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PHILOSOPHICAL MAGAZINE B, 1978, VOL. 38, No. 3, 271-288 

The low-temperature thermal properties of 
amorphous arsenic 

By D. P. JONES, N. THOMAS and W. A. PHILLIPS 
Cavendish Laboratory, Madingley Road, Cambridge, England 

[Received 21 April 1978 and accepted 16 June 19781 

ABSTRACT 
Below 1 K the heat capacity C( T) of bulk amorphous As is proportional to the 

cube of the absolute temperature T, in marked contrast to t,he behaviour of other 
amorphous solids. Above 1 K C( T)/Ta increases rapidly to a maximum at about 
5 K, decreasing more gradually a t  higher temperatures, in a way that resembles 
other amorphous solids. The thermal conductivity K varies as TJ below 0.3 K. 
shows a plateau centred at about 5 K, and increases again above 10 K. The T* 
variation below 0.3 K is shown to be a result of phonon scattering by small holes in 
the sample, giving a constant phonon mean free path of 25 pm. 

The temperature dependence and magnitude of K are discussed in terms of two 
different theories, neither of which is completely satisfactory. The effects of 
dispersion are included with the help of parameters derived from the heat capacity, 
but this is shown to have little effect on the strength of scattering needed to explain 
the plateau. Finally, it is suggested that phonon-phonon scattering may account 
for the temperature variation of K in amorphous solids above 1 K. 

Q 1. INTRODUCTION 
Over the last few years low-temperature thermal measurements have been 

made on a wide range of amorphous solids. Similar features have been observed 
in all of them. Below 1 K the heat capacity C(T) is considerably larger than 
that calculated from measured sound velocities, and although measurements 
down to 25 mK have shown that the temperature dependence of the excess 
heat capacity cannot be described by a simple power law, between 0.1 and 1 K 
it can be adequately described by a term proportional to the temperature T 
together with a term proportional to T3. The thermal conductivity K varies 
roughly as T2 below 1 K, shows little temperature dependence between 1 and 10 K, 
and then increases again at  higher temperatures. 

Although a variety of explanations have been proposed to account for the 
results below- 1 K, the most widely used model is based on the idea of tunnelling 
states in the glass. In  this model (Phillips 1972, Anderson, Halperin and Varma 
1972) the quantum mechanical tunnelling of an atom or a small group of atoms 
from one potential minimum to a neighbouring one gives rise to a small energy 
splitting E between the ground and excited states. This energy E can be com- 
parable to thermal energies at 1 K and below. A wide range of such energy 
splittings is to be expected as a general feature of t,he amorphous solid, and can 
be described by a density of states n(E). Originally it was argued on general 
grounds that n( E )  would be a slowly increasing function of energy which over a 
limited range can be represented by a constant term no. This constant density 
of states gives rise to the term proportional to T in the heat capacity. Each 
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272 D. P. Jones et al. 

tunnelling state can also interact with, and scatter, phonons. Resonance 
scattering occurs when the phonon energy, nu, is equal to E ,  and leads to a thermal 
conductivity proportional to T2 for a constant density of t.unnelling-state 
energies. 

A test of this, or any other, theory requires measurements on amorphous 
insulators with as wide a range of structures as possible. However, almost 
all bhe measurements up to now have been on glasses, bulk amorphous solids 
prepared by quenching from the melt. The only exceptions are results obtained 
from thin films of amorphous germanium (King, Phillips and de Neufville 1974, 
Lbhneysen and Steglich 1977), but neither K nor C has been measured to sua- 
ciently low temperatures to allow a detailed comparison with bulk glasses. 
This is unfortunate, since the four-fold coordinated Ge network provides a 
very different disordered structure on which to test out theories of the thermal 
properties. 

This paper presents measurements of the thermal properties of amorphous 
arsenic (a-As), which can be prepared in bulk form but cannot be obtained by 
quenching from the melt. The structure is three-fold coordinated (Greaves 
and Davis 1974), providing a useful contrast to that of most bulk glasses. A 
preliminary account of the heat capacity results below 1 K  has already been 
presented (Phillips and Thomas 1977) and, more recently, heat capacity data a t  
higher temperatures has been published by Lannin, Eno and Luo (1977). 

The main result of this paper is that the thermal conductivity of a-As has 
a similar temperature dependence to t,hat of other amorphous solids, except 
below 0.5 K where K varies as T3. This T3 behaviour is shown to arise from the 
presence of small holes in the bulk samples. The specific heat varies as T3 
below 1 K, but C/T3 shows a peak a t  about 5 K .  These results are presented in 
$ 2, together with details of the experimental techniques, and are discussed fully 
in $ 3. 

(Expressions for the phonon free path are given in $3.) 

$ 2. EXPERIMENTAL TECHNIQUES AND RESULTS 

Samples of bulk a-As were obtained from Mining & Chemical Products, 
where it is prepared by condensing As in the presence of hydrogen onto a heated 
substrate. These samples were similar to those used by Lannin et al. (1977) 
and indeed to all samples of bulk a-As, which are obtained from the same source 
or made in a similar way. It appears, from a variety of private communications, 
that the hydrogen concentration is less than 0.104 in bulk a-As (Lannin et al. 
1977). 

The heat capacity C(T) was measured between 0.35 and 18 K by means of 
a small-sample pulse technique described fully by Bachmann and his collabora- 
torsi. For the measurements above 1.5 K the sample, weighing about 100 mg, 
was stuck onto a doped silicon chip which acted as a thermometer, and also 
carried an evaporated nichrome or copper heater. Below 1-5 K a sapphire disk 
was used instead of the silicon chip, and the temperature was monitored by a 
thin slice cut from an Allen Bradley resistor. The random error is apparent' 
from the figures, and any systematic errors are believed to be less than 5%. 

The bulk density of the samples was 4770 kg m-3. 

t Bachma,nn, Di Salvo, Geballe, Greene, Howard, King, Kirsch, Lee, Schwall, 
Thomas and Zubeck (1972). 
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Low -temperature thermal properties of amorphous As 
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Fig. 1 

..**:.*. (a) This experiment . (b) Wu and Luo a-As . 
(c) c-As (Wu and Luo) 
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Specific heat of various forms of arsenic, plotted as C/T3 against T. (a) Bulk a-A 
-this work. (c) 
Lattice specific heat of crystalline rhombohedra1 As from Wu and Luo. 
The densities of the three materials are 4770, 4950 and 5730 kg m-l, res- 
pectively. 

(b )  Compacted thin film a-As from Wu and Luo (1974). 

Fig. 2 

I I I I I 

lk 

0 0 2 01 0 2  0 3  O L  0 5  

T2/ K2 
6 

Specific heat of a-As plotted as C/T versus Tz (solid circles). Also shown in the 
curve for vitreous silica (Zeller 1971). 

The results are plotted in fig. 1 as C(T)/T3 against T. A marked peak in 
this form of plot is typical of amorphous solids, but unlike these other solids 
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274 D. P. Jones et al. 

there is no sign of an upturn in C(T)/T3 below 1 K. This is confirmed by replot- 
ting the data as C(T)/T against T2 in the temperature range 0.35 to 0.7 K. 
As shown in fig. 2 this gives a straight line plot with a very small intercept: 
a regression analysis gives 0-05 f 0.05 pJ g-l K-2. 

The thermal conductivity K(T) was measured using a two-heater steady-state 
technique with a single thermometer (Zaitlin and Anderson 1975). This has 
two advantages over the more common two-thermometer method : narrow 
strip heaters define the geometry of the sample more precisely than do thermo- 
meters, and the met,hod requires only a single thermometer calibration. 
The samples were rectangular prisms about 10 mm long, 4 mm wide and 1 mm 
thick, with one polished face. Two thin copper or nichrome heaters were 
evaporated across this face about 4 mm apart, and one end of the sample was 
clamped between two copper plates. Vacuum grease was used to improve 
thermal contact. A carbon thermometer, again cut from a resistor, was 
mounted at  the other end. 

Fig. 3 

8 I I I 1 I 

t 
T/K 

Thermal conductivity K of a-As (solid circles). The line drawn through the low- 
Also shown is K for vitreous temperature points is proportional to T3. 

silica (Zeller 1971). 

D
ow

nl
oa

de
d 

by
 [

N
U

S 
N

at
io

na
l U

ni
ve

rs
ity

 o
f 

Si
ng

ap
or

e]
 a

t 1
0:

33
 2

5 
N

ov
em

be
r 

20
15

 



Low-temperature thermal properties of amorphous As 275 

Power P dissipated in a heater increases the thermometer temperature by 
AT above the equilibrium temperature To. The fractional change ATIT, 
was always less than lo%, and in this range of temperature throws there was no 
evidence for any non-linear dependence of AT on P.  Any boundary resistance 
between the sample and the copper was small even at the lowest temperatures, 
since the ratio of ATIP (at a fixed To)  for the two heaters was within 10% of 
that estimated from the sample geometry, and did not vary with temperature. 
The thermal conductivity was calculated from values of ATJP, and ATJP, for 
heaters 1 and 2 evaluated at  the same temperature T. Corrections to the 
measured values of K resulting from the finite t.hickness of the sample were 
shown to be less than 2% by modelling the heat flow on conducting paper. A 
gold-iron/chromel thermocouple was used in place of the carbon thermometer 
to give the thermal conductivity at 77 K. The points have an average error 
of about 5%. 

Below 0-25 K, the temperature dependence 
of K is given by TV, with = 3.0 f 0.2. This is in marked contrast to the tem- 
perature dependence of K in other amorphous solids in this temperature range 
(the thermal conductivity of vitreous SiO, is also shown in fig. 3), but at  higher 
temperatures the behaviour is similar. 

The results are shown in fig. 3. 

$ 3 .  DISCUSSION 
3.1. Specijic heat 

There are three main features of the results shown in figs. 1 and 2 that should 
be emphasized. The specific heat of this bulk sample of a-As is much larger 
than that of the films of a-As which were measured earlier by Wu and Luo 
(1974) ; significant departures from Debye behaviour can be seen at  the sur- 
prisingly low temperature of 1 K ; and below 0.7 K the specific heat varies as 
T3 and shows no sign of the linear anomaly that has been seen in all other bulk 
amorphous solids. These features will be discussed in turn, even though Lannin 
et al. (1977) have discussed the first two points in some detail. Their results 
on bulk a-As agree with those of fig. 1 within about 10%. 

&-As is probably the first amorphous solid €or which specific heat data are 
available in both thin film and bulk samples. A comparison of the data (fig. 1)  
shows that the bulk sample has a heat capacity which is larger by a factor of 
about two a t  6 K, although the differences are much less marked a t  high and 
low temperatures. Such differences are much greater than those observed 
between different samples of bulk glasses (White and Birch 1965) and provide 
strong evidence that the properties of thin films are very sensitive to the 
method of preparation. 

The number of modes at 
low frequencies does appear to increase with decreasing density. Although such 
a trend is seen in other systems, for example, germanium (King el al. 1974) or 
neutron-irradiated silica (White and Birch 1965), the unusually large magnitude 
of the effect in As suggests that it may be a property of the unusual bonding 
of As atom. The effect of the bonding can be understood from a generalization 
of an argument put forward for a-Ge by Weaire and Alben (1972). If it is 
assumed that the vibrational modes in a topologically disordered random 
network can be adequately described by bond-stretching and bond-bending 

One simple observation can be made from the data. 
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276 D. P. Jones et al. 

force constants alone, a proportion of the modes depend only on the much weaker 
bond-bending force constant. In the limit where this force constant tends to 
zero, the number of such modes can be calculated. The condition that the bond 
lengths remain constant in a x-fold coordinated network places zN/2  constraints 
(one per bond) on the 3N normal modes, where N is the number of atoms. In  
a-Ge this gives one mode per atom. As long as the bond-bending force constant 
is much weaker than the bond-stretching one, these modes give the observed 
low-frequency peak in the density of states. 

Each As atom in rhombohedra1 crystalline As forms three short bonds with 
three neighbouring As atoms on one side, and three long, weaker, bonds with 
neighbours on the other. This effectively six-fold coordinated structure should 
not show a marked low-frequency peak in the density of states, a conclusion which 
agrees with experiment. I n  the disordered solid the ability to form the three 
long bonds is much reduced, partly because of the disordered structure and 
partly because the density is less. The As is then effectively three-fold 
coordinated and should show the low-frequency peak. The extent to which 
the atoms are three- or six-fold coordinated will depend on the density, 
and this in turn will give rise to large changes in the low-frequency peak with 
density. 

The appearance of a low-frequency peak in an effectively three-fold co- 
ordinated structure provides a qualitative explanation for the departure from 
a T3 temperature dependence of the specific heat a t  a few degrees K. A quanti- 
tative explanation, however, requires a detailed knowledge of the density of 
states g(w). The difficulty of the reverse process, calculating g(w) from the heat 
capacity, is illustrated in the paper by Lannin et at. (1977), who do, however, 
show that g(w) departs from a quadratic variation with w at very low frequencies. 

One point must be stressed before discussing the thermal conductivity later 
in this section. The departures from the quadratic density of states a t  10 cm-l 
and above (equivalent to C/T3 departing from a constant value at  2 K or so) casts 
serious doubts of the validity of the Debye approximation in this frequency 
range. This is of some importance, in view of the fact that almost all analyses 
of thermal conductivity assume that the Debye approximation is valid, and 
discuss any unusual behaviour of K in terms of the scattering of sound waves. 
Direct evidence for the existence of non-dispersive sound waves in amorphous 
solids has been obtained only for frequencies below 1 em-', and the peak in 
C/T3 is strong evidence that such modes do not exist a t  higher frequencies. 

One possible interpretation of the data shown for bulk a-As in fig. 1 is to 
say that the sharp rise in C/T3 marks the limit of the Debye approximation 
for the lowest frequency group of phonons, those equivalent to transverse 
acoustic waves at  long wavelengths. The modes that contribute to the heat 
capacity near 5K are non-propagating or localized, just as the modes that 
contribute to the peak in C/T3 in crystalline germanium are non-propagating by 
virtue of their very small group velocity. This interpretation then leads to 
a natural cut-off in the Debye model for these modes at  about 10 cm-1, although 
of course the other type of low-frequency phonon, corresponding to a longi- 
tudinal acoustic mode at  long wavelengths, may still be adequately represented 
by the Debye model up to much higher frequencies. 

The final point concerns the difference between these results on bulk a-As 
and thoso obtained for other bulk amorphous solids below 1 K. As shown in fig. 
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Low-temperature thermal properties of amorphous As 277 

2, C is proportional to T3, with a slope which gives an average sound velocity of 
1.6 x 103 m s-1. Measurements of sound velocities are not available in a-As, but 
this value appears to be a reasonable estimate of the thermally averaged sound 
velocity in view of the value of 1.36 x lo3 ms-' found in As,Se, (Soga, Kunugi 
and Ota 1973). A more precise comparison with a measured average velocity 
would of course be desirable in order to establish that the Debye model gives 
a complete description of the heat capacity below 0.7 K, and that no other modes 
are contributing. 

The experimental results shown in fig. 2 are consistent with the absence of a 
' linear term '. The measured intercept is smaller than that measured in SiO, 
by II factor of over 15, and smaller than that in very pure As,S, by a factor of 
about six. Converted to the number of additional states per As atom, bulk 
a-As compared to As$, contains fewer additional states by a factor of four. It is 
difficult to give firm reasons for this smaller value. For example, i t  may be a 
continuation of the trend seen in As,S3 where purer samples give a smaller linear 
term in the heat capacity (Stephens 1976), since the method of preparation of 
a-As should give very pure samples. On the other hand, it may be that the 
result supports the tunnelling model, as the local rearrangements of a few atoms 
which give rise to the linear heat capacity in this model may not be possible in 
the rigid a-As structure, containing no two-fold coordinated atoms. 

3.2. Thermal conductivity 
The thermal conductivity of glasses is usually interpreted by means of a 

general form of the kinetic equation 

WD 

K ( T )  = 5 1 C(w,  T)GZ(w, 2') dw. 
0 

C(w, T )  dw is the contribution to the heat capacity from the propagating modes 
with frequencies between w and w + dw. These modes are invariably taken as 
acoustic modes, with cut-off frequency wD, and with an average velocity 5, 
assumed independent of w. The mean free path of these phonons is written as 
E(w, T )  to include the explicit temperature dependence which must be present in 
some glasses to explain a minimum in K as a function of T (Leadbetter, Jeapes, 
Waterfield and Maynard 1977). The inverse mean free paths resulting from 
different scattering mechanisms are assumed to add to give a total l-l(w, T ) .  If 
Z(w, T) does not vary rapidly with w ,  then, since C(w, T) has a maximum for 
fiw N 4kT, the integral can be replaced by the expression, K(T) = fC(T)a I ,  
where 1 is evaluated a t  a frequency given by fiw = 4kT. This is known as the 
dominant phonon approximation. 

It has been suggested that dispersion may play a part in the temperature 
dependence of K (Jackle 1976). (Dispersion is perhaps not an appropriate term 
to use in a disordered solid, since i t  assumes a well-defined wavevector, but the 
physical interpretation of the effect is clear ; a large number of the modes con- 
tributing to C(T) in the disordered solid are effectively non-propagating.) 
Equation (1) must be generalized to include the real vibrational spectrum g(w). 
C(w, T )  can of course be related to g(w) but, in addition, the velocity must be 
written so as to account not only for different types of modes but also to allow 
for any variations with w .  
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275 D. P. Jones et al. 

A simple prescription for including the effects of ' dispersion ' is to say 
that the modes are either sound waves with the appropriate velocity or non- 
propagating, in which case they make no contribution to the integral in eqn. (1). 
This requires the introduction of two separate cut-off frequencies in (l), and 
these can be chosen with reference to the vibrational density of states, as far 
as it is known. For example, from the discussion of the heat capacity data in 
a-As, the cut-off for the transverse acoustic modes might be taken as IOcm-', 
while the corresponding cut-off for the longitudinal modes would be much 
higher, say 100 cm-l or above. This figure is obtained from the position of the 
second pronounced peak in the vibrational density of states a8 measured by 
neutron or Ra,man scattering (Leadbetter, Smith and Seyfert 1976, Lannin 
1977). 

Fig. 4 

lo-& 4 1.0 10 

T / K  
I0 

Calculations of the thermal conductivity of a-As (see text). Solid line =modelling 
the effect of dispersion (with a constant mean free pa.th of 25 pm) using a 
cut-off frequency for the transverse phonons of 3cm-1. Long dashes= 
calculated assuming phonon scattering from a quadratic density of tunnelling 
states, using eqns. (4) and (5) with B =lo4 m-l K-3, f3 =5 x K-2 and a 
minimum mean free path Zo of 1.5 nm. Short dashes =calculated using eqn. 
(6), with D = 1.9 x lo3 m-1 K-* and 1, = 1.5 nm, together with a constant 
mean free path of 25 pm. 
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Low -temperature thermal properties of amorphous As 279 

The results of a calculation that includes dispersion depend on the form 
of I (o ,  T), but a simple example is shown in fig. 4 for a constant mean free path 
of 25pm. Both at  high and low temperatures K varies as T3,  but the graph 
does show an intermediate regime where K varies more slowly with temperature. 
(It has been assumed that the ratio of longitudinal to transverse velocity has 
t,he typical value of two.) This result, which would be similar for other types 
of scattering, is not sufficient by itself to explain the plateau in K .  What it 
does show, however, is that the strength of scattering required to produce a 
plateau is less than would be expected in the absence of dispersion. 

Returning to the results shown in fig. 3, the temperature dependence of the 
thermal conductivity of bulk a-As can be seen to be very similar to that of 
other glasses, with the exception of the very low-temperature region. Below 
0.5 K, K varies as T3.  From the measurements, using an average sound velocity 

Fig. 5 

Cleaved surface of a-As viewed with the scanning electron microscope. 
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280 D. P. Jones et aZ. 

deduced from the specific heat data, a value of 25 pm is calculated for the tem- 
perature-independent mean free path. Since this is much less than any 
dimensions of the sample, it must be concluded that scattering arises frominternal 
cracks or voids in bulk a-As. 

A microscopic examination of cleaved surfaces of a-As, both with the optical 
and with the scanning electron microscope, shows structure which can account 
for the constant phonon mean free path. Figure 5 shows a surface in which 
small holes are clearly visible, each of diameter about 0.5 pm. The number 
of these holes can be estimated as about lo1’ m4. Each hole is larger than the 
dominant phonon wavelength above 0.1 K, so that a simple argument can be used 
to give a mean free path of about 40 pm, in reasonable agreement with the value 
needed to fit the data below 0.5K. The presence of these holes in a-As means 
that the measured density is likely to be too low by about 1%. 

The measurements of K were started in the hope that the absence of a linear 
term in the heat capacity might be associated with a K having a different tempera- 
ture dependence to that found in other bulk amorphous solids. Certainly 
K varies as T3 below 0.5 K, but the complete curve shown in fig. 3 looks very 
similar to the corresponding curve for SiO,, with the addition of a constant mean 
free path of 25 pm.% 

Perhaps the most complete interpretation of the thermal conductivity of 
amorphous solids, both a t  low temperatures and through the plateau region, 
has been made by Anderson in a number of papers (Zaitlin and Anderson 1975, 
Smith, Anthony and Anderson 1978). He has extended the tunnelling-state 
model, originally suggested to account for the thermal properties below 1 K, 
to higher temperatures. I n  the original model, described in the introduction, 
each tunnelling state can provide both a resonant and a relaxation contribution 
(JacMe 1972) to the scattering of phonons. The resonant process occurs when 
the energy of the phonon ziw is equal to E ,  and the relaxation process is important 
when the relaxation time T of the state satisfies OT N 1. 

Formally, the expressions for the mean free paths arising from the two 
scattering mechanisms are (Zaitlin and Anderson 1975). 

tiw rr?iM2k 
Zrea-l= A - tanh - with A = -  (T) 2kT’ pV3n ’ 

and 

where tiwl/k =PT3 and Strictly speaking, eqns. (3) are 
true only in t,he extreme limits w < w1 and w 2 w1 but the two expressions given 
here provide a convenient, and fairly accurate, interpolation. In  these expres- 
sions M is a constant representing the coupling between the tunnelling states 
and the phonons, V is the average sound velocity, p is the density and n is an 
effective density of states. B0t.h types of scattering give at  low temperatures a 
mean free path for the thermal phonons that varies as w-1 if the density of states 
is constant and so a thermal conductivity that varies as T2. 

= 2.46 M2k2/pG51i3. 
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Low-temperature thermal properties of amorphous As 281 

If the thermal conductivity of a-As between 0.5 and 1.OK is limited by 
scattering from tunnelling states, a value of about 2 x lo4 m-1 K - 1  is found for A .  
This leads to a value of f i  which is smaller t,han that derived from the thermal 
conductivity of SiO, by a factor of about 20, assuming the same value of coupling 
constant. 

K does not give a direct measure of f i  but of %M2, in contrast to the linear 
term in the heat capacity which gives a direct measure of a different density of 
states no. M can be chosen to bring f i  and no into agreement, but this is unsatis- 
factory because not all states of a given energy are equally effective in scattering 
phonons. no is the number of states with a given energy, while ff is an effective 
average which takes into account the different scattering strengths of the states. 
For a given energy, the tunnelling states with the shortest relaxation times are 
the strongest scatterers. The effect of this averaging is to give a value of no larger 
than fi by a factor of between 10 and 100 (Phillips 1972, Smith et al. 1978). 
The relationship between f i  and no is known in SiO, ; if the same relationship 
is assumed in a-As then no linear term would be detected in the measurements 
of the heat capacity between 0.3 and 1 K. Notice that the value of ii, which is 
an average over longitudinal and transverse modes, is not very sensitive to the 
precise value chosen for V ; the factor of a in A compensates for a similar factor 
in the Debye heat capacity in eqn. (1).  

Anderson has extended this model by using a density of states n ( c )  that 
contains, in addition to the almost constant term, a contribution varying as the 
second (or higher) power of E .  This, of course, leads to a much greater scattering 
a t  higher phonon energies and can be used to explain the plateau in K .  Zaitlin 
and Anderson (1975) derive the equivalents of eqn. (2) and (3) for a quadratic 
density of states by replacing the constant fi  by a factor of the form ii2(no)2. 
This seems oversimplified. A more complete treatment involves a calculation, 
similar to that of Jackle (1972) for a constant density of states, in which the total 
scattering is the integrated contribution from all the tunnelling states using 
the correct energy dependent n(e ) .  If this is done for a quadratic density of 
states the resonance scattering involves a divergent integral. Using the 
generalized expression for Zres-l given by Jackle, Pich6, Arnold and Hunklinger 
(1 976) and choosing a cut-off for ii2( E )  at the very high energy of kT,, where T, 
is the glass transition, the expression 

no 
Zres-l= B - 3 tanh -, (?) 2kT (4) 

with B=rfi2M2k3/p6Vi, is valid t o  within a few per cent. 
on T, if the density of states varies more rapidly than e2.)  

for the relaxation terms gives 

(The result depends 
A similar calculation 

llio 
k tre,-l=O*17B - T2 

i nu1 Zres-l =0*17B - T2 w > ~ 1 ,  k 

> (5 )  

where fiwl/k = 30/3T3. 
These expressions are very similar to those used by Zaitlin and Anderson, 

and a suitable combination of eqns. (2), (3), (4) and ( 5 )  give an equally good 
fit to the thermal conductivity of SiO,. The only significant change is in the 
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282 D. P. Jones et al. 

ratio which is reduced from Zaitlin and Anderson’s value by about 30%. 
It should be noted that the total mean free path in SiO, is of the form Z(w, T) = 
(Zrel-l + Ires-l)-1 + I, where I ,  must be included to prevent Z from reaching unphysi- 
cally small values. 

A similar procedure can be used for the thermal conductivity of a-As, except 
that the constant term iineed not be included. The resulting fit, which includes 
a constant mean free path of 25 pm to fit the low-temperature date, is shown in 
fig. 4. The curve is drawn for B = 1 x 104m-1 K-3 and p =  5 x 10-3K-2. From 
eqn. (4), a value is found forii,M2 comparable to that obtained from a similar 
fit to the thermal conductivity of SiO,. 

In  SiO, this quadratic term leads to a difference between the measured T3 
term in the heat capacity and that calculated from the sound velocity. The link 
between ii2 and the quadratic density of states derived from the heat capacity is 
again not direct. If the same link is assumed in a-As as is assumed in SiO,, 
then the term H2e2 would lead to a term in C/T3 of about 0-5t~.Jg-lK-~ in the 
low-temperature heat capacity. In  the absence of accurate values for the 
sound velocity, the presence of such a term, amounting to less than 10% of the 
total heat capacity, cannot be ruled out. 

Even though this extension of the tunnelling model provides an adequate fit 
to the data in a-As as well as in SiO,, it is not altogether satisfactory. The 
quadratic density of states has no natural cut-off in the model, and to prevent 
the scattering of high-frequency sound waves from becoming unphysically 
strong, an arbitrary effective cut-off is introduced in the form of a limiting 
frequency-independent mean free path I , .  I n  SiO,, for example, this 1, implies 
that the density of states is cut off a t  an equivalent frequency, ?iw/k, of about 
8OK. If the total number of tunnelling states is calculated by integrating 
n2e2 up to an energy equivalent to 80 K, where n2 is calculated from the ‘ excess ’ 
T3 term in the heat capacity, the number turns out to be only one order of magni- 
tude less than the number of atoms in the solid. Modifications to the theory, 
including the effect of dispersion, might reduce this figure, but the number will 
remain uncomfortably large. A similar conclusion is probably true for As, 
although in the absence of any knowledge of the sound velocities the equivalent 
calculation is not possible. 

Although it provides 
a satisfactory fit to K in a-As and SiO,, it has not been possible to fit the plateau 
in As,S3. The scattering does not increase sufficiently rapidly with frequency 
to allow the temperature dependent term in the relaxation scattering to produce 
a sufficiently sharp maximum and minimum. This is in contrast to the model 
described below, where the addition of a mean free path varying as w-4 can 
give a good fit to the data in As2S, (Jackle 1976). In  its present form, therefore, 
the model does not seem capable of explaining the behaviour of all glasses, 
although the addition of Raman scattering from the tunnelling states might 
make it generally applicable (Leadbetter et aZ. 1977). 

The tunnelling model with a quadratic density of states is not the only one 
that attempts to account for the plateau in K .  Any model in which the scattering 
increases rapidly with phonon frequency will fit the data in most amorphous 
solids when combined with the constant density of states tunnelling model. 

One way of obtaining this rapid increase of scattering strength with frequency 
is by structure scattering. Sound waves are scattered by the local variations 

One further point concerns the generality of the model. 

D
ow

nl
oa

de
d 

by
 [

N
U

S 
N

at
io

na
l U

ni
ve

rs
ity

 o
f 

Si
ng

ap
or

e]
 a

t 1
0:

33
 2

5 
N

ov
em

be
r 

20
15

 



Low -temperature thermal properties of a.morphous As 283 

in structure, and in the limit of long wavelengths the scattering, which is similar 
to Rayleigh scattering, varies as w4. In the high-frequency limit the mean free 
path is constant, and over t,he complete frequency range the scattering can 
be described by the interpolation formula 

A combination of a constant free path of 25 pm (to fit the data below 0.5 IC) 
together with eqn. (6) gives a good fit to the thermal conductivity data in a-As 
as shown in fig. 4. The fitting parameters are D = 1.9 x 103m-1K-4 and I,= 1.5 
nm. This value of D is about an order of magnitude greater than that needed 
to fit the data in SiO,, 170 m-1 K-4 (Jackle 1976), while 1, is comparable to the 
SiO, value of 1 nm. The significance of the curve in fig. 4 lies in the fact that 
no tunnelling state scattering is needed to explain the temperature dependence 
of K .  This, in combination with the result shown in fig. 2, means that there is 
no firm evidence for the existence of tunnelling states in a-As. 

It has been argued that structure scattering cannot give sufficiently large 
values of D (Zaitlin and Anderson 1975, Jackle 1976) although the argument is 
not universally accepted (Walton 1977). The various calculations of D in the 
long wavelength limit use either a microscopic of a macroscopic approach to the 
problem, but all require two parameters to  describe the strength of the scattering. 
One is a measure of the magnitude of the fluctuations, and the other is a corre- 
lation length describing the scale of the fluctuations. Fluctuations in density, 
in force constants and in the relative orientations of molecular groups forming 
the glass have all been used in the calculations. These different approaches 
give different values for D, and in order to test the validity of the structure 
scattering model they will be discussed using SiO, as an example. An early 
calcuIation by Pekeris (1947), in which he concentrated on the resulting fluc- 
tuation in the velocity of sound ((Aw/w)~), is a convenient starting point for the 
calculation. His result is 

Zstruo-l = 8 ( ( A v / ~ ) ~ ) a ~ r C ~  ka 4 1, (7) 

where k is the wavevector of the sound waves and a the correlation length. The 
more recent calculations give results which can usually be recast into the form 
of eqn. (7). This equation gives 

D = 8( ( AV/V)'> - 

I n  the short wavelength limit the free path I, might be expected to take the form 

a(( Av/v)2) a 

The effect of density fluctuations has been considered by JLckle (1976) 
using a microscopic approach. His estimate of the magnitude of the density 
fluctuations in SiO,, for which data is available, is based on a combination of 
light scattering data and thermodynamic results for the density fluctuations 
frozen into the solid when quenched from a temperature To corresponding to the 
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284 D. P. Jones et el. 

liquid state. 
volume V are given by 

Simplifying his argument slightly, the density fluctuations in 

(( Ap/p)2) = kToflT(  T O ) /  v, (9) 

where f l T  is the isothermal compressibility. Strictly speaking this result includes 
both static and dynamic fluctuations giving Rayleigh and Brillouin scattering, 
respectively. Only the former is relevant to structure scattering and an 
estimate of the magnitude of the Rayleigh term alone can be found from the 
experimentally measured ratio of the intensity of Rayleigh scattered light to t,he 
intensity of Brillouin scattered light. This ratio, the Landau-Placzek ratio. 
is at  least ten in vitreous SiO, in the liquid state (Bucaro and Dardy 1974) 
so that eqn. (9) does give a good measure of the static fluctuations. Replacing 
the volume V by 4ra3/3, and writing (( Av/v)2) = y2(( Ap/p)2) where y is a Gruneisen 
constant, eqn. (8) becomes 

using a value of & of 8.5 x 10-l1 m2 N-1 a t  1700 K (Bucaro and Dardy 1974), 
this equation gives a value of 4 m-l K-4 for D. y is taken as - 2.15, a value 
calculated from experimental values of the pressure dependence of the sound 
velocities in vitreous SiO, (Kurkjian, Krause, McSkimin, Andreatch and 
Bateman 1972). This value for D is over an order of magnitude smaller than 
the value needed to fit the thermal conductivity in SiO,. 

An alternative approach is taken by Walton (1977) and by Morgan and 
Smith (1974) who calculate the scattering produced by the fluctuations of force 
constant, produced in turn by the fluctuations in bond length. Both calculations 
are microscopic, but the main result can be derived macroscopically. The 
fluctuations of force constant are proportional to the fluctuations in velocity, 
which can be written as 

((Av/v)2> = (3Y)2((AB/~)”, (11) 

where y is the Griineisen constant and ({ ARIR),) is the fractional mean-square 
variation in bond length. This leads to an expression €or D from eqn. (8) ; 

’ D = 8(3y)2 (( ?>”) a3 2): (’>’. Ti 

Using ((AR/B)2) = lo”, and 4rra3/3 equal to the volume of a molecule of SiO,, 
3.76 x 10-29 m3, this gives a value of D equal to about 5 m-1 K-4, comparable to 
the value given by eqn. (10). 

It is worth comparing the estimates of ((Av/v)2) which follow from eqns. 
(9) and (11) using the molecular volume for V in (9). The two values are 0.1 
and 0.04, respectiveIy, a result which agrees with Walton’s assertion that 
JLckle’s calculation underestimates the magnitude of the fluctuations. Walton’s 
published calculation in fact leads to a value of ((Av/v)2) equal to 0.7. This 
unreasonably large value (corresponding to mean-square fractional fluctuations 
in force constant greater than one) is a result of choosing y to be the thermal value 
of - 9, instead of the value that is known to apply to sound waves. The only 
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Low -temperature thermal properties of amorphous As 285 

way in which D could be increased in eqn. (12) is by increasing a, and there seems 
to be no evidence €or any correlation of bond lengths in amorphous solids. 

A third type of scattering, discussed by JLckle (1976), is closely related to 
scattering of sound waves in polycrystalline solids. At a boundary between 
two crystallites of different orientation the sound wave must satisfy continuity 
equations for both particle displacement and pressure. In general, these 
stringent conditions can only be satisfied if the incident wave is matched with 
scattered waves of differing polarizations (Bhatia 1967). This mode conversion 
gives an additional contribution to the scattering, which cannot be calculated 
solely on the basis of the different velocities of sound in the two crystallites. 
Calculations of the attenuation of sound waves in polycrystals give results which 
contain explicitly the anisotropy of the elastic constants, and which agree with 
experiment (Papadakis 1968). These calculations (Bhatia 1967) can be 
interpreted to give an effective value for the magnitude of ((Av/v)2) : 

1 
( (Av/v)~)  N- (2) 

400 p2v4 ’ (13) 

where p is a measure of the anisotropy of the elastic constants and p is the 
density. p can be evaluated explicitly from the known elastic constants of 
quartz, and used in eqn. (13) to give a value of about 0.02 €or ( ( A V / V ) ~ }  in the 
case of shear waves in polycrystalline quartz. 

This scattering in polycrystals has a close parallel in amorphous solids as a 
result of variations in relative orientations of the basic structural units. An 
estimate of the strength of the scattering can be made by combining the above 
value of ((Av/v)z) for microcrystalline quartz with an estimate of the correlation 
length a in eqn. ( 8 ) .  

Even though this value of ((Av/v)z} is of the same order of magnitude as 
the values arising from fluctuations in density and force constant, it can lead 
to larger values of D because the correlation length can be longer. However, 
the correct choice of correlation length is not obvious. X-ray measurements 
(Mozzi and Warren 1969, Konnert and Karle 1972) show that significant 
structure can exist in the radial distribution function only out to about lOA, 
and this sets an upper limit on a. At the other extreme, correlation in orien- 
tation can only be completely lost with more than two SiO, tetrahedra, in a 
minimum distance of about 4A. A reasonable compromise between the two 
limits is 7 A (also equal to the size of the unit cell in the high-temperature form 
of cristobalite). With this value, eqn. (S), gives a value of 90m-lK-* for D, 
much larger than the values given by eqn. (10) and ( 1  2) but still smaller than the 
value needed to fit the data in vitreous silica. 

It might be argued that if the extreme value of 10 A is chosen for a, the 
scattering is just  strong enough to explain the data in SiO,. However, it appears 
that eqn. (7 )  does contain a larger numerical factor than do similar expressions 
given by other authors. For example, JLckle (1976) give an equation similar to 
eqn. (10) but containing a factor of 1 / 4 ~  instead of 1*5/.rr, with the result that the 
strength of the scattering predicted by eqn. (10) is about a factor of five greater 
than that given by JBckle’s calculation. In  conclusion, although eqn. (8) 
may overestimate the strength of structure scattering, the calculated values 
are too small to explain the data in vitreous silica. This failure of the structure 
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286 D. P. Jones et al. 

scattering in the one glass for which values can be estimated, casts serious 
doubts on its use in other amorphous solids, including a-As. 

It was mentioned earlier in this paper that the inclusion of dispersion in 
the theory allows a reduction in the strength of the Scattering needed to produce 
a plateau in K .  A significant effect of this kind would clearly make the structure- 
scattering model more plausible. To test the magnitude of the effect in a-As, 
dispersion was included according to the prescription given earlier. With a 
cut-off for the transverse modes of 10 cm-l in eqn. (6), D was reduced by only 
20%. To reduce 
D by an order of magnitude, the cut-off must be taken at  the unreasonably small 
value of 2 cm-1. This conclusion is based on the assumption that the constant 
D is the same for the longitudinal and transverse modes. If, as an alternative 
assumption, the parameters ( ( A V ~ V ) ~ )  and a are assumed equal, then the factor 
of v4 in eqn. (8) means that, if structure scattering is dominant, the transverse 
modes carry only about 20% of the heat. In  this case the introduction of a cut-off 
for the transverse modes can never lead to a reduction in the strength of structure 
scattering by more than 20%. Dispersion cannot, therefore, make the structure- 
scattering model any more plausible in a-As. 

Although 
the onset of the plateau is higher in most other amorphous solids, the appropriate 
cut-off to the transverse modes should also be taken at a higher frequency. In  
those amorphous solids for which reliable data are available, the departures 
from Debye behaviour, or the position of the peak in C/T3, show some correlation 
with the position of the plateaut. 

This possibility of a connection between the plateau in K and the density 
of states is supported by measurements of K in complex boron compounds by 
Slack, Oliver and Horn (1971). These authors measured the thermal conduc- 
tivity of singIe crystals of YB,,, a crystalline solid containing a considerable 
degree of' disorder. K varies as T2 below 10 K, is less than that of SiO, at  1 K, 
and shows a plateau a t  about 50 K. The T 2  variation presumably arises from 
the presence of tunnelling states, since it is known that YB,, contains a linear 
term in the heat capacity comparable to that in SiO, (Bilir, Phillips and Geballe 
1975). Higher-temperature heat capacity data is not available for YB,,, 
but both heat capacity and infra-red measurements in boron (Johnston, Heish 
and Kerr 1951, Slack et al. 1971) indicate a peak in the density of states at  about 
100 cm-l. Since the basic bonding in these various boron compounds is very 
similar, a peak at about the same frequency is expected in YB,,. This material 
then falls into the pattern apparent in other amorphous solids. 

In summary, the fact that the plateau in K occurs at  about the same tem- 
perature as a peak in C/T3 in all amorphous solids suggests that the plateau 
is linked in some way to the vibrational modes responsible for this peak. One 
such link is implicit in the earlier discussion of dispersion, but as has been seen, 
using the peak to provide a cut-off to thermal transport by transverse modes is 
not sufficient to explain the plateau. 

A mechanism which might tie K to the heat capacity is phonon-phonon 
interaction. In crystals, U-processes are necessary to give a thermal resistivity, 
whereas in amorphous solids, the equivalent effect has been shown to be small 

(This assumes a ratio of two for the sound velocities.) 

The same conclusion should be true in other amorphous solids. 

t This correlation has also been noticed by Leadbetter (1972). 
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Low-temperature thermal properties of amorphous As 287 

(Morgan and Smith 1974). Normal processes acting alone in a crystal cannot 
destroy a heat current, but in an amorphous solid this scattering should be 
important because the lack of periodicity means that the selection rules for 
phonon-phonon interactions are relaxed, and because a significant proportion 
of the phonons may be non-propagating or localized (Bell, Dean and Hibbins- 
Butler 1970). 

Below 1 K 
both longitudinal and transverse sound waves carry heat. At higher tempers- 
tures, where higher-frequency phonons are excited, the ' transverse ' modes are 
non-propagating, and, concentrated into a narrow frequency range, give the peak 
GIT3. The longitudinal modes, which still behave as sound waves, interact wit,h 
this concentration of non-propagating modes t.hrough the normal phonon- 
phonon coupling, and are heavily scattered. The gradua,l rise in K above 10 K 
is a result of the relatively poor thermal transport by the remaining modes in the 
solid. High-frequency longitudinal modes may also contribute : if the scattering 
by non-propagating ' transverse ' modes has any resonant character (since both 
transverse and longitudinal modes have the same frequency), the scattering 
may well decrease as the longitudinal frequency increases. Careful calculations 
are, of course, necessary to establish if the strength of this phonon-phonon 
scattering is sufficient to explain the plateau in K .  

In  a-As the plateau in K would then arise in the following way. 
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