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Sound damping in glasses: Interplay between anharmonicities and elastic heterogeneities
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Some facets of the way sound waves travel through glasses are still unclear. Recent works have shown that
in the low-temperature harmonic limit a crucial role in controlling sound damping is played by local elastic
heterogeneity. Sound waves propagation has been demonstrated to be strongly affected by inhomogeneous
mechanical features of the materials, which add to the anharmonic couplings at finite temperatures. We describe
the interplay between these two effects by molecular dynamics simulation of a model glass. In particular, we
focus on the transverse components of the vibrational excitations in terms of dynamic structure factors, and
characterize the temperature dependence of sound attenuation rates in an extended frequency range. We provide
a complete picture of all phenomena, in terms encompassing both theory and experiments.
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I. INTRODUCTION

At vanishing temperatures, the harmonic approximation
describes vibrations in crystals as a collection of noninteract-
ing quasiparticles with well-defined energy and momentum,
the phonons [1], providing a systematic reference state for
any further description. At nonzero temperatures, couplings
due to the anharmonicities of the interaction potential trigger
the insurgence of finite lifetimes of phonons, which can be
described via the Boltzmann transport equation [2]. The phe-
nomenology is substantially richer for glasses [3–5]. At low
temperatures and small frequencies (wave numbers), where
the continuum limit holds, the phononlike picture is still
helpful. In contrast, when phenomena occurring at length
scales comparable to the atomic distance are involved [6],
additional concepts are needed [7–9]. Indeed, the presence of
structural disorder now imposes that, while the quasiparticles
have well-defined energy, their momentum is ill-defined. On
increasing temperature, when the strength of anharmonicities
grows, the situation becomes even more complex [10]. The
interplay between disorder and anharmonicity is still a rather
unexplored issue.

Numerous experiments have demonstrated anomalous
transport of acousticlike excitations in glasses in the terahertz-
gigahertz regime, including breakdown of the Debye ap-
proximation (sound softening) [11] and Rayleigh-like strong
scattering, which determines an apparent lifetime τ (1/τ =
� ∝ �4) [12–14]. In [15], for instance, some of us highlighted
by molecular dynamics (MD) simulation a crossover from
the Rayleigh-like scattering to a disorder-induced broadening,
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� ∝ �2, at higher frequencies. Remarkably, we found that
the crossover frequency for transverse excitations, �co, is
close to the Ioffe-Regel limit �IR, indicating the sound waves
start to lose their plane-wave character at �co. In addition, in
the same frequency regime, nonconventional features, such
as the excess vibrational intensity of the boson peak (BP)
[16,17] and vibrational localization [18,19], were observed.
Since sound waves in glasses can be described as envelopes
of vibrational modes [20], these properties are closely related
to the anomalous sound waves propagation. In particular,
a universal connection of transverse sound waves with the
boson peak has been proposed [15,21].

We can rationalize these issues in terms of a local elastic
heterogeneity [22]. Recent simulation [23–25] and experi-
mental [26,27] works have demonstrated that glasses exhibit
inhomogeneous mechanical response at the nanoscale, i.e.,
elastic moduli do not simply assume the hydrodynamic val-
ues but rather fluctuate around it, with a finite distribution
width. This subtle heterogeneity generates in turn nonaffine
deformations [28,29], which add to the applied affine field
inducing a significant reduction in elastic moduli [30,31].
Following the nonaffine deformation, particles turn out to be
displaced in a correlated manner, characterized by a typical
mesoscopic correlation length [32]. It is natural to expect
that interaction with the nonaffine displacement field modifies
sound propagation. In [33–35], we have provided strong evi-
dence of this direct correlation between sound waves features
and the heterogeneous mechanical properties. Also based on
these ideas, Schirmacher et al. [36–39] have developed a
heterogeneous elasticity theory which reproduces numerous
of the above features.

Comprehensibly, a large part of the computational investi-
gation on these issues has tended to focus on quasiharmonic
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(inherent structures) conditions at zero temperature [40–45].
How these mechanical features entangle with anharmonicities
determining the total sound attenuation is therefore an open
issue not yet extensively explored [46,47]. Here, we address
the interplay of both anharmonic couplings and elastic dis-
order in a standard atomic glass. In particular, we focus on
the transverse component of the dynamic structure factor, by
simulating extremely large glassy samples, and analyze the
attenuation rates in an extended frequency range, at varying
temperatures. By disentangling the different interaction chan-
nels, we describe in detail and in a unified perspective the
main scattering mechanisms.

II. METHODS

A. System description

We have studied by MD simulations glassy systems formed
by N monodispersed particles, of mass m and diameter σ ,
interacting via the Lennard Jones (LJ) potential,

V (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (1)

where r = ri j is the distance between particles i and j. V (r) is
cut off and shifted at rc = 2.5 σ [48]. We have employed cubic
boxes of size L, with number density ρ̂ = N/L3 = 1.015. At
ρ̂, the melting and glass transition temperatures are Tm � 1.0
and Tg � 0.4, respectively [49]. In order to access the small
wave-number (q) region relevant here, we have considered
eight values of N ranging from 4000 to 1 000 188, which
correspond to values of L in the range 15.80–99.51. In the
following we show data pertaining to all values of N together,
directly verifying the absence of any finite-size effects.

Initialization runs were conducted at temperature T = 2.0
in the normal liquid phase, followed by a fast quench rate
dT/dt ≈ 400 down to T = 10−3. Next the systems were
heated to T = 10−2, 10−1, 2 × 10−1, still below Tg. Follow-
ing thermalization, we performed the production runs for a
(N-dependent) total time sufficient to obtain the desired ω res-
olution, always well below the smallest calculated linewidths.
Here we emphasize that there are no aging effects recognized
during the production runs at least in the time history of total
energy. We used LAMMPS [50] for our runs, and the reader can
refer to [51] for all additional details.

B. Analysis of sound propagation

Sound propagation has been investigated in terms of the
transverse dynamical structure factors [15,34] at wave num-
bers q and frequencies ω:

ST (q, ω) = 1

2πN

( q

ω

)2
∫

dt
〈
jT (q, t ) · j†

T (q, 0)
〉
eiωt , (2)

where jT (q, t ) = ∑N
i=1 {vi(t ) − [vi(t ) · q̂]q̂} exp{iq · ri(t )} is

the transverse current vector. Here, q = |q|, q̂ = q/q, and
〈·〉 is the thermodynamic average. Although inelastic ex-
periments with neutrons and x rays probe the longitudinal
component of SL(q, ω), it has demonstrated that the transverse
counterpart follows very similar patterns at higher values of
q and ω, making the computations more comfortable. In this
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FIG. 1. Transverse dynamical structure factors, ST (q, ω), for the
investigated LJ glass at the wave vector q = 0.23. The different
symbols correspond to the indicated temperatures, all below the
glass-transition temperature, Tg = 0.4.

paper we have systematically dumped the subscript (T ), and
have indicated frequencies with �.

The spectra were complemented by the vibrational density
of states (vDOS), g(ω), determined by numerically diago-
nalizing the Hessian matrix. We have used different system
sizes, up to N = 256 000, in order to adequately sample the
g(ω). For our LJ glass, qD = (6π2ρ̂ )1/3 � 3.92, cD = [(c−3

L +
2c−3

T )/3]−1/3 � 4.13, and ωD = qDcD � 16.19 are the Debye
wave vector, velocity, and frequency, respectively, with cL �
8.71 and cT � 3.65 the longitudinal and transverse sound
velocities. The Debye vDOS is gD(ω) = 3 ω2/ω3

D.

C. Calculation of local elastic constants

In addition, we have characterized the degree of elastic
heterogeneity as discussed in [52]. It has been demonstrated
that in LJ systems the bulk (K) and shear (G) moduli are
such that K � G, and the latter mostly controls low-frequency
transverse modes propagation [33–35]. We therefore focus on
the probability distributions of G, determined by partitioning
the box into an array of cubic domains of linear size w � 3.16,
identified by an index m and including about 30 particles
each. The local moduli Gm were computed by the fluctuation
formula [23,53], dubbed as the “fully local” approach in [52].

III. RESULTS

The S(q, ω) spectra (see Fig. 1 and Ref. [51]) are charac-
terized by two symmetric Brillouin peaks, flanking the elastic
line. As T increases, they move towards higher frequencies,
with an increasing total intensity and broadening. We can
extract quantitative information from these data by fitting the
points in the spectral region around the Brillouin peaks to
the damped harmonic oscillator model [54]. This involves
the parameters �(q) [related to the sound velocity by c(q) =
�(q)/q; see Ref. [51]], and �(q), which encode the character-
istic frequency and inverse lifetime (or broadening, full width
at half maximum) of the sound excitations, respectively.
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FIG. 2. Transverse sound broadening, �(�) (circles), deter-
mined as discussed in the main text as a function of the corresponding
Brillouin frequency, �, at the indicated values of T . The solid
lines indicate the power-law scaling valid in the different frequency
regions, with strongly T -dependent patterns as discussed in the text.
We use the same color code to indicate power laws which arise from
the same mechanism and are not modified at different values of T .

A. Sound damping

In Fig. 2 we show the (total) � as a function of the
corresponding �, at the indicated values of temperature. The
� dependence of these data is very complex, and strongly
depends on T . (We use symbols of the same color to identify
the investigated temperatures, and solid lines of the same color
for mechanisms that are not modified at different T values.) At
the lowest T = 10−3 (a), a clear crossover occurs between the
high-frequency disorder-controlled behavior ∝ �2 [55], and a
Rayleigh-like scattering contribution, ∝ �4, at lower frequen-
cies [56]. As already noticed, the crossover frequency �co � 1
is below the calculated boson peak frequency, �BP � �IR � 2
[15]. Note that even at this very low T anharmonic interac-
tions are obviously present and, for instance, still contribute to
the thermal conductivity. Their intensity, however, is very low
compared to other contributions, while non-negligible effects
should be visible at frequencies smaller than our spectral
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FIG. 3. The anharmonic contribution �anh(�, T ) calculated by
subtracting from the total broadening the disorder term at T = 10−3

related to the elastic heterogeneities. In the inset we show the T
dependence of the parameters δ2 and δ3/2, discussed in the main text.

range. By increasing T , in contrast, we expect the strength of
anharmonicities to increase, eventually entering the frequency
window.

This is indeed the case in (b) for T = 10−2, where
we detect a second T -dependent crossover, at �co2 � 0.6,
between the Rayleigh region and a remarkable low-frequency
∝ �3/2 regime [57], as theoretically predicted in Ref. [58] and
reminiscent of the fractional attenuation of Refs. [58,59] (see
below). Note that the latter is obviously strongly T dependent,
whereas the Rayleigh and disorder-controlled regimes are
not modified even at intermediate T , a feature that we will
exploit below. Also, by increasing T , we expect the two
crossover frequencies to eventually merge �co2 � �co, when
the strength of the anharmonic couplings becomes compara-
ble to that associated to the effect of the disorder, and the two
mechanisms bury the Rayleigh scaling in the entire � range.
This is exactly what we observe at T = 10−1 in (c), where the
∝ �3/2 regime at low frequency directly joins to the quadratic
T -independent contribution at high �.

Finally, at the highest T = 2 × 10−1 � Tg/2 in (a), we
observe a unique envelope of all scattering mechanisms which
now scales uniformly as �2 (Akhiezer-like) in most of the
� range, while a vestige of the �3/2 regime is still detected
at low �. It is worth noting that, at this stage, the width
is fully T dependent, and the second crossover �co2 shifts
towards lower frequency on increasing T , indicating that the
Akhiezer-like �2 regime grows faster than the �3/2 region.
Indeed, the prefactor of the quadratic term δ2(T ), shown in
the inset of Fig. 3, keeps a constant value for T < 0.1, before
substantially increasing (possibly linearly) at higher T .

The above scenario is similar to that reported recently in
the experimental work of [60] for a network glass (sodium
silicate), although in that case, a plain ∝ �2 Akhiezer regime
is reported instead of the fractional behavior at low frequen-
cies and high T . This extremely complex situation definitely
points to nontrivial effects due to temperature on the sound
waves propagation, which superimpose to T -independent ef-
fects of a completely different nature. In Ref. [34] we have re-
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lated the latter to the existence of local elastic heterogeneities.
To obtain additional quantitative insight we need at this point
to disentangle the different contributions.

B. Anharmonic contribution

We start by posing �(�, T ) = �dis(�) + �anh(�, T ) [59],
where �dis(�) encodes the T -independent effect of disorder
and is related to the (T = 0) inherent structure features.
�anh(�, T ), in contrast, is a T -dependent contribution related
to the anharmonic couplings at finite T . In all generality,
we model �dis(�) with a term ∝ �4 in the Rayleigh, and ∝
�2, in the high-frequency regions, respectively. We next join
continuously the two power laws at � = �co, by imposing

�dis(�) =
⎧⎨
⎩

αdis

�2
co

�4, for � < �co,

αdis�
2, for � > �co.

(3)

By adjusting this formula to the data of Fig. 2(a) we extract
αdis � 0.2 and �co � 1.0. (�co corresponds to the length scale
ξ = 2πcT /�co � 20, which is associated to the vortexlike
structure of the nonaffine displacement field [51].) We can
now obtain the anharmonic contribution by subtracting the
disorder term from the total broadening, as

�anh(�, T ) = �(�, T ) − �dis(�). (4)

Note that we have systematically smoothed the quite scattered
data by averaging over bins each containing two points.

We show the results for �anh(�, T ) at T � 10−2 in the
main panel of Fig. 3. As expected, all curves vanish in the
limit � → 0, where anharmonic effects must disappear. At
T = 10−2 the fractional �3/2 dependence only survives at low
frequencies, � � �co2. We observe an analogous behavior at
the higher T = 0.1, although the intensity of the �3/2 term
now increases almost a factor of 4. Eventually, at the highest
T = 2 × 10−1, we also recover the �3/2 term which, however,
crosses over to a residual �2 dependence for � � �co. Note
that the last feature is still of anharmonic origin, and is not
related to a variation with temperature of the strength of the
elastic heterogeneity, as already demonstrated by some of us
in [37]. Overall, the �3/2 scaling at low frequency confirms
the fractional frequency dependence of broadening reported
in the experimental work of [59], and predicted by the theory
of [58].

Finally we note that the complete (T -�) dependence for
the total � in this low-frequency range has been proposed to
scale as �(�, T ) = δ3/2(T ) �3/2, with δ3/2(T ) ∝ √

T [58,59],
which also seems to be fulfilled by our data, as shown in the
inset of Fig. 3.

C. Vibrational density of states

We now demonstrate precisely and in a very direct way
the relation between the anomalous transverse acousticlike
excitations behavior and the BP properties. Note that in
Ref. [15] we demonstrated a possible connection between the
sound softening encoded in the pseudodispersion curves and
the BP, simply assuming q to be a good parameter for labeling
vibrations in glasses, and counting the number of acoustic
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FIG. 4. Comparison between the reduced density of state ĝ(ω)
(black) and the broadening data rescaled according to the heteroge-
neous elastic theory, at the indicated temperatures. The horizontal
dashed line shows the Debye limit, 3/�3

D. The solid line indicates
the low-frequency fractional �−1/2 term related to anharmonicities.
These data are discussed at length in the main text.

modes in the low-q region. This procedure quite accurately
reproduced the BP feature in the reduced ĝ(�) = g(�)/�2.

Here we adopt a different point of view, based on the
heterogeneous elasticity theory [36–39], which provides a
remarkable relation between the (longitudinal) broadening
and the BP of the form ĝ(�) = 3/�3

D + f �(�)/(�D�)2

[37]. In the original theory, f (� 4.8 in the present case) is
a frequency-independent parameter that can be determined
from the macroscopic velocities of sound and the density of
the material. In the present work we consider a plainly �

and T -dependent model, by considering the approximation of
[38] for the response functions. One can show that, for cL >

cT and �L 
 �T , the analogous relation for the transverse
broadening can be simply expressed as [42]

ĝ(�) = 3

�3
D

+
[

4

πq2
Dc2(�)

][
�(�)

�2 + �2(�)

]
. (5)

Note that with this model, we include both the effect of the
sound softening, and a mild temperature dependence of the
macroscopic velocity observed at high T [51].

In Fig. 4 we plot separately the two sides of the equation
discussed above, without any adjustable parameters. The data
at T = 10−3 are in nice qualitative agreement with the ĝ(�).
Indeed, the rescaled broadening data grasp the macroscopic
(Debye) limit, increase quadratically in the Rayleigh range,
and saturate to a constant in the BP region, very close to the
BP intensity. The situation is similar at T = 10−2, although
anharmonicities already start to alter the small-� behavior,
a modification which is complete at the two highest tem-
peratures. Now the data decrease by increasing frequency,
following an �−1/2 power law, eventually saturating at the BP.
We note that the consistent collapse of all data in this region
is made possible by our more realistic model, which now
also includes anharmonic modifications of the macroscopic
velocities, as noticed above. Also, the simultaneous presence
of both the �−1/2 dependence and the BP corroborates the
predictions of [58], where the theory was modified to include a

174206-4



SOUND DAMPING IN GLASSES: INTERPLAY BETWEEN … PHYSICAL REVIEW B 101, 174206 (2020)

-20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50
G

0.00

0.02

0.04

0.06

0.08

P(
G

)

T=0.001
T=0.005
T=0.01
T=0.05
T=0.1
T=0.2

10-3 10-2 10-1
T

101γ 
(T

)
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broadening with T , is discussed in the main text. In the inset we show
(symbols) the T dependence of the disorder parameter, γ , together
with the calculated harmonic limit (dashed line).

small anharmonic scattering contribution [46,47], generating
the same fractional behavior of ĝ(ω). Similar data have been
reported in the experimental work of [60].

D. Elastic heterogeneities

We are now in the position to show directly that the
described increase of the strength of the anharmonicities away
from the harmonic limit is coupled to important modifications
of the degree of the local elastic heterogeneity. Note that in
the heterogeneous elasticity theory [36–39], this feature is
an input, which amounts to adjusting the disorder parameter
γ = ρ̂w3〈δG2〉/〈G〉2, related to the momenta of the shear
moduli distributions, P(G). In our simulations, in contrast,
the heterogeneity can be measured by directly computing the
P(G), as recalled above. We can therefore immediately con-
firm (see main panel in Fig. 5) the assumption that the local
shear modulus is space dependent, with Gaussian probability
distributions, P(G). Fluctuations in the local bulk modulus
are, in contrast, negligible [33–35].

As in Fig. 5, for T < 10−1, the P(G) are very mildly T
dependent, with means and variances almost constant and
very close to the T = 0 harmonic values [51]. At T � 10−1,
however, thermal fluctuations set in, strongly modifying the
distributions. These broaden and include an increasing frac-

tion of negative shear stiffnesses on increasing T . In the
inset we show the T dependence of γ (symbols), which
stays very close to the harmonic value γ (T = 0) � 3.5 [51]
(dashed line) for T < 10−2. At higher temperatures, it starts
to increase significantly, with a clear correlation with the
Akhiezer-like linear increase of the strength δ2(T ) in the inset
of Fig. 3. This behavior therefore signals the approach to the
elastic instability at the γc of [58,59], with δγ = γ − γc (� 0)
increasing with T towards 0.

IV. CONCLUSION

In this work we have elucidated the simultaneous impact
of the anharmonic couplings and the effects due to disor-
der on the transverse sound waves propagation in glasses,
with relative strengths determined by the temperature. Based
on accurate numerical data, we have provided a complete
characterization of sound broadening, �(�, T ), analyzing in
depth the evolution of different scattering mechanisms in
a very large frequency range. On the one hand, we have
completely characterized the anharmonic channel, identifying
a fractional frequency scaling predicted by the heterogeneous
elasticity theory, modified to include anharmonic damping.
On the other hand, we have convincingly linked the elastic
moduli heterogeneities, which can be precisely quantified by
simulation, to the crossover from the Rayleigh �4 to the �2

regimes, both of which are determined by disorder.
We conclude with an observation. With a different theo-

retical point of view and based on an elastic network model,
it has been proposed [62,63] that the weak connectivity of
the particles (isostatic feature), due to the vicinity at the jam-
ming transition point, induce nonaffine effects which strongly
impact the vibrational excitations. Although the origin of
these effects is different from that assumed in the elastic
heterogeneity theory, both frameworks share the view that
features of the nonaffine displacement field alter vibrational
excitations in disordered solids. It is clear that only develop-
ments able to precisely integrate these mechanical aspects and
a full treatment of the anharmonic couplings will be able to
provide the complete picture for sound waves propagation in
disordered solids.
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