= -(157r^)-iJ \V{x)\^^^dx. 

If a coupling constant g is introduced, and if F is re ­
placed by gV, then it is a theorem that the semiclassical 
approximation is asymptotically exact as ^—°o for any 
V in L'/ '(R'). 

Theorem 1 gives a lower bound to the kinetic energy of 
fermions which is crucial for the H stability of matter 
as developed in Sec. IV. To appreciate the significance 
of Theorem 1 it should be compared with the one-par­
ticle Sobolev bound (12). Suppose that p{x) = 0 outside 
some fixed domain Q, of volume V. Then since 

|̂ pW = /3rf,.jj^pW^-{j^ll . 2 / 3 
= JV5/3y-2/3 

when /)" '+9"^+r"*=2 a n d ^ , ^ , r > l . For (22) take p=r = 2 and 
q=l. 

by Holder's inequality, one sees that T^ grows at least 
as fast as N^^^. Using Eq. (12) alone, one would only be 
able to conclude that T^ grows as N. This distinction 
stems from the Pauli principle, i.e., the antisymmetric 
nature of the iV-particle wave function. As we shall see, 
this N^^^ growth is essential for the stability of matter 
because without it the ground state energy of N particles 
with Coulomb forces would grow at least as fast as 
- i V ' / ' instead of -N. 

The Fermi pressure is needed to prevent a collapse, 
but to learn how to exploit it we must first turn to an­
other chapter in the theory of Coulomb systems, namely 
Thomas-Fermi theory. 

III. THOMAS-FERMI THEORY 

The statistical theory of atoms and molecules was in­
vented independently by Thomas and Fermi (Thomas, 
1927; Fermi, 1927). For many years the TF theory 
was regarded as an uncertain approximation to the N-
particle Schrodinger equation and much effort was de­
voted to trying to determine its validity (e.g., Gtombis, 
1949). It was eventually noticed numerically (Sheldon, 
1955) that molecules did not appear to bind in this theo­
ry, and then Teller (1962) proved this to be a general 
theorem. 

It is now understood that TF theory is really a large Z 
theory (Lieb and Simon, 1977); to be precise it is exact 
in the limit Z-*°°. For finite Z, TF theory is qualita-
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tively correct in that it adequately describes the bulk of 
an atom or molecule. It is not precise enough to give 
binding. Indeed, it should not do so because binding in 
TF theory would imply that the cores of atoms bind, and 
this does not happen. Atomic binding is a fine quantum 
effect. Nevertheless, TF theory deserves to be well 
understood because it is exact in a limit; the TF theory 
is to the many-electron system as the hydrogen atom is 
to the few-electron system. For this reason the main 
features of the theory are presented here, mostly with­
out proof. 

A second reason for our interest in TF theory is this: 
in the next section the problem of the H stability of mat­
ter will be reduced to a TF problem. The knowledge 
that TF theory is H stable (this is a corollary of the no 
binding theorem) will enable us to conclude that the true 
quantum system is H stable. 

The Hamiltonian for N electrons with k static nuclei of 
charges z^>0 and locations R^ is 

+ E Ui -^ i l ' '+^({^P^i}y = i ) ' (23) 

where 
k 

V{x)- ^ 2 > - i ? , | - S (24a) 
i = i 

and 

U{{z,.R,]).^,)- E ZiZ^Ri-R^". (24b) 
1 « < < y «fe 

The nuclear-nuclear repulsion U is, of course, a con­
stant term in H^^ but it is included for two reasons: 

(i) We wish to consider the dependence on the R^ of 

E'i{{zj,R^Y ) = the ground state energy of Hj^. (25) 

(ii) Without U the energy will not be bounded by N. 
The nuclear kinetic energy is not included in H^. For 

the H- stability problem we are only interested in finding 
a lower bound to £ J, and the nuclear kinetic energy 
adds a positive term. In other words, 

for non-negative functions p{x). Then for X>0 

mf£:«{{^„i?,},\,) 

is smaller than the ground state energy of the true Ham­
iltonian [defined in Eq. (58)] in which the nuclear kinetic 
energy is included. Later on when we do the proper 
thermodynamics of the whole system we shall have to 
include the nuclear kinetic energy. 

The problem of estimating J5 J is as old as the Schro-
dinger equation. The TF theory, as interpreted by Lenz 
(1932), reads as follows: For fermions having q spin 
states ((7 = 2 for electrons) define the TF energy func­
tional : 

S{p)- ""'^K' j p{x?"- j V{x)p{i [x) 

^1 J J p{x)p{y)\x-y\-'dxdy^U{{z„R,])J 

El^^ird\s{p): f p{x)dx = ] (27) 

is the TF energy for X electrons (\ need not be an integ­
er, of course). When \=N, the minimizing p is sup­
posed to approximate the p^ given by (17), wherein 0 is the 
true ground state wave function, and£^^ is supposed to 
approximate E'^. 

The intuitive idea behind TF theory is this: If ip is any 
fermion wave function and T^ and p^ are given by Eqs. 
(16) and (17), then the first term in (26) is supposed to 
approximate T^. This is based on the box kinetic energy 
(15). The last three terms in (26) represent, respec­
tively, the electron-nuclear, electron-electron, and 
nuclear-nuclear Coulomb energy. E^^ in (27) is then 
the "ground state energy" of (26). 

The second and fourth terms on the right side of (26) 
are exact but the first and third are not. The first is to 
some extent justified by the kinetic energy inequality, 
Theorem 1; the third term will be discussed later. In 
any event, Eqs. (26) and (27) define TF theory. 

It would be too much to try to reproduce here the de­
tails of our analysis of TF theory. A short summary of 
some of the main theorems will have to suffice. 

The first question is whether or n o t E j ^ (which, by 
simple estimates using Young's and Holder's inequali­
ties, can be shown to be finite for all X) is a minimum 
as distinct from merely an infimum. The distinction is 
crucial because the TF equation [the Euler-Lagrange 
equation for (26) and (27)] 

\K'q-^'^p'''^{x) = m2ix{<p{x)- \i,Q] 

(t>{x) = V{x)- j p{y)\x-y\-'dy 

(28) 

(29) 

(26) 

has a solution with / p = X if and only if there is a min­
imizing p for E1^. The basic theorem is as follows. 

Theorem 3. If X<Z=Z]^, i2j then 
(i) S{p) has a minimum on the set f p(x)dx = \. 
(ii) This minimizing p (call it pj^) is unique and sat­

isfies (28) and (29). ii is non-negative, and -ju is the 
chemical potential, i.e., 

-U.=dEl^/d\. (30) 

(iii) There is no other solution to (28) and (29) (for 
any \i) with / p = X other than p " . 

(iv)WhenX = Z, /i = 0. Otherwise /Lt>0, i.e., Ej^ 
is strictly decreasing in X. 

(v) As X varies from 0 to Z, JLI varies continuously 
from +« to 0. 

(vi) jLL is a convex, decreasing function of X. 
(vii) (t>'^{x)>0 for all x and X. Hence when X = Z 

\K<=q-'"p?{x?" = <t>7ix). 

IiX>Z then E'^{X) is not a minimum and (28) and (29-) 
have no solution with J p = X. Negative ions do not exist 
in TF theory. Nevertheless, Ej^ exists and Ej^ =EY 
for X>Z. 

The proof of Theorem 3 is an exercise in functional 
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analysis. Basically, one first shows that S{p) is bound­
ed below so that E^ exists. The Banach-Alaoglu theo­
rem is used to find an L^^^ weakly convergent sequence 
of p's such that Sip) converges to Ej^. Then one notes 
that S{p) is weakly lower semicontinuous so that a mini­
mizing p exists under the subsidiary condition that 
/ p « X, The uniqueness comes from an important prop­
erty of S{p), namely that it is convex. This also im­
plies that the minimizing p satisfies Jp=^-

A major point to notice is that a solution of the TF 
equation is obtained as a by-product of minimizing S{p); 
a direct proof that the TF equation has a solution would 
be very complicated. 

Only in the case A«Z is pYix) positive for all x, 
when X<Z, /i>0 and, since (pYM goes to zero as |^ | 
goes to infinity, Eq. (28) implies that pYi^) vanishes 
outside some bounded set. 

Apart from the details presented in Theorem 3, the 
main point is that TF theory is well defined. In particu­
lar the density p̂ ^̂  is unique—a state of affairs in 
marked contrast to that of Hartree-Fock theory (Har-
tree, 1927-28; Fock, 1930; Slater, 1930; Lieb and 
Simon, 1973). 

The TF density p^^ has the following properties: 

Theorem 4. If X<Z then 

(i) {^)K'^q-'^'pr{xf^'~z,\x-R,\-' 

near each i2j. 

-Z-B:., 

(31) 

(ii) In the neutral case, X = 

\x\'pV{x)-{3/irniK<^q''^'\' (32) 

as \x\ -°< ,̂ irrespective of the distribution of the nuclei. 
(iii) 0j^(%) and pj^ix) are real analytic in x away 

from all the R^, on all of 3-space in the neutral case and 
on {x: (pl^ix) > /i} in the positive ionic case. 

Equation (32) is especially remarkable: at large dis­
tances one loses all Knowledge of the nuclear charges 
and configuration. Property (i) recalls the singularity 
found in the minimization of h^{p) [see Eq, (13)J. 

Equation (31) can be seen from (28) and (29) by inspec­
tion. Equation (32) is more subtle but it is consistent 
with the observation that (28) and (29) can be rewritten 
(when 11 = 0) as 

-(47r)-^A0^^(x)=-{(|)^^/^0r(;c)/i^^p/^ 

away from the R^. If it is assumed that (p^^^ix) goes to 
zero as a power of \x\ then (32) follows. This observa­
tion was first made by Sommerfeld (1932). The proof 
that a power law falloff actually occurs is somewhat 
subtle and involves potential theoretic ideas such as that 
used in the proof of Lemma 8. 

As pointed out earlier, the connection between TF 
theory and the Schrodinger equation is best seen in the 
limit Z —«>. Let the number, k, of nuclei be held fixed, 
but let AT— oo and ẑ  - ^ in such a v^y that the degree of 
ionization N/Z is constant, where 

To this end we make the following definition: Fix 
{zjjRjYj ^i 3.nd X. It is not necessary to assume that X 

< Z . For each ^ = 1 , 2 , . . . define a^ by Xâ  = i^. In i^^ 
(23) replace Zj by ZjU^ and Rj by R^a^f^'^ This means 
that the nuclei come together as iV-*- °o. If they stay at 
fixed positions then that is equivalent, in the limit, to 
isolated atoms, i.e., it is equivalent to starting with all 
the nuclei infinitely far from each other. Finally, for 
the nuclear configuration [ds^^CLN'^'^RJ])^^ let 0^ be the 
ground state wave function, E^ the ground state energy, 
and p^{x) be the single particle density as defined by 
Eq. (17).^ 

It is important to note that there is a simple and ob­
vious scaling relation for TF theory, namely 

Ei:{{az,,a^''R^)._,)-a'''^EY{{z^,R^])^,) (33) 

and the densities for the two systems are related by 

for any a > 0 . Hence, for the above sequence of systems 
parametrized by a^, 

a;i''EY{{a,z,,a,^f^R;i)._,)=Er{{z,,R,]]__,), (35) 

a^pY{a,"'x) = pr{x) (36) 

for all N. 
If, on the other hand, the nuclei are held fixed then 

one can prove that 

lim a^'^EY{{a,z,,R^) = | ] EY^{Z,) , (37) 

where E1^{Z) is the energy of an isolated atom of nuc­
lear charge z. The X̂  are determined by the condition 
t ha tS*^ i \ ^ = \ if X<Z (otherwise, Z^,iX^ = Z) and that 
the chemical potentials of the k atoms are all the same. 
Another way to say this is that the X̂  minimize the right 
side of Eq. (37). With the viwclei fixed, the analog of 
(36) is 

Urn a^pY{a'"{x-R,)) = plJ{x). (33) 

The right side of Eq. (38) is the p for a single atom of 
nuclear charge z and electron charge X .̂ Equations (37) 
and (38) are a precise statement of the fact that isolated 
atoms result from fixing the R^ 

The TF energy for an isolated, neutral atom of nuc­
lear charge Z is found numerically to be 

£ ^ F = _(2.21)^2/3(^C)-1^7/3_ (39) 

For future use, note t h a t E | ^ is proportional to 1/K^. 
Thus, if one considers a TF theory with K^ replaced by 
some other constant a >0, as will be necessary in Sec. 
IV, then Eq. (39) is correct if K'^ is replaced by a. 

Theorem 5. With a^=N/x and {zj,Rj}^j^i fixed 
(i) a-jJ/^E'i{{af,Zj,a-j^'^%Yj^J has a limit as N-°o. 
(ii) This limit is EY{{ZJ,RJ}'J ..,). 
(iii) a]J^^E'^{{affZj,RjYj^^) has a limit a.sN-*°o, This 

limit is the right side of (37). 
(iv) a'j^p'^ia'jj-^^x;{affZj,a'J-^^Rj]'j^j)als6 has a limit as 

''if E^ is degenerate, Jpjf can be any ground state wave function 
as far as Theorem 5 Is concerned. If E^ is not an eigenvalue, 
but merely inf spec Hj^, then it is possible to define an approx­
imating sequence tpff, with p ^ still given by Eq.. (17), in such a 
way that Theorem 5 holds. We omit the details of this con­
struction here. 
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AT-oo. If X<Z=Zy5,i>2:y, this limit is pl^{x) and the con­
vergence is in weak L^(R^). If X>Z, the limit is pYi^) 
in weak L\^SR?). 

(v) For fixed nuclei, a^p^{aj^'^{x-R^)\{a^z^,R^)^^ 
has a limit [in the same sense as (iv)J which is the right 
side of (38). 

The proof of Theorem 5 does not use anything intro­
duced so far. It is complicated, but elementary. One 
partitions 3-space into boxes with sides of order Z'^''^. 
In each box the potential is replaced by its maximum 
(respectively, mimimum) and one obtains an upper (re­
spectively, lower) bound to E^ by imposing Dirichlet 
(0 = 0) (respectively, Neumann (V?/) = 0)) boundary condi­
tions on the boxes. The upper bound is essentially a 
Hartree-Fock calculation. The -r"^ singularity near 
the nuclei poses a problem for the lower bound, and it 
is tamed by exploiting the concept of angular momentum 
barrier. 

What Theorem 5 says, first of all, is that the true 
quantum energy has a limit on the order of Z^''^ when 
the ratio of electron to nuclear charge is held fixed. 
Second, this limit is given correctly by TF theory as is 
shown in Eq. (35). The requirement that the nuclei 
move together as Z'^''^ should be regarded as a refine­
ment rather than as a drawback, for if the nuclei are 
fixed a limit also exists but it is an uninteresting one of 
isolated atoms. 

Theorem 5 also says that the density p^ is proportion­
al to Z^ and has a scale length proportional to Z'^^^ 
If X>Z, Theorem 5 states that the surplus charge moves 
off to infinity and the result is a neutral molecule. 
This means that large atoms or molecules cannot have 
a negative ionization proportional to the total nuclear 
charge; at best they can have a negative ionization which 
is a vanishingly small fraction of the total charge. This 
result is physically obvious for electrostatic reasons, 
but it is nice to have a proof of it. 

Theorem 5 also resolves certain ''anomalies'' of TF 
theory: 

(a) In real atoms or molecules the electron density 
falls off exponentially, while in TF theory (Theorem 4) 
the density falls off as |x|"^. 

(b) The TF atom shrinks in size as Z'^''^ [cf. Eq. (36)] 
while real large atoms have roughly constant size. 

(c) In TF theory there is no molecular binding, as we 
shall show next, but there is binding for real molecules. 

(d) In real moleucles the electron density is finite at 
the nuclei, but in TF theory it goes to infinity as 
^J;^-i?J-3/2 (Theorem 4). 

As Theorem 5 shows, TF theory is really a theory of 
heavy atoms or molecules. A large atom looks like a 
stellar galaxy, poetically speaking. It has a core which 
shrinks as Z "̂ ^̂  and which contains most of the elec­
trons. The density (on a scale of Z^) is not finite at the 
nucleus because, as the simplest Bohr theory shows, 
the S-wave electrons have a density proportional to Z^ 
which is infinite on a scale of Z^. Outside the core is a 
mantle in which the density is proportional to (cf. Theo­
rem 4) {Z/iif{{\)K'T''I^YZ^/{Z^l^\x\)\ which is inde­
pendent of Z! This density is correct to infinite dis­
tances on a length scale Z"^^^. The core and the man­

tle contain 100% of the electrons as Z - °o. xhe third 
region is a transition region to the outer shell, and 
while it may contain many electrons, it contains only a 
vanishingly small fraction of them. The fourth region 
is the outer shell in which chemistry and binding takes 
place. TF theory has nothing to say about this region. 
The fifth region is the one in which the density drops off 
exponentially. 

Thus, TF theory deals only with the core and the man­
tle in which the bulk of the energy and the electrons re­
side. There ought not to be binding in TF theory, and 
indeed there is none, because TF energies are propor­
tional to Z'̂ ^^ and binding energies are of order one. 
The binding occurs in the fourth layer. 

An important question is what is the next term in the 
energy beyond the Z'^''^ term of TF theory. Several cor­
rections have been proposed: (e.g., Dirac, 1930; Von 
Weizsacker, 1935; Kirzhnits, 1957; Kompaneets and 
PavlovsKii, 1956; Scott, 1952). With the exception of 
the last, all these corrections are of order Z^''^. Scott 
(as late as 1952!) said there should be a Z^^^ correction 
because TF theory is not able to treat correctly the in­
nermost core electrons. Let us give a heuristic argu­
ment. Recall that in Bohr theory each inner electron 
alone has an energy proportional to Z^. As these inner 
electrons are unscreeened, their energies should be 
independent of the presence or absence of the electron-
electron repulsion. In other words, the Z^ correction 
for a molecule should be precisely a sum of corrections, 
one for each atom. The atomic correction should be the 
difference between the Bohr energy and the Z'^''^ TF en­
ergy for an atom in which the electron-electron repul­
sion is neglected. We already calculated the TF energy 
for such an ''atom'' in Eq. (14) (put Z = l there and then 
use scaling; also replace K"^ by q^'^'^K'^). Thus, for a 
neutral atom without electron-electron repulsion 

iTF=^(3 l /3 /4 )^2 /3^7/3^ (40) 

For the Bohr atom, each shell of energy -Z^/4n^ has 
n^ states, so 

with 0 < 0 < 1 being the fraction of the (L + l)th shell that 
is filled. One finds L «{ZZ/qY /̂  _ i _ ^ + ̂ (l) and 

Thus, to the next order, the energy should be 

j = 1 

+ lower order , (41) 

since (7 = 2 for electrons. Note that Eĵ ^̂ -̂ ^̂ ^̂ ^ while 
the Scott correction is proportional to q. 

It is remarkable that Eq. (41) gives ^precise conjec­
ture about the next correction. It is simple to under­
stand physically, yet we do not have the means to prove 
it. 

The third main fact about TF theory is that there is 
no binding. This was proved by Teller in 1962. Consid­
ering the effort that went into the study of TF theory 
since its inception in 1927, it is remarkable that the no 
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binding phenomenon w a s not s e r i o u s l y not iced unti l the 
compute r study of Sheldon in 1955. T e l l e r ' s o r ig ina l 
proof involved some ques t ionable manipula t ion with 6 
functions and for that r e a s o n h i s r e s u l t was ques t ioned. 
His ideas w e r e bas ica l ly r igh t , however , and we have 
made them r i g o r o u s . 

Theorem 6 (no binding). If t h e r e a r e a t l e a s t two nuc ­
l e i , w r i t e the nuc l ea r a t t r a c t i on V{x)='T^^ ^^z ^\x - R^\'^ 
a s the sum of two p i e c e s , 7 = V^ + V^ w h e r e V^{x) 
= E 7 = i > ^ y k - i ? J " ' and 1 ^m<k. L e t £ j ^ ' ' be the T F 
energy for the nucle i 1,. . . ,m (with 
U^B^^i^j ^^Z.ZJIR^-'RJI'^ of course ) and l e t E ^ ^ ' ^ 
be the s a m e for the nuc le i m + 1 , . . . ,fe. Given \ , le t 
X̂  > 0 and X2 = X - X \ ^ 0 b e chosen to m i n i m i z e the sum 
of the e n e r g i e s of the s e p a r a t e m o l e c u l e s , i . e . , Ej^'^ 
+ £ ^ J ' ^ j I f X = Z=B^j^_,Zj then by T h e o r e m 3 , 
X^= Z/^. , i2y . ) Then 

(42) 

Since the r igh t s ide of Eq. (42) is the energy of two 
widely s e p a r a t e d m o l e c u l e s , with the r e l a t i ve nuc l ea r 
pos i t ions unchanged within each m o l e c u l e . T h e o r e m 6 
s a y s that the T F energy is uns tab le under every decom­
posi t ion of the big molecu le into s m a l l e r m o l e c u l e s . In 
p a r t i c u l a r , a molecu le i s uns tab le under decomposi t ion 
into i so la ted a t o m s , and T h e o r e m 9 is a s imp le c o n s e ­
quence of this fact . One would suppose that if X and the 
z- a r e fixed, but the R^ a r e r ep laced by aR. then 

^x^({^j9 ^ ^ j l i =i) ^^ monotone d e c r e a s i n g in a . 

In o the r w o r d s , the ' ' p r e s s u r e ' ' i s a lways pos i t ive . Th i s 
i s an unproved conjecture ^ but it has been proved 
(Ba lazs , 1967) in the c a s e k = 2 and z^=Z2^ 

An in t e r e s t i ng s ide r e m a r k i s the following. 

Theorem 7. If the T F ene rgy (26), (27) i s redef ined by 
excluding the repu l s ion t e r m U in (26), then the inequal­
ity in (42) is r e v e r s e d . 

T h u s , the n u c l e a r repu ls ion i s e s s e n t i a l for the no 
binding t h e o r e m 6. 

Another useful fact for some fu r the r deve lopments of 
the theory , e spec ia l ly the T F theory of so l ids and the 
T F theory of s c r e e n i n g (Lieb and Simon, 1977) i s the 
following l e m m a (also a t t r ibu ted to T e l l e r ) , which is 
u sed to p rove the ma in no binding t h e o r e m 6. 

Lemma 8. F ix [R^])^^ and fix JLL^O in the T F equa­
tion (28) but not {z?i)^^. (This m e a n s that a s the z/s 
a r e v a r i e d X wil l v a r y , but a lways 0 < X < Z = Z / ^ y . If 
M = 0 then X = Z a lways . ) If {zj . j j^i and {^JlJ^i a r e two 
s e t s of ^ ' s such that 

z)-z] a l l j , and z\<z\ 

and if X^ and X^ a r e the co r r e spond ing X's for the two 
s e t s , then for a l l x 

and hence 

T h e r e is s t r i c t inequali ty when M = 0 . In s h o r t , i n c r e a s ­
ing s o m e Zj i n c r e a s e s the dens i ty e v e r y w h e r e , not jus t 
on the a v e r a g e . 

The proof of L e m m a 8 involves a beautifully s imp le 
potent ia l t heo re t i c a r g u m e n t which we cannot r e s i s t giv­
ing. 

Proof of Lemma 8. We want to p r o v e ( p " {x) ^ (pj^ (x) 
for a l l X and will content o u r s e l v e s h e r e with p rov ing 
only < when M =0 . L e t B ={x: (pY {x)>(l)Y M}- JB is an 
open s e t and J5 does not contain any i?,. for which zl 
<zl by the T F equat ion (29). Let ip{x)=^Y (^) - (pY ix). 
lix^B then i/^(x)>0 and, by (28), PY {x)^(>Y {x). For 
x^B, -{^T!)-^^i\){x) =PY (X) -PY {X)^0, SO ip i s subhar-
monic onB [ i .e . , i\){x) < the a v e r a g e of ^ on any s p h e r e 
contained inB and c e n t e r e d a t x ] . Hence i\) has i t s m a x ­
imum on the boundary of B o r at °o, at a l l of which 
po in ts i/)=0. The re fo re B is the empty se t . • 

In the jLt = 0 c a s e it is easy to show how T h e o r e m 6 fol­
lows f rom L e m m a 8. 

Proof of Theorem 6 when X =Z/j= ^Zj. The proof when 
X<TjZj u s e s the s a m e ideas but is m o r e compl ica ted . 
Since X = Z/2j then X^=Z/J'=i'2y, X2=Z/^=„+i2j and | J . = 0 
for a l l t h r e e s y s t e m s . F o r a > 0 l e t / ( a ) 
=E'^^ {az^,..., oiZm,Zm^^, • • • ,z„;R^, • - • ,Rk) 
-E^^ {az„..., az„;R„ . . . ,RJ -E'^^ {Z^^„ ...,Z,; 
Rm+i,... ,Rk), w h e r e the t h r e e £^^ a r e defined for neu­
t r a l s y s t e m s ( i .e . , jix=0 for a l l a). The goal is to show 
t h a t / ( I ) > 0. S ince / (O) =0 , it is enough to show that 
df{a)/da^O. F r o m (26) and (27) it is t rue , and a l m o s t 
obvious, that 

dE 

dz 
- = - f P'''{y)\y-Ri\-'dy^T,^j\Ri-Rj\-' 

= l im (p'^ ix)-Zi\x-Ri\-\ 

This is the T F v e r s i o n of the F e y n m a n - H e l l m a n n t h e o ­
r e m ; not ice how the n u c l e a r - n u c l e a r r epu l s ion c o m e s 
in h e r e . Thus , 

— — = 2 ^ 1 i m Zi-n^ix), 

w h e r e ria{x) = <pY (x) • 
{az^, . . . , az„,z„^^^, . 
po tent ia l for {az ĵ 

(pY (x) and (pY is the potent ia l for 
. ,z^;R^,. . . ,R^ and (pY i s the 
az^;R„...,R^]. <PY {x) ^ <pY ix) 

for a l l X by L e m m a 8, and hence r\a{x) > 0. 

T h e o r e m 6 has a na tu ra l appl icat ion to the s tabi l i ty of 
m a t t e r p r o b l e m . As will be shown in the next sec t ion , 
the T F ene rgy (27) i s , with sui tably modified cons t an t s , 
a lower bound to the t r u e quantum energy £^^ for all Z. 
By T h e o r e m 3 (iv) and T h e o r e m 6 we have the following 
t h e o r e m . 

Theorem 9. Fix [z^,R^]]^ ^ and le t Z =TJ)= ^ZJ. Then 
for a l l A > 0 

EY ^EY ^ -{2.21)q^/^K')-'Jl^y''' {43) 

The l a t t e r constant , 2 .21 , is obtained by numer i ca l l y 
solving the T F equat ion for a s ingle , neu t r a l a tom (J. F . 
B a r n e s , p r i v a t e communica t ion) . By sca l ing , Eq. (43) 

569 



Rev. M o d . P h y s . 48, 553-569 (1976) 

562 Elliott H. Lieb: The stability of matter 

holds for an choice of K" in the definition (26) of 8{p). 
Theorem 9 is what will be needed for the H stability 

of matter because it says that the TF system is H sta­
ble, i.e., the energy is bounded below by a constant 
times the nuclear particle number (assuming that the z^ 
are bounded, of course). 

Another application of Theorem 6 that will be needed 
is the following strange inversion of the role of elec­
trons and nuclei in TF theory. It will enable us to give 
a lower bound to the true quantum-mechanical electron-
electron repulsion. This theorem has nothing to do with 
quantum mechanics per se; it is really a theorem pure­
ly about electpostatics even though it is derived from 
the TF no binding theorem. 

Theorem 10. Suppose that x^, .. . ,xf^ are any N dis­
tinct points in 3-space and define 

E'i^{4>,H„ip) (46) 

Vxiy) = J2\y-xj\-\ (44) 

Let 7>0 and let p{x) be any non-negative function such 
that Jp(x)dx <« and J p{x)^^^dx <<». Then 

2 \xi-xj\-'^-- f fp{x)\x-y\"p{y)dxdy 

+ jp{y)Vx{y)dy-{2.21)N/y 

-y j P{y?"dy. (45) 

Proof. Consider 8{p) (26) with^ =1, k=N,K'' re ­
placed by y,Zj = l 2indRj=Xj,j =1, . . . ,N. Let \ 
= J p{x)dx. Then S{p)^EY (by definition) and E ^ 
^ -{2.21)N/r by Theorem 9. The difference of the two 
sides in Eq. (45) is just S{p)+{2.21)N/y. U 

IV. THE STABILITY OF BULK MATTER 

The various results of the last two sections can now 
be assembled to prove that the ground state energy (or 
infimum of the spectrum, if this not an eigenvalue) of 
Hff is bounded below by an extensive quantity, namely 
the total number of particles, independent of the nu­
clear locations {RJ}. This is called the H stability of 
matter to distinguish it from thermodynamic stability 
introduced in the next section. As explained before, the 
inclusion of the nuclear kinetic energy, as will be done 
in the next section, can only raise the energy. 

The first proof of the N boundedness of the energy 
was given by Dyson and Lenard (Dyson and Lenard, 
1967, Lenard and Dyson, 1968). Their proof is a re­
markable analytic tour de force, but a chain of suffi­
ciently many inequalities was used that they ended up 
with an estimate of something like - 1 0 " Ry/particle. 
Using the results of the previous sections we will end 
up with -23 Ry/particle [see Eq. (55)]. 

We have in mind, of course, that the nuclear charges 
Zj, if they are not all the same, are bounded above by 
some fixed charge z. 

Take any fermion ip{x^, . . . ,X/f;Gj^,. .. ,aff) which is 
normalized and antisymmetric in the (A:,,or|). Define the 
kinetic energy T̂  and the single particle density p^ as 
in (16) and (17). We wish to compute a lower bound to 

with Hjf being the AT-particle Hamiltonian given in (23) 
a n d {il>,il>) =1. 

For the third term on the right side of (23) Theorem 
10 can be used with p taken to be p^. Then, for any 
y>0 

h, ^Yj^JXi-Xj\-'ip)^ ^f fp^{x)\x-y\-%{y)dxdy 

-{2.2l)Ny-'-yj p^{y)'/'dy. 

(47) 

Notice how the first and second terms on the right side 
of (45) combine to give +\ since 

l^, \fp^iy)Vx{y)dyU)=ffp^ix)\x-y\-%{y)dxdy. 

(48) 

To control the kinetic energy in (23) Theorem 1 is 
used; the total result is then 

E'i^aj'p^ {xy/'dx - J V{x)p^ ix) dx 

+ 2J Jpri,{x)\x-y\-%{y)dxdy 

+ U{{z,,Ri]%,)-{2.2l)Ny-' (49) 

with 

a = {^Tsq)-'"^K' -y. (50) 

Restrict y, which was arbitrary, so that a >0. Then, 
apart from the constant term -{2.21)Ny'^, Eq. (49) is 
just SaiPtp), the Thomas-Fermi energy functional S 
applied to p^ , but with q'^^^K" replaced by a. Since 
<Sa(P^)>£j%=inf{<§«(p): JP=N} (by definition), and 
since the neutral case always has the lowest TF ener­
gy, as shown in Theorem 9, we have that 

SaiP^)^-{2.21)a-'Y^^zy\ 

Thus we have proved the following: 

(51) 

Theorem 11. litl) is a normalized, antisymmetric 
function of space and spin of N variables, and if there 
are q spin states associated with each particle then, 
for any y>0 such that a defined by Eq. (50) is positive, 

{il>,H^i(>) > -{2.21)\Ny" + a-' E z'A- (52) 

The optimum choice for y is 
^7/3X1/2 

in which case ich case 

This is the desired result, but some additional remarks 
are in order. 

(1) S ince [ l+a ' /Y<2+2a , 
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E%^ -{AA2){ATiqr/'{KX'\N +12 z'A- (54) 

Thus, provided the nuclear charges Zj are bounded 
above by some fixed z, -E^ is indeed bounded below by a 
constant times the total particle number N + k. 

(2) Theorem 11 does not presuppose neutrality, 
(3) For electrons, q ^2 and the prefactor in Eq. (53) 

is -(2.08)7\^. As remarked after Theorem 1, the un­
wanted constant (ATT)^^^ has been improved to [47r/ 
(1.83)]^/^ Using this, the prefactor becomes -(1.39)iV. 
lizj=l (hydrogen atoms) andAT^fe (neutrality) then 

E%^-{5.56)N=-(22.24)NRy. (55) 

(4) The power law z'^^^ cannot be improved upon for 
large z because Theorem 5 asserts that the energy of 
an atom is indeed proportional to z"^^^ for large z. 

(5) It is also possible to show that matter is indeed 
bulky. This will be proved for any ip and any nuclear 
configuration (not just the minimum energy configura­
tion) for which E'^ < 0. The minimizing nuclear con­
figuration is, of course, included in this hypothesis. 
Then 

£^(bosons) > -(2.21)(47r)"^ 
-N'/'h + 

O^E''^=iT^+{ip,H'^if), 

where H'j^ is Eq. (23) but with a factor j multiplying 
Z/f=iA{. By Theorem 11, {ipyH'^if) ̂  2Ej^, where £ ^ is 
the right side of Eq. (53) (replace K" by K''/2 there). 
Therefore, the first important fact is that 

and this is bounded above by the total particle number. 
Next, for any p > 0, it is easy to check that there is a 

Cp>0 such that for any non-negative p{x), 

( Pixr^'dxy/^ j\x\^pix)dx 

It is easy to find a minimizing p for this and to calcu­
late C^: Pix^^^^l-W ior\x\^l; P{x)^0, otherwise. 

Since T̂  satisfies Eq. (18) we have that 

(^, E k r ^) = / \x\'p,{x)dx^C;N{N'/V\E^\r/\ 

with c ; =Cp{K'/Ay/'{ATiq)-''/\ 
If it is assumed thSLtYjzy^ /N is bounded, and hence 

that {N^^V\Eff\y'^^>AN''^^ for some A, we reach the con­
clusion that the radius of the system is at least of the 
order N^^^, as it should be. 

The above analysis did not use any specific property 
of the Coulomb potential, such as the virial theorem. 
It is also applicable to the more general Hamiltonian 
H„^k in Eq. (58). 

(6) The q dependence was purposely retained in Eq. 
(53) in order to say something about bosons. Uq =N, 
then it is easy to see that the requirement of antisym­
metry in ip is no restriction at all. In this case then, 
one has simply 

E% = inf spec Hjf 

over all of L^CRY- Therefore 

(56) 

It was shown by Dyson and Lenard (Dyson and Lenard, 
1967) that 

£^(bosons)^ -(const)iV'/^ 

and by Dyson (Dyson, 1967) that 

£:^(bosons) ^ -(const)iV'/ \ (57) 

Proving Eq. (57) was not easy. Dyson had to construct 
a rather complicated variational function related to the 
type used in the BCS theory of superconductivity. 
Therefore bosons are not stable under the action of 
Coulomb forces, but the exact power law is not yet 
known. Dyson has conjectured that it is \. 

In any event, the essential point has been made that 
Fermi statistics is essential for the stability of matter. 
The uncertainty principle for one particle, even in the 
strong form (5), together with intuitive notions that the 
electrostatic energy ought not to be very great, are in­
sufficient for stability. The additional physical fact that 
is needed is that the kinetic energy increases as the f 
power of the fermion density. 

V. THE THERMODYNAMIC LIMIT 

Having established that E% is bounded below by the 
total particle number, the next question to consider is 
whether, under appropriate conditions, E%/N has a 
limit as iV — °o, as expected. More generally, the same 
question can be asked about the free energy per particle 
when the temperature is not zero and the particles are 
confined to a box. 

It should be appreciated that the difficulty in obtaining 
the lower bound to E% came almost entirely from the 
r"^ short range singularity of the Coulomb potential. 
Other potentials, such as the Yukawa potential, with the 
same singularity would present the same difficulty 
which would be resolved in the same way. The singu­
larity was tamed by the p̂ ^̂  behavior of the fermion ki­
netic energy. 

The difficulty for the thermodynamic limit is differ­
ent. It is caused by the long range r"^ behavior of the 
Coulomb potential. In other words, we are faced with 
the problem of explosion rather than implosion. Nor­
mally, a potential that falls off with distance more 
slowly than r"̂ ""̂  for some e>0 does not have a ther­
modynamic limit. Because the charges have different 
signs, however, there is hope that a cancellation at 
large distances may occur. 

An additional physical hypothesis will be needed, 
namely neutrality. To appreciate the importance of 
neutrality consider the case that the electrons have 
positive, instead of negative charge. Then E%>Q be­
cause every term in Eq. (23) would be positive. While 
the i/-stability question is trivial in this case, the ther­
modynamic limit is not. If the particles are constrained 
to be in a domain fl whose volume |fi | is proportional to 
N, the particles will repel each other so strongly that 
they will all go to the boundary of ^ in order to mini-
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mize the electrostatic energy. The minimum electro­
static energy will be of the order +N^\Q\~^'^'-+N^'^. 
Hence no thermodynamic limit will exist. 

When the system is neutral, however, the energy can 
be expected to be extensive, i.e., 0(N). For this to be 
so, different parts of the system far from each other 
must be approximately independent, despite the long 
range nature of the Coulomb force. The fundamental 
physical, or rather electrostatic, fact that underlies 
this is screening; the distribution of the particles must 
be sufficiently neutral and isotropic locally so that ac­
cording to Newton's theorem (13 below) the electric po­
tential far away will be zero. The problem is to ex­
press this idea in precise mathematical form. 

We begin by defining the Hamiltoni^ for the entire 
system consisting of k nuclei, each of charge z and 
massM, and w electrons (^ V2 = 1, m = l , |e | = l): 

j = 1 ^^^ j Trx^ 1 i = 1 i = n + 1 

(58) 

The first and second terms in Eq. (58) are, respec­
tively, the kinetic energies of the electrons and the 
nuclei. The last three terms are, respectively, the 
electron-nuclear, electron-electron, and nuclear-
nuclear Coulomb interactions. The electron coordinates 
are x^ and the nuclear coordinates are y^. The elec­
trons are fermions with spin \\ the nuclei may be either 
bosons or fermions. 

The basic neutrality hypotheses is that n and k are 
related by 

n = kz . (59) 

It is assumed that z is rational. 
The thermodynamic limit to be discussed here can be 

proved under more general assumptions, i.e., we can 
have several kinds of negative particles (but they must 
all be fermions in order that the basic stability estimate 
of Sec. IV holds) and several kinds of nuclei with differ­
ent statistics, charges, and masses. Neutrality must 
always hold, however. Short range forces and hard 
cores, in addition to the Coulomb forces, can also be 
included with a considerable sacrifice in simplicity of 
the proof. See (Lieb and Lebowitz, 1972). 

H„f^ acts on square integrable functions oin + k vari­
ables (and spin as well). To complete the definition of 
H„^f^ we must specify boundary conditions: choose a 
domain ^ (an open set, which need not be connected) and 
require that i/)"=0 if x, or y^ are on the boundary of fi. 

For each non-negative integer j , choose ann^. and a 
corresponding k^ determined by Eq. (59), and choose a 
domain n^. The symbol/^^ will henceforth stand for the 
pair {nj, kj) and 

\Nj\^nj + kj. 

We require that the densities 

be such that 

(60) 

p is then the density in the thermodynamic limit. Here 
we shall choose the fi^ to be a sequence of balls of radii 
Rj and shall denote them by By 

It can be shown tha the same thermodynamic limit for 
the energy and free enrgy holds for any sequence Nj,^ij 
and depends only on the limiting p and /S , and not on the 
"shape" of the Uj, provided the ^j go to infinity in some 
reasonable way. 

The basic quantity of interest is the canonical parti­
tion function 

Z(N,fi,i3) = Trexp(-/3//„^,), (62) 

where the trace is on L^(fi)'^' and /3= 1 / T , T being the 
temperature in units in which Boltzmann's constant is 
unity. 

The free energy per unit volume is 

F(N,ft,/3) = -i3-MnZ(Ar,n,/3)/|u| (63) 

and the problem is to show that with 

F^ = F{N.,a„l3), (64) 

then 

liin Fj = F{p,(i) (65) 

exists. A similar problem is to show that 

£(iV, i2) = IJ2 |-Mnf {ij), H„^^4>)/{ip, if), (66) 

the ground state energy per unit .volume, has a limit 

e{p) = hraEj, (67) 

where 

The proof we will give for the limit F{p, j3) will hold 
equally well for e{p) because Ej can be substituted for 
Fj in all statements. 

The basic strategy consists of two parts. The easiest 
part is to show that Fj is bounded below. We already 
know this for Ej by the results of Sec. IV. The second 
step is to show that in some sense the sequence Fj is 
decreasing. This will then imply the existence of a 
limit. 

Theorem 12. GiveniST, Q,, and ^ there exists a con­
stant C depending only on p= |JV|/|fi| and /3 such that 

F(Ar,n,i3)>C. 

Proof. Write H„ 

(68) 

= HJ^ + HQ, where 

''-=-lj£^'^i^X 
is half the kinetic energy. Then H^^b\N\, with b de­
pending only on 2, by the results of Sec. IV (increasing 
the mass by a factor of 2 in H^ only changes the constant b). 
Hence Z(iV, fi, ^) < exp(-/36 \N \) Tr exp(-/3^^). However, 
Tr exp(-/3j^^) is the partition fimction of an ideal gas 
and it is known by explicit computation that it is 
bounded above by e' 
|ft| and /3. Thus 

M\N\ with d depending only on p= |JV|/ 

}iH Pj = (61) 

FQ4,^,^)^{b-d)p. U 

For the second step, two elementary but basic in-
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equalities used in the general theory of the thermody­
namic limit are needed and they will be described next. 

A. Domain partition inequality: Given a domain Q 
and the particle numbers N = {n, k), let TT be a partition 
of Q into I disjoint domains fi\ . ., ,fi ' . Likewise N is 
partitioned into I integral parts (some of which may be 
zero): 

N^N'i + N' 

(69) 

Then for any such partition, TT, of ^ and N 

Z(N, fi, /3) = Tr exp(-/3i/„^^) > Tr'̂  exp(-/3i/];,). 

Here Tr'^ means trace over 

3C" = L^(n^) '^ ' l^---^L^(f i ' ) '^ ' ' , 

and Hi is defined as in (58) but with Dirichlet {^=0) 
boundary conditions for the N^ particles on the boundary 
of J2'(for i = l,.. .,1). 

Simply stated, the first N^ particles are confined to 
Q,\ the second iV̂  to fi^, etc. The interaction among the 
particles in different domains is still present in H'If. 
Equation (69) can be proved by the Peierls-Bogoliubov 
variational principle for Tre^. Alternatively, (69) can 
be viewed simply as the statement that the insertion of 
a hard wall, infinite potential on the boundaries of the 
fi' only decreases Z; the further restriction of a defin­
ite particle number to each Q,* further reduces Z be­
cause it means that the trace is then over only the H^-
invariant subspace, X", of the full Hilbert space. 

B. Inequality for the interdomain interaction: The 
second inequality is another consequence of the con­
vexity of A - T r e ^ (Peierls-Bogoliubov inequality): 

Tre^^^^Tre^exp{B) , 

{B) = TrBe^/Tre^ 

(70) 

(71) 

H, = H' 

Some technical conditions are needed here, but Eqs. 
(70) and (71) will hold in our application. 

To exploit (70), first make the same partition TT as in 
inequality A and then write 

(72) 

(73) 

with W being that part of the total Hamiltonian (58) in­
volving only the iV' particles in U*, and W is defined 
with the stated Dirichlet boundary conditions on the 
boundary of ^K W{X), withX standing for all the co­
ordinates, is the interdomain Coulomb interaction. In 
other words, W{X) is that part of the last three terms 
on the right side of (58) which involves coordinates in 
different blocks of the partition TT. Technically, W is a, 
small perturbation of HQ. 

With 

-m (74) A = -mo and 5 = -

in (70), we must calculate {W). Since e^= e"^^o is a 
simple tensor product of operators on each L^(fi*)'^*', 
W is merely the average interdomain Coulomb energy 
in a canonical ensemble in which the Coulomb inter­
action is present in each subdomain but the / domains 
are independent of each other. In other words, let q^{x), 

x^Q.^ denote the average charge density in J2' for this 
ensemble of independent domains, namely 

q'ix) 
^S^Maill^^l-

ex^{-m'){X\X')dx^/Zi]^^ ,^\i^) 

(75) 

with the following notation: X* stands for the coordin­
ates of the |iV'| particles in ^l\ dXj means integration 
over all these coordinates (in i2*) with the exception of 
Xj, and Xj is set equal to x; QJ is the charge (-1 or ^-z) 
of the jth particle; exp(-i3//*)(X*, Y*) is a kernel {x-
space representation) for exp(-/3/f*). q^{x) vanishes if 

With the definitions (75) one has that 

(W)- YL f f (i*ix)q'{y)\x-y\-'dxdy. (76) 

Equation (70), together with (76) and (74), is the de­
sired inequality for the interdomain interaction. It is 
quite general in that an analogous inequality holds for 
arbitrary two-body potentials. Neither specific proper­
ties of the Coulomb potential nor neutrality was used. 

Now we come to the crucial point at which screening 
is brought in. The following venerable result from the 
Principia Mathematica is essential. 

Theorem 13 (Newton). Let p{x) be an integrable func­
tion on 3-space such that pix) = p{y) if U|= lyl (isotropy) 
and P(A;) = 0 if |;c|>i? for somei2>0. Let 

){x) = j p{y)\x-y\~^dy 

e Coulomb potential % 

(p{x)=\x\-'f p{y)dy. 

(77) 

be the Coulomb potential generated by p. Then if |x | 

(78) 

The important point is that an isotropic, neutral 
charge distribution generates zero potential outside its 
support, irrespective of how the charge is distributed 
radially. 

Suppose thatiV* is neutral, i.e., the electron number 
= z times the nucleon number for each subdomain in fi. 
Suppose also that the subdomain Q,* is a ball of radius 
R^ centered at a\ Then since W is rotation invariant, 
q^{x) = q*{y) ii \x -a^\ = \y-a'\, Jq'{x)dx=0 (by neutral­
ity) and q*{x) = 0 if \x-a*\>R\ Then, by Theorem 13, 
every term in Eq. (76) involving q^ vanishes, because 
whenj=!^i, <3̂ (>') = 0if \y-a^\<R* since J2Ms disjoint 
from fi^ Consequently the average interdomain inter­
action, {W), vanishes. 

In the decomposition, TT, of Q, into i2\ . , . , fi' and N 
intoiV\ . . . ,iV' we will arrange matters such that 

(i) a\...,^'-' are balls, 
(ii) N^,.. . ,N^ ~^ are neutral, 
(iii) iV' = 0 . 

Then {W) = 0 and, using Eqs. (69) and (70) 

Z(N,fi,/3)>Tr^exp(-/3//];,)> J J Z(^\^\^)e-

•u ZiJSl\^\(i). (79) 
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In addition to (i), (ii), (iii) it will also be necessary to 
arrange matters such that when fi is a ball B^ in the 
chosen sequence of domains, then the subdomains fi\ 
. . . ,fi' ' ^ in the partition of B^ are also smaller balls in 
the same sequence. With these requirements in mind 
the standard sequence, which depends on the limiting 
density p, is defined as follows: 

(1) Choose p>0. 
(2) Choose any NQ satisfying the neutrality condition 

(59). 
(3) Choose RQ such that 

28(47i/3)pi?^=|iVj 

(4) For j ^ 1 let 

iê . = (28)^i?o, 

N^ = (28)3̂ ' - Wo 

(80) 

(81) 

be the radius of the ball B^ and the particle number in 
that ball. 

It will be noted that the density in all the balls except 
the first is 

P, = P, i ^ l , (82) 

while the density in the smallest ball is much bigger: 

Po = 28p. (83) 

This has been done so that when a ball 5^ , K^l is packed 
with smaller balls in the manner to be described below, 
the density in each ball will come out right; the higher 
density in B^ compensates for the portion of -B^ not cov­
ered by smaller balls. The radii increase geometrically, 
namely by a factor of 28. 

The number 28 may be surprising until it is realized 
that the objective is to be able to pack B^ with balls of 
type 5/f_i,-B^.2, etc., in such a way that as much as pos­
sible of Bj^ is covered and also that very little of B^ is 
covered by very small balls. If the ratio of radii were 
too close to unity, then the packing of S^ would be in­
efficient from this point of view. In short, if the num­
ber 28 is replaced by a much smaller number the analog 
of the following basic geometric theorem will not be true. 

Theorem 14 (Cheese theorem). For j a positive in­
teger define the integer m .̂ = (27)^"^(28)^ .̂ Then for each 
positive integer /C > 1 it is possible to pack the ball Bj^ 
of radius Rj^ (given by 81) with 

U (w^.y balls of radius R^). 
3=0 

"Pack" means that all the balls in the union are disjoint. 

We will not give a proof of Theorem 14 here, but note 
that it entails showing that m^ balls of radius 7?̂ .̂ ^ can 
be packed in B^ in a cubic array, then that m^ balls of 
radius Rj^^^ can be packed in a cubic array in the inter­
stitial region, etc. 

Theorem 14 states that B^ can be packed with (28)^ 
balls of type B^.^, (27)(28)* balls of type Bj^.^, etc. If 
/ ^ . j . is the fraction of the volume of B^ occupied by all 
the balls of radius R^ in the packing, then 

(84) fr-^^^K-^/^Kf-hy' 

with 

r = i < i . (85) 

The packing is asymptotically complete in the sense that 

It is also "geometrically rapid'' because the fraction of 
\BJ^\ that is uncovered is 

X fr (87) 

The necessary ingredients having been assembled, we 
can now prove the following theorem. 

Theorem 15. Given p and i3>0, the thermodynamic 
limits F{p, j8) and e(p) (65, 67) exist for the sequence of 
balls and particle numbers specified by (80) and (81). 

Proof. Let Fj^ given by Eq. (64) be the free energy per 
unit volume for the ball B^ with N^^ particles in it. For 
K^l, partition B^ into disjoint domains fi\ . . . , fi', 
where the J2' for z = 1 , . . . , ? - 1 designate the smaller 
balls referred to in Theorem 14, and O' (which is the 
"cheese" after the holes have been removed) is the re­
mainder of Bj^. The smaller balls are copies of Bj, 
0 ^ j ^ K - 1; in each of these place Nj particles accord­
ing to (81). N^ = 0. The total particle number in JB^ is 
then 

f ! Njm^.j^ No {(27)^-^28)2^+ g {28YJ-i{21)^-^-'{28Y''-''} 

-N,{28r = N^ 

as it should be. 
Use the basic inequality (79); (Ŵ> = 0 since all the 

smaller balls are neutral and Q" contains no particles. 
Thus, taking logarithms and dividing by |J5^j, we have 
for iC^l that 

^K^J^^jfK-J (88) 

with f. = y^/21 and Y=U- This inequality can be rewrit­
ten as 

^ jr yK-j 
(89) 

with dj^ ^ 0. Equation (89) is a renewal equation which 
can be solved explicitly by inspection: 

FK = -yd, ^ 2 8 28 
(90) 

We now use the first step. Theorem 13, on the boun-
dedness of Fj^. Since Fj^^ C, T/J^^dj must be finite, for 
otherwise (90) would say that F^^-°°, The convergence 
of the sum implies that df^-^0 as K^°°. Hence the limit 
exists; specifically 

^-l^J.-tli-§l- (91) 

Theorem 15 is the desired goal, namely the existence 
of the thermodynamic limit for the free energy (or 
ground state energy) per unit volume. There are, how-
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ever, some additional points that deserve comment. 

(A) For each given limiting density p, a particular 
sequence of domains, namely balls, and particle num­
bers was used. It can be shown that the same limit is 
reached for general domains, with some mild conditions 
on their shape including, of course, balls of different 
radii than that used here. The argument involves pack­
ing the given domains with balls of the standard se­
quence and vice versa. The proof is tedious, but stand­
ard, and can be found in (Lieb and Lebowitz, 1972). 

(B) Here we have considered the thermodynamic limit 
for real matter, in which all the particles are mobile. 
There are, however, other models of some physical in­
terest. One is jellium in which the positive nuclei are 
replaced by a fixedy ufiiform background of positive 
charge. With the aid of an additional trick the thermo­
dynamic limit can also be proved for this model (Lieb 
and Narnhofer, 1975). Another, more important model 
is one in which the nuclei are fixed point charges ar­
ranged periodically in a lattice. This is the model of 
solid state physics. Unfortunately, local rotation in-
variance is lost and Newton's Theorem 13 cannot be 
used. This problem is still open and its solution will 
require a deeper insight into screening. 

(C) An absolute physical requirement for pF{py ^), as 
a function of /3= I / T , is that it be concave. This is 
equivalent to the fact that the specific heat is non-nega­
tive since (specific heat) = - /3^9^/3F(p, /3)/9/3^ Fortu­
nately it is true. From the definitions (57), (58) we see 
that lnZ(iV, S7, /3) is convex in ^ for every finite system 
and hence pF{Ny fi, /3) is concave. Since the limit of a 
sequence of concave functions is always concave, the 
limit /3i^(p, /3) is concave in /3. 

(D) Another absolute requirement is that F(p, (3) be 
convex as a function of p. This is called thermodynamic 
stability as distinct from the lower bound H stability of 
the previous ejections. It is equivalent to the fact that 
the compressibility is non-negative, since (compressi­
bility)"^ = dP/bp = pd^F{py /3)/^p^ Frequently, in approxi­
mate theories (e.g., van der Waals' theory of the vapor-
liquid transition, some field theories, or some theories 
of magnetic systems in which the magnetization per unit 
volume plays the role of p), one introduces an F with a 
double bump. Such an F is nonphysical and never should 
arise in an exact theory. 

For a finite system, F is defined only for integral N, 
and hence not for all real p. It can be defined for all p 
by linear interpolation, for example, but even so it can 
neither be expected to be, nor is it generally, convex, 
except in the limit. The idea behind the following proof 
is standard. 

Theorem 16. The limit function F{py 0} is a convex 
function of p for each fixed /3. E{p) is also a convex 
function of p. 

Proof: This means that for p= Xp̂  + (1 - X) p% 0 ̂  X^ 1, 

F{p, /3)^ X F ( P S /3)4-(1 - X)F(p% /3) (92) 

and similarly for E{p). As F is bounded above on 
bounded p intervals (this can be proved by a simple 
variational calculation), it is sufficient to prove (92) 
when X = ^. To avoid technicalities (which can be sup­

plied) and concentrate on the main idea, we shall here 
prove (92) when p^ and p̂  are rationally related: ap^ 
= bp^y a and b positive integers. Choose any neutral 
particle number M and define a sequence of balls Bj 
with radii as given in (81) and with 28(47r/3)pi2^ = (a+ 6) |M |. 
For the p system take N^ = {a+b)M,Nj={28Y''^N^, j^l. 
For the p̂  (respectively, p )̂ system take N^^ = 2bMyN) 
= {28y'''N'^ [respectively, Nl = 2aM,N) = {28y'''Nl]. 
Consider the p system. In the canonical partition jr of 
B^ into smaller balls (Theorem 14) note that the number 
of balls Bj is m .̂̂ . and this number is even. In half of 
these balls place N) particles and in the other half place 
N] particles, O ^ j ^ i ^ - 1. Then in place of (88) we get 

FM- (93) 

in an obvious notation. Inserting (89) on the right side 
of (93), 

FAP) ^ -2 [FAP') + FAP')] -̂  i ( 4 + 4 ) . (94) 

Since lim^_^^6?^^ = 0, we can take the limit K-^^ in Eq. 
(94) and obtain (92). • 

(E) The convexity in p̂  and concavity in /3 of F(p, /3) 
has another important consequence. Since F is bounded 
below (Theorem 13) and bounded above (by a simple 
variational argument) on bounded sets in the (p, 0) plane, 
the convexity/concavity implies that it is jointly contin­
uous in (p, /3). This, together with the monotonicity in K 
of Fj^+ ydj^ (see (90)), implies by a standard argument 
using Dini's theorem that the thermodynamic limit is 
uniform on bounded (p, /3) sets. This uniformity is some­
times overlooked as a basic desideratum of the tHermo-
dynamic limit. Without it one would have to fix p and ^ 
precisely in taking the limit—an impossible task exper­
imentally. With it, it is sufficient to have merely an in­
creasing sequence of systems such that p^-^p and /3̂ . — /3. 
The same result holds for e{p). 

(F) An application of the imiformity of the limit for 
e{p) is the following. Instead of confining the particles 
to a box (Dirichlet boundary condition for H^^^ one could 
consider H^^^ defined on all of L^(R^)|iV|, i.e., no con­
finement at all. In this case 

E^^inf <^,i/„,,?/)>/<0,0> 

is just the ground state energy of a neutral molecule and 
it is expected that £^/|Ar| has a limit. Indeed, this lim­
it exists and it is simply 

limJ5;^/|iV| = lim p-'^(p). 

There is no analog of this for F{py /3) because removing 
the box would cause the partition function to be infinite 
even for a finite system. 

(G) The ensemble used here is the canonical ensem­
ble. It is possible to define and prove the existence of 
the thermodynamic limit for the micro canonical and 
grand canonical ensembles and to show that all three 
ensembles are equivalent (i.e., that they yield the same 
values for all thermodynamic quantities, such as the 
pressure). (See Lieb and Lebowitz, 1972.) 

(H) Charge neutrality was essentially for taming the 
long range Coulomb force. What happens if the system 
is not neutral? To answer this let iV̂ ., J2y be a sequence 
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of pairs of particle numbers and domains, but without 
(59) being satisfied. Let Qj = zkj - rij be the net charge, 
p. = \NJ\/\^J\ as before, and p_,. - p. One expects that if 

(i) Q J I ^ I ' ^ ^ ^ ^ O then the same limit F{p, 0) is achieved 
as if Qj = 0. 

On the other hand, if 
(ii) Qj|fij|"^^^-*°° then there is no limit for 

F{Nj, Qj, /3). More precisely F{Nj, fi_,., 0)^°° because the 
minimum electrostatic energy is too great. Both of these 
expectations can be proved to be correct. 

The interesting case is if 
(iii) limj_,„Qj\Q,j\'^^^ = (y exists. Then one expects a 

shape dependent liynit to exist as follows. Assume that 
the fij. are geometrically similar, i.e., J2j. = Â .J2o with | ^ | 
= 1 and |i^j|\"^= Pj with Pj-^p. Let C be the electrosta­
tic capacity of ^QJ it depends upon the shape of RQ. The 
capacity of Q,^ is then Cj = CXj. From elementary elec­
trostatics theory the expectation is that 

lim F{Nj, n,., 0) = F{p, 0) + a V2C . (95) 

Note that {Q^j/2Cj) \ Qj \-' - a V2C . 
Equation (95) can be proved for ellipsoids and balls. 

The proof is as complicated as the result is simple. 
With work, the proof could probably be pushed through 
for other domains QQ with smooth boundaries. 

The result (95) is amazing and shows how special the 
Coulomb force is. It says that the surplus charge Qj 
goes to a thin layer near the surface. There, only its 
electrostatic energy, which overwhelms its kinetic en­
ergy, is significant. The bulk of Q,j is neutral and un­
influenced by the surface layer because the latter gen­
erates a constant potential inside the bulk. It is seldom 
that one has two strongly interacting subsystems and 
that the final result has no cross terms, as in Eq. (95). 

(I) There might be a temptation, which should be 
avoided, to suppose that the thermodynamic limit de­
scribes a single phase system of imiform density. The 
temptation arises from the construction in the proof of 
Theorem 15 in which a large domain J5^ is partitioned 
into smaller domains having essentially constant den­
sity. Several phases can be present inside a large do­
main. Indeed, if /3 is very large a solid is expected to 
form, and if the average density, p, is smaller than the 
equilibrium density, p^, of the solid a dilute gas phase 
will also be present. The location of the solid inside the 
larger domain will be indeterminate. 

From this point of view, there is an amusing, al­
though expected, aspect to the theorem given inEq. (95). 
Suppose that ^ is very large and that p<pg. Suppose, 
also, that a surplus charge Q = crV^^^ is present, where 
V is the volume of the container. In equilibrium, the 
surplus charge will never be bound to the surface of the 
solid, for that would give rise to a larger free energy 
than in (95). 

(J) The inequality (53) of Sec. IV, together with known 
facts about the ideal gas, permit one to derive upper 
and lower bounds to the free energy and pressure for 
any neutral mixture of electrons and various nuclei. 
These bounds are absolutely rigorous and involve no 
approximation whatsoever (beyond the assumption of 
nonrelativistic Schrodinger mechanics with purely Cou­
lomb forces). 

If one has bounds on the free energy per unit volume 

F ^ ( p , ^ ) < F ( p , ^ ) < F ^ ( p , ^ ) , (96) 

then since the pressure P is equal to - F+ pdF/dp, and 
since F is convex in p, one has that 

P^-F+pmm€'^{F{p+€, ^)-F{p, ^)}, 
(97) 

P > - F + p max € - Hi^ (P,/3) --P'(P - €, ̂ )} • 
€ >0 

Inserting (96) into (97) yields bounds on P, 
Equation (96) comes from bounds on Z [see Eq. (63)], 

Using (70) and p = Pnuc + Pei 

i^^(P,^) = i^°el(Pel,^)+^Suc(P„uc,/3) + <W^>/|0|, 

(98) 

where F° is the ideal gas free energy, and <W)/|fi| is 
the average total Coulomb energy per unit volume in the 
ideal gas state. This can easily be computed in terms 
of exchange integrals. To obtain P ^ , choose 0 < r < l 
and write H„^^= (1 - y)T^.^+T^^^+h{y), where T is the 
kinetic energy operator, and h{y) = yT^i+W. h{y) is 
bounded below by A/y = [right side of Eq. (53)]/y. Thus 

Z < exp[- ^h{r)] Tr exp[-^ ((1 - Y)T,^+ r„„,)] 

and 

^^ = ^nuc(Pnuc,i3) + niax{(l - y ) P ° , ( p , „ ( l - y ) ^ ) 
o < y < i 

+ y - ^ A / | n | } . (99) 

A numerical evaluation of these bounds will be presented 
elsewhere. 

As a final remark, the existence of the thermodynamic 
limit (and hence the existence of intensive thermodynamic 
variables such as the pressure) does not establish the ex-
istance of aunique thermodynamic state. In other words, 
it has not been shown that correlation functions, which 
always exist for finite systems, have unique limits as 
the volume goes to infinity. Indeed, unique limits might 
not exist if several phases are present. For well be­
haved potentials there are techniques available for prov­
ing that a state exists when the density is small, but 
these techniques do not work for the long range Coulomb 
potential. Probably the next chapter to be written in 
this subject will consist of a proof that correlation 
functions are well defined in the thermodynamic limit 
when p or /3 is small. 
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