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The thermal conductivity of dielectric solids at 
low tem peratures 

(Theoretical)

B y  P. G. K l e m e n s ,*  The Clarendon Laboratory, University of Oxford 

(Communicated by F. E. Simon, F.R.S.—Received 18 January 1951)

T he statistica l equilibrium  o f  phonons in th e  presence o f  a  tem perature gradient is investi- 
gated, and a general form ula for the therm al condu ctiv ity  o f  dielectric solids is obtained.
This is applied to  quartz glass, g iv in g  good agreem ent w ith  va lues observed b y  B erm an  
(1951), and to  crystals. Comparison betw een theory and experim ent are m ade for alkali- 
halides and quartz, and conclusions are drawn about the defects in  neutron-irradiated quartz.

We shall discuss the thermal conductivity of dielectric solids, i.e. solids in which the 
heat transfer is mainly through the elastic vibrations of the lattice. The solid may 
be a crystal or it may be amorphous, but each atom has a fixed equilibrium position 
and the thermal vibrations can thus be resolved into normal modes. For a perfect 
crystal these normal modes are plane travelling waves. Departures from the perfect 
lattice result in interactions which are responsible for the statistical equilibrium 
between the normal modes.

The normal modes of a perfect lattice can be quantized (Peierls 1929, 1935), 
giving rise to the concept of phonons analogous to the photons of radiation theory. 
The phonons obey Bose-Einstein statistics. The heat current is determined by the 
distribution of phonons, which in turn is obtained as a solution of a Boltzmann 
equation. We shall obtain an approximate solution, and thus obtain an expression 
for the thermal conductivity. This will be similar, though not quite the same, as 
expressions given, but without derivation, by Pomeranchuk (1942). The approach 
here developed can be regarded as a link between the rigorous theory of Peierls and 
the approach of Pomeranchuk.

* N o w  a t  th e  C o m m o n w ea lth  S c ien tific  a n d  In d u str ia l R esea rch  O rg a n iza tio n , S y d n e y .
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The thermal conductivity of dielectric solids at low temperatures 109

T h e  B o l t z m a n n  e q u a t i o n

Let N{be the number of phonons per unit volume pertaining to a normal mode of 
wave-number kt,frequency w*. The average value of N  is determined by the following 
equation: dN  ^

— v^.gradT dT dt
N1

where T  is the temperature and va the classical group velocity (velocity of phonon 
wave-packet). The left-hand side represents the rate of change of N  due to con
vection; this is balanced on the right-hand side by the rate of change due to dis
continuous processes. These processes are additive, i.e.

where -5- is the rate of change due to process (a). We have the following processes:
M J(«)

(1) Three-phonon processes in which energy hot and momentum hk is conserved.
(2) Three-phonon processes in which energy is conserved, but one component of 

momentum altered by hja, a being the lattice constant (Umklapprozesse, pro
cesses).

(3) ‘ Elastic scattering ’ of a phonon by a lattice defect or boundary. The energy is 
unaltered, but the momentum is changed.

(4) ‘Inelastic scattering.’
(5) Higher-order phonon interaction, as treated by Pomeranchuk (1941).
Processes (1) and (2) arise from anharmonicities of the interatomic forces. Accord

ing to Peierls the perturbation results in a transition in which one phonon is destroyed 
and two created, or vice versa. The rate of change of the ith mode is given by

d t] S Z  D m iN iN ^  +1) -  (W, +1) (Nj +1
j k

where the coefficient Dijk depends on the anharmonicities and vanishes unless energy 
is conserved (Oi + ajj = tok, (4)

and momentum is conserved for (l)-processes

k* + k, = k&, (5)

while for 17-processes kf + k, = kfc + c2^/a, (6)

where c is a unit vector capable of six orientations.
Processes (3) and (4) arise from defects in the lattice, boundaries, microcrystalline 

structure, etc. We shall disregard the effects of processes (5), since the higher-order 
processes will be unimportant at low temperatures (Pomeranchuk 1942), becoming 
appreciable at the highest temperatures only. We shall also assume that there is no 
correlation between the directions of the initial and final phonons in processes (3) 
and (4).

Although the Boltzmann equation determines the average value of N, it gives us 
no information about fluctuations. Also in setting it up one assumes the phonons
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110 P. G. Klemens

to behave like classical particles, i.e. one disregards the limitations of the uncertainty 
principle. A criterion for the validity of this has been given by Peierls (1934).

T h e  h o m o g e n e o u s  e q u a t i o n

In the absence of a temperature gradient we have as condition of equilibrium

The solution of this homogeneous equation .yf gives us the equilibrium distribution, 
and we know from general considerations that this is the Planck distribution

1
{JuoilKT — J ( 8)

If we put separately (» )

then the solution of each of these equations consists of a wider class of functions
•yf/'(ee). A singular solution ^\a) is a solution of (9) for one process (a) which is not at
the same time a solution for all other processes, and is thus not a solution of (7).
It can be shown that (8) is a solution for all processes.

For example, it was shown by Peierls (1935) that a solution of (9) common to
processes (1) and (2) is x

^  (1.2) ~ \e ~ l ) >
where a is some constant, since alloj is conserved for these processes. For (1 )-processes 
alone, however, we have a wider class of solutions

=  (e^+P •k -  1J-1, (10)

since E(act> + |3.k) is conserved in (l)-processes, where (3 is some constant vector. 
If | J31 is small, this can be written

=  ( H )

Similarly, a singular solution for process (3) is

^(3) = / ( w)> (12)
where /  is any function, since the number of phonons of a given frequency is not 
altered by (3)-processes.

T h e  f i r s t -o r d e r  a p p r o x i m a t i o n  t o  t h e  i n h o m o g e n e o u s  e q u a t i o n  

More generally if there is a temperature gradient,
mdN 02V~|- « 0 . g r a d T ^ = S ^ J M (13)

The right-hand side is an integral expression. Owing to the complicated form of (3) 
a rigorous solution seems impracticable, but we shall find an approximate solution. 
If J f  is the equilibrium distribution for uniform temperature, let

N ~ (14)
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The thermal conductivity of dielectric solids at low temperatures 111 

and assume that In particular, assume > and thus

% .gradT dJT
dT («) dt J(

(15)

If in the expression for we neglect all powers of n higher than the first, then in

consequence of (15) the deviation from equilibrium is proportional to the tem
perature gradient.

The heat current is the energy flux due to the transport of phonons, each of which 
carries energy ho). If / ( k) dk is the number of normal modes in the wave-number 
interval k, dk, we get for the energy flux in the direction of grad T

Q = s  J f j V > p q x̂ dJ r  | /<k>rfk- <16>

where we now specify a mode by its wave-number k and its polarization j .  Since 
N = J f+ n ,  and since ^ (k )  = — k) in all cases, we can replace N^k) by k)
in (16), i.e. only the deviation n contributes to the energy current. Also since to a 
first approximation ncc grad T, Q is also proportional to grad T.

The first-order approximation is valid provided n, and hence grad T, is sufficiently 
small. From (23), an equation correct to the first order, a criterion of the validity of 
the first-order approximation is easily deduced, namely, that the temperature 
gradient be so small that the temperature difference associated with the relaxation 
length vgt is much smaller than the absolute temperature. This is always fulfilled 
at high temperatures, and has always been considered a desirable criterion in experi
mental work even at lowest temperatures.

The results up till now are valid for all solids. If we restrict ourselves to isotropic 
solids, a considerable simplification is possible. Consider an isotropic body. Introduce 
spherical polar co-ordinates in k-space with the axis of symmetry in the direction 
of the temperature gradient and let fi be the cosine of the angle between k and grad T. 
Then (13) becomes

^ d z d T  (17)

We can expand n into spherical harmonics

n = Aq + A XPX {(i) + +...,(18)

where the coefficients A depend on | k| only. Then substituting into (16) and inte

grating over all directions, since k . grad T

47r

. dT 
* * *

47r f
Q =  S - 3  j n ^ h c o v a ^ m (19)

where now n^k) = Ax{k) and depends on the magnitude of k only. Thus only the 
first harmonic in the expansion (18) contributes to the energy flux.
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112 P. G. Klemens

We now define a relaxation time T(a) by

„ _ £ z £ _ _ J L ,  (20)
J(«) T(a) 7(a)

i.e. we assume that the discontinuous processes tend to obliterate exponentially any 
deviations from equilibrium. We assume that r(a) depends on the magnitude, but 
not on the direction, of k. We define an overall relaxation time

and substituting into (17) we get

2 — ,
(«) T(a)

d T d j\r 
VolL dz dT

n
T

( 21)

( 22)

whence we can obtain the deviation from equilibrium using (8):

dT ha)e*“iKT 
n ~ V° d z T/l KT2 (eMKT -  1 )2 ’ *23^

so that n is proportional to r. We can substitute this into (19), and dividing by the 
temperature gradient we get for the conductivity of an isotropic solid

4.7 Tr  %2,,.2 phio/KT
K ~ 3 2  JT(&) dk. (24)

In the case of an anisotropic solid the position is more complicated, and the present 
theory cannot predict quantitatively the effect of the anisotropy.

Now since the contribution to the energy-content per unit volume from the normal 
modes of wave-number k, dk is

E(K, T) =  JtfujKrZi)« W 4?r’

we can, on defining the relaxation length

l(k) = vG(k)r(k),(26)
rewrite (24) in the form

* = l  S  J ~  {E(k, T)t) m  va(k) dk. (27)

This is formally equivalent to the generalized formula of Debye (1914) as used by 
Pomeranchuk (1941, 1942). However, l(k) is defined by (26) and (20) and is not the 
mean free path, as commonly stated. For (1 )-processes the concept of mean free 
path is obviously inapplicable, since owing to the high probability of interaction 
with phonons of small energy the mean free path is very much smaller than the 
effective relaxation length. The problem is to find the latter quantity.

T h e  e f f e c t i v e  r e l a x a t i o n  l e n g t h

For all processes for which there is no correlation between the directions of the 
phonons involved, i.e. processes (3) and (4), the effective relaxation length is equal 
to the mean free path for these processes, for to the first order in grad T all deviations 
from equilibrium will be such that the total number of phonons of a given frequency
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remains unaltered, only the distribution in direction is changed. Hence the number 
of phonons entering a particular mode per unit time will be unchanged and is 
w here A is the mean free path. The number of phonons leaving a mode will be—by 
definition of mean free path— Nv/X. In equilibrium the net rate of change will be 
zero, but in general

The thermal conductivity of dielectric solids at low temperatures 113

and comparing this writh (20) we see that the mean free path A equals the relaxation 
length l — vQr for processes without directional correlation.

The situation is more complicated for (l)-processes. We can divide these processes 
into three classes. Let phonons k and kx combine to form a phonon k2,* where we are 
interested in the rate of change of N. We then have

(а) processes such that | k1 | <  | | ; hence k ~  k2;
(б) processes such that | Tcx| >  | | ; hence | | >  j | ;
(c) processes such that | kx| ~  | | ~  | j.

The rate of change of N  is given by equation (3)

^  = I ,A m lNNl{Nt + l ) - ( N +  (29)

where the conservation relations (4) and (5) are obeyed

o) + o)1 = o)i , k + k1 = k2. (30)

0AH 
dt J

(■ r -N )v 0
(3,4)

(28)

It will be shown that the major contribution to comes from processes of
M  J (D

class (6) and (c).
Consider processes of class (a): regarding k as fixed and k2 determined by kx we 

must sum over all allowed kx. Putting N — J f+ n ,  and noting that the condition of
equilibrium requires (31)

we can rewrite the expression inside the bracket of (29), regrouping and neglecting 
products of the n's

NN,(N2 + 1) -  (N + 1) (Nx + 1) N2 = + JS(n -  n2) -  (nJ^ + n ^ ) .  (32)

We can neglect n — n2 ^ w xasa  second-order quantity. Likewise

(J f -J Q r ii  = djV

vanishes w hen summed over all kx, since to every interaction k2 = k + kx, c«>2 = +
there also corresponds an interaction k = k2 + kx, (o = o/2 + ojx ; i.e. nx is unchanged 
in sign since kx is in the same sense, but o)x is now of opposite sign. Finally, j\r ~.Af2 
and n ~ n 2 since k ~  k2; hence

J =  — S  -^012 . (33)

* T h e  o th er  case  k x -(- k 2 =  k  ca n  be ta k e n  a c co u n t o f  b y  le t t in g  (ox b eco m e  n e g a t iv e .

Vol. 208. A. 8
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114 P. G. Klemens

Now the simultaneous solutions of (30) for small o)x are uniformly spaced over an 
ellipsoid or hyperboloid of revolution in k-space; the number of solutions in the 
range o)x, A(ox is proportional to ojx Aw1( and thus

-----n 2AAra>x A (34)

From this it can be seen that the greatest contribution comes from large hence 
(c)-processes are more important than (a)-processes owing to the larger measure of 
solutions of (30).

Consider now processes of class (6). We regroup expression (32) to

n{^x — — (35)

Since w^Wjwe can neglect nx — n2 dnx
da)x o)as a second-order quantity. Also from (23)

where a

cto)x ea"i
wi 0CTl(ea" i - l ) 2’

hfKT, and further
doY[ _  ouii eab>i 

~ (e“”i -  1)! '

(36)

(37)

Now, (nxA^ + n2A )̂~ 2nxA^, and we find that the first and the third terms in (35)
are in the ratio .p>OLOJ I /y/.i

- ^ ) / 2 r e ,^  = ra W  2ti ( ^ r f i j ' <38>

where r is the effective relaxation time for k-phonons, rx for kj-phonons. If 1, 
and thus cto)x >  1, this ratio becomes

n{Jfx — AQ j2nvArx = ra2o>2 e_a"/2r1 aatx e~awi, (38')

and since <x(ox > ao), the term 2nvAr1 can be neglected, provided tx> t . This last 
condition is always fulfilled. Thus, for ouo>\,

0.2̂  "1-x- — —Anoco)e~lxwUi)1^(ox. (39')
vt jAw,

The maximum contribution comes from frequencies awx ~  1, i.e. from processes of 
class (c), owing to the exponential factor. If, however, < 1, we have

= t/2tx (38")

and the term 2nx̂  can only be neglected if the effective mean free path decreases 
sufficiently rapidly with frequency. If this is fulfilled

“a  _ L  = (39'>

The maximum contribution comes again from ouox~ 1, but since aoj < 1 this will 
now be a process of class (6).

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 O

ct
ob

er
 2

02
1 



We can summarize the above:
(1) Processes of class (a) are always unimportant.

(2) If hco/KT > 1, the important contribution to -̂ -"1 comes from processes of
“ J  (D

class (c), irrespective of the form of t(oj).
(3) If h(o/KT < 1, the important processes will be of class (6), interacting with 

phonons of frequency of order ojx ~  KTjh. If t(o)) decreases sufficiently rapidly with o), 
i.e. if r(o)x) <^r(w), this rate of change will be proportional to n.

But if we cannot neglect t(o)x), i.e. we cannot neglect 2 in (35), there are not 
only processes of class (6) tending to reduce the deviation n, but since there is an 
appreciable deviation nx for frequency o)x = KT/h, there will be reverse processes 
tending to increase the deviation n. If r(w) ~r(o>1) these two processes will counter
balance each other. Another way of looking at it is to say that t(oj) const, corre

sponds to a singular solution—compare (11) and (23)—and thus = 0 for
J(i)

constant r.
It is convenient to introduce the concept of the relaxation length of a single mode. 

This is defined as in (20), but we assume that all modes are excited to their equi
librium value, except the one mode whose rate of change we want to calculate. Thus 
the relaxation length of a single mode is the absorption length for a sound wave of 
the same frequency. For example, for processes (1) we put into (29) Nx — Jfx, 
N2 = i.e. nx — n2 — 0. We get then for the rate of change of N

The thermal conductivity of dielectric solids at low temperatures 115

and v0ar is the relaxation length of a single mode. It is a quantity whose calculation 
is straightforward in principle, involving only an integration over k1} but, of course, 
we require a knowledge of the coefficient A. Approximate calculations have been 
made by Landau & Rumer (1937) and by Pomeranchuk (1941) for transverse and 
longitudinal waves respectively.

A similar quantity could also be defined for scattering processes (3) and (4); but 
for these processes there is no need to draw a distinction between the concepts of 
mean free path, effective relaxation length and relaxation length of a single mode. 
Furthermore, we need not draw any distinction between r and cr for all processes

for which is proportional to n only, namely, processes of type (1) class (a) and

class (6) if hco/KT > 1; but we must distinguish between r and cr for class (c), and for 
class ( b) if KojKT < 1.

Consider the latter case: the term n(J/'x-J/'2)  in (35), when suitably summed,

gives us ; but the term 2 w ^  gives us a contribution of opposite sign. We have

seen that these two contributions are in the ratio hence we have in general
for h axK T , where (6)-processes are more important than (c)-processes, that

(40)

(41)

8-2
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where m1 = KTjh. Thus

116 P. G. Klemens

(41')i = i / j  _ ^ K ) \
T(d(<w) <T(i)(w) T((0))

If now T0(o)) is the combined mean free time due to all other processes, i.e. processes 
not conserving momentum, disregarding {/-processes for the time being, then

1 ____ 1 1
t((o) ~ t{1)((o) r0(w)’

and substituting this into (41') we get

t0(w) K ) ( w) +  t(w1)]

(42)

(43)

and, in particular, if oj =  (i)xfrom (43)

(43')

Hence this gives us the effective relaxation time of low-frequency phonons in terms 
of the relaxation time of a single mode for (l)-processes.

We shall now show that no great error is made by neglecting processes of class (c). 
For low frequencies h a x K T , we have shown that they are less important than class 
(6) and can therefore be neglected. For high frequencies ho) > they form the major
contribution. The quantitative effect of (c)-processes is difficult to estimate, but the 
following argument makes it plausible that the effect of (c)-processes is even then 
small compared with the effect of processes not conserving momentum.

Processes of class (c) only link modes of similar frequency. Thus if we assume that 
(41) holds for (c)-processes as well as for (6)-processes, since we can write = w + Aaq 
we have for a given Aoq

and summing over all Ae>j, which can be positive or negative, we have in the average
02Vn dh= 0 except for terms in 3—5. The general validity of (41) can be demonstrated dt J(c) do)“
from considerations of the singular solution of (l)-processes, as will be done in the 
next section.

Thus for hoj/KT > 1 we have, since the major contribution to (l)-processes comes

from class (c) and since 0, that

t(oj) = T0((O). (45)

We can thus summarize: If r0 is the relaxation time due to all processes except 
(l)-processes, and if er(l) is the relaxation time of a single mode due to (l)-processes, 
then the effective relaxation time is

T(„>) =  ToM  [Q -(1)M +ToK )] f
 ̂ } T0(6>) + <T(1)M

gĵ .(o1 = KT/fi, (43")

= t0(&>) for to (ov (45)
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The thermal conductivity of dielectric solids at low temperatures 117

Longitudinal phonons

So far we have neglected polarization. Peierls has already pointed out that in a 
three-phonon process not all the phonons can have the same polarization, if con
servation of energy (4) and momentum (5) are to be simultaneously satisfied. It 
was further pointed out by Pomeranchuk (1941) that waves of that polarization 
which have the greatest phase-velocity, henceforth called ‘longitudinal’ waves, 
behave quite differently from transverse waves with respect to three-phonon inter
actions. The two conditions (4) and (5) cannot be fulfilled for interactions of class ( 
if the low-frequency phonon is longitudinal, or at least can only be fulfilled so rarely 
as to make such interactions unimportant. Thus a longitudinal mode of vibration 
will tend to return to its equilibrium value mainly as a result of processes 1 (c) and 
of processes not conserving momentum.* The relaxation length of a single mode, 
which can be calculated by integrating (40) over all frequencies, is therefore different 
for longitudinal and transverse waves, and will be considerably larger for longi
tudinal waves.

To find the effective relaxation length of a longitudinal wave due to (l)-processes 
assume at first that these are the only processes acting on the longitudinal phonons. 
They interact with transverse phonons of about the same frequency, i.e. by processes 
1 (c). These transverse waves in turn can interact with other phonons with an 
effective relaxation time r \F rom  (23) the deviation of the transverse phonons will be

n'  = vu F((o) t ',(47)
where F(oj) depends on co only. The deviation of the longitudinal phonons

n = % F(w)rsing
will be determined by n', as singular solution equilibrium is established between the 
longitudinal and transverse waves. According to (11) this is

n/n' = V tT ^pnT ' = vf/vfl5 (48)
where the suffixes I and II refer to longitudinal and transverse polarizations respec
tively.

Now allow the longitudinal phonons also to interact directly with other phonons 
by means of processes not conserving momentum with relaxation time r0. The rate 
of change due to (l)-processes is then no longer zero, but is proportional to the 
deviation of n from the singular solution. It must also be proportional to 1 /er(1) 
and would be equal to w/(7(1) if rslng = 0. Hence

T(U n 3t J(ll <r(1) \  r ) (49)

This is similar in form to (41), and we obtain likewise

/ v = To(̂ ) +
v 70(6,) + <r(1)(W) "* (50)

where C = vilvn- Note that we could have derived (41) and (43) by an argument 
similar to the above, and thus justify (44).

* Note that this does not hold for U-processes. Hence the conclusion of Pomeranchuk 
that at high temperatures (T > 0) we must take into account four-phonon processes to obtain 
a  finite conductivity, and that therefore koc T~%, is not correct.
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118 P. G. Klemens

Thermal conductivity

The important processes tending to restore equilibrium can now be summarized 
in the following scheme, illustrated by figure 1.

low medium high
a o  < 1 out) ~  1 olo >  1

longitudinal

transverse

1eg
’3
a

F iguke 1. The interaction pattern, showing the important processes by which a normal mode 
can return to its equilibrium value of excitation. Longitudinal phonons : processes not 
conserving momentum ZJ; (l)-processes lvTransverse phonons: processes not conserving 
momentum l'u ; (l)-proeesses Z2.

A longitudinal phonon can interact either by a process not conserving momentum 
(relaxation length Zj), or it can interact by means of an (l)-process (relaxation length 
of single mode Zj) with a transverse wave of the same frequency, whose effective 
relaxation length in turn is Zn . Then according to (50) its effective relaxation length is

I'ith + CHn)
l'i + h

(51)

for all frequencies. On the other hand, we have for transverse waves according to
(43) and (45)

Zn(to)
Ẑ (faj) [Z2M  + ZjI(fc>1)] 

I'll(w) + Z2(w)
for — KTjh

= for (o^(t)v  (52)

where Z2 is the relaxation length of a single mode for (1 )-processes for transverse waves 
and Zjj the relaxation length of transverse phonons for processes not conserving 
momentum.

Substituting all this into (27) we get

k(T)

*i(T)

Ki (T)  + ku (T )

1 f 00
3 Jo

«"(T) -

where (53)
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From this we can evaluate the conductivity as a function of temperature if we 
know the relaxation lengths of the various processes and the energy spectrum 
E(k, T). We shall now apply this formula to specific cases.

The thermal conductivity of dielectric solids at low temperatures 119

Thermal conductivity of glass
•

Glass is a disordered solid with a lattice structure lacking symmetry and periodicity. 
There is a short-range order which is similar to that of the corresponding crystalline 
form—if this exists. For example, quartz consists of a regular array of oxygen tetra- 
hedra surrounding each silicon atom, each oxygen atom being shared. Quartz glass 
consists also of such tetrahedra, but there is a slight variation in the orientation of 
neighbouring tetrahedra. Since the forces between neighbouring atoms are similar, 
the specific heat of the glass is almost the same as that of the crystal (Simon 1922; 
Simon & Lange 1926), but the thermal conductivity of glass is much smaller, as is 
illustrated in figure 3 of Berman (1951).

Clearly the low thermal conductivity is due to the irregularity of the structure. 
It has been pointed out by Kittel (1949) that when substituting the known con
ductivity and specific heat into the simple Debye formula

k = %Svl, (53

where S is the specific heat and l an average mean free path, one obtains a value of 
l which is independent of temperature at room temperature and above. Thus the 
mean free path is independent of frequency for high frequencies, and is of the order 
of the size of the oxygen tetrahedra. The low frequencies, however, have a longer 
mean free path, for when the wave-length is large compared with the lattice constant, 
the lack of order is not so important, since macroscopically glass is a homogeneous 
substance. Thus at low temperatures the observed mean free path defined by (53 
increases. We can develop these ideas on the lines of the preceding theory and can 
explain the low-temperature behaviour in a more satisfactory manner.

Each atom has a fixed equilibrium position, and the thermal motion is resolvable 
into normal modes of vibration. These normal modes are no longer plane waves, 
since the structure lacks regularity. We can still resolve the instantaneous displace
ments into plane waves, but now there will be an interchange of energy between 
them. These interactions, which we call ‘structure scattering’, are processes of 
type (4). We assume the equilibrium intensity to be still given by the Planck distribu
tion (8) and the deviation from equilibrium to be still attenuated exponentially 
with relaxation time t(4).

We assume, as Kittel has done, that vt(4) = Ca for A <a,a  being the lattice constant 
and C some constant. Such short waves describe the relative motion of neighbouring 
atoms. Consider now a wave of longer wave-length A > We can divide its energy 
into two parts: the energy pertaining to the overall motion of a large region, and the 
energy pertaining to the relative motion of neighbours. We assume that the energy 
of overall motion belongs to a normal mode which is almost identical to the plane 
wave, and this energy is retained by the wave. But the energy of relative motion 
belongs to high-frequency modes and is attentuated with the constant relaxation

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 O

ct
ob

er
 2

02
1 



120 P. G. Klemens

length Ca, which is the same as the constant relaxation length observed for high- 
frequency plane waves.

If q is the displacement due to a plane wave

q = qQs in ^ -{x -v t)

2nv .
q =  -<7o-^-cosyand q =  -  q0  cos — -  (54)

then the relative displacement of two neighbouring atoms, distant Ax, is given by

A q = q0^  Ax c o s ^  (x — vt)

and Aq = — v&x sin vt)- (54')

l  t\  ̂
The energy per unit volume is E = |/*7o( (55)

where p is the density, and the energy of relative motion is

-® r = = to o (x )  v2(&x)2- (56)

The attenuation length is thus

l — CAx  ̂ .Et \2ttAxJ (57)

The above argument holds equally well for longitudinal as for transverse waves, but 
the constant C will not be the same. For our calculations we thus take the relaxation 
length of ‘ structure scattering ’ in glass to be

, 2
l =  Aa ( I V

\ak) if ak

— Aa if 1,

for longitudinal waves, while for transverse waves
(58a)

l Ba

Ba

( IV
\ak) if ak 1

if 1, (586)

where A and B are constants. We shall see in the case of quartz glass that A > B . 
It is not unreasonable that longitudinal waves are transmitted more easily through 
a disordered structure than transverse waves, and this may be a property of all 
glasses. Some error is, of course, introduced through (58) for frequencies 1, 
but this is not important.

We can use the general formula (53) to calculate the thermal conductivity, using 
(58) for l[ and l'u ; we assume the same relaxation length for (1 )-processes as in the 
case of crystals; for longitudinal waves an expression obtained by Pomeranchuk 
(I94I) Ca

T (59)
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The thermal conductivity of dielectric solids at low temperatures 121

and for transverse waves an expression due to Landau & Rumer (1937),

fOT T < $

- f Q  for T > e ’ <60>
where C, D and D' are constants and 6 is the Debye temperature. For T) we 
use the expression given by the Debye theory of specific heat and we obtain finally

>c(T) 1 u
2 h 2V3k*  e hvkl2nK T

0 (2 IT)* K T 2 [e hvk/2n K T  _  J ]2 '

3 na

where

(ex — l)2

K )

3 Aa2 /2nK \2
C \  hv )

(61)

(62)

and T0 is a parameter of the dimension of temperature. The integral

x2ex 1 .
(ex— l)21 + a zx2^X

has been evaluated numerically as a function of a and obtained (see figure 2). 
At the lowest temperatures

A K 2
K'W  = 3 ™rnahT’ «63>

and at higher temperatures the curve of ktagainst T  flattens out, reaching a maxi
mum at T = 0*8T0; while at high temperatures /c(jT)i oc jT~*.

The high-frequency cut-off, which is important in the expression for the specific 
heat, has been neglected in (61) because the integrand in (61) decreases more quickly 
with increasing frequency than the integrand of the specific heat integral. Also we 
have used for l[ expression (58) for ak<  1 because for the higher frequencies lx<l'i 
and the exact form of lx is then unimportant.

Consider now xII(T). At higher temperatures l2 <4 and the term containing l2 can 
be neglected. For l'u we use the high-frequency form of (586), and if we assume

E(k,T) ^ .  ~ ^ E {k , T) we have

*n (T) = \Bav8{T). (64)

At high temperatures kx(T ) will decrease with temperature, while ku {T ) increases 
with T  up to several hundred degrees, being proportional to the specific heat. Hence 
at high temperatures k ~ ku  and (64) agrees with the formula proposed by Kittel. 
At the lowest temperatures, however, if l'u< l2 we get in analogy to (63)

2 Ftff2
*n(!r> = 3 -2 9  3nahT - <«5>

At intermediate temperatures the expression for /cn ( jP) is more complicated, though 
it can be evaluated in principle. As a rough approximation we can take the sum of
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122 P. G. Klemens

(64) and (65), though this will overestimate ku (T) in the intermediate range. Also 
it is only weakly dependent on Z2; thus if Z2 < the coefficient in (65) is changed to 
2-63, while at higher temperature (64) holds in either case.

/  /

To
.3
*

T  (°K)

F igure 2. Thermal conductivity of quartz glass. Curve I  denotes kv curve ku, curve I I I  
k =  k1 +  ku . Full circles denote experimental points of Berman (1951); measurements 
of three specimens differing slightly in their absolute value of conductivity are here 
brought into agreement by multiplication with an appropriate constant.

The thermal conductivity of glass thus depend^ on three empirical constants 
A, B and T0 (or C). We have k = Kj + ku , where atj is given by (61), ku is given by 
(64) at high temperatures, and by (65) at low temperatures. When fitting the formula 
to the experimental values, B  can be obtained from the high-temperature values, 
where ku predominates, using the values of the specific heat observed by Simon & 
Lange (1922). From the linear region at lowest temperatures we obtain 
and from the position of the flat region between 10 and 20° K we can obtain T0.
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For the conductivity of quartz glass, as measured by Berman (1951), the following 
values are best:

A =  180, B  =  2-4, T0 =  9-8° K, i.e. C = 50, (66)

taking a — 5 x 10_8cm., vn  =  2 x 106cm./sec. In figure 2 are plotted the values of 
the conductivity observed by Berman, and the values of ku  and k , calculated 
with the above constants. The agreement between theory and experiment is seen 
to be quite satisfactory.

Thermal conductivity of crystals
In the case of crystals the conductivity is again determined by (53), but while in 

the case of glass l[ ~  lx at about 10° K, in the case of crystals the processes which do 
not conserve momentum are much rarer, and thus except at very low tem
peratures (2° K in the case of quartz, using the value of lx as found above), and thus 
*1 ̂  *ii- We can neglect all terms in (53) which are limited by either lx or Z2 and we get

*(?’) = k n (T) = Ei-k’ T>)clr vn l'n(«h)dk + \ \   ̂ vii l'udk-
(67)

A possible exception is diamond. Owing to its very high Debye temperature lx is 
very large, so that in an appreciable temperature range Zj > Zj; and if l{ > j, kx > ku . 
It was shown by Pomeranchuk (1942) that in this case is temperature independent 
over a range of temperatures, and this explains the temperature-independent 
conductivity of diamond from 24 to 340° K.

In all other crystals, however, the conductivity is limited only by the processes 
not conserving momentum. These are [/-processes, scattering by lattice defects, 
scattering by the external boundaries and scattering due to mosaic structure. These 
processes compete with each other, so that

y  ~2  ((^n)"1. (68) 
‘11 (/?)

where (p)Vu  is the relaxation length—or mean free path—of each of the above processes. 

Scattering by defects
This may be elastic or inelastic, but it has been shown by Pomeranchuk (1942) that 

inelastic scattering can be neglected. With respect to its effect on long waves, a defect 
alters the elastic properties of the medium over a spherical region of the order of 
a unit cell, and can thus be regarded as a hard sphere, or a spherical hole, embedded 
in the substance. For long waves elastic scattering is proportional to the fourth power 
of frequency (Rayleigh scattering), so that the mean free path is

Fa / 1 \ 4
fV = ~e~ W  (afc<U)’ (69)

where e is the defect-concentration and F some constant. For higher frequencies 
the power of the frequency will decrease, until at highest frequencies scattering is 
almost frequency-independent.

The thermal conductivity of dielectric solids at low temperatures 123
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124 P. G. Klemens

Boundary scattering
The mean free path L  can be obtained from geometrical arguments; it is, of 

course, frequency-independent. Casimir (1938) has worked out the case of long 
cylinders of circular and square cross-section. In general, L equals approximately 
the smallest linear dimensions of the crystal.

Mosaic scattering
Mosaic structure of crystals is an additional source of scattering. If we assume the 

crystal divided into domains of slightly different orientation, it can be shown 
(Pomeranchuk 1942) that

j\/jl — Ml a (70)

where Mis a constant depending on the size of the domains and the mean angle of 
disorientation.

U mklapprozesse
The rate of change due to {/-processes is determined by (3), which to the first 

order in the n’s is

-^"1 — 2  -^oi2[w(*'/̂ i — •^2) — (n1̂ /̂2 + n2̂ f/i)], (71)
o*J(2) 1.2

where D012 vanishes unless (4) and (6) are fulfilled. Consider first the case when a> 
is well below the Debye frequency o)D. Since for a U-process

j 0)| + j (ox| + | oj2| ~  o)D, (72)

we need only consider processes such that ~  ~  gjd . In (71) we have
7) AT

n{JV'x — J/ )̂ — n -~ o j,  (73)

which is the same as for processes (16). But since the components of kx and k2 in 
the direction of € have opposite sign, in the average % ~  —n2 and thus, except for 
second-order terms nxJf2 + n2Jfx =  0. Also nx-  n2~ so that

aA~i
a J( '0121

' o i / . n-=—- o>+
L OtOj. ■)-

(74)

It is easily shown that the second term can be neglected provided r decreases 
faster with increasing frequency than w_1. This, however, is always fulfilled, so that 
0A'~|
d t j ( oc n, and thus U-processes acting on low-frequency phonons can be regarded

as processes not conserving momentum for purposes of calculating the thermal 
conductivity by (67). And so

1
r (2)

where a = hjKT. If T <46

_ia/vn 
n dt J( 'LDolo)

1
T<2)

(ea

SDawe- *"'i.

(75)

(76)
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The thermal conductivity of dielectric solids at low temperatures 125

It can be shown (Landau & Rumer 1937) that Z)012oc omx(i)2. The number of simul
taneous solutions of (4) and (6) in the range varies as ojx Awj, as for
(l)-processes. Since (ox~ (o 2, Z)012ocwwf; hence

nct _h oc aw2 e~awi A<y,. (77)

We must integrate over all possible values of The lowest possible value is 
\d)D, so that j ^ b

— cc oc(o2(o\ e_a"i doix
(̂2) J i<oD

2 rOIT
i 2 f
‘SJ.

e~x a;3 dx.
^ J 0I2T

(77a)

At lowr temperatures x is large, so that the upper limit of integration can be 
neglected. Hence m  3-1-1

r(2)oc w~2eW2r| l̂ +  6 ̂ + 2 4 ^ j  + 4 8 ^ j  J .

I f  T <  6 / 6 r(2) oc — e°l2T 
(02

lr (78)

where Sis a constant.
We can now substitute these mean free paths into (67) to obtain the thermal con

ductivity. In principle the integrals occurring in this formula can be evaluated 
exactly, but as this involves tedious numerical work, we shall give approximations 
only.

Crystals without defects
At low temperatures we must consider boundary scattering as well as U-processes. 

Using (68) we get after substitution into (67)

k ( T )
4nK*T*(l a (2 ^

h*v2 \L S\ hv )
-1 f 1 x4ex

0 ( 6 * - l)2

+
-1 x4ex

(ex— l)2
This is of the form

1 f 1 x4ex , f 00 1
A + B J „ ( F ^ l ) 5<fa + J 1 A T .A + Bx2 (ex — 1 )2dx.

(79)

(80)

Instead of calculating this expression exactly we approximate in either of the 
following ways:

(a) Cut-off approximation:
If A > Bexpression (80) is approximately

1 f Xl %4exrj  0
dx,(ex— l)2 (81)
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126 P. G. Klemens

where Xf = A/B, or, more accurately,
 ̂ x*ex

i l C dx + X \ \
(e* — l)2

(6) Additive-resistance approximation:
If A < B expression (80) is approximately

x*ex
a + b ’ 1

Jx. (e35- ! ) 2
(82)

1 ( f 1 rcV , f 00 , }
f ^ lJ o ( e a!- l ) 2<to+J i (« * - ! ) •* ') •

(83)
( e * - l ) 2

This approximation lends itself to easy physical interpretation since the reciprocal 
of (80), which is a resistance, can be written as a sum of two resistances

A/2-63 + 5/2-63,
which are due to boundary scattering and C7-processes respectively.

We have thus for the resistance due to U-processes
„ r anh

2 - 6 3 8K
-6I2T (84)

while the resistance due to boundaries is

WB
hsv2

2-63 KILT*' (85)

While Wfj increases with increasing T, WB decreases. Note that WB is about ten 
times as large as the boundary resistance calculated by Casimir (1938) on the assump
tion that boundary scattering is the only process. The additive-resistance approxi
mation holds good as long as Wv > WB. At lower temperatures we must use the cut-off 
approximation with

and X x increases with decreasing T. At lowest temperatures, when X x is large, we have

S /  hv y  
aLT2\2^K)

i (9/22’ ( 86)

k(T) 25-9 A n K 'L T *
h*v2 ’ (87)

which is equivalent to Casimir’s result. The conductivity attains a maximum 
near X x~ 1.

Since (78) is valid only for frequencies well below the Debye frequency, (79) and 
all subsequent approximations are valid only for low temperatures, well below the 
Debye temperature. The increase of resistance due to 17-processes becomes less 
strong at higher temperatures, until eventually at temperatures above the Debye 
temperature Wv  is proportional to T. For at those temperatures

and thus -  ^"1  n ct J (:

j r - — — —Q»(Oi _  l a(t)

oc T  and tv  oc (o/T. Hence

oc TI<o{,

k ( T ) oc f  
J 1

wz>

0
0)* (1)

1 )*T*T do)'
■l

“d (i)2 0)
0 ~ ^ f2 T d<3}

o c l IT,

( 88 )

(89)
a result already deduced by Peierls (1929).
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The thermal conductivity of dielectric solids at low temperatures 127 

Crystals with lattice defects
If there are an appreciable number of lattice defects, the resistance due to them 

will be more important at low temperatures than the resistance due to f/-processes. 
Consider boundary and defect scattering only, then substituting FV of (69) and L 
into (68) and (67) we obtain an expression for the conductivity in the form

1 f 1 x*eX j f°° 1 /nm
A + b ),,(e * -I )2<fa + J , A + Bx*(e* -\)* dx’( ’

and a similar expression containing also a term in 2 if mosaic scattering or C7-pro- 
cesses are also important. Again if B > A we can use the additive resistance approxi
mation, where now

w  _  (2 n)3a3eT

py _ ___ L . (91)
”B ~ 4nKA x

w  — harr_ 1
M M K2x 0*90 T’ J

where WF, WB and WM are the resistances due to defect, boundary and mosaic 
scattering respectively, and

W = WF + WB + WM. (92)

It will be seen that at very low temperatures the resistance decreases to a minimum, 
but then increases again, while at temperatures above this minimum WF predominates. 
The constant in (91) is different from the constant in (83), being the integral

f 1 x*ex. f®
J„ + 0-90,

At high temperatures, however, Wv  will become important, and W will increase 
faster than T, except when departures from Rayleigh scattering again offset this 
effect. At temperatures well above 0, W will again be proportional to T, but before 
this temperature is reached, the crystal may start to melt. At high temperatures 
Wv > WF, and the conductivity is less sensitive to defects, as is generally observed.

At low temperatures when WB exceeds WF, the additive-resistance approximation 
breaks down and must again be replaced by the cut-off approximation (81), or by 
the analogue of (82), with

X\ F / hv V  
ea*L\2nKT) ’ (93)

and at very low temperatures, when X x is large, we again approximate to Casimir’s 
expression (87).

Alkali halides
The thermal conductivity of potassium chloride and potassium bromide crystals 

(shaped as rods) was measured by de Haas & Biermasz (1935, 1937, 1938) down to 
2°K, though there is a gap in their measurements from 5 to 15° K. Above 15°K
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128 P. G. Klemens

the resistance is approximately proportional to temperature, and for potassium 
chloride 0-77 T  W_1 cm.sec. (94)

If we assume that this resistance is mainly due to lattice defects, then by comparing 
with WF of (91), taking v — 2 x 105c m . / s e c .

7-4 x 10~27. ( 95)

We take a — 4 A, and assuming the defect to be a spherical hole of radius R =  
whose scattering cross-section is

<7
256tt5R 6 

9A4
for A >  2ttR , (96)

we get eX6 =  6-4 x 10-5. ( 97)

The potassium chloride crystals used by de Haas & Biermasz contained as 
impurities about 10~4 per atom of Na and less than 10-4 of Mg. If only divalent 
impurities act as scattering centres, i.e. only the Mg++ ions, then if ~  1 the 
observed thermal resistance at liquid-hydrogen temperatures agrees roughly with 
the concentration of divalent impurities. This is what we would expect, for such 
a divalent impurity must have associated with it a hole in the alkali lattice in order 
to preserve electrical neutrality. On the other hand a monovalent impurity would 
only scatter weakly, since the only perturbing effect would be the mass-difference 
at the point of the impurity, the structure as such being intact.

This view is bom out by the experiments of Eucken & Kuhn (1928), where a 
10 % addition of monovalent Br increases the resistance only by a factor of six, so 
that a monovalent impurity scatters less than a divalent impurity by a factor of 
more than 100. Again we can rule out Frenkel defects as an important source of 
resistance, for according to experiments by Koch & Wagner (1938) their concentra
tion in silver chloride at 480° K is already less than 10-4, and is still decreasing 
strongly with decreasing temperature. The concentration of Frenkel defects in KC1 
is probably also very small at low temperatures.

At higher temperatures the defect-resistance increases slower than T, but the 
resistance due to Z7-processes increases fast at first, and then gradually more slowly. 
The net effect is to approximate to the law oc T~n, where n is near unity.

At very low temperatures, however (below 10° K), the boundary resistance be
comes important. The conductivity is then size-dependent, and can be calculated 
from the cut-off approximation (82). In table 1 the values calculated by the cut-off 
approximation are compared with the values observed by de Haas & Biermasz. It will 
be seen that the size-dependent conductivity in the liquid-helium region does agree 
quite well with the calculated values. The systematic discrepancy is due to the 
uncertainty in the values of v and L. However, all departures from the Casimir 
law k  oc LTZ are thus explained, and it does not seem necessary to assume mosaic 
scattering to explain these departures, as had been suggested by de Haas & Biermasz.
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A similar state of affairs seems to hold for the other alkali halides, de Haas & 
Biermasz have also measured potassium bromide crystals. Their defect-resistance 
is larger by a factor of about four—otherwise the same explanation seems to hold.

T a b l e  1. T h e r m a l  c o n d u c t i v i t y  o f  p o t a s s i u m  c h l o r i d e

AT LIQ UID-H ELIU M  TEM PERATURES

The thermal conductivity of dielectric solids at low temperatures 129

1 L k (in W/deg.cm.)
(°K) (cm.) *1 J (calc.) (obs.)
2' 3-75 9-51 0-80 0-65
3 n.oK 2-50 6-98 1-98 1-62
4 1-87 3-91 2-64 2-56
5. 1-50 216 2-83 3-05
2 ' 2-75 8-35 2-12 1-82
3 A.7K 1-83 3-90 3-50 3-30
4 u# / 0 1-38 1-90 3-95 3-56
5 M 116 4-6 4 1

C aj4ex /•oo ex
where J  = f 1 :------ dx -

O S' K 1 H— to *
*lXt (ex— l )8

Quartz
Since quartz is a strongly anisotropic crystal, the present theory is not strictly 

applicable, but we should nevertheless expect qualitative agreement with experi
ments. The conductivity, both along the principal axis, and in the direction of a 
bisector of the two binary axes, has been measured by de Haas & Biermasz (1935, 
1937, 1938). In the latter direction it was also measured by Berman (1951), who 
also obtained values in the range 5 to 15° K. Berman’s measurements are shown in 
figure 3. de Haas & Biermasz obtained a size-effect at liquid-helium temperatures 
which approximates Casimir’s law better than the alkali halides. Since the ratio of 
the conductivities in the parallel and the perpendicular direction is fairly constantly

T  (°K)

5o
bb

6

•ao
.5
Sc

F igure 3. Thermal conductivity of crystalline quartz. In direction perpendicular to the 
principal axis, according to Berman (1951) and de Haas & Biermasz (1935, 1937, 1938).

Vol. 208. A. 9
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130 P. G. Klemens

2:1 at all temperatures, even in the size-dependent range, we conclude that the 
anisotropy is due to an asymmetrical grouping of the normal modes, rather than an 
anisotropy in the relaxation length.

In the liquid-hydrogen region the resistance increases faster than T y which 
suggests that in the case of quartz the resistance is due mainly to {/-processes even 
at these low temperatures. This is not surprising, since quartz has an open structure 
of S i04 tetrahedra. There are large interstitial spaces into which chemical impurities 
can fit without disturbing the main silica network. Since the crystal is non-ionic, 
the presence of atoms of different valency has no significant effect on the structure. 
The energy required to create a vacancy is fairly large, and the number of such 
vacancies at room temperature must be very small, especially with crystals created 
during geological processes. Frozen-in vacancies can perhaps be created by heat 
treatment, and de Haas & Biermasz have indeed increased the thermal resistance in 
the liquid-hydrogen region in this way, but the effect was small, and thus the 
resistance due to U-processes is probably predominant.

In order to fit the theory to the observed conductivity it is necessary to assume 
U-processes, boundary scattering and in addition either mosaic or defect scattering. 
This last-mentioned is necessary to prevent the conductivity between 5 and 10° K  
from exceeding the observed value of 12W/deg.cm., as it would for {/-processes 
and boundary scattering only. Taking 8  =  11,600 and choosing WM suitably we get 
the values shown in table 2 for the resistance on the additive-resistance approxima
tion. The agreement with the observed values is not very good, and the theory 
obviously breaks down at higher temperatures. This is expected, since (78) holds 
only for frequencies well below the Debye frequency.

Table 2. Thermal resistance op quartz at liquid-hydroge n  temperatures

T
(°K)

W v WB
(deg.em./W)

locale. ^obs.

10 0-050 0-008 0-023 0-081 0-080
12 0-042 0-029 0-013 0-084 0-088
13-5 0-037 0-057 0-009 0-103 0-106
15-3 0-033 0-088 0-0065 0-128 0-132
17 0-030 0-137 0-0045 0-172 0-161
20 0-025 0-263 0-003 0-291 0-249
34 0-015 0-830 0-001 0-846 1-07

Table 3. Thermal resistance op quartz at liquid-helium temperatures

T
(°K)

w B
(deg.cm./W)

^CftlC. w ohs.

5 0-076j 0-1816 0-258 0-24
3 O-1206 0-841 0-968 0-70
2-5 0-134 1-45, 1-59 0-95

At liquid-helium temperatures we need only consider the resistances due to mosaic 
and boundary scattering, since Wv  decreases very rapidly. We then have according 
to the additive-resistance approximation the values shown in table 3. The actual 
resistance is less than the resistance predicted from the additive-resistance approxi
mation, which we would expect from the nature of this approximation. Better
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values may be obtained with the cut-off approximation, but as we have no real 
evidence about the magnitude of the mosaic resistance, such a calculation would be 
artificial. The size-dependence, in particular the deviation from Casimir’s law, can 
be specified by that specimeii size, for which the boundary resistance is equal to the 
mosaic resistance. This saturation size, calculated from the values in table 3, agrees 
roughly with the values obtained by de Haas & Biermasz by extrapolation.

The theory is thus able to predict the dependence of the thermal conductivity of 
crystalline quartz on temperature and size only qualitatively. But considering that 
quartz is an anisotropic solid and that the formulae used are only very rough 
approximations, the disagreement between theory and experiment does not in
validate the basic ideas of the theory.

Neutron-irradiated quartz crystals
When quartz crystals are irradiated with neutrons, lattice defects are formed 

through the ejection of atoms from their lattice positions by fast neutrons. The 
thermal conductivity of neutron-irradiated quartz was measured by Berman (1951), 
and is plotted on a logarithmic scale in his figure 3.

In table 4 is given the thermal resistance after three irradiations of cumulative 
dosage in the ratio 1: 2*4:18*9, having subtracted the resistance of the original 
crystal, which is due to U-processes. The ratios of these additional resistances are 
also given. This analysis can be criticized, since the presence of additional scattering 
will change the multiplicative factor of the Umklapp-resistance, but to a first 
approximation we treat all resistances as simply additive.

The thermal conductivity of dielectric solids at low temperatures 131

Table 4. Thermal resistance of neutron-irradiated quartz crystals

T
(°K)

w 1 w 2
(deg.cm./W) dosage

95 2*6S 4*54 30-4 1:1*73:11-5) 
1:1*77:18*9 * 
1:1*73:17*0]

14 l*9a 3-3, 36-3 1:2*4:18*9
5 3-08 5-32 52-5

To interpret these results, consider the action of a fast neutron. This will displace 
an atom, which in turn will displace other atoms, so that a fast neutron initiates 
a cascade of displacements. The number of displacements due to a fast neutron of 
2MeV energy has been calculated by Seitz (1949) for a number of substances, whose 
estimates are of the order of 100 per primary collision. Since the displaced atoms 
have a very short range, especially at the low end of the cascade, the displacements 
will be grouped together spatially. We idealize this by assuming that there are a 
number of clusters of defects, with relatively large separations between them, and 
in between there are single defects. High-frequency phonons will be mostly scattered 
by the single defects, for they are more numerous, but low-frequency phonons have 
a small defect-scattering cross-section, and they will be mainly scattered by the 
clusters.

If clusters are regarded as regions of radius R, in which the substance is vitrified, 
then these clusters are opaque to transverse waves. If there are n clusters per unit
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132 P. G. Klemens

volume, the mean free path due to cluster scattering is \j{nR%n), and is frequency- 
independent. The resistance due to cluster scattering is thus similar to the boundary 
resistance, but L is much smaller. For the first irradiation we find from the con
ductivity below 15° K that L =  10“2cm., hence taking the lattice constant
a = 5 x 10_8cm. as unit of length, we have
1 \L  = nR2n 5 x 10~6. (98)
If we knew the size of the clusters, we could calculate their concentration, or vice 
versa. Making reasonable assumptions about their size, we find that the cluster 
concentration is of the order of 10~7 per atom.

The resistance at higher temperatures is due to the single defects. For the small 
irradiations the resistance above 15° K increases with temperature; but not as fast 
as T, which is a result of the departures from Rayleigh scattering. At the highest 
defect concentration, however, there is already interference between the defects, 
resulting in still larger deviations from Rayleigh scattering, so that the resistance 
slightly decreases with increasing temperature. When the defect concentration is 
even larger, scattering will be frequency independent, and we revert to the case of 
glass. The defect concentration of the first irradiation seems to be of order 10“4, 
estimated by comparison with the resistance of alkali halides.

In the case of the third irradiation the transverse conductivity is already so small 
that the longitudinal conductivity becomes appreciable, resulting in a small peak 
at 10° K. This can be understood from expression (61). The constant A must now be 
about five times as large as in the case of glass, which is reasonable, since the clusters, 
which are partially transparent to longitudinal waves, will scatter according to 
(58a), so that we have a ‘dilute glass’. The temperature T0 defined by (62) is now 
reduced by a factor 5* to 7° K, hence the maximum of the longitudinal conductivity 
is at 6° K. However the maximum of atj is fairly broad, and since the transverse 
conductivity at this point increases strongly with temperature, the maximum of the 
total conductivity is displaced to higher temperatures.

It is seen from table 4 that the resistance induced is not proportional to the dosage, 
but increases more slowly. Apparently some reordering is taking place during irradia
tion. On the other hand, for low dosages, to a given dosage ratio there corresponds 
a ratio of the induced resistances which is the same for all temperatures; this suggests 
that both the clusters and the single defects arise from the same process. Only for 
high dosages does this cease to hold, owing to the mutual interference of single 
defects.

We thus see that the model of clusters and single defects gives a reasonable 
explanation of the observed phenomena.
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A note on the errors involved in the calculation of 
elevations of the geoid

B y  A . H . Cook

Department of Geodesy and Geophysics, University of Cambridge 

( Communicated by R. Stoneley, F.R.S..—Received 15 February 1951)

The paper discusses the errors likely to  occur in calculations o f the elevation  o f the geoid b y  
Stokes’s form ula w hen gravity  data  outside a g iven  cap are neglected , and it  is show n th a t  
th ey  are com parable w ith  the root-m ean-square elevation . I t  is show n th a t these estim ates and  
those o f sim ilar errors in deflexions o f  the vertical m ade earlier (Cook 1950) are not seriously  
affected by  the assum ptions m ade about the distribution o f  gravity  anom alies betw een the  
harm onics up to  degree 18.

1. I n t r o d u c t i o n

The errors likely to occur in calculations of deflexions of the vertical from gravity 
anomalies when gravity data outside a certain region are excluded have been 
discussed in a previous paper (Cook 1950), and in this note errors in calculations of 
the elevation of the geoid are estimated by the same method and on the same 
assumptions as were used for the deflexions of the vertical.

It was suggested that the most efficient way of using the existing gravity data is 
to take the components of deflexions (and geoid elevations) due to harmonics up to 
degree 3 in the spherical harmonic expression of the free-air anomalies from Jeffreys’s 
(1943) formula for the free-air anomalies, and to apply Stokes’s integral formula for 
deflexion and elevation to the anomalies from Jeffreys’s formula. If gravity data were

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 O

ct
ob

er
 2

02
1 


