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Extensive measurements of the heat capacity of liquid 3He in the normal 
and superfluid phases are reported. The experiments range from 0.8 to 10 m K  
and cover ~ressures from 0 to 32.5 bar in zero magnetic field. The phase 
diagram of He, based on the platinum N M R  temperature scale, is presented. 
In the normal liquid at low pressures and near the superfluid transition Tc 
an excess specific heat is found. The effective mass m* of 3He is at all 
pressures about 30% smaller than the values reported earlier. The calculated 
Fermi liquid parameters Fo and F1 are reduced as m*/m,  while the spin 
alignment factor (1 + Zo/4)  -1 is enhanced from 3.1-3.8  to 4.3-5.3, depend- 
ing on pressure. The specific heat discontinuity A C/C at Tc is for P = 0 close 
to the BCS  value 1.43, whereas at 32.S bar A C / C  is 1.90~:0.03 in the B 
phase and 2.04:t:0.03 in the A phase, revealing distinctly the pressure 
dependence of strong coupling effects. The temperature dependence of the 
specific heat in the B phase agrees with a model calculation of Serene and 
Rainer. The latent heat L at the A B  transition is 1 .14±0.02  Ix J/mole for 
P = 32.5 bar and decreases quickly as the polycritical point is approached; 
at 23.0 bar, L = 0.03-4z0.02 Ix J/mote. 

1. INTRODUCTION 

The properties of normal liquid 3He can be accounted for by the 
Landau Fermi liquid theory 1 from about 100 mK down to the superfluid 
transition temperature Tc. This theory predicts that the specific heat of 3He 
is proportional to temperature.  Measurements of heat capacity yield the 
effective mass m* needed in the calculation of the most important Fermi 
liquid parameters F0, F1, and Z0. At Tc the heat capacity displays a 
discontinuity AC/C>. Data from a typical experimental run are shown in 
Fig. 1. 

A model for the superfluid A and B phases is given by the weak 
coupling BCS theory extended to p-wave pairing in a spin triplet state, z 

*Work supported by the Academy of Finland. 
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Fig. 1. Specific heat of liquid 3He vs temperature measured at P = 28.7 bar 
in zero external magnetic field. The superfluid transition at Tc = 2.71 mK 
and the AB transition at TAB = 2.34 mK are indicated by arrows. 

This theory is, however, inadequate to account for the properties of 
superfluid 3He in quantitative detail. Deviations from the weak coupling 
theory are caused by residual interactions between quasiparticles; these 
phenomena are called strong coupling effects. 2"3 The temperature depen- 
dence of the specific heat below Tc and the discontinuity at Tc yield a 
quantitative measure of the importance of strong coupling effects. 

In order to extract the relevant data, a heat capacity measurement 
must be sufficiently accurate. Major difficulties are due to thermometry 
and the background heat capacity. These are evidently the reasons why 
some of the previous heat capacity measurements 4-9 in the vicinity of Tc 
are rather inaccurate and inconsistent. The most reliable data are probably 
by Halperin et aL 6 along the melting curve. 

In this paper we report extensive heat capacity measurements from 
0.8 to 10 mK over the pressure range between 0 and 32.5 bar. All experi- 
ments were done in zero external magnetic field. The latent heat L of the 
B o A  transition was also measured. The second-order transition tem- 
perature Tc between normal liquid 3He and superfluid as well as the 
first-order transition temperature TAB between the A and B phases was 
measured precisely on our temperature scale. Parts of our work have been 
briefly reported elsewhere, lo.l 1 
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This paper  contains six sections. The next section deals with experi- 
mental  techniques, thermometry ,  and determinat ion of the background 
heat capacity. Our  experimental  results for the normal liquid are presented 
in Section 3 and for the superfluid phases in Section 4. Measurements  of 
the latent heat  are described in Section 5. Conclusions f rom the results are 
summarized in the last section. 

2. E X P E R I M E N T A L  

2.1.  Genera l  Techniques  

Nuclear demagnetizat ion of copper was used as our final cooling 
method.  12 The nuclear stage consists of two copper  bundles, one inside 
the other,  sharing a common magnetization field. The main superconducting 
magnet  produces a maximum field of 7 T. Another  coil was employed to 
eliminate the field in the experimental  region to a relative accuracy better  
than one part  in 104. The field for the platinum N M R  thermometer  was 
produced by a third superconducting solenoid. Dilution refrigeration was 
used for precooling the experimental  cell and the nuclear stage to about  
19 mK. Thermal  contact between the inner bundle and the cell was weak, 
so that demagnetizat ion had to be per formed slowly, in 12-24h,  to reach 
temperatures  below 1 mK. A detailed description of the cryostat and its 
per formance  with a smaller cell is given in Ref. 13. 

In order to reduce the background heat  capacity to a minimum the 
experimental  cell, shown in Fig. 2, was made of silver because, like copper,  
it has a negligible electronic heat capacity at the tempera ture  region of 
interest and, moreover ,  its nuclear heat capacity is two orders of magnitude 
smaller than that of copper. The cell can be thermally disconnected f rom 
the inner nuclear bundle by a heat switch to prevent  the heat of the 
measuring pulses f rom leaking out. This heat  switch was made of 66 tin 
wires (diameter 0.5 mm,  99.999% pure) which were soldered by indium 
to the silver fingers illustrated in Fig. 2. 

The free volume of the experimental  cell is 17.24 + 0.10 cm 3. Its inner 
parts consist of a heater,  a silver sinter of surface area --10 m a, and two 
thermometers  based on plat inum N M R  and on the susceptibility of cerium 
magnesium nitrate diluted by the corresponding lanthanum salt (CLMN). 
The heater  was made of 6 m of bifilarly wound silver wire (0.07 m m  in 
diameter).  

Sealing of the cell was done by indium soldering between the main 
chamber  and its support ,  and between the CLMN thermomete r  appendage 
and its cover. The tube connecting the appendage to the cell was silver 
soldered at both ends. All joints were made with the smallest possible 
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Fig. 2: The experimental cell. 

amount  of indium solder in order  to avoid excessive background heat  
capacity. The large quadrupolar  heat  capacity of indium is not present  in 
the superconducting state. TM The electrical feedthroughs were sealed by 
epoxy. 

Pressure on the experimental  cell was measured through a filling 
capillary by a quartz Bourdon gauge, calibrated with a dead weight tester 
to an accuracy of 0.1%. The resolution of the gauge is about  2 mbar.  
Stabilization of the pressure was achieved by means of a feedback system, 
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which uses the error signal from the gauge to operate  a heater  on a 50 c m  3 

volume at room tempera ture  connected to the 3He cell. The sample pressure 
was stable within 10 mbar,  except when transferring liquid 4He to the 
dewar. After  a transfer the pressure regained its value in 15 min. 

To obtain pressures above the melting curve minimum the dilution 
refrigerator and the cell were first warmed to T ~> 1 K. The cell was then 
pressurized so that the molar  volume corresponded to the desired liquid 
pressure at temperatures  below the melting curve minimum. We have 
employed the molar  volume data of Grilly 15 and estimate an accuracy of 
+0.3 bar. 

The 3He gas was purified by means of a rectification column similar 
to that of Grigor 'ev  et al.16; the 4He content was measured to be about  
10 ppm in room tempera ture  gas. 

2.2.  Measurement  of Heat  Capacity 

Heat  capacities were measured with the pulse technique: A small 
amount  of heat  AQ was electrically applied to the sample and the corres- 
ponding increase in tempera ture  AT was measured.  The heat capacity C 
may then be calculated from C = AQ/AT. In a separate  experiment  the 
resistance Rh of the silver heater  wire was found by the four-lead method 
to be Rh = 1.013 +0 .002  1). The length of a heat pulse was typically 30 see. 
The accuracy of our measurements  of AQ was estimated to be 0.3%. 
Changing the current and length of the pulse over  broad limits did not 
cause additional scatter in the data. 

After  demagnetization, when 3He had reached its lowest temperature ,  
the current in the heat switch coil was reduced to make  the switch noncon- 
ducting. This caused the sample to warm from below 0.7 m K  to 0.8 mK 
at zero pressure, corresponding to a heat  pulse of 1.2/~J. This amount  of 
heat  is likely to be due to the magnetic energy of the switch, since the 
calculated eddy current heating is negligible. General ly the heat leak to 
the sample was less than 0.1 nW. At  zero pressure this corresponds to a 
warmup rate of 7" < 10 nK/sec  for a full cell above To. 

The tempera ture  and its change AT for a heat  capacity point were 
determined by extrapolating the initial and final warmup slopes to the 
middle of pulse to find T~ and Tr, respectively; then T = ½ ( T / +  Tr) , A T =  
T r - T~. The precision of the extrapolation was usually bet ter  than 1%, and 
it is the principal cause for the scatter in the data. Hea t  pulses were selected 
so that AT/T was between 0.01 and 0.04. 

A typical response of the CLMN thermometer  to a heat  pulse is shown 
in Fig. 3. The length of the pulse was 30 sec. At  T_> 5 m K  the relaxation 
time for the tempera ture  after the pulse was proport ional  to T 2, as one 
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Fig. 3. A typical response of the CLMN thermometer 
to a heat pulse. Determination of initial and final tem- 
peratures T~ and Tr, respectively, is shown by the straight 
lines. Heat was on 30 sec. 

would expect for a normal Fermi liquid, since the heat capacity behaves 
like C oc T and the heat conductivity like K oc T -1. At  lower temperatures 
the relaxation time saturated to about 40 sec; this is presumably due to a 
time constant related to the CLMN pill. Consequently, we did not observe 
any possible difference between the relaxation times of the superfluids and 
normal 3He. 

2.3. Thermometry and the Temperature Scale 

For platinum NMR thermometry  we have employed the commercial 
pulse gating and signal processing unit PLM3,* based on the technique 
described in Ref. 17. The nuclear magnetic susceptibility of platinum is 
assumed to obey the Curie law X oc 1/T. The constant of proportionality 
was found by measuring the spin-lattice relaxation time ~'1 and by using 
the Korringa relation ~'a T = 29.9 msee K valid for platinum at 28 roT. 18'13 

A temperature dependence of the Korringa relation has been observed 
in some laboratories. 19"2° In order to check the validity of this relation for 
our platinum powder we have plotted ~-~ T vs T in Fig. 4. Temperatures 
were determined by the susceptibility measurements, which were calibrated 
by taking the average ( q  T) to be 29.9 msec K. There  is no evident tem- 
perature dependence in ~'a T within the precision of our ~'1 measurements,  
about 2%. Typically ~-~ was measured in a temperature region from 2 to 
10 inK. Below 2 mK the thermal contact between the platinum powder 

*PLM-3 platinum NMR thermometer, Instruments for Technology, Espoo, Finland. 
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Fig. 4. A plot of rlT vs the Curie tempera ture  of the 
plat inum thermometer .  The Curie constant  was calibrated 
so that,  on the average, ~'1T = 29.9 msec K. A single point  
is an average of three r l  measurements .  

and 3He seems to become poor. At  high temperatures the NMR signal is 
reduced and the measurement  becomes more susceptible to systematic 
errors. This  can, in principle, be avoided by increasing the tipping angle 
of the platinum spins after a pulse. In practice, however, an analysis of r l  
measurements is problematic when large tipping angles are employed. 

The platinum NMR thermometer  is not precise enough for accurate 
heat capacity measurements. Therefore,  we used a CLMN thermometer  
similar to that of Paulson et al. 21; we diluted our cerium magnesium nitrate 
[Ce2Mg3(NO3h2 • 24H20]  to 3 molar percent (Ce0.o3Lao.97MN) in the cor- 
responding lanthanum salt. The preparation of the salt and the thermometer  
coils are described in Ref. 11. The magnetization of CLMN was monitored 
by an ac bridge* working at 32 Hz and using a SQUID$ as a null detector. 
The output showing the off-balance of the bridge was lock-in detected and 
recorded on a chart. We obtained a resolution of better  than one part in 
104 below 10 inK. 

The CLMN thermometer  was calibrated against the nuclear spin sus- 
ceptibility of platinum in every cooldown. A useful empirical relation for 
the CLMN bridge output S is 

A 
s = + So (1) 

where So is a temperature- independent  signal, T is the absolute tem- 
perature,  and A and & are calibration constants. Using the Curie law for 

• R L M  Measur ing System, S.H.E. Corporation,  San Diego, California. 
t S U M 3  Magnetometer ,  Ins t ruments  for Technology,  Espoo,  Finland. 
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the integrated platinum NMR signal 

Svt = B~ T (2) 

and by plotting (S - S0) -1 vs S~t ~, one would thus expect a linear dependence 
with the slope B / A  and intercept - A / A ,  where the calibration constant 
B is determined from rl measurements. Such a plot is shown in Fig. 5, 
where S~t 1 is replaced by T for the sake of convenience. This analysis 
yielded negative values for A, ranging for different cooldowns between 
-0 .11  and -0 .13  mK with the earth's field compensated. The parameter 
A was found to be constant to within 1%. Calibrations did not indicate 
any pressure dependence within the precision of our rl measurements and 
the value of S at Tc was field independent at least up to 28 mT. Due to 
the imprecision of the r~ measurements we have fixed the temperature 
scale so that at zero pressure Tc = 1.040 mK, an average value of different 
calibrations. 

The absolute accuracy of our temperature scale relies on the precision 
of the r~ measurements and on the value of the Korringa constant Kpt in 
platinum. There are several reported measurements on Kvt. 22'23"~s Aalto 
et a l Y  have verified the validity of the Korringa relation from 10 mK to 
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Fig. 5. The inverse of the temperature-dependent magnetometer signal 
(8-80) -1 vs the Curie temperature of the platinum thermometer. The 
parameters A and A are determined by the inverted slope of the straight 
line and by the intercept at the temperature axis, respectively. 
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1 K and find Ket  = 29.6 msec K, in agreement  with the earlier reported 
measurements  at higher temperatures.  Their  tempera ture  scale was based 
on a CMN thermomete r  and on a carbon resistor calibrated against the 
vapor  pressure of 3He. At  the low-temperature  end they further  employed 
a nuclear orientation (NO) thermometer  with 54Mn in nickel. 24 The  stated 
absolute accuracy of the N O  thermometer  is 2%.  

Ahonen  et al. 18 measured Ket with 1% precision between 7 and 35 m K  
using a similar N O  thermometer  as Aalto et al. 22 and they report  g p t  = 

29.9 + 0.3 msec K, which is the value adopted here. Avenel  et aL 23 have 
measured Ket  using an osmotic pressure the rmomete r  f rom 50 m K  to 2 K 
and they obtained KPt = 30.2 msec K. Their precision is about  1% and the 
absolute accuracy of the thermometer  is 2 m K  at T > 50 inK. On the basis 
of the above measurements  and the precision of the rl  measurements  we 
estimate the absolute accuracy of our tempera ture  scale to be  + 5 % .  

The phase diagram of 3He is shown in Fig. 6 on our tempera ture  scale; 
the experimental  points are listed in Table I. The Tc was observed as a 
change in the slope of the tempera ture  vs t ime curve and TAB as a plateau 
when drifting f rom the B to the A phase. At  several pressures T~ was 
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Fig. 6. The  phase diagram of liquid 3He in zero magnet ic  field. The  phase  transitions 
at T c and TAB were determined by the C L M N thermometer ,  which was calibrated 
against the  plat inum the rmomete r  using the  Korringa relation "rl T = 29.9 msec K. 
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TABLE I 

Pressure and Temperature Coordinates of the T~ and TAB Lines in Zero Magnetic Field 

P, bar To, mK P, bar To, mK P, bar TAB, mK 

0 1.040 16.94 2.400 23.01 2.512 
1.186 1.220 18.93 2.472 23.97 2.484 
2.966 1.446 20.98 2.538 24.88 2.459 
5.032 1.663 23.01 2.595 25.96 2.426 
6.976 1.834 23.95 2.618" 27.46 2.381 
9.951 2.048 25.94 2.662 a 28.96 2.335 

12.93 2.217 28.95 2.719 32.50 2.221 a 
14.91 2.314 32.50 2.768" 

aExcept for these data, only a single calibration of the thermometer was used. 
bThe pressure 32.5 + 0.03 bar was estimated using the molar volume data of Grilly. ~5 

detected during both cooling and warming; a difference of - 0 . 5 / z K  was 
observed with 7 ~ -  20 nK/sec. With lower drift rates the difference was 
reduced and, in general, reproducibility within our resolutiQn could be 
achieved during a single cooldown. The A ~ B transition was supercooled, 
but in the reversed direction B-~ A the transition temperature was repro- 
ducible within 1/xK and constant within 0.5/xK during the transition. 

It is interesting to compare the recent La Jolla temperature scale 21 to 
ours. We made a polynomial fit to the magnetic temperature data of Ref. 
21 (here T*j ) vs pressure in order to compare them with our Tc data (Tr~ki). 
It was found that the two temperature scales depend linearly on each other. 
A least squares fit yields 

TL*j = 0.900 THki + 0.114 mK (3) 

This relation is valid within 5/~K, as can be seen from Fig. 7. One may 
infer from this figure that deviations from Eq. (3) are not caused by 
experimental scatter, which seems to be less than 1/zK. Near zero pressure 
an error of 25 mbar corresponds to an error of 5 / zK in To. However, we 
find such a pressure inaccuracy improbable. 

Equation (1) can be cast into the form T = T * + A ,  where T * =  
A/(S-So) is the magnetic temperature. Using T*kl in Eq. (3), we obtain 
TL*j = 0.900T*ki + 0.003 inK. This means that with high precision T*j oc 
T~ki and consequently the A parameters of the La Jolla and Helsinki 
thermometers must be equal within the factor of proportionality, 0.9, and 
the precision of the result. This conclusion is actually independent of our 
calibration procedure. However, the value of A found by Paulson e t  aL  21 

is + 0.1 mK, in contradiction to our measurement, A--~-0.12 inK. Their 
value of A is only an estimate, which makes zero-sound attenuation linear 
in T 2 at temperatures well above Tc. The sign of A in our measurements 



Specific Heat ot Normal and Superfluid 3He 383 

- t  

E 2 

A 
+ 0 
L{ 

I -/~ 

-6 

6 

0 

4 

I | I 1 I I I L 

0 O0 0 0 
O 0 

J 

0 

O O 

0 

I i I I I I I 

1.4 1.8 2.2 2.6 

/ ' L J  (inK) 

Fig. 7. A comparison of the Helsinki and La Jolla temperature 
s c a l e s .  T h e  quantity TL~j - -  ( 0 . 9 0 0  T H k  i + 0 . 1 1 4  mK) is displayed 
VS TL*J. 

depends solely on the validity of the Curie law for the static nuclear spin 
susceptibility. A negative A would affect considerably the discussion of 
Ref. 21 concerning earlier work. 

Experiments  by Halper in  e t  aI. 25 at ~he melting curve yielded Tc = 
2.75 + 0.11 m K  and TAB = 2.18 ± 0.10 mK. Their  tempera ture  scale was 
determined in two steps. First, a scale proport ional  to the thermodynamic 
temperature  was derived by measuring the latent heat  for converting liquid 
to solid and by applying the Clausius-Clapeyron equation. Tc is used as a 
well-defined reference tempera ture  on this scale. In the second step, the 
value of Tc was determined by using the fact that the solid entropy 
approaches R In 2 at sufficiently high temperatures.  Their  results on this 
absolute thermodynamic tempera ture  scale are in good agreement  with 
our extrapolated values, Tc = 2.79 m K  and TAB = 2.16 ± 0.02 inK; here the 
error limits represent  the precision of extrapolation. 

Direct  check of our tempera ture  scale was recently made by Lhota  e t  

al .  a6 In this exper iment  the Helsinki scale was produced with the help of 
the plat inum susceptibility; the superfluid transition tempera ture  Tc = 
1.04 m K  of 3He at zero pressure was used to determine the Curie constant. 
This scale was compared  with the NBS cryogenic tempera ture  scale, 27 
whose accuracy between 10 and 50 m K  is ± 0 . 5 % ,  by means of tungsten 
and beryllium superconductive fixed points. According to these measure-  
ments, the value of T~ at zero pressure is 1.025 ±0 .02  m K  on the NBS 
scale, in good agreement  with our To. This result, as well as the consistency 
of the data of Ref. 25 with our values of T~ at the melting curve, give 
convincing support  for the correctness of our tempera ture  scale. The Tc 
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line according to the old Helsinki scale, 18 based also on platinum NMR, 
is at 2% higher temperatures than ours, on the average. 

2.4.  Determinat ion of the Background Heat  Capacity 

It is not possible to measure the background heat capacity of the empty 
cell directly, owing to inadequate thermal contact between the CLMN 
thermometer  and the rest of the cello Further,  since our intention was to 
measure the specific heat of bulk liquid, a possible contribution from the 
sinter must be properly taken into account. The first layer(s) of solid 3He 
at surfaces, for example, may have a substantial heat capacity. Also, 
superfluidity is prohibited near surfaces to within the superfluid coherence 
length ~o. 

At  zero pressure one can eliminate the background and nonbulk liquid 
contributions by measuring, in turn, the heat capacities of a partially filled 
and a full cell. The difference in the measured heat capacities is due to the 
different amounts of bulk 3He in the two experiments, assuming that the 
liquid level was well above the sinter with partial filling. In order to improve 
our accuracy, we have extended this technique by measuring the heat 
capacity with 15 different amounts of liquid 3He in the cell at zero pressure. 
Plotting the measured heat capacity Cm at a given temperature T__- Tc vs 
the volume V of liquid 3He in the cell, one expects to find a straight line 

C,,(T, V) =c,,(T) V + Cb(T) (4) 

where the slope c~ (T) is the heat capacity of normal liquid 3He per unit 
volume and the intercept Cb (T) contains all background and nonbulk liquid 
contributions at this temperature.  Such a graph is displayed in Fig. 8 at 
T =  1.1 inK. 

We have measured V from the volume of 3He gas condensed to the 
cell. Some of this gas remains as liquid in the gravitational minima of "the 
filling capillary, which has a volume of only 0.08 cm 3 below the still of the 
dilution refrigerator. T h e  amount of liquid in the filling capillary has been 
deduced by requiring that Cm oc V at T ~> 8 inK, where the background has 
become negligible. This implies a correction of 0.06 cm 3 to V, which is 
consistent with the volume of the filling capillary. 

The intercepts of the straight lines of Eq. (4) at V = 0 are presented 
as a function of temperature in Fig. 9. The drop of about 20% at Tc can 
be interpreted as suppression of superfluidity within so0 on the surfaces and 
will be discussed below. The V = 0 intercept in the normal liquid 3He yields 
a background contribution which satisfactorily obeys the empirical 
relationship 

Cb ( T) = 2 . 5 5 e  -T/2"3 mJ/K (5) 
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where T is in mK. At  Tc = 1.04 m K  we find Cb = 1.62=t=0.05 m J / K ,  which 
amounts to about  15% of the heat capacity of the cell full of normal liquid 
3He at P = 0. A background of this size can be accounted for by assuming 
the validity of a T -2 dependence as for the specific heat of solid 3He down 
to 1 m K  and by further assuming that the first layer of solid at surfaces 
exhibits a heat capacity not much different f rom that of bulk solid. If some 
of the indium used in soldering the tin wires in the heat switch is in the 
normal state, we estimate the nuclear quadrupote  heat capacity of indium 14 
to contribute only 0.2 mJ/K at 1 mK. 

If a volume Vn of liquid 3He remains normal  below To, Eq. (4) should 
be replaced by 

Cm(T, V) = c~(T)V~ +c,,(T)V,, + C'b(T) 

= c~(T) V+[cn(T)-c , (T)]V~ + C'b (T) (6) 

where V = V~ + V~ and the subscripts s and n refer to superfluid and normal  
liquid, respectively. The intercept Cb at V = 0 is now described by the two 
extreme terms on the right in the latter form of Eq. (6), where C'b(T) 
corresponds to Cb(T) in Eq. (5). The drop in Cb at To, as shown in Fig. 9, 
can be understood on the basis of the middle term in Eq. (6), since cn < c~ 
just below To. Estimating the amount  of normal  liquid below Tc f rom Eq. 
(6), we find Vn = 0 .50+  0.05 cm 3. This would correspond to a 50-nm-thick 
layer of normal  liquid on the sinter surface. This value is roughly of the 
same magnitude as the tempera ture- independent  coherence length 2 £0 = 
h vv/~rkB Tc. Contributions f rom the term ( c ~ - c , )  Vn vanish for the tem-  
perature  T/Tc =0 .5  where, assuming that c~ ec T, cn and c, become equal 
(cf. Fig. 1). This interpretation is consistent with the tempera ture  depen-  
dence shown in Fig. 9. 

Since there is no direct way of measuring the background heat capacity 
at finite pressures, we have simply taken Cb (T) to be pressure independent.  
If Cb(T) is, in fact, due to formation of solid 3He or to the presence of 
high-pressure liquid at the sinter surface, it could have a weak pressure 
dependence.  The background, however,  is so small that our assumption is 
quite reasonable.  

The pressure dependence of V~ below Tc can be est imated f rom the 
coherence length. One finds 

CO = hUF OC (7/71")1/3 (7) 
~rkBTc ~,T~ 

where V/n is the molar  volume and y is a constant defined by C, J n R  = yT. 
Here  n is the number  of moles and R is the gas constant. All pressure 
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s i n t e r  a s  a f u n c t i o n  o f  p r e s s u r e :  V . ( P )  = V.(O)~o(P)/Ido(O). 

dependent  terms in Eq. (7) tend to decrease ~o with increasing P. In Fig. 
10 we have plotted V,, scaled by ~o, as a function of pressure. At  Tc the 
correction in Cs due to V, is +1 .7% at 0 bar and less than 1% at P >  5 bar. 

To summarize,  in the normal  liquid region we have asumed that Cb 
is independent  of pressure and we have subtracted from the measured heat 
capacity a background given by Eq. (5). Below T¢ the effect of normal  3He 
near sinter surfaces is taken into account according to the measurements  
at P = 0. Any systematic errors due to the above procedures are estimated 
to be less than 1% in heat capacity. 

3. SPECIFIC HEAT OF NORMAL LIQUID aHe 

3.1. Results 

The specific heat of a normal  Fermi liquid is proport ional  to T, and 
the quantity y = C/nRT consequently depends only on pressure in the 
low-temperature  limit. In Fig. 11 we have plotted y vs T at various 
pressures. Roughly above 3 mK, y seems to exhibit no tempera ture  depen-  
dence. However ,  at temperatures  below 3 m K  and at pressures P ~< 8 bar, 
C/nRT starts to increase toward To. The excess specific heat  is most  
prominent  at zero pressure, where the increase in C/nRT amounts to 9% 
at To. At  8 bar  an upturn can hardly be resolved any more.  

Let  us introduce the quantity Ay through 

Ay(P,T) = C / n R r -  y(P) (8) 

Here  y(P) is experimentally determined in the tempera ture  region where 
C/nRT depends only on pressure. If A3, were due to an error  ACb in the 
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background heat capacity, that is, Ay = ACb/nRT, then at a given tem- 
perature To the ratio of Ay's from two different pressures ought.to be that 
of the corresponding molar volumes, assuming that Cb is independent of 
pressure. However,  Ay(P, To) seems to vanish faster than expected for 
increasing pressure. If the temperature scale were nonlinear, one would 
have Ay(p, To)OC y(p) and Ay would increase at higher pressures, which is 
not the case. Furthermore,  a nonlinearity in the CLMN thermometer  would 
show up in the calibration against the nuclear susceptibility of platinum. 
We may therefore conclude that the excess specific heat is a physical 
property of 3He and not of experimental origin. 

In principle, the excess specific heat can either be a property of the 
bulk liquid or a surface effect. 29 Owing to our method of determining the 
background heat capacity, any surface contribution from the sinter is 
included in Cb. Therefore,  the only surfaces that could cause the excess in 
C/nRT are the cell wails above the sinter. Let  us assume that the total 
background is caused by sinter surfaces. If the excess were caused by the 
cell walls, all liquid within the sinter should be influenced by the same 
surface effect, since otherwise the amounts of the excess and background 
heat capacities could not scale in the measured ratio - -1/2.  In this case 
the characteristic length for the surface effect, estimated from the volume 
of liquid inside the sinter ( - 2  cm3), would be a few hundred micrometers. 
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This is much longer than the quasiparticle mean free path in liquid 3He or 
the range of surface potentials. Furthermore,  A3" has a steeper temperature 
dependence than Cb. If only a fraction of Cb were caused by surface effects, 
the required characteristic length would still increase. 

The above considerations seem to suggest that the excess specific heat 
is a property of bulk liquid 3He. Unfortunately, there is no obvious physical 
model predicting such an effect. The spin fluctuation theories, 3°-32 which 
at the lowest temperatures yield a term T 3 In T to the specific heat, cannot 
be fitted to our data. 

Evidence for anomalous effects in 3He near the superfluid transition 
have been reported earlier. 5"8'33 However,  the anomaly in the heat capacity 
data of Dundon et al. 5 is mot probably mainly due to the sinter surfaces 
of the cell, which do not contribute at all in our measurements. Parpia et 
al. 33 have observed a deviation from the T -2 dependence in viscosity below 
4 mK. This may be due to the fact that the quasiparticle mean free path 
becomes comparable to their viscometer dimensions at low temperatures. 
However,  a theoretical estimate by Jaffe 34 does not support this interpreta- 
tion; the observed effect appears to be too large by an order  of magnitude. 

The effective mass m* of liquid 3He and the Fermi liquid parameter  
F1 can be calculated directly from our 3'(P) values using the known molar 
volumes V/n. 1'35 We have determined 3'(P) as the average of our C / n R T  
data in the region where no excess heat capacity was observed. Our values 
of 3' are plotted vs P in Fig. 12 and listed in Table II. For pressures above 
8 bar, 3' varies linearly with P within the precision of our data. The smoothed 
and extrapolated 3"s and the values of parameters rn*/m, Fo, 171, and Zo 
are listed in Table III. In the calculation we have used the molar volume, 
first-sound, and magnetic temperature data of Ref. 35. 

A striking feature of our results is that the y 's  compiled by Wheatley 35 
are roughly 40% larger than ours and, consequently, the Fermi liquid 
parameters in Table III differ considerably from those of Ref. 35. Most of 
this discrepancy is likely to be due to different temperature scales. For 
example, if the scales were related as in  Eq. (3), at high temperatures a 
correction by the factor (0.9) 2 should be applied to the 3"s of Ref. 35 for 
a comparison with our data; the discrepancy would then reduce to 15%. 
Unfortunately, the absolute accuracy of the low-temperature scales is not 
known. This leaves considerable inexactness to the Fermi liquid parameters,  
however precise the measurements of heat capacity are. 

If we scale our values of 3/so that they coincide with those of Ref. 35 
at P = 0, we can compare the relative pressure dependence of these two 
sets of data. One then finds that the pressure dependence is the same up 
to 18 bar within 1%. Above this pressure our 3"s increase more quickly; 
at 32.5 bar our scaled 3/is 4% larger. 
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Fig. 12. The  averaged C/nRT data vs pressure. The  region of the excess 
specific heat  has been excluded. The  solid line follows the smoothed  data  
of Table III. 

TABLE II 
The Averaged  3" = C/nRT Values at Our  Experimental  Pressures ~ 

P, bar 3', K -1 P, bar % K -1 

0 2.11 18.10 2.91 
3.00 2.29 20.94 3.03 
4.99 2.39 23.59 3.13 
8.02 2.51 25.94 3.21 

10.94 2.64 28.66 3.33 
12.92 2.71 32.5 b 3.49 
15.44 2.81 

~The region of the  excess specific heat  was excluded when calculating 
the  average. 

bThe pressure 32.5 ± 0.03 bar was est imated using the molar volume 
data  of Grilly. 15 
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TABLE llI 
Smoothed Values of 7, rn*/m, Fo, F1, and Z0 vs Pressure. a 

P, bar 7, K-1 m * / m Fo F1 Zo 

0 2.11 2.12 6.78 3.36 -3.08 
3 2.29 2.43 12.0 4.28 -3.15 
6 2.43 2.68 17.1 5.03 -3.18 
9 2.56 2.90 22.1 5.69 -3.20 

12 2.68 3.10 27.0 6.31 -3.23 
15 2.80 3.30 32.0 6.91 -3.24 
18 2.91 3.50 37.2 7.51 -3.25 
21 3.03 3.69 42.4 8.08 -3.25 
24 3.14 3.88 47.8 8.64 -3.24 
27 3.26 4.07 53.5 9.21 -3.24 
30 3.38 4.27 59.5 9.80 -3.24 
33 3.50 4.47 65.8 10.41 -3.24 
34.36 b 3.56 4.56 68.7 10.68 -3.23 

aThe experimental data on molar volume, first sound, and magnetic temperature 
needed to calculate these parameters are from Ref. 35. 

bThe results at this pressure are extrapolated from smoothed data at lower pressures. 

T h e  d i sc repancy  in the  re la t ive  p ressu re  d e p e n d e n c e  of the  7 ' s  cou ld  
b e  a t t r i bu t ed  to a smal l  b a c k g r o u n d  con t r ibu t ion  on the  hea t  capac i ty  d a t a  
of A b e l  et  al. ,  36 on which  the  y ' s  of Ref .  35 are  ma in ly  based .  C o m p a r i n g  
wi th  ou r  da ta ,  one  can show tha t  a 7 %  con t r ibu t ion  f rom the  b a c k g r o u n d  
to the  P -- 0 hea t  capac i ty  of 3He is e n o u g h  to cause  the  d i sc repancy .  The  
m e a s u r e m e n t s  of  A b e l  et  al. were  m a d e  by  the d i f fe rence  m e t h o d :  first the  
to ta l  hea t  capac i ty  was m e a s u r e d  wi th  a smal l  f ree  vo lume  filled by  3He 
and  then  with  an en l a rged  vo lume,  so tha t  the  d i f ference  in the  hea t  capac i ty  
was due  to the  ex t ra  bu lk  3He. Since the  to ta l  h e a t c a p a c i t y  was at  8 inK,  
rough ly  twice as la rge  as tha t  due  to the  ex t ra  bu lk  3He and  still  m o r e  at  
lower  t e m p e r a t u r e s ,  a 3% e r ro r  b e t w e e n  the two m e a s u r e m e n t s  cou ld  
cause  the  4 %  d i sc repancy  in p ressu re  d e p e n d e n c e .  To  avoid  this e r ro r  an 
accuracy  b e t t e r  t han  1% is r e q u i r e d  in the  succeed ing  t h e r m o m e t e r  ca l ib ra -  
t ions.  T h e  r e m a i n i n g  d i sc repancy  in the  7 ' s  cou ld  be,  for  example ,  due  to 
a 13% di f ference  in the  t e m p e r a t u r e  scales.  

In  Fig.  13 we fu r the r  c o m p a r e  ou r  va lues  of Y at  ze ro  p re s su re  wi th  
those  of A b e l  et  al. 36 at P = 0.28 ba r  b e l o w  30 mK.  T h e  dec rease  of 3' wi th  
increas ing  t e m p e r a t u r e ,  which  is seen  in the  da t a  of A b e l  et  al. ,  is c lear ly  
no t  p r e s e n t  in ou r  d a t a  b e t w e e n  3 and  20 mK.  O u r  m e a s u r e m e n t s  do  not  
ex t end  a b o v e  10 m K  at high pressures ,  whe re  the  t e m p e r a t u r e  d e p e n d e n c e  
of Y is m o r e  p r o f o u n d  accord ing  to A b e l  et  al. Obvious ly  the  e x t r a p o l a t i o n  
of 7 to  T = 0 in the  m e a s u r e m e n t s  of A b e l  et  al. enhances  the  d i sc repancy  
with  ou r  da ta .  
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The measurements of Halperin et al. 2s at the melting curve result in 
1t =4 .33  K -a, which i s  20% larger than our extrapolated value y =  
3.564-0.02 K -1. However,  this difference cannot be attributed to ther- 
mometry  alone. From the values of Tc and TAB one can estimate that the 
temperature  scales cause a difference less than 4% in I/. Since 

y = A Q / ( n R T  AT) (9) 

the remaining discrepancy must arise from inaccuracies in AO and n or in 
the determination of AT. In our measurements the errors due to these 
quantities are estimated to be less than 2 %, provided that our  temperature  
scale is correct. A large systematic error could, however, be caused if part 
of the applied heat pulse leaked from the experimental cell, but a correction 
due to such an effect would further reduce our 1/'s. If our temperature 
scale would turn out to be in error, Eq. (9) and the Tc curve given in Table 
I will facilitate a reevaluation of the 1/'s and also the rest of Table IIL 

The volume derivative of the heat capacity has been recently deter- 
mined by Roach et aL 37 They measured the pressure of liquid 3He at 
constant volume as a function of temperature and obtained the quantity 
(02P/OT2)~, which is equal to [O(Cv/T)/O V]T. From their results Roach et 
al. inferred that the heat capacity data of Ref. 35 are correct. These 
measurements are, however, also sensitive to the temperature scale used. 
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Furthermore,  the heat capacity itself is not measured.  Because the scatter 
of the data of Roach et al. is quite large, we believe that their evidence is 
weak compared  to that of Ref. 26, where a direct verification of our 
tempera ture  scale was made.  

There  is a possibility to measure  the effective mass in a way which is 
not sensitive to the tempera ture  scale. Rudnick 38 has interpreted zero 
sound in terms of viscoelasticity in liquid 3He and  he derived an equation 
which related rn* to the maximum of at tenuation coefficient a in the 
transition f rom zero to first sound. A drawback in this method for measuring 
m* is that the maximum attenuation must be measured with high absolute 
accuracy, since m*oc (O~max) -1. A fit of his theory to the zero-sound data 
of Abel  eta/., 39 extrapolated to P - 0 bar, yields 28% higher m* than our 
data, while with the data of Ketterson et al., 4° extrapolated to P = 30 bar, 
one obtains only 12% higher rn* than our value at this pressure. 

3.2.  D i scuss ion  on the Fermi  Liquid Parameters  

Our values of y and of the Fermi liquid parameters  m*/m,  Fo, El, 
and Zo will have significant theoretical implications and will necessitate 
reinterpretat ion of some experimental  results. In this section we shall 
outline the possible changes in the physical modeling of liquid 3He based 
on our results. 

.Recent measurements  of the normal fluid density On by Archie et al. 41 
show a pressure- independent  stripped normal  fluid fraction o O./P on a 
reduced tempera ture  scale, indicative of large but pressure- independent  
strong coupling effects. This result is severely at variance with our measure-  
ments of the specific heat  jump AC/C> at T¢, as will be seen in the next 
section. The equation employed for stripping Fermi liquid effects 

O, (1 +F1/3)(p°/p) 
p - 1 + (F,/3)(p°/o) (i0) 

is sensitive to the effective mass m * / m  = 1 + F1/3; the data of Ref. 35 were 
used in the analysis of Archie et al. 4~ One can show, however,  that the 

Pn/P will remain, if values used for m * / m  are pressure independence of o 
changed by a constant factor. 

Since the ratio of our m*/m to that of Ref. 35 is constant to within 
4%,  o pn/p becomes only slightly pressure dependent  by using our m * / m  
in the stripping, This small dependence on P implies an order-of-magni tude 
smaller pressure dependence to the strong coupling effects than our 
measurements  of AC/C>. Nevertheless, it is interesting to note that with 

0 
our effective mass Pn/p will be close to the BCS value, indicating small 
strong coupling effects in contrast to the original interpretation of the data. 41 
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Assuming Zt = 0  for /->2, the contribution of the Fermi liquid 
molecular fields to the static spin susceptibility in the Bal ian-Werthamer 
state can be expressed in the form 

( T) [I +(Zo/4)]Y(T) 
~BW ~-  =Xn I + ( Z 0 / 4 ) Y ( T )  (11) 

= g + ~ ( T ,  A2), where Xn is the susceptibility of the normal liquid, Y(T) 2 1 
qb(T, A 2) is the Yosida function, and A(T/Tc) is the energy gap. Equation 
(11) should be exact in the Ginzburg-Landau region. Near T~ the trivial 
strong coupling corrections can be included 2 by multiplying A2(T/Tc) by 
the ratio of the observed AC/C> and the BCS value 1.43. Thus 

ax lx ,  = 2(1 + Zo/4)-I(2~C/1.43C>)]tl (12) 

where A x = X, --)¢B and [tt = 11 - 7"/Tc 1. The nontrivial strong coupling cor- 
rections have been estimated by Serene and Rainer 42 to reduce the trivial 
corrections only by 5-10% in the sp approximation, the validity of which 
will be discussed later. 

Measurements of the static susceptibility X~ by Paulson et aL 43 yielded 
an empirical relation AX/)& = 4.7[tl for Jtl ~ 0.05, determined from the data 
at 20.8 bar. With the value of Zo = -2 .94  from Ref. 35 and our AC/C>, 
Eq. (12) gives 3.1 instead of the experimental number 4.7. The disagree- 
ment is large when compared with the experimental accuracy and the 
expected validity of Eq. (12). Using Z0 = -3 .25  from Table III, we obtain 
AX/X~ =4.4ltt,  in much closer agreement with experiment. However,  it 
should be recalled that at further below Tc there is a puzzling inequality 
between the static and NMR measurements of xB(T). 35 

Osheroff 44 has found xB(T) by NMR technique at the melting curve 
and Ahonen etal. 18 at P = 18.7 and 29 bar. The latter measurements extend 
to low enough temperatures to extract xB(O)/x~ = 0.33 + 0.02. Czerwonko 45 
has derived the B-phase susceptibility in the form 

XB(0) 2 1 + Z 0 / 4  
)& 3 1+ ~(Zo+ Z2/10) (13) 

Using a typical value at high pressures, Z0 = - 3 . 2 4 ,  and the result of 
Ahonen et aL for X~(0)/X~, we find from Eq. (13) that Z2 = - 4 . 6 +  1.4. 
This value of Zz is unexpectedly large since one would anticipate Ft and 
Zt to converge rapidly for increasing l and one generally takes Ft = Z~ = 0 
for l --- 2. Near T¢ the slope of the P = 18.7 bar data is weaker than Eq. 
(12) suggests even with Zo = - 2 . 9 5  from Wheatley's tables. 35 However,  
an extrapolation of the P = 29 bar data results in a much steeper slope 
near T¢, which is also valid for Osheroff's 44 results at the melting curve. 
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With the availability of our Fermi liquid parameters a comparison with 
theory at intermediate temperatures would necessitate knowing A(T) and 
taking into account in Eq. (11) contributions from higher Fermi liquid 
parameters than Z0. 

There  is also theoretical evidence showing that one cannot assume 
F~ = Zt = 0 for l -> 2 with our values of Fo, F1, and Z0. The forward scattering 
s u m  r u l e  46 requires 

(A~+A~) =0 ,  A~'S=F~'S/[l+F~'S/(21+l)] (14) 
/=0 

where the notation Ft = F~ and Zl = 4F~ is used. Assuming the parameters 
with l >--2 to vanish, Eq. (14) yields, employing the values of Table III, 
F~ = 1.3 with only a weak pressure dependence. Corruccini et al. 47 obtain 
F~ = -0 .15  ± 0.3 at P = 0 and F~ = 0.2 + 0.6 at 27.4 bar. Reanalyzing these 
measurements using our  values of F~, one finds F~ = - 2  at both pressures, 
in contradiction with the result given by Eq. (14), assuming Ft = Zt = 0 for 
l --- 2. Further using our Fermi liquid parameters and the forward scattering 
sum rule, and by assuming F7 'a = 0 for l -  2, strong coupling corrections 
to the fourth-order  Ginzburg-Landau parameters turn out divergent in the 
sp approximation. 3 

It should be recalled that the parameters in Table III are based on 
the following data: our heat capacity values of normal liquid 3He and 
measurements of molar volume, first sound, and magnetic temperature 
from Ref. 35. The above analysis is sensitive to all these data, although 
the heat capacity is perhaps the most difficult quantity to measure accurately 
owing to the problems in thermometry.  We have estimated our temperature 
scale to be correct to 5%, and thus our results for the effective mass should 
be accurate within 10%. 

4. SPECIFIC HEAT OF THE" SUPERFLUID PHASES 

4.1. Theoretical Models 

The weak coupling BCS theory predicts a specific heat discontinuity 
at Tc of the magnitude 

AC/C> = 1.43 K -1 (15) 

where AC = C~(Tc)-Cn(Tc)= C < -  C>. For the Bal ian-Werthamer (BW) 
state 48 the parameter  ~¢ = 1 and for the Anderson-Br inkman-More l  (ABM) 
state 49 K = 6/5  in the weak coupling limit. The experimentally observed 
magnetic properties suggest that the B phase is a manifestation of the BW 
state and the A phase of the ABM state. 
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Weak coupling theory is not sufficient to describe the superfluid phases 
of 3He since, for example, according to it the BW state is the only stable 
superfluid over the whole pressure range. The corrections needed to be 
included in the BCS theory are called strong coupling effects; at low 
pressures these are presumed to be small. Consequently, one would expect 
AC/C> ~-- 1.43 in the B phase near P = 0. Strong coupling effects increase 
with increasing pressure and finally stabilize the A phase 5° above the 
polycritical point PPCP = 21.2 bar. 

The specific heat discontinuity is perhaps the most sensitive experi- 
mentally measurable quantity to investigate strong coupling. Serene and 
Rainer 3 further propose that the temperature dependence of the specific 
heat in the B phase will provide a means of testing strong coupling theories, 
especially the weak-coupling-plus (WCP) model. 

The WCP model is based on an expansion of the free energy in powers 
of To~ Tz, where Tv is the Fermi temperature.  The free energy functional 
can be written 3 in a form where strong coupling effects up to order  (Tc/TF) 3 
are accounted for by three terms. These are of the form ~sce(Itl2)~, where 
the temperature dependence is in the functions ~bsc~ and ([t]2)i stands for 
three different averages of the quasiparticle scattering amplitude. Fortu- 
nately all ~b~c~ have the same temperature dependence and the inadequately 
known scattering amplitudes define only the overall strength of strong 
coupling phenomena.  Thus AC/C>, for example, may be taken as an 
adjustable parameter,  whence the temperature dependence of the specific 
heat is fully determined in the WCP model. According to Serene and 
Rainer, 3 the test provided by a specific heat measurement  for the WCP 
model applies as well to the spin fluctuation model of Brinkman et aL 5° 
including contributions from Refs. 51, since this model can be considered 
as a specific choice for the scattering amplitude within the WCP model. 

Padamsee et al.52 have introduced a model for strong coupling in which 
the thermodynamic properties are calculated directly from the usual 
expression for the entropy in a system of independent fermions, using the 
same quasiparticle spectrum as in the BCS theory. The energy gap A0 is 
also in agreement with the BCS theory, except that it has been scaled by 
a factor chosen to produce the observed AC/C>. Such a scaled BCS theory 
accounts satisfactorily for the thermodynamics of strong coupling supercon- 
ductors. The main difference between the scaled BCS theory and the WCP 
model is that in the latter the quantity (A0--ABcs)/ABcs reduces at low 
temperatures to about one-third of the value at To, whereas in the scaled 
BCS theory it is constant. This causes different initial slopes for the specific 
heats just below T¢ when the models are adjusted to the same AC/C> 
1.43. Consequently, at high pressures the relative merits of these theories 
can be checked by a measurement of heat capacity near To, where the 
experimental data are most reliable. 
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4.2. Experimental Results 

The specific heat of superfluid 3He varies roughly as 7 ̀3 close to To. 
It is thus convenient to suppress most of the rapid temperature variation 
by plotting (C/C>)/(T/Tc) 3 vs T/Tc. Such a graph is shown in Fig. 14 for 
four different pressures. The solid line is the result of the WCP model and 
the dashed line that of the scaled BCS theory. Both are adjusted to the 
experimental B-phase specific heat discontinuity for the appropriate pres- 
sure. Above PPcP we have extrapolated the quantity (CB/C>)/(T/Tc)  3 
linearly from TAB to Tc under the thermodynamic condition 

L = TAB (CB-- CA) dT/T (16) 
B 

where L is the measured latent heat at the AB transition and CA and CR 
are the heat capacities of the A and B phases, respectively; for CA we have 
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Fig. 14. Heat capacity of liquid 3He below Tc at four pressures. The solid curve follows the 
WCP model and the dashed line the scaled BCS theory. 
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used the measured values. Equation (16) results from the requirement that 
the entropies of both phases are equal at Tc and differ by L/TAB at TAB. 35 

A general feature of our high-pressure data is that they agree much 
better  with the WCP model than with the scaled BCS theory. Since AC/C> 
is used as a fitting parameter  in the theories, the agreement above PPcp 
depends on the manner  in which the extrapolation of the B-phase data is 
done from TAB to To. Nevertheless, the above conclusion about the agree- 
ment remains valid even if the WCP model or the scaled BCS theory, 
alternatively, were used for the temperature dependence of CB between 
TAB and To. At 28.7 bar, for example, the linear extrapolation yields 
AC/C> = 1.85 using Eq. (16) when Us(TAB) is fixed to the experimental 
value, The corresponding numbers using CB of the WCP model or of the 
scaled BCS theory yield 1.87 and 1.82, respectively, when AC/C> itself is 
used as an adjustable parameter  in Eq. (16). However,  using AC/C> = 1.87 
in the WCP model we find that the agreement of this theory with the data 
is as good as in Fig. 14a, while with AC/C> = 1.82 the scaled BCS theory 
remains incompatible with the data below TAB. At  low pressures strong 
coupling effects diminish and, consequently, the two theories approach the 
BCS result as well as the experimental data. 

Below T/Tc ~-0.5 the good agreement between the WCP model and 
the experimental data shown in Fig. 14a could be accidental. At  these 
temperatures a plot of this type is quite sensitive to systematic errors, for 
instance, in the background heat capacity or in the temperature  scale. Such 
errors tend to vanish near To. We may thus conclude that the WCP model 
works well at least near Tc. 

In the A phase the temperature dependence of the heat capacity at 
different pressures is qualitatively similar to that shown in Fig. 14a. The 
relative difference (CA--CB)/I(CA + CB) at TAB appears to be roughly of 
the same magnitude but of opposite sign as at To. Because CA = CB at a 
temperature  much closer to Tc than to TAB, at least at pressures well above 
PPcP the difference CA--CB cannot be strictly linear in T between TAB 
and T~ as suggested by measurements of Paulson et al. 53 near PCP. Since 
the WCP model reproduces CB satisfactorily, one would also like to have 
an estimate for CA in this model. A detailed comparison with experiments 
could give new information about the scattering amplitude. 

In Fig. 15 we have plotted the specific heat discontinuity AC/C> vs 
pressure. Above PPcP the value of C< for the B phase is determined by a 
linear extrapolation of (CB/C>)/(T/Tc) 3 from TAB tO Tc and by requiring 
Eq. (16) to be valid. If, instead, the WCP model were used for CB in the 
extrapolation, the B-phase points at P = 28.7 and 32.5 bar would increase 
by 1%. The correction in AC/C> due to the volume Vn filled with normal 
3He in the sinter is roughly proportional to Vn/V, where V is the free 
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Fig. 15. The specific heat discontinuity AC/C> 
vs pressure. Open and filled circles are data for 
the B and A phases, respectively. The error bars 
are due to extrapolations of C> and C<; for the 
A phase they are the same as for the B phase at 
the same pressure. 

volume of the cell. If Vn should no, t be scaled by ~o as described in Section 
2.4, the values of AC/C> would be 2-3% larger than those shown in Fig. 
15 at highest pressures. 

For P ~ 10 bar, the excess specific heat observed in the normal liquid 
near Tc causes some ambiguity when comparing the measured discontinuity 
with the BCS result. At  zero pressure AC/C>=1.39+0.02, while 
AC/nRTTc = 1.52 and ( C < -  nRq/Tc)/nRTTc = 1.61. The right interpreta- 
tion is AC/nR.yTc if the excess is due to a surface effect or to a background. 
The latter quantity should be applied only when superfluidity quenches 
the excess heat capacity. However, the requirement that the entropies of 
the normal and superfluid phases should be equal at Tc suggests that the 
excess continues below To. Both AC/nRyT¢ and (C</nRTT~- 1) display 
an unexpected minimum at P ~ 3 bar. Consequently we have assumed that 
AC/C> should be used in studying strong coupling effects. 

For the B phase at zero pressure AC/C> is close to the BCS value 
1.43. An extrapolation of AC/C> to the melting curve yields AC/C> = 
1.92+0.04 for the B phase and 2 .08+0 .04  for the A phase; the corres- 
ponding numbers from Ref. 6 are 1.90 + 0.08 and 2.00 + 0.08, respectively. 
Webb et al. 4 obtain systematically 15-20% lower AC/C> than we in the 
A phase. However,  the pressure slope of AC/C> in their data is approxi- 
mately equal to ours. The measurements of Andres and Darack 8 show 
slightly smaller values of A C/C> than our data at all pressures. The precision 
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of their results is too poor  to enable a reasonable comparison of the pressure 
dependences.  

In contrast to the measurements  by Archie et al., 41 our data demon-  
strate a clear pressure dependence of strong coupling effects. This difference 
could be caused by the nontrivial strong coupling effects, in the terminology 
of Serene and Rainer. 42 They estimate such effects to be small in the sp 
approximation,  using Fermi liquid parameters  of Ref. 35 and by employing 
the forward scattering sum rule of Eq. (14). However ,  with our values of 
the Fermi liquid parameters  the calculated specific heat  discontinuity diver- 
ges in the sp approximation at high pressures. 3 Consequently,  there is 
ample reason to take this approximation cautiously. 

5. L A T E N T  H E A T  A T  T H E  A B  T R A N S I T I O N  

The Clausius-Clapeyron equation relates the slope of the transition 
pressure d P / d T  and the volume change AV at a first-order transition to 
latent heat by 

L = & V T d P / d T  (17) 

In the AB transition of superfluid 3He, A V is so small that the pressure 
change in a constant-volume process is negligible. Thus no special arrange-  
ments are needed to retain constant pressure during the transition. 

We observed the B ~ A transition as a plateau in the tempera ture  drift 
curve. The A ~  B transition was supercooled and could be observed as a 
heat pulse of magnitude L. Since the B ~ A transition proceeded at constant 
tempera ture  and was reproducible to high accuracy, ±0.5/xK,  we conclude 
that B liquid could not have been significantly superheated.  A typical 
behavior  of t empera ture  in the B ~ A transition is shown in Fig. 16. The 
average T in the plateau region is taken to be the transition tempera ture  
TAB as ment ioned in Section 3. 

The latent heat  was determined from the heat  leak () to the sample 
and the duration At of the transition; L = () At. The heat leak was obtained 
f rom the tempera ture  drift curve 7 ~ and the total heat  capacity C, using 
0 = C ~  The background heat capacity is negligibly small at TAB and 
thus it will not cause a notable error, even if the tempera ture  of the 
background did not stay at TAB during the transition. An alternative 
method,  based on a comparison of T caused by the residual heat leak and 
an additional external heat leak, yielded the same O as the above method 
within the precision of our measurements .  An accuracy of +0 .02/z  J /mo le  
was achieved in determining L. 

The molar  latent heat L / n  at TAB is plotted vs P in Fig. 17. The 
pressure of the polycritical point PPcP = 21.22 bar, shown by an arrow, is 
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determined by Paulson et al. 53 Our P vs TAB data seem to intersect the T~ 
line at a higher pressure, about  21.5 bar. Since the entropy difference 
between the A and B phases vanishes at PPcP, L must extrapolate to zero 
at the polycritical point, which is also clear f rom Fig. 17. At  P = 23.0 bar, 
L / n  is only 0 . 0 3 ~ 0 . 0 2 / z J / m o l e ,  while at 32.5 bar, L / n  = 

1.14± 0.02/z J /mole .  Our  resolution did not allow a reliable observation 
of the B ~ A transition below 23 bar. Halperin et al. 25 have found L / n  = 

1.54 + 0.06 ix J / m o l e  at the melting curve, which differs by less than 10% 
from our extrapolated value. 

Equat ion (17) can be used to estimate the change of volume in the 
AB transition. At  32.5 bar we obtain A V A B  = +1.1 × 1 0  -7  c m  3, which cor- 
responds at constant pressure and volume to a negligible transfer of liquid 
3He through the filling capillary. 

6 .  S U M M A R Y  

We have measured the specific heat of liquid 3He in zero magnetic 
fi~Id f rom 0.8 to 10 m K  and at pressures from 0 to 32.5 bar. 

For thermomet ry  we employed the magnetic susceptibility of CLMN. 
The high resolution of this thermometer ,  bet ter  than one part  in 104, 
allowed 1% precision in our heat capacity data. The CLMN susceptibility 
was calibrated by means of platinum N M R  thermometry  using the Korringa 
relation ~ -aT-29 .9  msecK.  We estimate the absolute accuracy of our  
tempera ture  scale to be + 5 % ;  the error limits are mainly caused by 
uncertainties in the value of ~'1T. 

For the critical tempera ture  of the second-order  transition we find 
Tc = l . 0 4 m K  at P = 0  and Tc = 2 . 7 9 + 0 . 0 2 m K  at the melting curve by 
extrapolation from lower pressures. Our magnetic temperatures  and those 
of the La Jolla group, 21 also determined with a CLMN thermometer ,  are 
proport ional  to each other and obey T*j  = 0.9T*ki to within + 5/~K. The 
calibration with our plat inum N M R  thermometer  reveals that to obtain 
absolute temperatures  a constant A of about  0.1 m K  must be subtracted 
f rom our magnetic temperatures ,  while the La Jolla group 2~ estimates A 
to be of the same magnitude but of the opposite sign. 

The background heat  capacity of our experimental  cell was carefully 
determined from a series of measurements  at zero pressure with variable 
amounts of liquid 3He in the cell. Since the background is negligible at 
high pressures near and above To, we have assumed that it is independent  
of P. A correction due to 3He remaining as normal  liquid below Tc at the 
sinter surfaces within the superfluid coherence length was taken into 
account, as suggested by measurements  at zero pressure. 
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The specific heat of normal 3He is proportional to temperature within 
the precision of our measurements (+1%), except for lowest pressures 
below 3 mK, where an excess specific heat was observed. This excess is 
about 9% at Tc and at P = 0 and it decreases with increasing pressure; at 
8 bar it is negligible. The excess specific heat is, most likely, an intrinsic 
property of bulk liquid 3He, because a surface effect would require a 
characteristic length of a few hundred micrometers, much longer than the 
quasiparticle mean free path or the range of the surface potential. 

The effective mass of 3He was determined from the specific heat of 
the normal liquid, excluding the data that exhibit the excess heat capacity. 
The previously accepted values of m*/m,  compiled in Ref. 35 by Wheatley, 
are about 40% larger than ours. This suggests considerable revisions to 
the calculated Fermi liquid parameters F0, Zo, and F1. It must be recalled, 
however, that the values of m*/rn are sensitive to the temperature scale 
used. For example, if our scale were to be corrected by a constant factor 
A, the effective mass should be multiplied by A -2. We estimate the possible 
correction due to the temperature scale to be less than 10% in the effective 
mass. 

The temperature dependence of the specific heat in the B phase agrees 
with the weak-coupling-plus model of Serene and Rainer. 3 The relative 
difference (CA--CB)/½(CA+ CB) at TAB and Tc appears to be roughly of  
equal magnitude but of opposite sign. 

We observe a clear pressure dependence of strong coupling effects as 
measured by the specific heat discontinuity AC/C> at Tc; for zero pressure 
we find 2xC/C>=1.39+0.02, quite close to the BCS result 1.43. Our 
extrapolated values of AC/C> at the melting curve are 2 .08± 0.04 in the 
A phase and 1.92 ± 0.04 in the B phase, in agreement with the measure- 
ments of Halperin et al., 6 who find 2 .00±0.08  and 1.90-~:0.08 for the A 
and B phases, respectively. 

Due to the large sample volume and the high resolution of the CLMN 
thermometer ,  we could measure calorimetrically the latent heat of the 
B ~ A  transition. At 32.5 bar, L = 1 .14±0.02  ix J /mole  and it decreases 
quickly toward PCP as expected on thermodynamic grounds. 

As a conclusion, we can assert that the present low-temperature 
techniques permit a precision better than 1% in a measurement of 3He 
heat capacity at millidegree temperatures. The final accuracy is mainly 
restricted by the temperature scale. 
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