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We study the low-temperature behaviour of an elastic continuum with spatially fluctuating elastic
constants and a cubic anharmonic coupling. By functional integral quantization and techniques
used previously for treating an electron gas in the presence of disorder and interactions, we obtain
an effective action which describes the density fluctuations of the system. By means of a saddle-
point approximation we derive a self-consistent set of equations for the density fluctuation propa-
gator Qðw;TÞ where w is the frequency and T is the temperature. From the low-frequency solu-
tions of these equations we are able to obtain a mean free path ‘ / w�1 Im fQðw;TÞ1=2g. This
leads roughly to a T2 law for the thermal conductivity. We also obtain a specific heat which varies
linearly with temperature at low temperatures. At higher temperatures the quantity CðTÞ=T3 exhi-
bits a peak (‘‘boson peak”). The former features are due to the anharmonic interactions, whereas
the latter is mainly due to the disorder in the harmonic elastic constants.

To find a theoretical explanation of the low-frequency vibrational properties of glasses
and their related low-temperature thermal properties is a long-standing problem [1]
(for a review see Ref. [2]). At very low temperatures (around and below 1 K) the
specific heat CðTÞ varies (almost) linearly with temperature T [3], and the thermal
conductivity [4] jðTÞ obeys a j / Ts law with s � 2. At higher temperatures (around
10 K) jðTÞ shows a characteristic plateau, and the quantity CðTÞ=T3 has a peak which
corresponds to a peak in the density of states gðwÞ, divided by w2 (“boson peak”). The
anomalies below � 1K are traditionally discussed in terms of the tunneling model [5] in
which the acoustic waves are assumed to be scattered inelastically by local bistable
defects (two-level systems, TLS) with a broad distribution of resonance energies. The
features around 10 K have been discussed in terms of a generalization of this model
(soft-potential model) [6].
Although many of the observed experimental findings including the absorption and

dispersion of ultrasound could be explained by the TLS model and its generalizations
[6, 7], doubts where raised [8] whether the presence of TLS centers could be the only
reason for the observed anomalies. Indeed, for the anomalous specific heat a much
more general explanation in terms of a spin-glass like model was proposed recently [9].
For the boson peak there exist a large number of alternative models (see Ref. [10]

for an overview over models for the “boson peak”). To our opinion the most simple
and obvious explanation is the one in terms of spatially fluctuating elastic constants [10,
11] which lead to elastic scattering of phonons by the frozen disorder [12].
In the present contribution we generalize our previous ideas concerning the boson

peak anomaly to include an anharmonic interaction. By field theoretic methods, bor-
rowed from the theory of electrons in disordered systems [13–16], we show that the
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low-temperature anomalies can be explained as a result of the inelastic mode–mode
coupling of acoustic phonons induced by the combined effect of disorder and anharmo-
nicity.
In order to demonstrate the main features of our proposed scenario we consider a

simplified model of an elastic continuum which supports only longitudinal vibrations2Þ
(i.e. r� u ¼ 0, where uðr; tÞ are the displacements), which is described by a classical
Lagrangian density of the form

Lðr; tÞ ¼ T ðr; tÞ � Vðr; tÞ ¼ m0

2
ð½@tu ðr; tÞ�2 � �KK½r � uðr; tÞ�2Þ : ð1Þ

Here T and V are the kinetic and potential energy densities, m0 ¼Mq0 is the mass
density, M the atomic mass, q0 the number density. �KK ¼ c2 ¼ ðl þ 2mÞ=m0, is the elastic
constant composed of the Lamé constants l, m, and c is the sound velocity. The elastic
constant �KK is now assumed both to have a spatial variation due to the structural disor-
der of the material as well as a space-and-time variation due to an anharmonic coupling
to the density fluctuations Dqðr; tÞ=q0 ¼ �r � uðr; tÞ:

�KKðr; tÞ ¼ ½K0 þ DKðrÞ� ½1� 2gr � uðr; tÞ� : ð2Þ

DKðrÞ is the static spatial fluctuation of �KK which is supposed to have a Gaussian distri-
bution of the form

P½DK� ¼ P0 exp � 1
2g

ð
d3r ½DKðrÞ�2

� �
; ð3Þ

where g ¼ DK2 (the variance of DK) is the parameter which measures the strength of
the disorder. g is the Grüneisen parameter defined by

g ¼ d ln c=d ln qjq¼q0
¼ 1

2 d ln �KK=d ln q
��
q¼q0

: ð4Þ

The quantum partition function can now be written as [18]

Z ¼ Tr feĤH=kBTg ¼
ð
D½u� e

1
�h S½uðr; t ¼ itÞ� ¼

ð
D½u� e

1
�h

Ðb
0
dt
Ð
d3rLðr;t ¼ itÞ

; ð5Þ

S is the Euklidean (imaginary-time) action and b ¼ �h=kBT.
From now on we use dimensionless units such that lengths are measured in units of

the inverse of the Debye wavenumber kD ¼ ½6p2q0�
1=3, times in units of the inverse

Debye frequency wD ¼ ckD, energies in units of �hwD, and temperatures in units of the
Debye temperature QD ¼ �hwD=kB. In these units the dimensionless mass density is gi-
ven by ~mm0 ¼ m0c=�hk4D ¼Mc2=6p2�hwD, and for the dimensionless average force constant
we have ~KK0 ¼ 1.
In order to be able to perform the disorder average from the outset we make use of

the replica trick: Averages over physical variables are carried out with weights e
1
�h S½uaðr;tÞ�

without denominators Z for �nn replicas (labelled by the index a), and we have to let
�nn! 0 at the end of the calculation.
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2) The calculation including the transverse degrees of freedom is straightforward [17] (the
SCBA is called CPA by these authors) but cumbersome and will be carried out in a later paper.
However – as we believe – the main features of the full theory will be similar to those described
by the present simplified version.



Integrating out the disorder produces an effective quartic interaction which is taken
apart by the Fadeev–Popov ghost field method [16], introducing the matrix fields

Qaa0 ðr; t; t0Þ � ~mm0

2
r � uaðr; tÞr � ua0 ðr; t0Þ and the ‘‘ghost fields” Laa0 ðr; t; t0Þ. The latter

turns out to play the role of a self ernergy and the average of the former is the den-
sity–density propagator, taken at r0 ! r. Integrating out the original fields in the stan-
dard way [13–17] yields the following effective action

Seff ½Q;L� ¼ � 1
2

Tr flog ½ÂA0 þ 1̂1þ L̂L�g þ Tr fL̂LQ̂Qg þ g

2
Tr fQ̂Q2g

þ 4gg2

~mm0
Tr fQ̂Q3g þ DS ½Q;L� ; ð6Þ

where the operators appearing in (6) are defined by

hrtj Q̂Q jr0t0iaa0 ¼ Qaa0 ðr; t; t0Þ dðr� r0Þ daa0 ;

hrtj L̂L jr0t0iaa0 ¼ Laa0 ðr; t; t0Þ dðr� r0Þ daa0 ; ð7Þ

hknj ÂA0 jk0n0iaa0 ¼ ðw2
n=k

2Þ dkk0dnn0daa0 :

Here n are integers which run from �1 to þ1 and are related to the Matsubara
frequencies by wn ¼ 2pnkBT. DS is a contribution, which arises from odd powers in ru
and vanishes in the saddle-point approximation introduced below.
Varying the matrix fields Q and L yields saddle-point equations which can be solved

by replica-diagonal and space independent functions Qaa0 ðr; t; t0Þ ¼ Qðt � t0Þ daa0

and Laa0 ðr; t; t0Þ ¼ L(t-t’) daa0 . They obey self-consistent equations, which can be

written in terms of the Fourier coefficients Qn ¼ Qðz ¼ iwnÞ ¼
Ðb
0
d~tt e�iwn~tt Qð~ttÞ and

Ln ¼ Lðz ¼ iwnÞ with ~tt ¼ t � t0 and

Qð~ttÞ ¼ lim
r! r0

~mm0

2
hr � uðr; ~tt þ t0Þr � uðr0; t0Þi : ð8Þ

. . . denotes a configurational average, h. . .i a thermal one. The self consistent saddle-
point equations are

Qn ¼
1
2

P
jkj<kD

k2

�ðiwnÞ2 þ k2ð1þ LnÞ
;

Ln ¼ � gQn þ
12gg2

~mm0
Q2; n

� �
: ð9Þ

Here

Q2; n ¼ Q2ðz ¼ iwnÞ ¼ T
P
n
QnQn�n ¼

Ðb
0
d~tt e�iwn~tt Qð~ttÞ2 : ð10Þ

The quantity

Gðk; zÞ ¼ ½�z2 þ k2ð1þ LnÞ��1 ð11Þ

is the averaged displacement Green’s function (propagator), and Qðk; zÞ ¼ k2Gðk; zÞ is
the density fluctuation propagator (also called response function or dynamical suscept-
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ibility). The density of states is given by gðwÞ ¼ �ðp=2Þw Im fGðz¼w þ iEÞg with
GðzÞ ¼

P
k
Gðk; zÞ.

Let us now first discuss Eqs. (9) in the absence of the anharmonic Q2 term (g ¼ 0).
Without this term they constitute the self-consistent born approximation (SCBA) for
force-constant disorder, which has been derived previously for mass disorder in Ref.
[17] (the SCBA is called CPA by these authors) by similar techniques. On the other
hand, it can be shown that the well-known coherent-potential approximation (CPA,
(single-bond) coherent potential approximation) [19] reduces to the SCBA in the re-
gime of weak disorder (g=K2

0 < 1). By means of the CPA (compared with a numerical
simulation) it has been demonstrated in Ref. [10] that the boson peak is a natural con-
sequence of disorder in a harmonic solid with fluctuating elastic constants. Therefore it
is not surprising that within the harmonic limit of the present model the SCBA also
predicts a boson peak both in the quantity gðwÞ=w2 and in CðTÞ=T3 calculated from
this gðwÞ. In Fig. 1 we show CðTÞ=T3 calculated for the harmonic model in SCBA for
three values of g. For g > gcrit ¼ 0:5 the model becomes instable as in the harmonic
models considered in [10].
Let us now turn to a discussion of the self-consistent Eq. (9) in the presence of the

anharmonic terms. As in the harmonic case we use the analytic functions QðzÞ;Q2ðzÞ
and LðzÞ in the real frequency domain z ¼ w þ iE, i. e. we have QðzÞ ¼ Q0ðwÞ þ iQ00ðwÞ
with the spectral representation QðzÞ ¼ ð1=pÞ

Ðþ1

�1
d �wwQ00ð �wwÞ=ð �ww � zÞ. The dynamical sus-

ceptibility can be re-written as

QðzÞ ¼ 1
2½1þ LðzÞ� ð1þ z

2GðzÞÞ : ð12Þ

We see that in the low-frequency regime (which we are interested in) the z2GðzÞ
term is negligible. In the real frequency domain we can use the fluctuation–dissipa-
tion theorem [20] to relate Q00ðwÞ to the van-Hove correlation function
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Fig. 1. Reduced specific heat CðTÞ=T3 against temperature, calculated in self-consistent Born ap-

proximation (g ¼ 0) for four values of the disorder parameter g ¼ ðDKÞ2



SðtÞ ¼ lim
r! r0

~mm0

2
hr � uðr; t þ t0Þr � uðr0; t0Þi and its Fourier transform SðwÞ ¼

Ðþ1

�1
dt eiwt SðtÞ

in the following way

Q00ðwÞ ¼ 1
2 ð1� e�bwÞ SðwÞ � f ðbwÞ SðwÞ ;

Q00
2ðwÞ ¼ f ðbwÞ S2ðwÞ ð13Þ

with S2ðwÞ ¼
Ðþ1

�1
dt eiwt S2ðtÞ.

We have now a simplified set of equations which bears strong similarity to the set of
equations studied in the context of glass transition singularities [12, 21]. The detailed ana-
lytic and numerical solution of the full and simplified set of equations will be studied in a
future publication [22]. For the present discussion we only note that in the low-frequency
regime the frequency dependence of SðwÞ is very weak, and the temperature dependence
enters via the thermal factors f ðbwÞ. In order to be able to calculate the thermal conduc-
tivity we remind ourselves that the mean free path ‘ðwÞ can be calculated from the ima-
ginary part of the inverse of the complex sound velocity cðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LðzÞ

p
:

1
‘ðwÞ ¼ 2w Im f½1þ LðzÞ��1=2 : ð14Þ

Using (12) this becomes for small w:

1
‘ðwÞ ¼ 2w

ffiffiffi
2

p
Im f½QðzÞ�1=2 ¼ 2w jQðzÞj �Q0ðwÞ½ �1=2 : ð15Þ

The function QðzÞ can be written as

QðzÞ ¼ 1
p

ðþ1

�1

dx f ðxÞ Sðx=bÞ
x� bz

: ð16Þ

If we believe that the frequency dependence of SðwÞ is very weak, QðzÞ is essentially a
function of bz so that we can state

‘ðwÞ � ~ff ðbwÞ=w ; ð17Þ
where ~ff ðbwÞ is some function of bw. This is the same type of frequency and tempera-
ture dependence as that of the mean free path for inelastic scattering from two-level
systems [5], which, inserted into the conventional formula for the thermal conductivity
derived from the phonon Boltzmann equation

jðTÞ ¼
ð
dw gðwÞ b2w2 exp fbwg

ðexp fbwg � 1Þ2
1
3
c20‘ðwÞ ð18Þ

leads to

jðTÞ / T2 : ð19Þ
In order to be able to discuss the specific heat we have to consider the average

energy which can be easily calculated by adding a static source j to the Lagrangian
LðjÞ ¼ T ð1þ jÞ � Vð1� jÞ, and we have

H ¼ 1
b

d
dj

ln ZðjÞjj¼ 0 ¼ lim
�nn! 0

ZðjÞ�nn�1 1
b

d
dj
ZðjÞjj¼ 0 : ð20Þ
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Omitting the DS term the effective j dependent action is

SeffðjÞ ¼ � 1
2

Tr flog ½ÂA0ð1þ jÞ þ 1̂1ð1� jÞ þ L̂L�g þ Tr fL̂LQ̂Qg

þ g

2
Tr fQ̂Q2g þ 4gg2

~mm0
Tr fQ̂Q3g

� �
ð1� jÞ2 : ð21Þ

This gives in saddle-point approximation

H ¼ const:þ T
P
n;k

�w2
n

w2
n þ k2½1þ Ln�

þ 4gg2T2

~mm0

P
n;n
QnQnQ�n�n

¼ const:þHDðTÞ þ DHðTÞ : ð22Þ

Here HDðTÞ is the usual Debye expression for the average energy3Þ and DHðTÞ
is the anomalous contribution which arises due to the anharmonic coupling. Since
Qn is an even function of the Matsubara frequencies wn / T, we can state
DHðTÞ ¼ ð4gg2T2= ~mm0ÞQðz¼0Þ3T2 þOðT4Þ and therefore

lim
T! 0

CðTÞ ¼ 8gg2

~mm0
Qð0Þ3 T : ð23Þ

Numerical calculations to determine the entire temperature dependence of the specific
heat using the full self-consistent Eq. (9) will be done shortly [22].
We conclude by emphasizing that our anharmonic contribution to the action arises

from a combination of disorder and anharmonicity. If one of the ingredients of our
theory, disorder (represented by the parameter g) or anharmonicity (represented by g)
vanishes, the anomalies disappear.
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