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PHILOSOPHICAL MAGAZINE B, 1992, VOL. 65, NO. 2, 303-315 

Soft localized vibrations in glasses and undercooled liquids 

By U. BUCHENAU 
Institut fur Festkorperforschung, Forschungszentrum Jiilich GmbH, 

W-5170 Julich, Germany 

ABSTRACT 
Many unsolved riddles in the glassy and liquid state of matter seem to be 

connected with the low-frequency excitations in the millielectron volt range. In 
glasses, an interpretation of neutron scattering and specific heat data in terms of the 
soft-potential model (an extension of the tunnelling model) indicates a relatively 
high number of atoms partaking in a soft vibrational or tunnelling mode. The 
estimated number of about 100 participating atoms has been confirmed recently by 
numerical work in a glass of soft spheres. In the undercooled liquid, the number of 
soft modes seems to increase with increasing temperature. An explanation for their 
localization is attempted in terms of the balance between their vibrational entropy 
and the energy needed for their destabilization. 

Q 1. INTRODUCTION 
Our understanding of disordered solids is still poor compared with the understand- 

ing of crystalline solids. The anomalous behaviour of glasses at low temperatures 
(Phillips 198 1) has never been convincingly explained. Experimentally, one finds both 
two-level states (Phillips 1981) and soft harmonic vibrations (Buchenau et al. 1986) 
coexisting with the sound waves in glasses. These findings support the soft-potential 
model (Karpov, Klinger and Ignatiev 1983, Galperin, Karpov and Kozub 1989), an 
extension of the well known tunnelling model (Anderson, Halperin and Varma 1972, 
Phillips 1972) for the two-level states in glasses. The soft-potential model describes both 
the tunneling and the soft vibrational motion in terms of soft anharmonic potentials 
with locally varying parameters. However, neither the tunnelling model nor its 
extension gives any justification for the existence of these soft localized modes. 

A clue to the origin of the soft localized modes in glasses is given by recent numerical 
work on liquids and clusters at elevated temperatures (Hahn and Matzke 1984, 1987, 
Matzke and Hahn 1988, Seeley and Keyes 1989, Adams and Stratt 1990, Beck and 
Marchioro 1990, Xu and Stratt 1990). These investigations show a fraction of unstable 
modes with negative eigenvalues and imaginary frequencies in the normal-mode 
analysis of frozen-in configurations. The results suggest a connection between the 
anomalous behaviour of glasses and instabilities in the liquid state. 

The present paper begins by a quantitative formulation of the concept of a localized 
soft mode in Q 2. The localization is expressed in terms of the eigenvector of the soft 
mode. It is shown that it can be connected to the fourth-order term of the potential in 
the mode displacement. Section 3 reviews recent experimental and theoretical work on 
the soft modes in glasses. As will be seen, these soft modes are localized to about 100 
participating atoms. This result has been obtained in two different ways. The first is 
based on a consideration of the cross-over frequency between tunnelling states and soft 
vibrations. The cross-over frequency was extracted from specific heat data at low 
temperatures (Buchenau, Galperin, Gurevich and Schober 1991). The second and more 
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304 U. Buchenau 

direct way was to calculate the number of participating atoms for the soft modes of a 
model glass of soft spheres (Laird and Schober 1991). 

Section 4 considers the undercooled liquid just above the glass transition 
temperature q, where these soft modes are formed and frozen in. At this temperature, 
the atomic diffusion is slow enough to define long-time equilibrium positions of the 
atoms, from which in turn a dynamical matrix and vibrational eigenmodes can be 
derived. Using strong simplifications, the equilibrium condition is transformed into a 
stability equation for the soft modes. The section discusses the implications of that 
stability equation for the soft modes and their localization. The results are compared 
with those obtained at low temperatures. 

The final section 0 5 gives a summary of the results of the preceding sections on the 
soft modes in the glassy and in the liquid state. 

0 2. FUNDAMENTALS 
Let us consider the glass or the undercooled liquid as a giant molecule, for which a 

dynamical matrix may be defined. Then one can, at least in principle, calculate normal 
modes with eigenvalues and eigenvectors. The localization of a mode can be defined in 
terms of its eigenvector. We denote the component of the mode k for the atom i in 
direction a by et. The eigenvector is normalized: 

Here N is the number of atoms in the glass or the undercooled liquid. One of the 
possible ways to define the number Nk of atoms partaking in the mode k is 

This definition is often used in numerical work (Bell 1976) and will be also used here. 
Since it contains the fourth powers of the atomic eigenvector components, it can be 
related to the fourth-order term in the potential. This quartic term is especially 
important for the stabilization of the soft modes with their very small or even negative 
harmonic term. Of course, in a solid such a quartic term always exists. Following the 
convention of the soft-potential model, it is expressed in terms of a length a of the order 
of the interatomic distance, at which the fourth order of the mode potential becomes as 
high as the harmonic term for an unsoftened mode at a crystal-like frequency 0,. Since 
the effect of the correlation of the atomic motion on the magnitude of the fourth-order 
term can be absorbed into the value of a, the fourth-order term may be assumed to 
depend only on single-atom motions: 

where M is the atomic mass (for simplicity assumed to be equal for all atoms) and ui is 
the amplitude of atom i. 

A different way to define the localization of the mode is via the largest atomic 
displacement in the mode and an effective mass which connects the kinetic energy of the 
mode to that displacement (Buchenau et al. 1991). Although that definition tends to 
give smaller numbers of participating atoms than that introduced here (Laird and 
Schober 1991), it is essentially equivalent and can be similarly connected to the fourth- 
order term of the potential. 
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Soft localized vibrations in glasses 305 

Let q k  be the fraction of the crystal-like restoring force for mode k.  Then the 
harmonic term in the mode potential is qko,2,4,2/2, where is the amplitude of the 
mode k. One can define a typical atomic displacement xk of the atoms in the mode k by 

The potential of the mode in this coordinate is 

6 c ( x k ) = e k ( r ] k x E  + x:)? 

with &k = NkMa2W,2/2. 
This formulation in terms of an energy &k and a dimensionless coordinate xk 

corresponds to the usual convention of the soft-potential model (Karpov et al. 1983). In 
general, one would have to add a small first- or third-order term to describe the 
asymmetry of the potential. These terms are important if one wants to determine the 
distributions of tunnelling states and soft vibrations in detail but need not be 
considered here. 

The cross-over from soft vibrations to tunnelling states occurs as qk goes from 
positive to negative values. Let us assume that we can describe all the modes in the 
neighbourhood of that cross-over by a common participation number N,.  Let us 
denote the corresponding value of &k by to. Then 

N,Ma2w: 
2 .  

Eg = 

The cross-over frequency between soft vibrations and tunnelling states observed in 
experiment should correspond roughly to the energy spacing of the lowest levels of the 
purely quartic potential with qk=O. These spacings are of the order of the energy W 
with 

h2 213 

W=(2NsMa2)  (7) 

With eqns. (6) and (7) it is possible to calculate N,a2, if one knows Wand o, from 
experimental data. Having Nsa2, one can then estimate Ns, since a should be of the 
order of the interatomic distances. This will be one of the ways to estimate the 
localization of the soft modes in glasses described in the next section. 

0 3. LOCALIZATION OF THE SOFT VIBRATIONAL MODES IN GLASSES 

This section reviews recent work on the localization of the soft vibrations in glasses. 
Let us begin with the estimate of the number of partaking atoms from the low- 
temperature specific heat and from neutron data based on the soft-potential model 
(Buchenau et al. 1991). 

The low-temperature specific heat cp  of glasses is dominated by additional 
excitations which coexist with the sound waves. Figures 1 and 2 show this for two well 
studied glasses, vitreous silica and amorphous selenium respectively. The data are 
plotted as c,/T3 against T on a double-logarithmic scale. The Debye contribution of 
the sound waves is subtracted in order to show only the additional excitations. The 
measurements were done by different workers on different samples and do in fact differ 
appreciably. Nevertheless, they all show a c, essentially linear in T at the lowest 
temperatures. This part is satisfactorily described in terms of the tunnelling model. 
Also, all these different measurements show a marked increase above 1K.  The 
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306 U. Buchenau 

Fig. 1 

0.1 0.2 0.5 1 2 5 10 
T (KI 

Specific heat cp of vitreous silica shown as c,/T3 against temperature Ton a double-logarithmic 
scale. The Debye contribution is subtracted. (From Buchenau et al. (1991).) 

temperature T* at the minimum of cP/T3 is a quantitative measure for the cross-over 
between the tunnelling states and these higher-frequency excitations. 

The nature of the higher-frequency excitations has been investigated by spec- 
troscopic methods, in particular by neutron scattering (for a review see Egelstaff (1989) 
and Buchenau (1989b). The temperature dependence of the signals shows them to be 
harmonic vibrations which become anharmonic as one approaches from above the 
cross-over frequency to the tunnelling states corresponding to T*. This finding 
supports the interpretation in terms of the soft-potential model described above. A 
detailed study gives the quantitative relation 

W= 1.6kBT*. (8) 
Figures 3 and 4 show the vibrational density of states determined from neutron 

scattering data for vitreous silica (Buchenau et al. 1986) and amorphous selenium 
(Phillips et al. 1989) respectively. The data show a broad first maximum of the 
vibrational density of states at 3 THz for vitreous silica and at 1-3 THz for amorphous 
selenium. These maxima are only insubstantially lower than the lowest maxima in the 
density of states of the corresponding crystals and will be identified with the frequency 
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Soji localized vibrations in glasses 

Fig. 2 

a-Se 

307 

Specific heat c, of amorphous selenium shown as cJT3 against temperature Ton a double- 
logarithmic scale. The Debye contribution is subtracted. (From Buchenau et al. (1991)) 

w,. They are about two orders of magnitude higher than the cross-over frequency 
corresponding to the temperatures T* extracted from the specific heat data at low 
temperatures. 

With the values of Wand w, obtained in this way, one calculates Nsa2 = 162 A’ 
for vitreous silica and Nsa2 = 289 A2 for amorphous selenium. Similar data for vitreous 
boron trioxide give N,a2 = 392 w2. Since a should be of the order of 1 A, one must 
reckon with an order of magnitude of 100 for the number of N ,  of atoms participating in 
these soft vibrational and tunnelling modes. 

For comparison with the results ia the undercooled liquid described in Q 4, we note 
that the corresponding values of the energy E~ are 55,89 and 45 eV for vitreous silica, 
amorphous selenium and vitreous boron trioxide respectively. 

The chain of arguements leadingcto the result of 100 participating atoms given 
above is relatively long and involves seaeral assumptions, the most important being the 
validity of the soft-potential model. Therefore the conclusion would seem all the better 
for a direct proof. Such a direct proof has been given recently, at least for the soft 
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Fig. 3 

0.05 I I I I +  

-o- neutrons 

Fig. 3 

0.05- I I I I +  

-o- neutrons 

I 
N 

Y- 

W 
-0 

frequency v (THz) 
Vibrational density of states of vitreous silica determined from neutron scattering (-0-) and 

from specific heat data (. . . .). (From Buchenau et al. (1986).) 

"0 1 2 3 4 
frequency v (THz) 

Vibrational density of states of vitreous silica determined from neutron scattering (-0-) and 
from specific heat data (. . . .). (From Buchenau et al. (1986).) 

Fig. 4 
0.4, I I I I 

5 

Vibrational density of states of amorphous and crystalline selenium determined from neutron 
scattering data at different temperature. (From Phillips et al. (1989).) 
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Soft localized vibrations in glasses 309 

Fig. 5 

.8 

.6 

.2 

0 

0.0 0.5 1 .o 1.5 2.0 
v x (ma2/c)1/2 

The vibrational density of states calculated for a model glass of soft spheres for all modes (-) 
and for only the extended modes (---). The inset shows an enlargement of the low- 
frequency tail of these curves. (From Laird and Schober (1991).) 

vibrations (Laird and Schober 1991). The result was obtained in numerical work in a 
model glass with a repulsive soft-sphere potential 

1 
r6 

V(r)=-. (9) 

Figure 5 shows the vibrational spectrum obtained for this model glass. Most of these 
modes are extended over the whole cell. At high frequencies, one finds some localized 
modes as observed already in earlier work (Nagel, Rahman and Grest 1984). What is 
new, however, is the observation of localized modes at the low-frequency end of the 
spectrum. Figure 6 shows the participation ratio p = N k / N  as a function of the 
frequency. The low-frequency modes can be seen to be localized to about 100 
participating atoms. The localization is restricted to the lowest portion of the spectrum. 

The finding is independent proof for a localization of the soft modes in glasses. It 
supports the interpretation of the specific heat and neutron data in terms of the soft- 
potential model described above which reaches the same conclusion. 

$4. SOFT MODES IN THE UNDERCOOLED LIQUID 
The present section intends to address the question of the thermodynamic stability 

of a soft mode in the undercooled liquid. Let us consider the undercooled liquid just 
above the calorimetric glass transition temperature Tg, where the time scale of the flow 
processes is many orders of magnitude longer than the vibrational time scale, even for a 
soft mode. Then one can define the long-time equilibrium positions of the N atoms by 
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The participation ratio p(v)= N , / N  as a function of frequency for a soft-sphere model glass with 
N=500 (*) and N =  lo00 (0). (From Laird and Schober (1991).) 

where xi. is the displacement of atom i in direction c1 and U is the potential energy of the 
interacting atoms. The configurational free energy Fk of the vibrational eigenmode k is 
given by Fk = - k,T In z k  with 

where j= l/k,Tand v ( x k )  is the potential energy as a function of the normal mode 
displacement x k  as defined in 0 2. Let us again denote the harmonic part of this potential 
by &&%: as in 0 2. Neglecting the weak influence of the displacement on the fourth- 
order term, one gets 

This entropic contribution to the force on a given atom would diverge at t,?k = 0 for a 
purely harmonic mode potential. If one takes into account the quartic term (which in 
real solids always exists), it no longer diverges. Nevertheless, it still remains the 
dominating contribution to the entropic force. Its strength depends on the size of the 
quartic term. The consideration shows that the soft modes need a treatment which 
differs from that of the unsoftened crystal-like modes, for which the quartic term in the 
single-mode potential plays no important role. 
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Sofi localized vibrations in glasses 311 

If the internal strain energy is indeed balanced by the vibrational entropy, one will 
expect a marked increase in the number of soft modes in the liquid with increasing 
temperature. This must lead to a rapid increase in the mean square displacement of the 
vibrational motion above the glass transition. Such an increase, clearly distinguishable 
from the slow atomic diffusion through the liquid by its shorter time scale, has been in 
fact observed by neutron scattering in several different substances (Galli, Migliardo, 
Bellisent and Reichardt 1986, Fujara and Petry 1987, Frick, Richter, Petry and 
Buchenau 1988, Knaak, Mezei and Farago 1988, Phillips et al. 1989). This explanation, 
however, would have to compete with mode-coupling interpretations of the same 
phenomenon (Frick, Farago and Richter 1990). The mode-coupling scheme describes 
the glass transition in terms of dynamic freezing of the liquid (Bengtzelius, Gotze and 
Sjolander 1984, Leutheusser 1984, Gotze 1991). Its connection to the solid-like 
approach considered here is at present not clear. 

Let us now turn to the practical question: how does one get a soft mode in a glass 
spending a minimum amount of potential energy? The destabilization of a stable 
structure by distortion requires potential energy. In general, that energy will grow with 
the spatial extent of the instability. This restricts the minimum-energy solution to the 
close neighbourhood of a single atom. On the other hand, allowing the neighbours to 
give way makes the destabilization easier. Thus the cheapest solution in energy will 
have a large amplitude on a central atom and smaller amplitudes on the neighbours. Its 
eigenvector will resemble those at the lowest maximum of the vibrational density of 
states of the corresponding crystal (transverse zone boundary modes in simple 
monatomic solids, tetrahedra rocking modes in quartz or octahedra rocking in 
perovskites, bond torsional motion in polymers, etc.) Thus the frequency scale o, 
defined above should indeed be chosen as the frequency of this lowest maximum in the 
crystalline density of states as done in 0 3. The distortion needed to destabilize that 
mode locally is composed of extensions in the direction of the vibration of the central 
atom and compressions in the perpendicular directions, as shown schematically in 
fig. 7. For simple monatomic solids, the minimum energy E, required to form such a 
local instability has been estimated (Buchenau 1989a) to be of the order of a few times 
k,T,, where T, is the melting temperature. 

Fig. I 

-' . - * 0- 

Softening mechanism for the local soft mode (see text). 
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312 U. Buchenau 

Let us consider such a minimum-energy soft mode. Clearly, that local soft mode 
need not be an eigenmode itself but can be described by a superposition of eigenmodes. 
We denote the amplitude of the soft mode by A,  and its (normalized) motional vector 
by s. Then 

3N 

k =  1 
1 ( s .e , )2=1.  (13) 

Again, we define a fraction qs to describe the harmonic term qso:A,2/2 of the local 
soft mode. From the decomposition of the local soft mode into eigenmodes it follows 
that 

In order to be able to proceed, one has to make two simplifying assumptions. The first is 
to assume that the local distortion energy U s  depends only on qs: 

us = Em( 1 - qs)2. (15) 
The eigenvector e of mode k can be decomposed into a part (s * ek) moving in phase with 
the eigenvector s of the local soft mode and a rest which is orthogonal to it. The second 
simplifying assumption is to neglect the influence of the local distortion on that rest: 

The approximation will be better the closer the motion of the mode k follows the soft- 
mode eigenvector locally. 

Rephrasing eqn. (10) in terms of the variables qs yields with eqns. (13H16) 

Note that this stability equation for a local soft spot near qs = 0 describes a metastable 
situation. The minimum of the local free energy lies around q S =  1. Thus the other 
extremum near qs=O must be maximum of the free energy. However, since only the 
local part of the free energy was considered, such a soft spot can be easily stabilized by 
the surroundings. The stabilization does not require any forces, because the soft spot is 
locally metastable. Thus the undercooled liquid would be stress free, although strongly 
strained at the soft spots. In this interpretation, the stresses found at low temperatures 
in glasses (Srolovitz, Vitek and Egami 1983) arise with the cooling because the 
balancing entropic forces disappear. 

If eqn. (17) is valid for all soft spots, 

for each soft mode. This is the thermodynamical stability relation for the soft modes, 
which will be evaluated in the remainder of this section. 

In the limiting case of a dominating harmonic term, the solution of the mode 
stability eqn. (18) is simple. In that case, 0," drops out and one obtains a quadratic 
equation for qk with solutions 
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Soft localized vibrations in glasses 313 

Obviously the scheme is only applicable if k,T < E,. Then, one can have either a weakly 
softened mode at q l  or a strongly softened mode at y12. The result is a simple parallel of 
more elaborate considerations on dynamic stability in the self-consistent harmonic 
theory, which have been taken to indicate a first-order phase transition at the stability 
limit (Choquard 1967). 

With the definitions of $2 the mode stability equation reads 

E k ( x k z )  = 2Em( - q k ) .  (20) 
Note that &k scales with the number N k  of atoms participating in the mode. As long as 
the harmonic term dominates, this number cancels. This is no longer true for q k  < q2. 
For instance in the simple case q k  = 0, only the quartic part of the potential remains. 
Then 

OD 

-a, zk 

dX& eXp ( - /?&kX:) 

This integral and the one in can be evaluated using the formula 

leading to 

/kO =4 (;;y 7  BE,)^ = 35*015( j~ , )~ .  

Here E~ denotes the value of &k at q k  = O  as defined in 9 2. 
As noted above, BE,,, is estimated to be about 3 at the melting temperature. Since the 

glass temperature T,  is usually found at about O.6Tm, PE, should be around 5 at T,, 
where the modes freeze in and are no longer free to change their degree of localization 
with changing temperature. Subsequent cooling from T,  to low temperatures should 
leave E~ essentially unchanged. Therefore at low temperatures an c0 of about three 
orders of magnitude higher than kBT, is expected, that is of 50-100 eV, corresponding to 
about 100 atoms participating in the mode, as one indeed finds (see $ 3). The quantity 
e,/k,T, determined from the values of $ 3 using eqn. (23) is 3 5  for silica, 10 for selenium 
and 5.3 for B203,  again of the expected order of magnitude. 

For the numerical treatment of eqn. (20) in the general case, one sets u = ( j&k)""Xk 

and q ' = ( P ~ k ) ' / ~ q ~  Then the mode stability eqn. (20) takes the form 

The negative sign corresponds to localized solutions above q1 and the positive sign 
corresponds to localized solutions below q2.  This equation can be used to calculate &k 

for a given q' and a given temperature. Since in the case of a dominating harmonic term 
(u2) = 1/2q', it is easy to see that with increasing q' the value of q k  approaches q2 as &k 

goes to infinity. The general solution of eqn. (20) calculated in this way is shown in fig. 8 
for two different temperatures which according to our estimates should be close to the 
melting and glass transition temperatures respectively. The number of atoms is seen to 
increase with the increasing harmonic term until it diverges at q2.  

Why do we get such a close connection between anharmonicity and localization? 
The answer is simple: extended modes will never be able to develop a large 
displacement, because the small thermal energy is shared by many atoms. Thus the 
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Fig. 8 

Dependence of the energy (a measure for the number of atoms participating in the mode) in 
units of the destabilization energy E, on the harmonic restoring force constant qk 
Solutions calculated for the cases E,/kgT = 3 (near T,) and 5 (near 7J. The arrows mark 
the q2 values at which the two curves diverge respectively. 

mode experiences the anharmonicity of the potential only via the combined action of 
all the other modes, a situation which is well known from the treatment of anharmonic 
effects in crystals (Choquard 1967). This is different for a localized mode, which samples 
the anharmonicity of the single-mode potential to an extent which becomes more 
pronounced as the mode becomes more localized. For this reason, only the product 
NkuZ, which combines the number of participating atoms with the anharmonicity, is 
found in the equations. 

$ 5 .  SUMMARY 
In this paper, we have first discussed the tunnelling and soft vibrational modes in 

glasses. They could be shown to be localized to about 100 participating atoms in two 
different ways. The first was an interpretation of low-temperature specific heat and 
neutron scattering data in terms of the soft-potential model, which assumes a common 
origin of tunnelling and soft vibrations. In this model, a soft mode could be either a 
tunnelling or a soft vibrational mode, depending on small local variations in the 
parameters of the mode potential. For a small negative harmonic term, one gets a 
tunnelling mode and, for a small positive harmonic term, one gets a soft vibration. The 
model connects the average number of atoms participating in a soft mode to the change 
in the temperature dependence of the excess specific heat around 1 K from a linear to a 
more strongly rising behaviour. 

The second and more direct way to determine the number of participating atoms 
was a numerical calculation in a glass of soft spheres (Laird and Schober 1991). 

The good general agreement of the numbers obtained in these two independent 
ways supports the hypothesis of a common origin of tunnelling states and soft 
vibrations as postulated by the soft-potential model. Thus 20 years after the discovery 
of the low-temperature anomalies of glasses we begin to formulate a microscopic 
description of these modes. 
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On the basis of these findings, a first attempt was undertaken to understand the 
formation of the soft modes in the undercooled liquid. A long-time stability condition 
has been formulated by including a vibrational entropy term into the free energy of a 
quasi-stationary atomic configuration of a highly viscous liquid. In a strongly 
simplified picture, the stability condition could be transformed into a stability equation 
for the soft modes. This equation links the number of participating atoms to the small 
positive or negative harmonic term in the mode potential. The parameter of this model 
is the formation energy E, for a local instability. Assuming values of a few times k,T, for 
this formation energy, one again gets about 100 atoms participating in a single soft 
mode. 
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