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Vibration anharmonicity and fast relaxation in the region of the glass transition

V. N. Novikov*
Universität Bayreuth, Physikalisches Institut, D-95440 Bayreuth, Germany

~Received 11 February 1998!

It is shown that the anharmonicity of vibrations leads to the quasielastic scattering in glasses and super-
cooled liquids. The vibrational self-energy term which arises due to the anharmonic interaction provides the
one-phonon quasielastic response. Estimations show that in the glass transition region the contribution of this
mechanism to the quasielastic spectrum is dominant. The underlying fast relaxation process corresponds to the
fluctuations of the vibration occupation numbers. For the boson peak vibrations the respective relaxation time
is of the order of a picosecond. The spectral shape of this fast relaxation is found. The amplitude of the
quasielastic scattering intensity and its temperature dependence is estimated within the framework of the model
and compared with experimental data on light scattering for various materials. The strength of the fast relax-
ation which is the integral ratio of the quasielastic to vibrational contribution was found to be proportional to
the squared Gru¨neisen parameter. It is shown that at high temperatures the quartic anharmonic term suppresses
the contribution of the third-order anharmonicity to the quasielastic scattering. As a result, a crossover tem-
perature appears in the model; above this temperature the intensity of the fast relaxation does not increase
anymore. This result is in good agreement with the analysis of the Raman scattering data in B2O3 @A. Brodin
et al., Phys. Rev. B53, 11 511 ~1996!#. Within the framework of the model, the ratio of the crossover
temperature to that of the glass transition is proportional to the inverse fourth-order anharmonic coefficient.
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I. INTRODUCTION

The relaxation spectra of glass formers have three cha
teristic contributions that correspond to the primarya- and
slow and fastb- relaxation processes.1–4 In some materials,
e.g., in polymers, the relaxation pattern may be more co
plicated. On the other hand, there are glass formers whe
is impossible to detect the slow or secondaryb relaxation.
The characteristic relaxation times of these three types
relaxation processes have different temperature depende
The most dramatic changes shows thea- relaxation time
which is of the order of a laboratory time, i.e., of one to o
thousand seconds, at the glass transition temperatureTg . It
changes by many orders of magnitude in the vicinity ofTg
where its temperature dependence normally can be app
mated by the Vogel-Fulcher-Tamman lawta}exp@B/(T
2T0)# with T0,Tg . The slowb- relaxation time is of the
order of 102721029 sec atTg and has an activation tem
perature dependence with the activation energy of so
thousands degrees K.5 The fast relaxation process, the ma
subject of the present paper, is a universal feature of g
formers. It has a characteristic relaxation time of the orde
a picosecond which is practically temperature independen
a broad interval includingTg ~see, e.g., Refs. 1,2,4!. Con-
trary to thea relaxation, the fast relaxation is observed bo
at very low temperatures, deep in the glassy state, and at
temperatures—even above the melting point.6 It was found
that the susceptibility spectrum of the fast relaxation ha
low-frequency power-law wing with an exponent of less th
1 and a high frequency Debye-like part.7–9 The intensity of
the fast relaxation at some reference temperature, e.g., aTg ,
as compared with the intensity of the microscopic vibratio
band is higher in fragile glass formers and lower in stro
ones.10 Above the glass transition temperature the intens
PRB 580163-1829/98/58~13!/8367~12!/$15.00
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of the fast relaxation strongly increases; here the interes
the fast relaxation was stimulated by the predictions
mode-coupling theory3 on the scenario of the glass transitio

The nature of the fast relaxation is still not quite clea
Various mechanisms that can lead to the quasielastic sca
ing in glasses and liquids are suggested. At temperat
deep in the glassy state the thermally activated relaxatio
the asymmetric double-well potentials9,11–13 may give the
main contribution to the fast relaxation spectrum, a mec
nism which is the same as that for the acoustic attenuatio
glasses at temperatures 10–300 K.14 The soft potential mode
~SPM!,15 in principle, is quite suitable for the phenomen
logical description of such a mechanism of the relaxati
However, in its present formulation it fails to describe t
details of the spectral shape and temperature dependen
the fast relaxation.9 It can be easily improved by a mor
accurate choice of the distribution functions of the soft p
tential’s parameters.16 Another recent phenomenologica
model for polymeric glasses connects the quasielastic s
tering ~QES! both in glassy and supercooled liquid stat
with the fast fluctuations of the dynamical free volum
holes.17–19 However, the microscopic mechanism of the r
laxation is not clear in the model.

Experimentally, the fast relaxation process is intensiv
investigated using inelastic light and neutron scattering b
in glassy and supercooled liquid states. By Raman~see., e.g.,
Refs. 6,17,18,20–28,39,40! and inelastic neutron scatterin
~Ref. 29! the high-frequency part of the fast relaxation spe
trum can be measured; it reveals itself as a quasielastic c
ponent which dominates the spectra at frequencies be
5 –15 cm21 and has anharmonic temperature dependen
Using a tandem Fabry-Perot interferometer, much broa
spectra of the fast relaxation~typically, 1–600 GHz! were
obtained.7–9 The fast relaxation process may give a contrib
8367 © 1998 The American Physical Society
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8368 PRB 58V. N. NOVIKOV
tion to the QES in two different ways. First, light or neutro
can be scattered directly by relaxational modes. This is
case, e.g., of the Theodorakopoulos and Ja¨ckle,11 Gilroy and
Phillips,12 and soft potential15 models in which the relaxation
mode corresponds to thermally activated jumps of some
tity in an effective double well potential. The second cont
bution comes from light or neutron scattering by vibratio
which are damped by the same relaxation process.22,23,25

Both contributions have the same spectral shape~except at
high temperatures, see below! but are controlled by differen
coupling constants and obviously have different relations
the vibrational properties.

In Refs. 22,25,30–33 it was argued that the second c
tribution dominates the QES. The argumentation was ba
on the experimental evidence of some nontrivial similarit
between the spectra of the QES and that of the one-pho
scattering on vibrations in the spectral region of the bo
peak. The latter is a universal feature of the low–freque
~maximum at Vb;15–80 cm21) vibrational spectra of
glasses~see, e.g., Refs. 22,34,35!. These similarities were
discussed in detail e.g., in Refs. 30,32,33 and are bri
discussed in the following. In Raman spectra, the quasie
tic line and the boson peak have the same depolariza
ratio22 and the same value of the light to vibration coupli
coefficient C(v), CQES'const5C(Vb).36 In neutron scat-
tering, QES and the boson peak have the sameq dependence
of the dynamic structure factorS(q,v) ~in silica37 and
polybutadiene38!. Finally, there is an empirical correlatio
between the value of the inverse fast relaxation timet21 and
the frequency of the boson peak maximumVb : t21'Vb/3 ,
Fig. 1 ~hereVb is taken from low-temperature Raman spe
tra and fort21 some characteristic value is assumed from
broad interval where it is practically constant, specifica
nearTg). It is difficult to explain these similarities withou
additional assumptions if the QES is direct light or neutr
scattering on the relaxation modes independent of the l
frequency vibrations.

A phenomenological model of QES which accounts
these similarities was proposed in Refs. 22,25: it was
sumed that the quasielastic line corresponds to a l
frequency relaxationlike part of the one-phonon respo
function which arises due to coupling of vibrations to

FIG. 1. Correlation between the inverse relaxation timet21 and
the boson peak frequencyVb . Data from: Na0.5Li 0.5PO3 ~Ref. 28!,
polymers~Ref. 18!, glycerol~Ref. 25!, GeO2 ~Ref. 40!, BAF4 ~Ref.
39!, CKN ~Ref. 9!, B2O3 ~Ref. 6!. In SiO2 t21 is at 600 K~Ref.
63!.
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unspecified relaxation mode. This phenomenological mo
in the single relaxation time approximation has been app
by various authors to describe the quasielastic light sca
ing spectra in a broad temperature interval both in glas
and supercooled liquids6,17–19,25–28,30,39and a reasonable fi
of the spectra has been obtained. However, the microsc
mechanism of the relaxation was not considered within
framework of this model.

In the present paper it is shown that the lattice anharm
nicity produces a quasielastic part in the one-phonon sca
ing in glass formers. The QES caused by this mechanism
inevitable ~since anharmonicity is inevitable in any glas!
and is independent of whether direct light scattering by so
relaxational modes in the glass exists or not. Such mode
they exist and influence the scattering, will give rise to
additional quasielastic spectrum. However, the estimati
of the present work show that the QES caused by anhar
nicity is sufficient to explain the total amplitude of the qua
elastic scattering at the glass transition temperature in
materials for which we are able to find the needed da
Moreover, it is shown that the width of the quasielastic li
correlates with the position of the low-frequency vibration
peak~the boson peak! in accordance with predictions of th
model and is determined by the relaxation time of the p
non density fluctuations. It is shown that in the third-ord
anharmonic approximation the integral ratio of the quasie
tic to vibration spectrum is determined by the squared Gr¨n-
eisen parameter. When the fourth-order anharmonic term
taken into account, a crossover temperatureTc appears in the
model. Above this temperature the fast relaxation does
increase anymore. In particular, the temperature depend
of the fast relaxation in B2O3 ~Ref. 6! including a crossover
at 800–900 K is well described. Within the frames of t
model the relative interval (Tc2Tg)/Tg ~which correlates
with the degree of fragility! is determined by the magnitud
of the fourth-order anharmonic coefficient. The spect
shape of the fast relaxation predicted by the model is
agreement with experimental data. In a simplified version
anharmonic theory of the QES can be also formulated
terms of the Gochijaevet al. model25 where a coupling be-
tween vibrational and unspecified relaxational modes is
troduced; in the anharmonic mechanism all parameters of
model are specified, in particular, the vibration-relaxati
coupling constant is the Gru¨neisen coefficient and the relax
ation mode corresponds to the phonon density fluctuatio

This paper is organized as follows. In Sec. II the con
bution to QES caused by the third-order anharmonicity
estimated through the vibration self-energy and general
pressions for the intensity and the spectrum of the QES
obtained. A simplified derivation of these results is al
given in order to explain the physical sense of the model
Sec. II F the fourth-order term is incorporated in the mod
and the crossover behavior due to damping of the fast re
ation at high temperatures is described. In Sec. III quant
tive estimates of the quasielastic intensity and spectral sh
in some glass formers are obtained within the framework
the model and the approximations used are discussed. C
parison with the experimental data on light scattering both
fragile and strong glass formers is performed and the rela
between anharmonicity and fragility is discussed. Finally,
Sec. IV the results are summarized.
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II. THEORY

A. One-phonon light scattering and vibration self-energy

We consider one-phonon light scattering in a glass tak
into account the anharmonicity of vibrations. The anh
monic interaction produces a self-energy term in the pho
response function which modifies the spectral shape
temperature dependence of the light scattering intensit
comparison with the case of harmonic vibrations; in parti
lar, it leads to a quasielastic line. The intensity of the o
phonon Raman scattering by vibrations with a frequencyV,
I V(v), is determined by the imaginary part of their respon
function x(v,V),

I V~v!}@n~v!11#@C~V!/V#xV
9 ~v!, ~2.1!

xV~v!52@v22V21SV~v!#21, ~2.2!

where SV(v)5SV
8 (v)1 iSV

9 (v) is the self-energy of the
mode which has both real and imaginary parts andC(V) is
the light to vibrations coupling constant; the extraV in the
denominator in Eq.~2.1! is a standard factor that correspon
to the squared matrix element of a harmonic oscillator. In
simplest caseSV(v) can be approximated by the Deby
relaxation function

SV~v!5
d2~V!

12 ivt
~2.3!

with a single relaxation timet and relaxation strength pa
rameterd2(V). This approximation was used, e.g., in Re
6,17–19,25–28,30,39,41. The imaginary part of the vib
tional susceptibility is equal to

xV
9 ~v!5

SV
9 ~v!

@v22V21SV
8 ~v!#21@SV

9 ~v!#2
. ~2.4!

To obtain the total Raman scattering intensityI (v) one
needs to integrate over the vibrational spectrum

I r~v!5E xV
9 ~v!C~V!g~V!dV/V, ~2.5!

where

I r~v!5I ~v!/@n~v!11# ~2.6!

is the reduced scattering intensity andg(V) is the density of
the vibrational states. At moderate temperatures, w
SV(v) is small @SV(v)!V2# the vibrational susceptibility
at low frequenciesv!V is determined only by the imagi
nary part of the self-energy

xV
9 ~v!'SV

9 ~v!/V4 ~2.7!

in first order on the relaxation strength parameter. With th
conditions the reduced quasielastic light scattering inten
can be written in the form

I r
QES~v!5E SV

9 ~v!C~V!g~V!dV/V5. ~2.8!
g
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Below it will be shown that the cubic anharmonic interacti
of vibrational modes leads to the self-energyS(v) that de-
scribes QES in quantitative agreement with experimen
data.

B. Third-order anharmonic self-energy

The calculation of the vibration self-energy has been d
cussed in many papers, in particular, in connection with
central mode in the structural phase transitions~see, e.g.,
Refs. 42,43!. The Hamiltonian of vibrations with the third
order anharmonic term has the form

H5H01V, ~2.9!

where

H05(
a

\vaaa
1aa , ~2.10!

V5 (
a,b,g

VabgAaAbAg . ~2.11!

Here aa
1 and aa are the operators of creation and annihi

tion of a phonon in modea,

Aa5aa
11aa . ~2.12!

Due to the structural disorder the modes can be labeled
their frequency. Since in the spectral region of the bos
peak and QES the depolarization ratio of the scattered l
is typically high, the vibrations responsible for the bos
peak are of transverse or rotation-libration type~see, e.g.,
Ref. 44!. The self-energy of such vibrations corresponds
the bubble diagram of Fig. 2 and in the relaxation time a
proximation is given by~see, e.g., Refs. 42,43!

SV~v!5
72V

T (
a

Va
2na~na11!

12 ivta
, ~2.13!

where the third-order anharmonic coefficientVa couples a
mode of the frequencyV with two modes of the frequency
Va , na[n(Va)'T/Va is the phonon occupation numbe
M is the molecular mass,v is the transverse sound velocity
andta is the relaxation time of the phonon occupation nu
ber of the modea. It is convenient to express the cub
anharmonic coupling coefficient via the mode Gru¨neisen pa-
rameterga ~Ref. 42!

Va~V!5ga

Va

6v S V

2M D 1/2

. ~2.14!

In terms of this parameter

SV~v!'
V2T

Mv2(a
ga

2

12 ivta
. ~2.15!

FIG. 2. Self-energy bubble diagram.
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C. Spectrum of fast relaxation

From Eq.~2.13! the frequency dependence of the susc
tibility function of the fast relaxation can be found if on
knows the frequency dependence of the relaxation timet(V)
and that of the density of vibrational statesg(V). Assuming
for ga

2 some average value in the region of the boson p
one has for the fast relaxation

SV
9 ~v!'

vV2Tg2

Mv2 E
0

Vmt~Va!g~Va!dVa

11v2t2~Va!
, ~2.16!

where Vm is the frequency near the end of the acousti
spectrum. To obtain a rough estimate of the integral~2.16!
we suppose the simplest power-law frequency depende
for the density of states and the relaxation timeg(V)
5AVn and t21(V)5BV2b, where A and B are some
frequency-independent parameters. Then, using also
~2.8! one has

SV
9 ~v!'

vV2Tg2A

Mv2B
E

0

Vm Va
n22bdVa

11v2t2~Va!
. ~2.17!

Let us introduce a new variablex51/vt(Va)
5Va

2b/vB. ThenVa5(vBx)1/2b, and Eq.~2.17! can be ex-
pressed via the dimensionless integral

SV
9 ~v!'

vaV2Tg2A

Mv2B22a E
0

xm xadx

11x2
, ~2.18!

where

a5~n11!/2b ~2.19!

and xm51/vt0. Here t0 is the minimum relaxation time
which provides the cutoff of the relaxation time distributio
Now, to obtain the total scattering spectrum one should
tegrateSV

9 (v) over contributions of vibrations of differen
frequenciesV, as in Eq.~2.8!:

I r
QES~v!5E SV

9 ~v!C~V!g~V!dV/V5

5SvaE
0

xm xadx

x211
, ~2.20!

whereS is a constant:

S5
Tg2A

Mv2B22aE C~V!g~V!dV/V4. ~2.21!

At high frequencies,v@t0
21, one hasxm!1, so the denomi-

nator in the integral in Eq.~2.20! can be put equal to 1. As
result, one obtains the Debye-like behavior for the hig
frequency tail of the fast relaxation

x9~v!}I r
QES~v!'~vt0!21

S

~a11!t0
a

. ~2.22!

At frequenciesv!t0, sincexm@1, the upper limit in the
integral in Eq.~2.20! can be replaced bỳ . In this case the
integral is a constant equal top/@2cos(pa/2)#, so
-

k

l

ce

q.

-

-

x9~v!}I r
QES~v!'va

pS

2 cos~pa/2!
. ~2.23!

This power-law dependence describes the low-frequency
of the fast relaxation.

D. Single relaxation time approximation

Equation~2.13! includes many relaxation processes, ea
characterized by its own coupling strength and relaxat
time. However, the Debye relaxation function~2.3! is a rea-
sonable approximation of Eq.~2.13! with parametersg2 and
t chosen as appropriate average values and

d~V!'d0V, ~2.24!

d0
25g2

T

Mv2
. ~2.25!

The parameterd0 characterizes the strength of the relaxatio
According to Eq.~2.7! the imaginary part of Eq.~2.3! de-
scribes the quasielastic line in the Raman spectra in
single time approximation

I r
QES~v!'

2

p

d0
2vt

11v2t2E I r
vib~V!dV/V, ~2.26!

where

I r
QES~v!5I QES~v!/@n~v!11# ~2.27!

is reduced QES intensity and

I r
vib~V![C~V!g~V!/V ~2.28!

is the reduced intensity of the Raman scattering by vibrati
in the absence of the relaxation. Equation~2.26! can be used
only when the quasielastic line and the boson peak
clearly separated; at higher temperatures when there is a
nificant overlapping of the quasielastic line and the bos
peak the exact expression~2.2! of x(v) via S(v) must be
used~see, e.g., Refs. 18,25!. From Eq.~2.26! it is clear that
the relaxation strength parameterd0

2 is equal to the ratio of
the integrated quasielastic and vibrational spectra

d0
2'

E I r
QES~V!dV/V

E I r
vib~V!dV/V

. ~2.29!

Using d0 andt as phenomenological fitting parameters o
can fit the low-frequency Raman and neutron spectra w
~see, e.g., Refs. 18,26,28,30, where one can find a more
tailed discussion of the procedure and results of the fit!.

E. Simplified derivation
in single relaxation time approximation

In order to have a simple interpretation of the presen
mechanism of relaxation it is useful to give a simplified de
vation of Eq.~2.25!. As is well known from the theory of
light and neutron scattering near the structural phase tra
tions ~see, e.g., Refs. 43,45!, a vibration response with the
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Debye self-energy function can result from the linear co
pling of a bare vibration to any fluctuations in the solid th
have a Debye relaxation spectrum. It is easy to see tha
cubic anharmonic term produces such linear coupling of
brational and relaxational modes. Let the effective poten
energy for a vibration modeh of a frequencyV be

U~x!5MV2h2/21B3h3, ~2.30!

whereV andM are the mode frequency and effective ma
respectively. In order to remove the apparent dependenc
the parameters of the model on the frequency and mass
convenient to use the normalized mode

x5M1/2Vh. ~2.31!

In terms ofx, U5x2/21b3x3, where

b35B3 /M3/2V3. ~2.32!

The anharmonic termb3x3 can be represented asb3x(x2

1Dx2) wherex2 means the square amplitude averaged o
a time interval of the order of the period of the vibration a
Dx2 is a fluctuation of this mean square vibration amplitud
Such a representation makes sense if the respective r
ation time is larger than the period of the vibration. T
fluctuationDx2 just plays the role of the relaxation modej
of the problem

j~ t !5Dx2~ t !. ~2.33!

After a trivial shift ofx by a constant factor 2b3x2 in order to
eliminate the linear termxx2 one has

U~x!5x2/21b3xj1aj2/2, ~2.34!

where the termaj2/2 is added toU in order to take into
account the minimum work needed to create a given ther
fluctuationj. For the Gaussian fluctuations the constanta is
proportional to the inverse mean square value ofj2, a
5T/^j2&.

The standard methods of fluctuation theory can be app
now to obtain the susceptibility function of the vibratio
xV(v) using the equations of motion for the variablesx and
j. Introducing a dissipation function for the relaxation va
ablej, F( j̇)5hj̇2/2, whereh is a dissipation constant46 and
neglecting the contributiong0 to the width of the vibrational
mode due to processes other than the relaxational pro
under consideration, we obtain the following equations
motion:

ẍ/V21x1b3j5 f ~ t !, ~2.35!

hj̇1aj1b3x50, ~2.36!

wheref (t) is a random force term. For the Fourier transfo
of j one has from Eq.~2.36!

j~v!5
2xb3 /a

12 ivt
, ~2.37!

where

t5h/a ~2.38!
-
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is the relaxation time ofj. Using expression~2.37! for j(v)
in the Fourier transform of Eq.~2.35!, one obtains

xV~v!52@v22V21V2d0
2/~12 ivt!#21, ~2.39!

i.e., the vibration susceptibilityxV(v) associated with the
modex has a Debye self-energy~2.24! with the relaxation
strength parameterd0

2 equal to

d0
25b3

2/a5b3
2^j2&/T. ~2.40!

Since, according to definition,j is the fluctuation ofx2, then
using for the latter the harmonic oscillator valuex25V(n
11/2) we see that the relaxation modej is determined by
the fluctuation of the phonon occupation numberdn

j5Vdn, ~2.41!

respectively,̂ j2&5V2^dn2&. It is known ~see, e.g., Ref. 46!
that the mean square fluctuation of the occupation num
for the noninteracting bosons is equal to

^dn2&5n~n11!. ~2.42!

Since the anharmonicity is already taken into account in
~2.40! by the factorb3

2 we can use in other terms the expre
sions for harmonic excitations. Than one finds

d0
2'b3

2V2n~n11!/T'b3
2T, ~2.43!

where we took into account that at high temperaturesn(V)
'T/V. The cubic anharmonic coefficientb3 can be ex-
pressed via the mode Gru¨neisen parameter gV5
2(] ln V/] ln V)T ; a simple estimation gives gV

5b3LM1/2V, whereL is a characteristic length of the vibra
tion with frequencyV . For the quasilocalized vibrations tha
form the boson peak, the acousticlike relationV;v/L
holds;22,34,35,47hence,

b35gV /vM1/2. ~2.44!

Using this expression forb3 in Eq. ~2.43! one obtains again
the result of Eq.~2.25!. This simple derivation has the pur
pose of clearing up the physical sense of the relaxation p
cess to obtain estimates of the relevant parameters and
vide a basis to deal with the more complicated anharmo
potentials which are difficult to handle using regular per
bation theory.

F. High-temperature damping of the fast relaxation
by fourth-order anharmonicity

The fourth-order anharmonic term can be neglected at
enough temperatures, when the relaxation strength param
d0

2 from Eq. ~2.43! is small ~as all anharmonic effects are!.
However, with increasing temperature the influence of
fourth-order anharmonic term may be significant and sho
be taken into account. We use here the simple approach
sented in the previous section to find the respective cor
tions to Eq.~2.43!. With the fourth-order anharmonic term
the effective potential energy can be written in the form

U~x!5MV2h2/21B3h31B4h4

5x2/21b3x31b4x4, ~2.45!
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where b45B4 /M2V4. Using again the decompositionx2

5x21j with j[Dx2 one can find an approximate expre
sion of the potentialU(x) via the coupled vibration and re
laxation modes

U~x!'x2~112b4x2!/21b3xj1b4jx21b4j21aj2.
~2.46!

Here the term 112b4x2 renormalizes the frequency and th
termb4jx2 is unimportant for what follows since it does n
influence the susceptibility. The equations of motion in t
case can be found in the same way Eqs.~2.35!,~2.36! were
found and are the following:

ẍ/V21~112b4x2!x1b3j5 f ~ t !, ~2.47!

hj̇1~a12b4!j1b3x50. ~2.48!

The respective susceptibility is equal to

xV~v!52@v22V̄21V̄2d̄0
2/~12 ivt̄!#21, ~2.49!

where

V̄25V2~112b4x2!'V2~112b4T! ~2.50!

is the renormalized frequency,

t̄5t/~112b4T! ~2.51!

is the renormalized relaxation time and the modified expr
sion for the relaxation strength parameter is

d̄0
2'

b3
2T

~112b4T!2
5

g2T/Mv2

~112b4T!2
. ~2.52!

As the most important consequence, Eq.~2.52! predicts that
at high enough temperatures the fast relaxation will
longer increase as temperature increases, providing the s
velocity does not decrease faster thanT1/2. The characteristic
temperatureTa at which the fast relaxation strength param
eter d̄0

2 stops increasing is determined by the conditi
2b4Ta;1, so

Ta;1/2b4 . ~2.53!

In the next section this point will be discussed in more det
Let us note that the term 2b4T in the denominator of Eq
~2.52! can be written in the form

2b4T'U4 /U0 , ~2.54!

whereU05x2/2'T/2 andU45b4x4;b4T2 are the average
values of the harmonic and fourth-order anharmonic part
the vibration potential energy, respectively. This means
within the framework of the model the fast relaxation sa
rates at a temperature when, roughly, the contribution of
fourth-order anharmonic term to the energy becomes com
rable with that of the main harmonic term

U4~Ta!/U0~Ta!;1. ~2.55!

Comparison of Eqs.~2.25! and~2.52! shows that the latte
equation can be obtain from the first one by the renormal
tion of the Grüneisen parameter
s

s-

o
nd

l.

of
at
-
e
a-

-

d̄0
2'gT

2T/Mv2, ~2.56!

where

gT5
g

112b4T
. ~2.57!

Indeed, it is known that the fourth-order anharmonicity lea
to such a renormalization of the Gru¨neisen parameter in th
isothermal conditions.48

III. DISCUSSION

A. Schematic presentation of light scattering spectrum

For what follows, it is useful to present schematically t
quasielastic and vibration contributions to the scatter
spectrum. This is done in Figs. 3, 4. In Fig. 3 the spec
density normalizationI (v)/v(n11) is used which corre-
sponds to the direct light scattering intensity at highT. In
these coordinates the boson peak can be observed mos
ily; in Fig. 3 this is a peak~solid line, curve 1! with a maxi-
mum atv;3 ~the quasielastic line widtht0

21 is chosen as
unity!. The short dashed line~curve 2! represents the quas
elastic spectrum in the single relaxation time approximati

FIG. 3. Schematic presentation of a typical low-frequency R
man spectrum in a glass.~1! The boson peak,~2! the quasielastic
line in the Debye approximation,~3! the sum of curves 1 and 2,~4!
low-frequency wing of the quasielastic line when there is a dis
bution of the fast relaxation times att,t0.

FIG. 4. The same curves as in Fig. 3 in susceptibility repres
tation and log-log coordinates.
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TABLE I. The values of parameters used in the model~at T5Tg). g th is found from Eq.~2.25!. d0
2 and

v t are taken from Ref. 18 for polymers, from Ref. 6 for B2O3, from Ref. 25 for glycerol, and from Ref. 63
for SiO2. g for polymers is from Ref. 52, for SiO2 from Ref. 64. Molecular massM is in atomic units.

d0
2(Tg) g (Tg /Mv t

2)1/2 g th Tg (K v t (105 cm/s) M

PC 0.31 4.5 0.11 4.0 418 1.08 270
PS 0.21 3.2 0.16 3.3 373 1.12 111
PMMA 0.16 2.5 0.16 2.5 370 1.1 100
PB 0.13 2.4 0.16 2.3 175 1.1 54
Glycerol 0.1 186 92
B2O3 0.07 0.14 2.7 526 1.91 70
SiO2 0.05 1.8 0.14 1.8 1480 3.8 60
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so it is described by a Lorentzian. The dotted line~curve 3! is
the sum of both contributions. The solid line with the op
circles ~curve 4! describes the quasielastic spectrum wh
there is a distribution of the relaxation times att>t0; it
corresponds to a realistic Raman spectrum. Typically,
low-frequency Raman data are presented and analyzed i
coordinates of Fig. 3. The tandem Fabry-Perot light scat
ing data are normally presented as a log-log plot in a n
malization that corresponds to the susceptibilityx9
}I (v)/(n11). This case is illustrated by Fig. 4 with th
same curves as in Fig. 3. Curve 4 clearly shows here
stretched low-frequency wing of the fast relaxation.

B. Relaxation strength parameter

The low-frequency Raman and neutron spectra of so
glasses and supercooled liquids were fitted earlier using
~2.5! and the Debye self-energy~2.3! with d0 andt as phe-
nomenological fitting parameters~see, e.g., Refs. 17–19,25
28,30,39!. In some cases the authors usedd (d[d0V) for
fitting the parameter supposing that it is frequency indep
dent; one should note, however, that both in the hydro
namic approximation23,30,49and in the case of the quasiloca
ized vibrations with the acousticlike relationV}L21, Eq.
~2.24! with a frequency-independentd0 holds. So, for a num-
ber of materials the temperature dependence and nume
values ofd0 and t are known. Typically,d0

2(T) is in the
interval 0.05–0.3 and it is a monotonously increasing fu
tion of temperature with a more or less sharp jump of
slope at the glass transition temperatureTg ~see, e.g., Ref.
18!. The relaxation timet is essentially temperature indepe
dent belowTg and has a tendency to slightly decrease ab
Tg . At T;Tg the coefficient betweend0

2 and g2, T/Mv2

@Eq. ~2.25!#, is more or less the same constant for vario
glass formers sinceTg linearly correlates withMv2. It is
easy to show that this is a consequence of the Lindem
criterion of melting50 and of the relationTg'2Tm/3 where
Tm is the melting temperature. The relationTg}Mv2 was
also confirmed by a direct comparison of both parameters
a lot of materials in Ref. 51. A good approximation of E
~2.25! at T<Tg is

d0
2'aL

2g2T/Tg , ~3.1!

whereaL50.12–0.16 is the Lindemann ratio that is a mo
or less universal parameter for various materials. From
n
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latter equation it follows that the strength of the fast rela
ation atTg is determined only by the Gru¨neisen parameter

d0~Tg!'aLugu'0.14ugu. ~3.2!

A direct estimate of Eq.~2.25! at T5Tg gives d0
2;2

31022g2 ~see Table I!, in agreement with the estimate th
uses the Lindeman ratio.

With a typical value of the Gru¨neisen parameter for poly
mers,g52 –4 ~Ref. 52! one hasd0

250.1–0.3 atT5Tg in
good agreement with the results of the fit of the QES spe
which was performed in Ref. 18 for polycarbonate~PC!,
polystyrene~PS!, polymethylmethacrylate~PMMA!, and po-
lybutadiene~PB!, see Table I. In strong glass formers such
B2O3 and SiO2, the relaxation strength is lower than in poly
mers, see Table I. Let us note that there is a correla
between the strength of the fast relaxationd0 and the fragil-
ity of the system: the higher the fragility, the largerd0 ~see
Table I!. This is of course in agreement with the observati
of Sokolov et al.10 on the correlation between the fragilit
and a parameter which characterizes the relative strengt
the QES in comparison with the boson peak intensity. A
cording to the present model, this means that in fragile gl
formers the anharmonicity is higher than in strong ones,
Eq. ~3.2!. Such a correlation was discussed by Angell1 and
was also obtained in the coupling model of Ngai~see, e.g.,
Ref. 53!.

In Fig. 5 the temperature dependence of the relaxa
strength parameterd0

2 as found from the fit of QES spectra i
B2O3 ~Ref. 6! is compared to the predictions of the mode
Eq. ~2.25!, with g52.7. The temperature dependence of t
sound velocity was taken from the above cited paper. T
comparison shows that Eq.~2.25! reasonably describes bot
the magnitude and temperature dependence of the fast r
ation strengthd0 in B2O3 in some vicinity ofTg . Table I
also shows good agreement between the predictions of
anharmonic model and the results of the free fit of the lig
scattering data by the Gochijaevet al. phenomenological
model for other materials for which we were able to find t
respective data. This means that the anharmonic mecha
of the quasielastic scattering is predominant at temperat
in the vicinity of and aboveTg . The situation may be differ-
ent at lower temperatures deep in the glassy state, w
anharmonic effects decrease. In this case, the thermally
vated jumps in the asymmetric double well potentials may
the dominant mechanism of the fast relaxation,9 which is the
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very subject of the Gilroy and Phillips12 and the soft
potential15 models. However, in the present paper we co
sider only the high-temperature regime.

C. Saturation of fast relaxation

The light scattering data of Ref. 6 show that in B2O3 the
fast relaxation strength no longer increases with tempera
at T*Ta'900 K ~Fig. 5!, so Eq.~2.25! ceases to describ
thed0

2(T) behavior atT.Ta . This may be explained by th
influence of the quartic anharmonic term: according to E
~2.52! its contribution increases with temperature and may
important at high enough temperatures in B2O3. In this case
instead of Eq.~2.25! one should use the more complicat
Eq. ~2.52! which predicts saturation and an even decreas
d0

2(T) at high temperatures. In the majority of glass forme
this effect is hidden by thea relaxation that comes into th
spectral region of the fast relaxation at high temperatures
B2O3 a relaxation is still far away from this region at tem
peratures around 1000 K which gives the possibility to o
serve here the fast relaxation saturation. The fit ofd0

2(T) by
Eq. ~2.52! describes the crossover behavior of the fast rel
ation strength parameter in B2O3 with b35231022 K21/2

and b450.931023 K21 well. According to the genera
properties of the anharmonic coefficients, normallyb3

2 and
b4 should be of the same order of magnitude~see, e.g., Ref.
54!. In our caseb4;2b3

2, so the parameterb4 which is re-
sponsible for the saturation of the fast relaxation in B2O3 has
a quite reasonable value by the order of magnitude.

From Eq.~2.51! it follows that the inverse relaxation tim
should linearly increase with temperature with a slope de
mined byb4 ~if one neglects other possible contributions
the temperature dependence oft). This prediction is checked
in Fig. 6 where experimental points are found from the d
of Ref. 6, b4 is taken from the fit ofd0

2(T) as described
above, andt(T→0)54.6 cm21. As follows from this fig-
ure, the temperature dependence of the relaxation tim
B2O3 can be well described by the fourth-order anharmo
term.

Mode coupling theory predicts a temperature-independ
fast relaxation in the liquid state above the so-called criti

FIG. 5. Comparison of theory and experiment for the tempe
ture dependence of the relaxation strength parameterd0

2 in B2O3.
Solid circles are data from light scattering, dash lines are the
using Eq.~2.25!, the solid line is the fit Eq.~2.52!. Data ford0

2 and
sound velocity from Ref. 6.
-

re

.
e

of
s

in

-

-

r-

a

in
c

nt
l

temperatureTc
3 . On the other hand, in the present anh

monic model of fast relaxation we are going from tempe
tures belowTc , beginning even in the glassy state, and a
obtain a crossover behavior of the fast relaxation at so
temperatureTa . This is in qualitative agreement with th
predictions of the MCT and even quantitative~for the case of
B2O3) with the phenomenological analysis of the hig
temperature behavior of the fast relaxation performed in R
55, where the authors found a crossover temperature bo
strong and fragile glass formers and showed that in the la
case it is equal to the critical temperature of the MCT.

D. Relation between the anharmonicity and the ratioTc /Tg

As it was shown in Sec. II. F in the anharmonic model t
crossover temperatureTa is determined by Eq.~2.53! and
corresponds to a temperature when the fourth-order an
monic termU4 becomes comparable to the main harmo
contribution U0 to the vibration Hamiltonian. One of the
consequences of this prediction explains the relation betw
the degree of fragility and the ratioTc /Tg . It is known that
in fragile glass formers this ratio is typically 1.2 while i
strong glass formers it is higher~e.g., 1.6 in B2O3). If one
takes for the crossover temperature the estimate~2.53! of the
present work then

Tg /Tc52b4Tg . ~3.3!

This means that at fixedTg the ratioTg /Tc decreases with
decreasing anharmonic coefficientb4. However, in many
cases,Tg is higher in materials with lower anharmonicity, s
from Eq. ~3.3! it is difficult to make a conclusion about th
relation betweenTg /Tc and anharmonicity itself. On the
other hand, if the effective anharmonic potential for a mo
h, Eq. ~2.45! is written in dimensionless coordinates,

U~x!5~ka2/2!@~h/a!21 f 3~h/a!31 f 4~h/a!4#, ~3.4!

where k[MV2 is a fourth constant anda is an average
interatomic distance, then the relative strength of the fou
order anharmonic term may be characterized by a param
f 4 which is the ratio of the coefficients at (h/a)4 and (h/a)2,

f 4[
B4a4

ka2/2
. ~3.5!

-

t

FIG. 6. Temperature dependence of the inverse relaxation
in B2O3. Solid line: Eq.~2.51!, solid circles: data from Ref. 63.
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According to the definition, Eq.~2.45!, B45b4k2 so one has
f 452b4ka2. As was mentioned above, the parameterka2

5MV2a2}Mv2 scales asTg . In the Einstein oscillator
model the coefficient can easily be found using the Lin
mann criterion of melting: if one supposes that atT5Tg the
mean square atomic displacement is a universal partaL of
the average interatomic distance,h'aLa, then kh2(Tg)
'kaL

2a2'Tg . As a result,ka2'Tg /aL
2 and

f 4'2b4Tg /aL
2 . ~3.6!

A comparison with Eq.~2.45! gives

Tg /Tc'aL
2 f 4 . ~3.7!

This result showed that the ratioTg /Tc is proportional to the
relative magnitudef 4 of the fourth-order anharmonicity
Qualitatively, this conclusion is in agreement with the resu
of the preceding subsections: the stronger the glass for
the lower the anharmonicity.

E. Spectral shape of the fast relaxation

The spectral shape of the anharmonic contribution to
relaxation is given by Eq.~2.20!. This expression predict
the asymmetric susceptibility function with the high- a
low-frequency tails described by Eqs.~2.22! and ~2.23!, re-
spectively. The high-frequency tail is Debye-like,x9}v21;
this is a consequence of the existence of a minimum re
ation time t0. The Raman data for the quasielastic line
glasses~typically, v*1 cm21) which represent mainly the
high-frequency part of the fast relaxation are in agreem
with this prediction: normally, they can be well fitted by
simple Lorentzian after properly accounting for the vibrati
contribution.18,22,25 At low frequencies,v!t0

21, a power-
law spectrum of the fast relaxation is predicted,x9}va with
the exponenta defined by Eq.~2.19!. The difference in the
Debye-like behavior at these frequenciesx9}v is due to
existence of some distribution of the relaxation times at
>t0. It is easy to find from Eq.~2.16! that in the presen
model the relaxation time distribution functionG(t) is de-
termined by the equation

G~t!5g~V!u]V/]tu ~3.8!

with V found as a function oft from the equationt
5t(V). For the same power-law ansatz as in Sec.
g(V)5AVn andt21(V)5BV2b, one has

G~t!5~11a!t0
a/ta11 for t>t0 , ~3.9!

G~t!50 for t,t0 . ~3.10!

In Eqs.~3.9!,~3.10! t0 provides a cutoff ofG(t) at smallt
which leads to a Debye behavior atv@t0

21. We note that in
this respect the characteristic timetc found previously in
neutron scattering experiments56 can be viewed ast0.

Typically, for polymers in the region of the boson pe
the density of vibrational states is practically linear in fr
quency,n50.9–1 ~see, e.g., data for PS, PC, and PMMA
Refs. 18,36,58,57!. According to sound absorption data
PS, some other polymers anda-SiO2 at frequencies up to
440 GHzl 21}v2 ~see Ref. 59!; if one suppose that the dif
fusion coefficientD is frequency independent in the regio
-

s
er

st

x-

nt

I,

of the boson peak, sot21(V);Dl 22(V), thenb'2. With
these values of the parametersn andb one obtainsa'0.5.
For the Debye vibrational density of states (n52) and Ray-
leigh phonon scattering (b54) one hasa'3/8. The vibra-
tions in the THz region in glasses have not been stud
enough to make reliable conclusions about the frequency
havior of the diffusion constantD. Our suggestion is base
on the results of the computer simulation of a model glas60

where essentially the frequency-independent diffusion co
ficient that describes the evolution of the vibration dens
fluctuation was found at frequencies corresponding to
boson peak. However, the alternative relationt21(V)
;v/ l (V) with frequency-independent sound velocity c
also be considered. In this case all the differences in
preceding results come from changingb→b/2 in the expres-
sion for the exponenta ~2.23!. In particular, for the typical
value ofa in polymers one obtains 1 instead of 0.5; for th
case of the Debye vibrations one obtainsa'3/4 instead of
3/8.

Light scattering spectra of the picosecond relaxation i
broad frequency range~typically, 1–600 GHz! can be mea-
sured using a tandem Fabry-Perot interferometer. Such
have been obtained up to now for temperatures around
aboveTg in some glass formers and are in agreement w
the predictions of the model, exhibiting a Debye hig
frequency behavior and a stretched low-frequency wing w
the slope a in the interval from 0.3 to 0.8 in various
materials.8 Recently, spectra of the fast relaxation were me
sured by light scattering in a broad frequency and tempe
ture range in the glassy state of polymers of CKN and silic9

The value of the exponenta at room temperature in mos
cases was found to be equal to 0.5–0.6, in agreement
the anharmonic model of relaxation.

The estimations performed in this subsection use so
approximations. First, the Gru¨neisen constant was assum
to be frequency independent in the region of the boson pe
second, the density of vibrational statesg(V) can only
roughly be approximated by some power law in the region
the boson peak~especially in strong glass formers!. Addi-
tionally, according to Ref. 61, the frequency dependence
the sound absorption in the region of the boson peak m
change its behavior fromv2 to v4 law, as was shown in Ref
61 for longitudinal vibrations in amorphous silica where
crossover was found at 210 GHz. Therefore, for a more
curate estimation of the spectral shape of the fast relaxa
additional experimental data ont(V) and g(V) and a nu-
merical evaluation of the integral~2.16! are needed.

Let us note that the soft potential model in its standa
formulation predicts the logarithmic frequency dependen
of the thermally activated fast relaxation in double w
potentials.15 Therefore, it fails to correctly describe the low
frequency power-law tail of the fast relaxation in glassy st
in the regime of the thermal activation. Thus, the SPM ne
some further development, e.g., an improvement of the
tribution function of the soft potential parameters.

F. Relaxation time

As was shown above the relaxation timet in the self-
energy function~2.16! is that of the fluctuations of the pho
non occupation number. Here we make a rough estimat
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this relaxation timet chosen as an appropriate avera
value, i.e., for the Debye relaxation approximation. F
propagating phonons, the relaxation time of the occupa
number fluctuations can be expressed through the pho
diffusion coefficientD and the phonon mean free path leng
l : t21;D/ l 2. On the other hand, a simple estimate of t
diffusion coefficient isD'v l /3 (v is the sound velocity of
the appropriate phonon branch!. As a result, a rough estimat
of the relaxation time is

t21;~1/3!v/ l . ~3.11!

Now we intend to use this formula for the vibrations near
maximum of the boson peak. Although there are controv
sial opinions on the propagating, localized, or diffusive n
ture of these vibrations, one can safely suppose that vi
tions with a frequency near the maximum of the boson p
Vb satisfy the Ioffe-Regel criterion in the sense that th
characteristic lengthLb is of the order of the mean free pa
length l at Vb . Taking into account the relationVb;v/Lb
commonly used for the boson peak frequency, one can c
clude that the characteristic fast relaxation time correla
with Vb :

t21;Vb/3. ~3.12!

Although the exact value of the coefficient in this formula
of course out of the framework of the accuracy of this sim
estimate, it corresponds to the experimental data obtaine
Raman scattering surprisingly well. In Fig. 1 the correlati
betweenVb and t21 is shown for various glass formers
both fragile and strong. HereVb is taken as the position o
the boson peak at low temperatures andt21 as the width of
the quasielastic line at temperatures where it is almost t
perature independent, i.e., nearTg . In Fig. 1 values oft21

are used which were found by fitting the low-frequency R
man spectra using Eqs.~2.3!–~2.5! ~which is essentially the
Gochijaevet al. phenomenological model, Refs. 18,25! with
t as a free parameter. We also note that, in fact, in m
casest21 can be found precisely enough when the lo
frequency Raman spectrum is fitted by a sum of a Lorentz
from Eq. ~2.26!, which represents the QES spectrum and
boson peak with temperature-dependent position and am
tude, as described in detail in Ref. 18.

It is useful to also make an estimate of the relaxation ti
using the relationt21;D/ l 2 and known values of the ther
mal diffusion coefficientD. For example, in amorphou
silica D50.007–0.008 cm2/s in the temperature range 300
1000 K.62 Taking D50.007 cm2/s and l 51 nm we have
t2150.7 THz. From Raman measurements,t21

'0.5 THz ~see Fig. 1!, so this estimate also gives a reaso
able value of the fast relaxation time.

G. Direct light scattering on the relaxation mode

In the Introduction it was pointed out that QES and t
boson peak have some similar properties, e.g., the valu
the depolarization ratio. In the present paper, as also in R
22,23,25, this similarity was explained using the assump
that the quasielastic line is a low-frequency relaxationl
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response of the vibration susceptibility function while t
direct coupling of light to relaxation modes which damp t
vibrations is small. In the anharmonic model of the pres
paper the nature of the relaxation modej that damps the
vibrations and leads to the central line is specified: at te
peratures nearTg this is the phonon density fluctuationj
}dn. The mode is quadratic in the vibration amplitudeh.
The same operator determines the two-phonon scatterin42

Hence, a direct coupling of light or neutrons to the relaxat
mode in the present model corresponds to the two-pho
scattering and is small until the latter is smaller than
one-phonon contribution to the scattering. Typically, this
so at moderate temperatures but well aboveTg both contri-
butions may be comparable and direct coupling to the re
ation mode has to be taken into account. At these temp
tures the above listed similarities between the central
and the boson peak may be violated. However, it is diffic
to observe this experimentally sincea relaxation usually
comes at these temperatures to the region of quasiel
scattering making it impossible to separate the fast relaxa
contribution.

IV. CONCLUSION

It was shown that anharmonicity of vibrations is one
the mechanisms of the fast relaxation in glasses and su
cooled liquids. At temperatures near and aboveTg its contri-
bution to the quasielastic scattering is dominant and w
describes both the intensity and the spectral shape of
latter. At lower temperatures, deep in the glassy state,
contribution of the vibration anharmonic terms decreas
one can suppose that here other mechanisms such as th
activation in the double well potentials may be dominant a
such models as the Gilroy-Phillips12 and SPM~Ref. 15! are
relevant. In comparison with these models an advantag
the anharmonic mechanism is that it is based on the w
established Hamiltonian of anharmonic vibrations. Acco
ing to this mechanism, the quasielastic line is determined
the low-frequency relaxationlike part~the self-energy! of the
vibration susceptibility function. This naturally explains th
nontrivial similarities between the quasielastic scatter
spectra and the boson peak found previously in light a
neutron scattering experiments. In the present paper the
energy part of the vibration susceptibility function was es
mated for anharmonic vibrations taking into account bo
third- and fourth-order anharmonic terms. The strength of
fast relaxationd0

2 which is the integral ratio of the quasiela
tic to vibrational contribution was found to be proportional
the squared Gru¨neisen parameterg; in particular, atTg this is
a universal function ofg2, Eq. ~3.2!. Both fast relaxation
strength and Gru¨neisen parameter increase when one mo
in direction from strong to fragile glass formers.

It is shown that at high temperatures the quartic anh
monic term suppresses the contribution of the third-or
anharmonicity to the quasielastic scattering. As a resul
crossover temperatureTa appears in the model; aboveTa the
intensity of the fast relaxation does not increase anymo
Eq. ~2.52!. At this temperature the mean value of the quar
anharmonic term in the vibrational Hamiltonian is of th
order of the main harmonic one. This is in agreement w
the Raman scattering data in B2O3,6 which is to our knowl-
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edge the only known experimental result where the fast
laxation spectrum is not masked bya relaxation even at the
crossover temperature. The width of the quasielastic line
determined by the relaxation time of the phonon occupat
number. The high-frequency tail of the fast relaxation
Debye-like while the low-frequency one is described by
power law with the exponent less than unity which is det
mined by the frequency dependence of the density of vib
tional states and that of the relaxation time of the phon
n

.

,

A

g

,

.

s

,

-

-

.

.

-

is
n

-
a-
n

density fluctuations. This exponent was estimated and co
pared with the light scattering experimental data.
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