Comment on "Glass-Specific Behavior in the Damping of Acousticlike Vibrations"

In a recent Letter [1], Rufflé *et al.*, collecting literature data on the high frequency dynamics on different glasses, reported on a correlation between the energy position of the "boson peak" (BP) and the Ioffe-Regel energy. The first quantity, $E_{\rm BP} = \hbar\Omega_{\rm BP}$, is taken as the energy position of the maximum of the function $g(\omega)/\omega^2$, where $g(\omega)$ is the density of vibrational states. The second quantity, $E_{\rm IR} = \hbar\Omega_{\rm IR}$, is defined by the authors as the energy pertaining to the longitudinal acoustic modes that fulfill the condition $\Gamma = \Omega/\pi$ (here Γ is the FWHM of the peak centered at Ω). Plotting the quantity $E_{\rm IR}$ against $E_{\rm BP}$ the authors of Ref. [1] find a correlation [see Fig. 1(a)] strongly suggesting that $E_{\rm IR} = E_{\rm BP}$ for a large class of glasses.

Examining the current literature, including the papers cited in Ref. [1], we reached the following conclusions. (i) Other systems can be added to the plot: some data were not known to Rufflé et al. at the time of their submission (NiZr [2], GeO₂ [3]), while other glasses were not included (CKN [4]). All of these three new systems do not fit to the correlation [systems 11, 12, and 13 in Fig. 1(b)]. (ii) The point for d-SiO₂ was misplaced [5]. Figure 3 of Ref. [1] shows $E_{\rm BP} = 6.9$ meV, while in the paper (cited in [1]) the reported value is $E_{\rm BP} = 8.5 \text{ meV}$ [11]. Once correctly placed d-SiO₂ [system 3 in Fig. 1(b)] violates the correlation. (iii) The system reported as polycarbonate—and hence classified as a polymer—(Ref. [40] in [1]) is actually propylene carbonate, a molecular glass former, and the E_{IR} reported in [1] has been measured in the liquid phase. We added to Fig. 1(b) the point for glassy [12] propylene carbonate [system 6 in Fig. 1(b)] which now does not fit to the correlation. (iv) Finally, for lithium-

FIG. 1. Ioffe-Regel energy vs the BP energy for different glasses according to: (a) Rufflé *et al.* [1] and (b) literature data. Labels are 1—Li₂O-2B₂O₃, 2—Li₂O-4B₂O₃, 3 *d*-SiO₂, 4—*v*-SiO₂, 5—PB, 6—PC, 7—Se, 8—glycerol, 9 ethanol, 10—oTP, 11—GeO₂, 12—CKN, 13—NiZr. In panel (b) the error bars have been set to ± 0.5 meV for all of the data.

borate glasses the BP positions reported by Rufflé and co-workers were taken from *Raman* spectra. It is well known that the quantity measured in Raman scattering is *not* $g(\omega)/\omega^2$, but $g(\omega)C(\omega)/\omega^2$, and that the presence of the Raman coupling coefficient $C(\omega)$ shifts toward higher energy the position of the maximum of $g(\omega)/\omega^2$. It is, therefore, misleading to put in the same plots $E_{\rm BP}$ data coming from Raman spectra and from the maximum of $g(\omega)/\omega^2$. We report on Fig. 1(b) the data for the two lithium-borate glasses using the $E_{\rm BP}$ values derived from inelastic neutron scattering [13]. The points no longer lie on a line.

Summing up, on the basis of Fig. 1(b) one can conclude that (i) no correlation exists between E_{IR} and E_{BP} , and (ii) the Ioffe-Regel limit for almost all the investigated glasses lies *above* the boson peak position.

We thank L. Bove and F. Sette for useful discussions.

G. Ruocco,^{1,2} A. Matic,³ T. Scopigno,² and S. N. Yannopoulos⁴ ¹Department of Physics Università di Roma "La Sapienza," I-00185, Roma, Italy ²Research Center SOFT-INFM-CNR Università di Roma "La Sapienza," I-00185, Roma, Italy ³Department of Applied Physics Chalmers University of Technology SE 41296, Goteborg, Sweden ⁴Institute of Chemical Engineering and High-Temperature Chemical Processes FORTH/ICE-HT P.O. Box 1414, GR-26504 Patras, Greece

Received 8 April 2006; published 13 February 2007 DOI: 10.1103/PhysRevLett.98.079601 PACS numbers: 63.50.+x, 78.35.+c, 81.05.Kf

- ACS numbers. 05.50.7X, 76.55.7C, 61.05.KI
- [1] B. Rufflé et al., Phys. Rev. Lett. 96, 045502 (2006).
- [2] T. Scopigno et al., Phys. Rev. Lett. 96, 135501 (2006).
- [3] E. Fabiani *et al.*, cond-mat/0502207; L.E. Bove *et al.*, Europhys. Lett. **71**, 563 (2005).
- [4] A. Matic et al., Europhys. Lett. 54, 77 (2001).
- [5] The placing of other systems can be questioned. Specifically, for selenium Ref. [1] reports $E_{IR} = 2.4 \text{ meV}$ and $E_{BP} = 1.7 \text{ meV}$, while literature data are $E_{IR} = 3.3 \text{ meV}$ [6] and $E_{BP} = 1.4 \text{ meV}$ [7]. In the case of glycerol, the literature reports a *T*-independent E_{IR} [8] and a strong *T* dependence of E_{BP}) [9]. For ethanol, E_{BP} is 1.8 meV [10], not 2.4 meV as reported in [1].
- [6] T. Scopigno et al., Phys. Rev. Lett. 92, 025503 (2004).
- [7] W. A. Phillips et al., Phys. Rev. Lett. 63, 2381 (1989).
- [8] G. Ruocco et al., Phys. Rev. Lett. 83, 5583 (1999).
- [9] J. Wuttke *et al.*, Phys. Rev. E **52**, 4026 (1995).
- [10] M.A. Ramos et al., Phys. Rev. Lett. 78, 82 (1997).
- [11] M. Foret et al., Phys. Rev. B 66, 024204 (2002).
- [12] R. Di Leonardo, Laurea thesis, University of L'Aquila, 1998.
- [13] A. Matic (private communication).