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Vibration anharmonicity and fast relaxation in the region of the glass transition

V. N. Novikov*
Universita Bayreuth, Physikalisches Institut, D-95440 Bayreuth, Germany
(Received 11 February 1998

It is shown that the anharmonicity of vibrations leads to the quasielastic scattering in glasses and super-
cooled liquids. The vibrational self-energy term which arises due to the anharmonic interaction provides the
one-phonon quasielastic response. Estimations show that in the glass transition region the contribution of this
mechanism to the quasielastic spectrum is dominant. The underlying fast relaxation process corresponds to the
fluctuations of the vibration occupation numbers. For the boson peak vibrations the respective relaxation time
is of the order of a picosecond. The spectral shape of this fast relaxation is found. The amplitude of the
guasielastic scattering intensity and its temperature dependence is estimated within the framework of the model
and compared with experimental data on light scattering for various materials. The strength of the fast relax-
ation which is the integral ratio of the quasielastic to vibrational contribution was found to be proportional to
the squared Gneisen parameter. It is shown that at high temperatures the quartic anharmonic term suppresses
the contribution of the third-order anharmonicity to the quasielastic scattering. As a result, a crossover tem-
perature appears in the model; above this temperature the intensity of the fast relaxation does not increase
anymore. This result is in good agreement with the analysis of the Raman scattering da {IA\BBrodin
et al, Phys. Rev. B53, 11511(1996]. Within the framework of the model, the ratio of the crossover
temperature to that of the glass transition is proportional to the inverse fourth-order anharmonic coefficient.
[S0163-182698)03134-9

I. INTRODUCTION of the fast relaxation strongly increases; here the interest in
the fast relaxation was stimulated by the predictions of
The relaxation spectra of glass formers have three charaeaode-coupling theoRyon the scenario of the glass transition.
teristic contributions that correspond to the primaryand The nature of the fast relaxation is still not quite clear.
slow and fastg- relaxation process€s? In some materials, Various mechanisms that can lead to the quasielastic scatter-
e.g., in polymers, the relaxation pattern may be more coming in glasses and liquids are suggested. At temperatures
plicated. On the other hand, there are glass formers where dleep in the glassy state the thermally activated relaxation in
is impossible to detect the slow or second@ryelaxation. the asymmetric double-well potentiafs '3 may give the
The characteristic relaxation times of these three types ahain contribution to the fast relaxation spectrum, a mecha-
relaxation processes have different temperature dependenggsm which is the same as that for the acoustic attenuation in
The most dramatic changes shows the relaxation time glasses at temperatures 10—308*Rhe soft potential model
which is of the order of a laboratory time, i.e., of one to one(SPM),*® in principle, is quite suitable for the phenomeno-
thousand seconds, at the glass transition temperdirdt  logical description of such a mechanism of the relaxation.
changes by many orders of magnitude in the vicinityTgf ~ However, in its present formulation it fails to describe the
where its temperature dependence normally can be approxiletails of the spectral shape and temperature dependence of
mated by the Vogel-Fulcher-Tamman law,<exdB/(T  the fast relaxation.It can be easily improved by a more
—To)] with To<T,. The slow - relaxation time is of the accurate choice of the distribution functions of the soft po-
order of 10 - 10 9 sec atTy and has an activation tem- tential’s parameter Another recent phenomenological
perature dependence with the activation energy of sommodel for polymeric glasses connects the quasielastic scat-
thousands degrees KThe fast relaxation process, the main tering (QES both in glassy and supercooled liquid states
subject of the present paper, is a universal feature of glassith the fast fluctuations of the dynamical free volume
formers. It has a characteristic relaxation time of the order oholes’1° However, the microscopic mechanism of the re-
a picosecond which is practically temperature independent itaxation is not clear in the model.
a broad interval including’y (see, e.g., Refs. 1,2,4Con- Experimentally, the fast relaxation process is intensively
trary to thea relaxation, the fast relaxation is observed bothinvestigated using inelastic light and neutron scattering both
at very low temperatures, deep in the glassy state, and at high glassy and supercooled liquid states. By Rartsze., e.g.,
temperatures—even above the melting p8ititwas found  Refs. 6,17,18,20—28,39,4@nd inelastic neutron scattering
that the susceptibility spectrum of the fast relaxation has @Ref. 29 the high-frequency part of the fast relaxation spec-
low-frequency power-law wing with an exponent of less thantrum can be measured; it reveals itself as a quasielastic com-
1 and a high frequency Debye-like p&rf The intensity of ponent which dominates the spectra at frequencies below
the fast relaxation at some reference temperature, .gy,at 5-15 cm! and has anharmonic temperature dependence.
as compared with the intensity of the microscopic vibrationalUsing a tandem Fabry-Perot interferometer, much broader
band is higher in fragile glass formers and lower in strongspectra of the fast relaxatioftypically, 1-600 GHx were
ones'® Above the glass transition temperature the intensityobtained’~® The fast relaxation process may give a contribu-
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unspecified relaxation mode. This phenomenological model
in the single relaxation time approximation has been applied
by various authors to describe the quasielastic light scatter-
- .\ ] ing spectra in a broad temperature interval both in glasses
BAF4 SiO, and supercooled liquifig’~1925-28303%nd a reasonable fit
] of the spectra has been obtained. However, the microscopic
mechanism of the relaxation was not considered within the
] framework of this model.
In the present paper it is shown that the lattice anharmo-
. . nicity produces a quasielastic part in the one-phonon scatter-
0 10 20 30 40 50 60 ing in glass formers. The QES caused by this mechanism is
Q (cm '1) inevitable (since anharmonicity is inevitable in any glass
b and is independent of whether direct light scattering by some
FIG. 1. Correlation between the inverse relaxation timé and ~ Félaxational modes in the glass exists or not. Such modes, if
the boson peak frequendy, . Data from: NgcLi, PO; (Ref. 28,  they exist and influence the scattering, will give rise to an

polymers(Ref. 18, glycerol (Ref. 25, GeG, (Ref. 40, BAF4 (Ref.  additional quasielastic spectrum. However, the estimations
39), CKN (Ref. 9, B,O; (Ref. 6. In Si0, = ! is at 600 K(Ref.  Of the present work show that the QES caused by anharmo-

63). nicity is sufficient to explain the total amplitude of the quasi-
elastic scattering at the glass transition temperature in all

tion to the QES in two different ways. First, light or neutrons materials for which we are able to find the needed data.
can be scattered directly by relaxational modes. This is th&loreover, it is shown that the width of the quasielastic line
case, e.g., of the Theodorakopoulos antklig™ Gilroy and  correlates with the position of the low-frequency vibrational
Phillips;* and soft potentidP models in which the relaxation peak(the boson peakin accordance with predictions of the
mode corresponds to thermally activated jumps of some emodel and is determined by the relaxation time of the pho-
tity in an effective double well potential. The second contri-non density fluctuations. It is shown that in the third-order
bution comes from light or neutron scattering by vibrationsanharmonic approximation the integral ratio of the quasielas-
which are damped by the same relaxation proé&8s?® tic to vibration spectrum is determined by the squarednGru
Both contributions have the same spectral sh@xeept at eisen parameter. When the fourth-order anharmonic term is
high temperatures, see belpbut are controlled by different taken into account, a crossover temperafiy@ppears in the
coupling constants and obviously have different relations tanodel. Above this temperature the fast relaxation does not
the vibrational properties. increase anymore. In particular, the temperature dependence

In Refs. 22,25,30—-33 it was argued that the second corof the fast relaxation in 803 (Ref. 6 including a crossover
tribution dominates the QES. The argumentation was basest 800-900 K is well described. Within the frames of the
on the experimental evidence of some nontrivial similaritiesmodel the relative interval T,—Ty)/T4 (which correlates
between the spectra of the QES and that of the one-phonanith the degree of fragilityis determined by the magnitude
scattering on vibrations in the spectral region of the bosomwf the fourth-order anharmonic coefficient. The spectral
peak. The latter is a universal feature of the low—frequencyghape of the fast relaxation predicted by the model is in
(maximum at Q,~15-80 cm') vibrational spectra of agreement with experimental data. In a simplified version the
glasses(see, e.g., Refs. 22,34,85These similarities were anharmonic theory of the QES can be also formulated in
discussed in detail e.g., in Refs. 30,32,33 and are brieflyerms of the Gochijaeet al. modef® where a coupling be-
discussed in the following. In Raman spectra, the quasielasween vibrational and unspecified relaxational modes is in-
tic line and the boson peak have the same depolarizatiotoduced; in the anharmonic mechanism all parameters of the
ratioc® and the same value of the light to vibration coupling model are specified, in particular, the vibration-relaxation
coefficient C(w), Coeg~const=C({1y) 2% In neutron scat- coupling constant is the Gneisen coefficient and the relax-
tering, QES and the boson peak have the sgrdependence ation mode corresponds to the phonon density fluctuation.
of the dynamic structure factoB(q,w) (in silica®” and This paper is organized as follows. In Sec. Il the contri-
polybutadien). Finally, there is an empirical correlation bution to QES caused by the third-order anharmonicity is
between the value of the inverse fast relaxation timéand  estimated through the vibration self-energy and general ex-
the frequency of the boson peak maxim@p: 7 1~Q,/3, pressions for the intensity and the spectrum of the QES are
Fig. 1 (hereQ}, is taken from low-temperature Raman spec-obtained. A simplified derivation of these results is also
tra and forr~! some characteristic value is assumed from agiven in order to explain the physical sense of the model. In
broad interval where it is practically constant, specifically,Sec. Il F the fourth-order term is incorporated in the model
nearTy). It is difficult to explain these similarities without and the crossover behavior due to damping of the fast relax-
additional assumptions if the QES is direct light or neutronation at high temperatures is described. In Sec. Il quantita-
scattering on the relaxation modes independent of the lowtive estimates of the quasielastic intensity and spectral shape
frequency vibrations. in some glass formers are obtained within the framework of

A phenomenological model of QES which accounts forthe model and the approximations used are discussed. Com-
these similarities was proposed in Refs. 22,25: it was asparison with the experimental data on light scattering both in
sumed that the quasielastic line corresponds to a lowfragile and strong glass formers is performed and the relation
frequency relaxationlike part of the one-phonon responséetween anharmonicity and fragility is discussed. Finally, in
function which arises due to coupling of vibrations to anSec. IV the results are summarized.

20 Na, Li PO~ ]
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Il. THEORY
A. One-phonon light scattering and vibration self-energy

We consider one-phonon light scattering in a glass taking
into account the anharmonicity of vibrations. The anhar- FIG. 2. Self-energy bubble diagram.
monic interaction produces a self-energy term in the phonon
response function which modifies the spectral shape anBelow it will be shown that the cubic anharmonic interaction
temperature dependence of the light scattering intensity inf vibrational modes leads to the self-enefyw) that de-
comparison with the case of harmonic vibrations; in particuscribes QES in quantitative agreement with experimental
lar, it leads to a quasielastic line. The intensity of the onedata.
phonon Raman scattering by vibrations with a frequeficy
lo(w), is determined by the imaginary part of their response B. Third-order anharmonic self-energy

function Q), . L .
x(@, () The calculation of the vibration self-energy has been dis-

cussed in many papers, in particular, in connection with the

lo(@)=[n(@) +1I[CD)/D]xa(w), @D central mode in the structural phase transitigsse, e.g.,
B 9 2 1 Refs. 42,43 The Hamiltonian of vibrations with the third-
xalw)=-[0*= Q%+ Zg(0)]"7, (22 order anharmonic term has the form
where S (0)=3 (o) +iZ, (o) is the self-energy of the H=Hy+V, 2.9

mode which has both real and imaginary parts a@{l) is
the light to vibrations coupling constant; the exfdain the ~ Where
denominator in Eqg(2.1) is a standard factor that corresponds
to the squared matrix element of a harmonic oscillator. In the _ +

X . Ho=2, fiw,a,a,, 2.1
simplest cas€ ,(w) can be approximated by the Debye 0 za: ® (2.10
relaxation function

52(0Q) V=2 Vo, AAA, . (2.19)
(2.3 By

Herea, anda, are the operators of creation and annihila-
with a single relaxation time- and relaxation strength pa- tion of a phonon in moder,
rameters?(). This approximation was used, e.g., in Refs.
6,17-19,25-28,30,39,41. The imaginary part of the vibra- A,=a, +a,. (2.12
tional susceptibility is equal to

2o(w)=

l-iwT

Due to the structural disorder the modes can be labeled by

37 (@) their frequency. Since in the spectral region of the boson
Xa(w)= R . . (24 peak and QES the depolarization ratio of the scattered light
[02— 0%+ 3o (0)P+[So()]? is typically high, the vibrations responsible for the boson

. ) . peak are of transverse or rotation-libration ty{see, e.g.,
To obtain the total Raman scattering intensiw) one  Ref 44. The self-energy of such vibrations corresponds to
needs to integrate over the vibrational spectrum the bubble diagram of Fig. 2 and in the relaxation time ap-

proximation is given by(see, e.g., Refs. 42,43

Ir(w):fXg(w)C(Q)g(Q)dQ/Q, (2.5 Y
where Za(0)= 2 T (213
I (0)=1(0)/[n(0)+1] 2.6 where the third-order anharmonic coefficievi couples a

mode of the frequenc§) with two modes of the frequency

is the reduced scattering intensity agd?) is the density of e Na=n({2,)~T/Q, is the phonon occupation number,
the vibrational states. At moderate temperatures, whef iS the molecular mass, is the transverse sound velocity,
S o(w) is small[3 o (w)<Q?] the vibrational susceptibility andr, is the relaxation time of the phonon occupation num-

at low frequencieso<( is determined only by the imagi- Dber of the modex. It is convenient to express the cubic
nary part of the self-energy anharmonic coupling coefficient via the mode Geisen pa-

rametery, (Ref. 42
Xo(®)~2(0)/Q* 2.7

QO 1/2
—) (2.19

Q
o . . V, (Q)=7y,—
in first order on the relaxation strength parameter. With these @)=y 6v(2M
conditions the reduced quasielastic light scattering intensit

can be written in the form ¥n terms of this parameter

Q°T Y2
195 w) = f S0()C(Q)gQ)AQIQ% (28 Zo(@)= 2 o (2.19

a
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C. Spectrum of fast relaxation xS

" o Q o a
X (@ o)~ 05t (223

From Eq.(2.13 the frequency dependence of the suscep-
tibility function of the fast relaxation can be found if one
knows the frequency dependence of the relaxation t(6E)
and that of the density of vibrational stagd). Assuming
for yi some average value in the region of the boson peak

This power-law dependence describes the low-frequency tail
of the fast relaxation.

one has for the fast relaxation D. Single relaxation time approximation
Equation(2.13 includes many relaxation processes, each
) 0Q?Ty? (0m7(Q,)9(Q,)dQ, characterized by its own coupling strength and relaxation
2q(w)= Mo 2 fo 1+ w?(Q,) . (218 time. However, the Debye relaxation functi@?J) is a rea-

sonable approximation of E¢R.13 with parameters/? and
where ), is the frequency near the end of the acousticalr chosen as appropriate average values and

spectrum. To obtain a rough estimate of the inte@Pal 6

we suppose the simplest power-law frequency dependence ()~ 6p(1, (2.29
for the density of states and the relaxation tirgé()

=AQ” and 7 }(Q)=BQO?#, where A and B are some , o, T
frequency-independent parameters. Then, using also Eq. S5o=7v o2 (2.29

(2.8 one has
The paramete$, characterizes the strength of the relaxation.
wQ?TY?A [9n Q17 2PdQ, According to Eq.(2.7) the imaginary part of Eq(2.3) de-
Mu2B J; 1+ 0?(Q,) (2.17) s_cribes_the quasiglastic line in the Raman spectra in the
“ single time approximation

So(w)~

Let us introduce a new variablex=1/w7(,)

— 028 _ 1/28 . 2 Sor )
Q%FlwB. ThenQ,=(wBx)*%, and Eq.(2.17) can be ex | OB )~ 2 0 J VB(0)dO/Q,  (2.26

pressed via the dimensionless integral T 1+ w27
) 0 Q2T y?A [xnx4dX where
Solw)~—— 2_af T (218
Muv?B 0 1+x |5} w) =1 w)/[n(w)+1] (2.27)
where is reduced QES intensity and
=(v+1)/2 2.1 i =
a=(v+1)/28 (219 IYP(Q)=C(Q)g(Q)/Q (2.28

and xp=1/wro. Here o is the minimum relaxation time is the reduced intensity of the Raman scattering by vibrations

which prowdgs the cutoff of the'relaxatlon time dlstrlbutlor_l. in the absence of the relaxation. Equati@r26) can be used
Now, to obtain the total scattering spectrum one should in-

,, N i ) i only when the quasielastic line and the boson peak are
tegrateX. o(w) over contributions of vibrations of different ¢jearly separated: at higher temperatures when there is a sig-

frequencied, as in Eq.(2.8): nificant overlapping of the quasielastic line and the boson
peak the exact expressidR.2) of y(w) via 2 (w) must be
|9E5(w):f 3 6(0)C(Q)g(Q)d/0° used(see, e.g., Refs. 18,25rom EQq.(2.26 it is clear that

the relaxation strength paramet@fg is equal to the ratio of
the integrated quasielastic and vibrational spectra

Xm X*d X
ZSwaf (2.20

241’
o X fI?ES(Q)dQ/Q
whereS is a constant: 52~ . (2.29

f 1P(Q)dQ/Q

Ty?A .

MuvB“™ ¢ Using &, and 7 as phenomenological fitting parameters one
. . _ . can fit the low-frequency Raman and neutron spectra well
At high frﬁquen0|eslw>r&12, (2)36 hasl;m<1, S0 thf‘ denomi- (see, e.g., Refs. 13 26 2)6:} 30, where one can findpa more de-
nator in the integral in Eq2.20 can be putequalto 1. Asa ,_.,. .5 =" PN .
result, one obtains the Debye-like behavior for the high_tauled discussion of the procedure and results of the fit

frequency tail of the fast relaxation N o
E. Simplified derivation

in single relaxation time approximation

! QE ~ -1 - . . .
X (0)# 17 0)~(w10) (at1)rs (2.22 In order to have a simple interpretation of the presented

mechanism of relaxation it is useful to give a simplified deri-
At frequenciesw<< 7y, Sincex,,>1, the upper limit in the vation of Eq.(2.29. As is well known from the theory of
integral in Eq.(2.20 can be replaced by. In this case the light and neutron scattering near the structural phase transi-
integral is a constant equal te/[ 2cosgra/2)], so tions (see, e.g., Refs. 43,45a vibration response with the
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Debye self-energy function can result from the linear cou-is the relaxation time of. Using expressio2.37) for &£(w)
pling of a bare vibration to any fluctuations in the solid thatin the Fourier transform of Eq2.35, one obtains

have a Debye relaxation spectrum. It is easy to see that the

cubic anharmonic term produces such linear coupling of vi- Xo(®)=—[0?-0*+025/(1-iw7)] ™, (2.39
brational and relaxational modes. Let the effective potentia,

N ,h i ibili i ith th
energy for a vibration modey of a frequency() be e., the vibration susceptibilityo(w) associated with the

modex has a Debye self-energ®.24 with the relaxation
U(x)=MO272/2+4 Ba 7, (230  strength parametef; equal to

whereQ) andM are the mode frequency and effective mass, 85=b3/a=b3(£2)/T. (2.40
respectively. In order to remove the apparent dependence of

the parameters of the model on the frequency and mass it gince, according to definitior, is the fluctuation ok?, then

Convenient to use the norma”zed mode USing fOI’ the |atl‘el’ the harmonic OSCi”ator VaIN_éZQ(n
+1/2) we see that the relaxation modeas determined by
x=M2Q . (2.3) the fluctuation of the phonon occupation numiser
In terms ofx, U=x?/2+bx3, where £=Qon, (2.41)
by=B3/M3203, (2.32  respectively(£?)=Q2(sn?). It is known (see, e.g., Ref. 46

, 3 —  that the mean square fluctuation of the occupation number
The anharmonic ternb;x® can be represented dmx(x for the noninteracting bosons is equal to

+Ax?) wherex? means the square amplitude averaged over
a time interval of the order of the period of the vibration and (6n?y=n(n+1). (2.42
Ax* is a fluctuation of this mean square vibration amphtude.Since the anharmonicity is already taken into account in Eq.

Such a representation makes sense if the respective relax: 2 ;
ation time is larger than the period of the vibration. TheéA@ by the factorb; we can use in other terms the expres-

fluctuation Ax? just plays the role of the relaxation mode sions for harmonic excitations. Than one finds
of the problem 85~b30%n(n+1)/T~b3T, (243

£(t)=AXA(1). (2.33  where we took into account that at high temperaturgQ)
. _ —. ~T/Q. The cubic anharmonic coefficieft; can be ex-
Af_ter a trivial sh|ft ofx by a constant factor&x“ in order to pressed via the mode Greisen parameter yo=
eliminate the linear termx? one has _(0””91//(29'”\/)T? a simple estimation gives yq
=bsLM Y40, whereL is a characteristic length of the vibra-
U0) =x%/2+bsxé +ag’f2, (2.34 tion with frequency() . For the quasilocalized vibrations that
where the terma¢?/2 is added toU in order to take into form the boson peak, the acousticlike relatiéh~uv/L
account the minimum work needed to create a given thermd1olds?*****4"hence,
fluctuationé. For the Gaussian fluctuations the constaiig B 12
proportional to the inverse mean square value&8f a b=y /oM™~ (2.44
=TI(&). Using this expression fdo; in Eq. (2.43 one obtains again
The standard methods of fluctuation theory can be applie¢he result of Eq(2.25. This simple derivation has the pur-
now to obtain the susceptibility function of the vibration pose of clearing up the physical sense of the relaxation pro-
Xa(w) using the equations of motion for the variableand  cess to obtain estimates of the relevant parameters and pro-
§. Introducing a dissipation function for the relaxation vari- vide a basis to deal with the more complicated anharmonic
able&, F(£€)=hé&%/2, whereh is a dissipation constdfitand  potentials which are difficult to handle using regular pertu-
neglecting the contributioty, to the width of the vibrational bation theory.
mode due to processes other than the relaxational process
under consideration, we obtain the following equations of F. High-temperature damping of the fast relaxation
motion; by fourth-order anharmonicity

The fourth-order anharmonic term can be neglected at low

X/ +x+bgg=f(1), (2.39 enough temperatures, when the relaxation strength parameter
) 5(2, from Eq. (2.43 is small(as all anharmonic effects agre

hé+ag+bsx=0, (2.36 However, with increasing temperature the influence of the

wheref(t) is a random force term. For the Fourier transform fourth-order anharmonic term may be significant and should
of ¢ one has from Eq(2.36 be taken into account. We use here the simple approach pre-
sented in the previous section to find the respective correc-

—xbg/a tions to Eq.(2.43. With the fourth-order anharmonic term
fw)=35-—, (2.37  the effective potential energy can be written in the form
where U(x)=MQ?n?/2+ B3y’ +Byn*

r=hla (2.39 =x212+bax3+bx?, (2.45
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where b,=B,/M?Q*. Using again the decompositiox’
=x2+ ¢ with é&=AxZ one can find an approximate expres-
sion of the potential(x) via the coupled vibration and re-
laxation modes

U(X)~X2(1+2b,x%) 2+ bax £+ b ex2+ b, £2+ aé?.
(2.46

Here the term # 2b,x? renormalizes the frequency and the
termb,&x? is unimportant for what follows since it does not
influence the susceptibility. The equations of motion in this
case can be found in the same way E@s35,(2.36 were
found and are the following:

X102+ (14 2b,x2)x+ baé=1f(1), (2.47)
hé+ (a+2b,)£+bax=0. (2.48
The respective susceptibility is equal to
xo(w)=—[0?-Q2+0%8/(1-iwn], (2.49
where
02=02(1+2b,x%)~02(1+2b,T) (2.50
is the renormalized frequency,
r=7/(1+2b,T) (2.51)

V. N. NOVIKOV
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l{w)/w(n+1)

FIG. 3. Schematic presentation of a typical low-frequency Ra-
man spectrum in a glas§l) The boson peak(2) the quasielastic
line in the Debye approximatiorn3) the sum of curves 1 and 24)
low-frequency wing of the quasielastic line when there is a distri-
bution of the fast relaxation times at 7.

~y2TIMv?, (2.56
where
Y
YT 1 2b, T (257

Indeed, it is known that the fourth-order anharmonicity leads

is the renormalized relaxation time and the modified expresitg such a renormalization of the Greisen parameter in the

sion for the relaxation strength parameter is

b3T _ YTIMY?
(1+2b,T)2 (1+2b,T)?

As the most important consequence, E2152) predicts that
at high enough temperatures the fast relaxation will no
longer increase as temperature increases, providing the sou
velocity does not decrease faster thaff. The characteristic
temperatureT at which the fast relaxation strength param-

eter 50 stops increasing is determined by the condition
2b,T,~1, so

2
o~

(2.52

T~1/20,. (2.53

In the next section this point will be discussed in more detail.

Let us note that the termlT in the denominator of Eq.
(2.52 can be written in the form
2b4T%U4/U0, (254)

whereU,= x%[2~T/2 and U,= b4F~ b,T? are the average

isothermal condition&®

I1l. DISCUSSION
A. Schematic presentation of light scattering spectrum

For what follows, it is useful to present schematically the

a asielastic and vibration contributions to the scattering

aectrum. This is done in Figs. 3, 4. In Fig. 3 the spectral
density normalization (w)/w(n+1) is used which corre-
sponds to the direct light scattering intensity at highin
these coordinates the boson peak can be observed most eas-
ily; in Fig. 3 this is a peaKsolid line, curve 1 with a maxi-
mum atw~3 (the quasielastic line width, * is chosen as
unity). The short dashed linurve 2 represents the quasi-
elastic spectrum in the single relaxation time approximation,

pre

values of the harmonic and fourth-order anharmonic parts of
the vibration potential energy, respectively. This means that
within the framework of the model the fast relaxation satu-
rates at a temperature when, roughly, the contribution of the
fourth-order anharmonic term to the energy becomes compa-
rable with that of the main harmonic term

Uy(T, (2.55

Comparison of Eq92.25 and(2.52 shows that the latter
equation can__be obtain from the first one by the renormaliza- FIG. 4. The same curves as in Fig. 3 in susceptibility represen-
tion of the Gruneisen parameter tation and log-log coordinates.

Kop(n+1)

0.1

JUo(To)~1. 20
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TABLE I. The values of parameters used in the mo@eT=T,). vy, is found from Eq.(2.25. 5(2) and
vy are taken from Ref. 18 for polymers, from Ref. 6 fos@, from Ref. 25 for glycerol, and from Ref. 63
for SiO,. y for polymers is from Ref. 52, for SiOfrom Ref. 64. Molecular mashl is in atomic units.

8(Ty) y (Tg/Mod)Y2 Yin Ty (K vy (10° cmis) M

PC 0.31 45 0.11 4.0 418 1.08 270
PS 0.21 3.2 0.16 33 373 1.12 111
PMMA 0.16 25 0.16 25 370 1.1 100
PB 0.13 2.4 0.16 2.3 175 1.1 54
Glycerol 0.1 186 92

B,O, 0.07 0.14 2.7 526 1.91 70
Sio, 0.05 1.8 0.14 1.8 1480 3.8 60

so it is described by a Lorentzian. The dotted lfperve 3 is  latter equation it follows that the strength of the fast relax-
the sum of both contributions. The solid line with the openation atT is determined only by the Gneisen parameter
circles (curve 4 describes the quasielastic spectrum when

there is a distribution of the relaxation times &¢ 7, it So(Tg)=ar|y]=0.14|. (3.2
corresponds to a realistic Raman spectrum. Typically, the

low-frequency Raman data are presented and analyzed in the irect estimate of Eq.(2.25 at T=T, gives 5(2)~2
(2. g

_coordinates of Fig. 3. The tandem Fabry-Perot Iigh_t scatters, 107242 (see Table), in agreement with the estimate that
ing data are normally presented as a log-log plot in a N0 ses the Lindeman ratio

malization that corresponds to the susceptibility” With a tvpical value of the Gmeisen parameter for polv-
«|(w)/(n+1). This case is illustrated by Fig. 4 with the mers y_zyp4 (Ref. 52 one haséz—of 03 atT=T piny
. . y - - . o Y.-L+— VY. - g
s?mtehc%r\l/es ?S in Fig. 3. Cur;/(tah4fcletarl3|/ sh(t)_ws here thSood agreement with the results of the fit of the QES spectra
stretched low-frequency wing of the fast refaxation. which was performed in Ref. 18 for polycarbongfeQO),
polystyreng(PS), polymethylmethacrylatdPMMA), and po-
B. Relaxation strength parameter lybutadiengPB), see Table I. In strong glass formers such as

The low-frequency Raman and neutron spectra of somB20s and SiQ, the relaxation strength is lower than in poly-

glasses and supercooled liquids were fitted earlier using EQNE'S: See Table 1. Let us note that there is a correlation
(2.5 and the Debye self-energ@.3 with 8, and r as phe- | etween the strength of the fast relaxattﬁzpand the fragil-
nomenological fiting parametetsee, e.g., Refs. 17—19,25— Iy Of the system: the higher the fragility, the largéy (see
28,30,39. In some cases the authors used 5= 5,Q) for Table ). This is of course in agreement with the observation

10 : i
fitting the parameter supposing that it is frequency indepenglc Sokolovet al. on the correlat[on between _the fragility
dent: one should note, however, that both in the hydrodyf’md a parameter which characterizes the relative strength of

namic approximatiof#3%4%and in the case of the quasilocal- the QES in comparison with thg boson peak.intens.ity. Ac-
ized vibrations with the acousticlike relatidd=L~*, Eq. cording to the present model, this means that in fragile glass

- - formers the anharmonicity is higher than in strong ones, see
(2.29 with a frequency-independen} holds. So, for a num- ) .
ber of materials the temperature dependence and numeric'.'flﬂ' (3'|2)' Sgtch adcqrr(t-:-rl]atlon Wl‘”?‘s dlscgsTe? ,t\)ly An’garhd
values of 6, and = are known. Typically,&S(T) is in the vas &s0 obtained in the coupling modet o gsee, e.g.,

) o ' . Ref. 53.
interval 0.05—-0.3 and it is a monotonously increasing func- In Fig. 5 the temperature dependence of the relaxation

tion of temperature with a more or less sharp jump of the ) )
slope at thg glass transition temperat[rrge(see? (Ja.g.,pRef. strength paramete?g as found from the f't .Of QES spectrain
18). The relaxation timer is essentially temperature indepen- B,O3 (Ref. § is compared to the predictions of the model,

dent belowT, and has a tendency to slightly decrease abovgg' r(é.ZSé,loin_'ih yzz'ékzheftgmriﬁ;agéi c;e;;_eiggenceeof :[Phee
T,. At T~T, the coefficient betweer; and y2, T/My2 ~ SOHNC Veloclly was nr ve clted paper.

[Eq. (2.25], is more or less the same constant for Varic)uscomparispn shows that E(R.25 reasonably describes both
| : f' ' : i | | Vo2 ; the magnitude and temperature dependence of the fast relax-
glass formers sincd linearly correlates withMv~“. It is

easy to show that this is a consequence of the Lindemangtion strengthdy in B,O; in some vicinity of Tq. Table |
criterion of melting® and of the relatiorT,~2T,/3 where Iso shows good agreement between the predictions of the

T is the melting temperature. The relatidocMp? was anharmonic model and the re§ults of the free fit of thg light
alrgo confirmed by a direct combarison of botr% parameters foscattermg data by the Gochuqent al phenomenologmal
a lot of materials in Ref. 51. A good approximation of Eq hodel fpr other mat'erlals for which we were ablg to find thg
. U " respective data. This means that the anharmonic mechanism
(225 atT=<Ty s of the quasielastic scattering is predominant at temperatures
in the vicinity of and abovd . The situation may be differ-
So~at v’ TITy, (3.)  ent at lower temperatures deep in the glassy state, where
anharmonic effects decrease. In this case, the thermally acti-
wherea =0.12-0.16 is the Lindemann ratio that is a morevated jumps in the asymmetric double well potentials may be
or less universal parameter for various materials. From théhe dominant mechanism of the fast relaxatfiamhich is the
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400 600 800 1000 1200 1400 & %00 800 1000 1200
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FIG. 5. Comparison of theory and experiment for the tempera-  F|G. 6. Temperature dependence of the inverse relaxation time
ture dependence of the relaxation strength param#én B,Os.  in B,0,. Solid line: Eq.(2.51), solid circles: data from Ref. 63.
Solid circles are data from light scattering, dash lines are the fit
using Eq.(2._25), the solid line is the fit Eq(2.52). Data for 53 and temperatureTC?’ . On the other hand, in the present anhar-
sound velocity from Ref. 6. monic model of fast relaxation we are going from tempera-

tures belowT ., beginning even in the glassy state, and also

very subject of the Gilroy and Phillips and the soft obtain a crossover behavior of the fast relaxation at some
potential® models. However, in the present paper we contemperatureT,. This is in qualitative agreement with the

sider only the high-temperature regime. predictions of the MCT and even quantitatiifer the case of
B,O;) with the phenomenological analysis of the high-
C. Saturation of fast relaxation temperature behavior of the fast relaxation performed in Ref.

55, where the authors found a crossover temperature both in
strong and fragile glass formers and showed that in the latter
'€ase it is equal to the critical temperature of the MCT.

The light scattering data of Ref. 6 show that i the
fast relaxation strength no longer increases with temperatu
at T=T,~900 K (Fig. 5, so Eq.(2.25 ceases to describe
the 85(T) behavior aff>T,. This may be explained by the
influence of the quartic anharmonic term: according to Eq.
(2.52 its contribution increases with temperature and may be As it was shown in Sec. Il. F in the anharmonic model the
important at high enough temperatures iCB. In this case crossover temperaturg, is determined by Eq(2.53 and
instead of Eq.(2.25 one should use the more complicated corresponds to a temperature when the fourth-order anhar-
Eg. (2.52 which predicts saturation and an even decrease afonic termU, becomes comparable to the main harmonic
5§(T) at high temperatures. In the majority of glass formerscontribution U, to the vibration Hamiltonian. One of the
this effect is hidden by the relaxation that comes into the consequences of this prediction explains the relation between
spectral region of the fast relaxation at high temperatures; ithe degree of fragility and the ratid./Ty. It is known that
B,0; «a relaxation is still far away from this region at tem- in fragile glass formers this ratio is typically 1.2 while in
peratures around 1000 K which gives the possibility to ob-strong glass formers it is highé¢e.g., 1.6 in BO3). If one
serve here the fast relaxation saturation. The fis3(fT) by  takes for the crossover temperature the estirt@&& of the
Eq. (2.52 describes the crossover behavior of thg fastl/rzelax~Oresent work then
ation strength parameter in,8; with b;=2x10"° K~
and b,=0.9x10"% K1 well. According to the general Tg/Tc=2b4Tg. 3.3

properties of the anharmonic coefficients, normalfyand  This means that at fixed, the ratioT,/T, decreases with

b, should be of the same order of magnitudee, e.g., Ref. decreasing anharmonic coefficiehy. However, in many

54). In our caseb,~2b3, so the parametds, which is re- cases] is higher in materials with lower anharmonicity, so

sponsible for the saturation of the fast relaxation ¥0Bhas  from Eq. (3.3 it is difficult to make a conclusion about the

a quite reasonable value by the order of magnitude. relation betweenTy/T. and anharmonicity itself. On the
From Eq.(2.5)) it follows that the inverse relaxation time other hand, if the effective anharmonic potential for a mode

should linearly increase with temperature with a slope detery, Eq. (2.45 is written in dimensionless coordinates,

mined byb, (if one neglects other possible contributions to

the temperature dependencerdf This prediction is checked U(x)=(ka*/2)[(n/a)*+f3(nla)*+fa(nla)*], (3.4

in Fig. 6 where experimental points are found from the data

; ) : where k=MQ? is a fourth constant and is an average
of Ref. 6, b, is taken from the fit ofb‘g(T) as described . R . )
above, andr(T—0)—4.6 cnt L. As follows from this fig- interatomic distance, then the relative strength of the fourth

ure, the temperature dependence of the relaxation time igrder anharmonic term may be characterized by a parameter
’ . .'F, which is the ratio of the coefficients ap(a)* and (y/a)?,

B,O; can be well described by the fourth-order anharmonic * ay(a) (/)

term. B4
Mode coupling theory predicts a temperature-independent f, 4

fast relaxation in the liquid state above the so-called critical ka2’

D. Relation between the anharmonicity and the ratioT /T

(3.5
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According to the definition, Eq2.45), B,=b,k? so one has
f,=2b,ka’. As was mentioned above, the parameter
=MQ%a?xMv? scales asTy. In the Einstein oscillator
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of the boson peak, so 1(Q)~DI2(Q), thenB~2. With
these values of the parameterand 8 one obtainsy~0.5.
For the Debye vibrational density of states<2) and Ray-

model the coefficient can easily be found using the Lindedeigh phonon scatteringd=4) one hasa~3/8. The vibra-

mann criterion of melting: if one supposes thaflat T the
mean square atomic displacement is a universal @arof
the average interatomic distance~ «, a, then knz(Tg)
~kafa®~T,. As a resultka?~T,/af and

f4~2b,Tylal. (3.6)
A comparison with Eq(2.45 gives
Ty/Te~alf,. (3.7

This result showed that the rafig /T, is proportional to the

relative magnitudef, of the fourth-order anharmonicity.

tions in the THz region in glasses have not been studied
enough to make reliable conclusions about the frequency be-
havior of the diffusion constard. Our suggestion is based
on the results of the computer simulation of a model gfiss,
where essentially the frequency-independent diffusion coef-
ficient that describes the evolution of the vibration density
fluctuation was found at frequencies corresponding to the
boson peak. However, the alternative relation(Q)
~v/l1(Q) with frequency-independent sound velocity can
also be considered. In this case all the differences in the
preceding results come from changifg- 8/2 in the expres-
sion for the exponent (2.23. In particular, for the typical

Qualitatively, this conclusion is in agreement with the results,gjye of o in polymers one obtains 1 instead of 0.5; for the
of the preceding subsections: the stronger the glass formeise of the Debye vibrations one obtaims 3/4 instead of

the lower the anharmonicity.

E. Spectral shape of the fast relaxation

3/8.
Light scattering spectra of the picosecond relaxation in a
broad frequency ranggypically, 1-600 GHZ can be mea-

The spectral shape of the anharmonic contribution to fasgured using a te}ndem Fabry-Perot interferometer. Such data
relaxation is given by Eq(2.20. This expression predicts have been obtained up to now for temperatures around and

the asymmetric susceptibility function with the high- and @POVeTg in some glass formers and are in agreement with
low-frequency tails described by Eq.22 and(2.23, re-  the predictions of the model, exhibiting a Debye high-
spectively. The high-frequency tail is Debye-likg! o L; frequency behavior and a stretched low-frequency wing with
this is a consequence of the existence of a minimum relaxtN€ slope« in the interval from 0.3 to 0.8 in various

ation time 7,. The Raman data for the quasielastic line in materials® Recently, spectra of the fast relaxation were mea-

glassedtypically, =1 cm) which represent mainly the sured by Iight scattering in a broad frequency and tempera-
high-frequency part of the fast relaxation are in agreemeniUre range in the glassy state of polymers of CKN and sflica.
with this prediction: normally, they can be well fitted by a 1he value of the exponent at room temperature in most
simple Lorentzian after properly accounting for the vibrationc@S€s was found to be equal to 0.5-0.6, in agreement with
contribution®®222% At low frequencies,o<7,*, a power- the anharmonic model of relaxation. _

law spectrum of the fast relaxation is predictgtix »® with The estimations performed in this subsection use some

the exponentr defined by Eq(2.19. The difference in the approximations._First, the G'".‘*ise” constant was assumed
Debye-like behavior at these frequencigé<w is due to to be frequency independent in the region of the boson peak;

existence of some distribution of the relaxation timesrat second, the denslty of vibrational statg(;Q)' can on!y
= r,. It is easy to find from Eq(2.16 that in the present roughly be approximated by some power law in the region of

model the relaxation time distribution functid®(7) is de- :E.he b”oson pezl_(esriec;?llfy énl s;crr]onfg glass fOI;ijISQ\ng- f
termined by the equation ionally, according to Ref. 61, the frequency dependence o

the sound absorption in the region of the boson peak may
G(7)=g(Q)|9Q/a7] (3.9 change its behavior from? to w* law, as was shown in Ref.

) ) ) 61 for longitudinal vibrations in amorphous silica where a
with ) found as a function ofr from the equationT  crossover was found at 210 GHz. Therefore, for a more ac-
=7({1). For the same powzer-law ansatz as in Sec. ll.cyrate estimation of the spectral shape of the fast relaxation
9(2)=AQ” and 7~ *(Q)=BQ?*, one has additional experimental data or(Q)) and y(Q) and a nu-
merical evaluation of the integré2.16) are needed.

Let us note that the soft potential model in its standard
formulation predicts the logarithmic frequency dependence
of the thermally activated fast relaxation in double well
potentials'® Therefore, it fails to correctly describe the low-
frequency power-law tail of the fast relaxation in glassy state
this respect the characteristic tintg found previously in  in the regime of the thermal activation. Thus, the SPM needs
neutron scattering experimerftzan be viewed as,. some further development, e.g., an improvement of the dis-

Typically, for polymers in the region of the boson peak tribution function of the soft potential parameters.
the density of vibrational states is practically linear in fre-
qguency,v=0.9-1(see, e.g., data for PS, PC, and PMMA in
Refs. 18,36,58,57 According to sound absorption data in
PS, some other polymers ardSiO, at frequencies up to As was shown above the relaxation timein the self-
440 GHzl '« w? (see Ref. 59 if one suppose that the dif- energy function(2.16 is that of the fluctuations of the pho-
fusion coefficientD is frequency independent in the region non occupation number. Here we make a rough estimate of

G(n)=(1+a)r§l7*"t for =g, (3.9

G(7)=0 (3.10

In Egs.(3.9),(3.10 74 provides a cutoff ofG(7) at smallr
which leads to a Debye behaviorat 7, 1. We note that in

for 7<7y.

F. Relaxation time
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this relaxation timer chosen as an appropriate averageresponse of the vibration susceptibility function while the
value, i.e., for the Debye relaxation approximation. Fordirect coupling of light to relaxation modes which damp the
propagating phonons, the relaxation time of the occupatiowibrations is small. In the anharmonic model of the present
number fluctuations can be expressed through the phonguaper the nature of the relaxation mogehat damps the
diffusion coefficientD and the phonon mean free path lengthvibrations and leads to the central line is specified: at tem-
I: 7~1~D/I2. On the other hand, a simple estimate of theperatures nea this is the phonon density fluctuatich
diffusion coefficient isD~vl/3 (v is the sound velocity of o« én. The mode is quadratic in the vibration amplituge
the appropriate phonon brancis a result, a rough estimate The same operator determines the two-phonon scatté&ring.
of the relaxation time is Hence, a direct coupling of light or neutrons to the relaxation
mode in the present model corresponds to the two-phonon
scattering and is small until the latter is smaller than the
I~ (13)v/l. (3.1)  one-phonon contribution to the scattering. Typically, this is
so at moderate temperatures but well ab®yeboth contri-

) ) o butions may be comparable and direct coupling to the relax-
Now we intend to use this formula for the vibrations near theation mode has to be taken into account. At these tempera-

maximum of the boson peak. Although there are controveryres the above listed similarities between the central line
sial opinions on the propagating, localized, or diffusive na-gnq the boson peak may be violated. However, it is difficult
ture of these vibrations, one can safely suppose that vibrag opserve this experimentally sinee relaxation usually
tions with a frequency near the maximum of the boson peaomes at these temperatures to the region of quasielastic

Qy, satisfy the loffe-Regel criterion in the sense that theirscattering making it impossible to separate the fast relaxation
characteristic lengthy, is of the order of the mean free path ¢ontribution.

lengthl at Q. Taking into account the relatioQ,~uv/L,
commonly used for the boson peak frequency, one can con-
clude that the characteristic fast relaxation time correlates IV. CONCLUSION

with Qy,: It was shown that anharmonicity of vibrations is one of

-1.0./3 31 the mechanisms of the fast relaxation in glasses and super-
T bf- (3.12 cooled liquids. At temperatures near and ab®yeéts contri-

Although the exact value of the coefficient in this formula is Pution to the quasielastic scattering is dominant and well
of course out of the framework of the accuracy of this simpledescribes both the intensity and the spectral shape of the

estimate, it corresponds to the experimental data obtained B§ter- At lower temperatures, deep in the glassy state, the
Raman scattering surprisingly well. In Fig. 1 the correlationcontribution of the vibration anharmonic terms decreases;

between(), and =~ ! is shown for various glass formers, ON€ can suppose that here other mechanisms such as thermal
both fragile and strong. Her@, is taken as the position of activation in the double well potentials may be dominant and
the boson peak at low temperatures and as the width of ~Such models as the Gilroy-Philliffsand SPM(Ref. 15 are

the quasielastic line at temperatures where it is almost tenf€/€vant. In comparison with these models an advantage of
perature independent, i.e., négy. In Fig. 1 values of~1  the anharmonic mechanism is that it is based on the well-

are used which were found by fitting the low-frequency Ra-established Hamiltonian of anharmonic vibrations. Accord-
man spectra using Eq&2.3—(2.5 (which is essentially the ing to this mechanism, the quasielastic line is determined by
Gochijaevet al. phenomenological model, Refs. 18)2@th  the low-frequency relaxationlike pafthe self-energyof the

 as a free parameter. We also note that, in fact, in mosYibration susceptibility function. This naturally explains the
cases7 ! can be found precisely enough’when t'he low-nontrivial similarities between the quas.ielastic. sqattering
frequency Raman spectrum is fitted by a sum of a LorentziatPectra and th_e boson .peak found previously in light and
from Eq.(2.26), which represents the QES spectrum and thd1eutron scattering experiments. In the present paper the self-

boson peak with temperature-dependent position and ampﬁa_nergy part of the vib_ratipn sysceptibility function was esti-
tude. as described in detail in Ref. 18. mated for anharmonic vibrations taking into account both

It is useful to also make an estimate of the relaxation timethird' and fourth-order anharmonic terms. The strength of the
using the relation-—~D/I2 and known values of the ther- fast relaxationﬁg which is the integral ratio of the quasielas-
mal diffusion coefficientD. For example, in amorphous tic to vibrational contribution was found to be proportional to

silicaD =0.007—0.008 cfis in the temperature range 300— the squared Gneisen parametey; in particular, afT this is
1000 K® Taking D=0.007 cni/s andl=1 nm we have @& universal function ofy?, Eq. (3.2). Both fast relaxation
1207 THz. From Raman measurementss—:  Strength and Gmeisen parameter increase when one moves

~0.5 THz(see Fig. 1, so this estimate also gives a reason-I" direction from strong to fragile glass formers.
able value of the fast relaxation time. It is shown that at high temperatures the quartic anhar-
monic term suppresses the contribution of the third-order
anharmonicity to the quasielastic scattering. As a result, a
crossover temperatuiie, appears in the model; aboig the

In the Introduction it was pointed out that QES and theintensity of the fast relaxation does not increase anymore,
boson peak have some similar properties, e.g., the value &q. (2.52. At this temperature the mean value of the quartic
the depolarization ratio. In the present paper, as also in Refanharmonic term in the vibrational Hamiltonian is of the
22,23,25, this similarity was explained using the assumptiomrder of the main harmonic one. This is in agreement with
that the quasielastic line is a low-frequency relaxationlikethe Raman scattering data inp®;,° which is to our knowl-

G. Direct light scattering on the relaxation mode
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edge the only known experimental result where the fast redensity fluctuations. This exponent was estimated and com-
laxation spectrum is not masked byrelaxation even at the pared with the light scattering experimental data.

crossover temperature. The width of the quasielastic line is
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