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A wave function previously used to represent an excitation (phonon or roton) in liquid helium, inserted
into a variational principle for the energy, gave an energy-momentum curve having the qualitative shape
suggested by Landau; but the value computed for the minimum energy 6 of a roton was 19.1'K, while
thermodynamic data require 6=9.6'K. A new wave function is proposed here. The new value computed for
6 is 11.5'K. Qualitatively, the wave function suggests that the roton is a kind of quantum-mechanical
analog of a microscopic vortex ring, of diameter about equal to the atomic spacing. A forward motion of
single atoms through the center of the ring is accompanied by a dipole distribution of returning Qow far
from the ring.

In the computation both the two-atom and three-atom correlation functions appear. The former is known
from x-rays, while for the latter the Kirkwood approximation of a product of three two-atom correlation
functions is used. A method is developed to estimate and correct for most of the error caused by this
approximation, so that the residual uncertainty due to this source is negligible.

1. INTRODUCTION

IQUID helium undergoes a thermodynamic transi-
& tion at 2.19'K. Below this temperature, many of

the properties of the liquid are explained by Tisza's
phenomonological two-Quid model. Landau realized
that the macroscopic properties of the liquid would
resemble those of a mixture of two Quids, provided that
a certain form is assumed for the energy-momentum
curve of the elementary excitations in the liquid.
Starting from 6rst principles, one of the authors has
recently computed an energy-momentum curve which
is based on certain ideas about the nature of the wave
functions representing the excitations. ' The shape of
the curve is in qualitative agreement with Landau's,
but some serious quantitative discrepancies exist. The
ideas of -III are pursued further here, and a more com-

plicated wave function is constructed to represent an
excitation. The energy-momentum curve computed
with this wave function will prove to be in better
agreement with Landau's. In addition to the actual

*This paper is based on a Ph.D. dissertation submitted to
California Institute of Technology in November, 1955. A pre-
liminary report of this work has appeared LR. P. Feynman and
Michael Cohen, Progr. Theoret. Phys. Japan 14, 261 (1955)j.

' R. P. Feynman, Phys. Rev. 94, 262 (1954),henceforth referred
to as XII.

computations, we discuss some approximate methods
which may be useful in other work of this sort.

2. LANDAU'S SPECTRUM

The energy momentum curve proposed by Landau' '
rises linearly for small p, passes through a maximum,
falls to a minimum, and rises steeply for large p. (See
Fig. 6.) The excitations in the linear region are quantized
sound waves (phonons); their energy, measured relative
to the ground-state energy, is

E(j)=cp,
where c is the velocity of sound (240 m/sec). Near its
minimum, the spectrum can be approximated by a
parabola,

~(P)= f5+ (j Po)'I». — (2)

Landau believed that excitations in this region represent
some kind of rotation of the Quid, and called them
"rotons. "In the present paper we are led to the picture
of a roton as the closest quantum-mechanical analog
of a smoke ring. The remaining portions of the spectrum
are not excited at low temperatures. For 7&2'K the
phonons and rotons are present in suKciently small

s L. Landau, J. Phys. (U.S.S.R.) 5, 71 (1941).
s L. Landau, J. Phys. (U.S.S.R.) 11,91 (1947).
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the eigenvalue Ak implies that f(r) =e'a', and thus

lf = pp P exp (ik r,).
Substitution of (5) into the variational principle

(5)

tij

I-

co 05
O

CF

where

and

+= g/g

h = ~lt*HPd~r

g= lI /*/der

(6)

(7)

4 5
K ( ANGSTROM ' )

FIG. 1. The liquid structure factor S(k), based on the x-ray
scattering data of Reekie and Hutchison. The principal maximum
corresponds to a wavelength equal to the nearest neighbor
distance in helium. Appendix A describes modifications we have
made in the data.

numbers to allow them to be treated for thermodynamic
purposes as noninteracting. The thermodynamic func-
tions can then be computed; Landau fitted the available
(1947) data on specific heat and second-sound velocity
with the values

6/x=9. 6'K, pp/A=1. 95 A ', @=0.77 ftzn, . (3)

More recent measurements4 of the velocity of second
sound down to T=0.015'K suggest the values

d,/x= 9.6'K, pp/A= 2.30 A ', p =0.40 rizH. , (4)

although the values (3) also fit the data quite well.
The value of 6/x is quite well determined' by the ther-
modynamic data, since it enters formulas in the form
exp( —6/xT). The differences between (3) and (4) are
probably a fair measure of the uncertainty in our
knowledge of pp and li.

The reasoning which led Landau to the general form
of the spectrum, and his method of deducing the two-
Quid picture from the spectrum, will not be reviewed
here. He did not attempt to compute the values of 6,
p, , and p, from first principles.

3. A SIMPLE WAVE FUNCTION FOR THE
EXCITATIONS

In III a wave function of the form P= q P f(r;) is
proposed to represent an excitation. The physical
reasons for this wave function will not be reviewed here.
The sum runs over all the atoms in the liquid, and q is
the wave function for the liquid in its ground state.
The requirement that f be an eigenfunction of the total
momentum operator' P= iA Q V';—corresponding to

' deKlerk, Hudson, and Pellam, Phys. Rev. 95, 28 (1954).
p Dr J. R. Pel.1am (private communication) estimates the

uncertainty in n/z to be less than 0.2'.
' If the liquid were con6ned to a box of side I., with fIxed walls,

'

then the walls could absorb momentum and the energy eigenstates
would not be momentum eigenstates. Instead, we control the
density by requiring the wave function to be periodic in all

gives an upper limit' for the energy of the lowest excita-
tion of momentum Ak. The result is

E(k) =A'k'/2fNS(k), (9)

where S(k) is the Fourier transform of the zero-tem-
perature two-atom correlation function p(r),

S(k) —
~

erk rp(r)dr (10)

The data which we have used for S(k) are given in Fig. 1

and are essentially those obtained from x-ray diffraction

by Reekie and Hutchison. " Figure 2 is the corre-
sponding curve for p(r). S(k) exhibits a sharp maximum
near k= 2 A ', which corresponds to a wavelength equal
to the nearest neighbor distance in the liquid. Accord-
ingly, the spectrum (9) exhibits a minimum at approx-
mately the correct wave number (see curve 8 of Fig. 6).
It is shown in III that the wave function (5) is exact
for phonons (small k) and that the limiting form of (9)
is E(k) =Ack. The occurrence of a minimum at k= 2 A '
is in qualitative agreement with Landau's predictions,
but the value of 6/x computed from (9) is 19.1'K,
which is twice the value given by experiment.

variables with period I. With this boundary condition, I'
commutes with H and the energy eigenstates can also be taken
as momentum eigenstates.

7Eigenfunctions of P belonging to different eigenvalues Ak
are orthogonal. Hence, for different k, the trial functions (5) are
orthogonal to each other and also to the true wave functions which
minimize (6). The entire spectrum E(k) therefore lies above the
true spectrum. In footnote 3 of III it is mentioned that the wave
function p exp(pE 'k Z r;), which represents translational
motion of the whole liquid, has momentum Ak and energy
k'k'/2m%, which is certainly lower than any energy we shall
compute from (5). The periodic boundary condition, however,
rules out such states unless k is as large as Ã'.

P J. Reekie and T. S. Hutchison, Phys. Rev. 92, 827 (1953).
Their paper contains a curve for r'p(r), but does not include their
data on 5(k). We are indebted to Dr. Reekie for sending us the
data, which are now generally available in reference 9. Appendix
A contains a discussion of some changes which we have made in
the data.' L. Goldstein and J. Reekie, Phys. Rev. 98, 857 (1955).

4. ARGUMENTS FOR A NEW WAVE FUNCTION

The excitation (5) can be localized in a definite
region by the formation of a wave packet. If k(r) is a
function, like a Gaussian, which is peaked about some
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V (j+Appm 'V'g)=0, (13)

where j is the current computed from the old wave
function (11). Furthermore, the current arising from
(12) is J=j+Apsm 'Vg, so that (13) states that the
best backQow g is that which conserves current. Equa-
tion (13), with the physically reasonable boundary
condition that g

—+0 as r—+~, completely determines g.
At large distances g has the form of the velocity poten-
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Fio. 2. The radial distribution function p(r), based on the data of
Reekie and Hutchison.

location in the liquid and falls off smoothly in a distance
large compared with 2s./A but small compared with the
size of the box, then the wave function

y=P h(r;) exp(ik r,)q

represents a localized excitation. The packet will spread
in time, and will drift with velocity A 'V&E(k). The
current and density associated with (11)were computed
in III. The number density is very close to the aver-
age density po, even in the region of the packet, and
the current at a point a is j(a) =Am '~h(a) ~'. The
wave function (11) therefore leads to the picture of a
total current Akm ' (assume 1'~h(a) ~'da=1) distribu-
ted over a small region and having everywhere the
same direction, with no appreciable change in the
number density anywhere. Such a picture clearly can-
not represent anything like a stationary state, since
in a stationary state the current is divergence-free and
there would necessarily be a return Qow directed oppo-
sitely to k.

One way to incorporate such a backRow into (11)
is to multiply the wave function by exp[i g g(r;)j,
obtaining

P= &p exp[i P g(r,)]P h(r;) exp(ik r;). (12)

Application of the velocity operator —iAnz 'V'; shows
that, in addition to whatever velocity it had in (11),
the ith atom now has an extra velocity Am 'Vg(r;).
Substitution of (12) into (6) shows that the energy is
minimized if g(r) satisfies

tial for dipole Row, namely ts r/r', the dipole moment is

p=m(4~Ap, )-') a[V.j(a)gda

= —m(4s-Ape)
—') j(a)da= —(4mpp) 'k. (14)

The negative sign of p indicates that the direction of
the backflow is opposite to that of k, as expected. We
shall refer to the value of ts given by (14) as the
"classical value, " since it is derivable from the equation
of conservation of current plus the assumption that the
momentum density is equal to the current density
times the mass. The energy of (12) is only slightly
lower than that of (11), the difference being of the
order of the reciprocal of the volume of the packet. The
important point to be learned from this calculation is
that the energy is lowered if the wave function con-
serves current.

The solution of a somewhat diGerent problem tends
to support the same idea. Suppose we want to 6nd the
energy of a state in which a foreign atom moves through
the liquid with momentum Ak. The foreign atom is
assumed to have the same mass as He atoms, and also
to experience the same forces, but it is not subject to
Bose statistics. The energy of this situation was com-
puted in III. The simplest trial wave function is

y=q exp(ik rg); (15)

x~ is the coordinate of the foreign atom, and y is the
wave function for the ground state of the entire system
(which is the same as if all the atoms obeyed Bose
statistics). With this wave function, Eq. (6) gives
X=A'A'/2nz. A possible way of lowering the energy
would be to let the neighbors of the moving atom
execute some pattern of Qow around it, leaving space
in front of it and filling in the hole behind it. Some such
pattern is already contained in (15), since the ground-
state wave function q prohibits atoms from overlapping.
But in the ground state, readjustments are made by
pushing a few immediate neighbors of the foreign atom
out of the way; these neighbors are crowded into less
than their usual volumes, causing (15) to have a high
kinetic energy. If, instead, room could be made for the
moving atom by the simultaneous motion of many
atoms, each being crowded only slightly, the kinetic
energy of the state would be lower. In fact, there is no
reason why the crowding cannot be eliminated entirely,
since the amount of matter in the system remains
constant. Roughly speaking, the requirement of no
crowding means that the current is divergence-free,
and the no-crowding argument shows physically why it
is energetically advantageous to conserve current. The
argument is vague, however, and the exact form of the
backQow will be determined by more accurate methods.

A wave function of momentum Ak which includes a
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pattern of backflow around the foreign atom is

p= @exp(ik r&) exp/i g g(r;—rg) j.

E=0.648A'k'/2m. (19)

Since the wave function (5) for a phonon or roton is
just what .would result for symmetrizing (15), one
might hope to lower the energy of (5) by adding terms
to represent a backQow around each moving atom. The
resulting wave function would be the symmetrization
of (16), i.e.,

P= q P exp(ik r;) expLi P g(r;~)). (20)

For large k, when this wave function is substituted into
the energy and normalization integrals, there is little
interference between terms with diGerent i; the energy
is therefore given by (19) and is a definite improvement
over (9). For small k, (20) cannot lead to a lower energy
than (5), because (5) is exact for phonons. At inter-
mediate k, one might thus expect to lower the energy
by a factor between 1.00 and 0.65. In fact, we do
better than this.

The attempt to find the function g(r) which gives
the lowest energy when (20) is substituted into (6)

' This is somewhat higher than the value obtained in III,
where a rather inaccurate approximation was used for I4. With
the new value for I» we find that the effective mass of a He3 atom
moving through He is 5.0 atomic mass units, instead of 5.8. In
the calculation it is assumed that the distribution of atoms around
the He' atom is the same as that around an He4 atom. The higher
zero-point motion of the lighter atom actually pushes its neighbors
further away. This effect will increase the mass, but probably by
only a smaH fraction of a mass unit.

When (16) is substituted into the expression (6) for
the energy, minimization of E leads to a differential
equation which determines g(r). The solution at large
r is proportional to k r/r'. Accurate numerical solution
is simple, but uncertain because of uncertainty in the
values of p(r); since (6) is a variational principle, we

may take g(r)=Ak r/r'. Substitution of (16) into (6)
gives

E= (2m)
—'A'k'$1+IiA+ (I4+Is )A'j (17)

where Ii and I4 are integrals defined by Eq. (25) and
Is, is an integral defined by (57). The integrals are
evaluated further on; only the answer interests us here.
Equation (17) becomes

E= (2m) 'its'k'(1+0. 186A+0.0246A') (18)

with A measured in A'. The energy is minimum when
A= —3.8A', the "classical" value predicted by (14)
is A= —(4sps) '= —3.6As. The close agreement of
the two values seems to indicate that the reduction in
energy is due to the physical effects we have mentioned,
and is not simply the result of allowing an extra degree
of freedom in the wave function. The improved value
for the energy is"

leads to an intractable equation. Ke therefore take
g(r) =Ak r/r', where A will be chosen to minimize the
energy. The difBculty of handling integrals which
involve e'& leads one to consider the possibility of
replacing exp(i P g) by 1+iP g. The average value of

P;~;g(r;;) is Js+" p(r)g(r)dr, which is zero because
g(r) is an odd function. The mean square value of
P;~;g(r;;) is k'A'Is, where the integral Is is defined
and evaluated further on. With the classical value for
A (which is close to the optimal value throughout the
interesting range of k) the root-mean-square value of

g g(r, ;) turns out to be 0.25k, where k is measured in
inverse angstroms. Even with k=2 A ', replacement of
exp(i Q g) by 1+s P g is not unreasonable, " and we
shall work with the wave function

4=~2 exp(sk. r')i1+s Z g(r )7, (21)

"Of course, since a trial function is a free choice, it would be
mathematically legitimate to insert 1+iZ g into the variational
principle (6) even if Z g were not small, but there would be
little physical reason to expect a good answer. H expPr' Z g (r;—rg)j
is replaced by 1+sZ g(r; —rg) in the foreign atom problem, the
resulting integrals are among the ones deftned and evaluated
further on. The energy is given by

A'k' 1+0.186A+ (0.0217+0.0049k')A '
E=

2m 1+0.0049k'A2

%'hen k= 2 A ', the fraction has the minimum value 0.689, which
is 6% higher than the value given by (19). The associated
value of A is —3.4 A3. When k =2.5 A ', the fraction is 0.7I6, cor-
responding to A = —3.1A3.We conclude that for k&2 A ', replace-
ment of exp (s Z g) by 1+sZ g does not seriously raise the energy

where g(r)=Ak r/r'. This wave function is still an
eigenfunction of the total momentum operator P, with
eigenvalue Ak.

The roton state represented by the function (21) can
be described roughly classically as a vortex ring of such
smal1. radius that only one atom can pass through the
center. Outside the ring there is a slow drift of atoms
returning for another passage through the ring. There
are at least three ways that the classical picture is
modified. (1) The momentum of atoms passing through
the center cannot be made smaller because the wave
function must return to its original value when, after
one moves through, another stands in its old place.
The wavelength must be the atomic spacing. (2) The
ring does not drift forward as a large smoke ring,
because as it is as small as possible there is no force
tending to shrink it; such a force in a classical ring is
balanced as a consequence of the forward drift. (3) The
location of the ring is not definable. In typical quantum-
mechanical fashion the lowest energy state corresponds
to superposition of amplitude to find the ring anywhere
in the liquid. The energy is less than the kinetic energy
A'kss/2m of one atom with momentum Aks because
there is a correlated motion of many atoms moving
together so the effective inertia is higher (the energy
6/x corresponds to 2.5 atoms moving together at total
momentum Aks).
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5. COMPUTATIONS VfITH THE NEW WAUE
FUNCTION

(a) De6nitions

If the wave function for an excited state is /= ay,
it is easily shown (see III) tha, t

4*&pd"r= (f32/22N)p V;F V,I'a&sdNr. (22)

The only memory of the potentials is in the ground™
state wave function y, the information which we need
about q will be taken from experiment, since our main
interest here is to test some ideas about the nature of
excited states and not to develop a detailed theory of
the ground state."Substitution of (21) into (22) and
(8) gives E= 8/8 where

2423h/Nh'= ksE1+A (I,+I,)
+A'(k'Is+I4+Is+kI8+Ir) ), (23)

g/N =Is+A kIg+A'k'Iio, (24)
and

Ii= —2k(pok) ' V'gi(rsi) ps(1,2)drsi)

Is 2(pok) ' exp(ik ris) k Vgi(ris)pg(1, 2)drsi,

Is=po-' gi(rsi)gi(r») ps(1,2,3)dr»dr»,

We have written g(r) =Akgi(r). The mean density of
atoms is po=N/V. The probability in the ground state
that atoms are located at ri and rs is ps(ri, rs)dridrs.
Except in the negligible region near the surface of the
liquid, we have ps(ri, rs) =pop(ris). In writing (25) we
have made use of the fact that certain integrals like
J' g(ris) ps(ri, rs)dridrs vanish because g is odd. A term
pB(ris) is contained in ps(ri, rs), and hence p(r) contains
a 8-function at the origin. We define pi and ps by

p(r) =S(r)+P, (r), (26)

Pi(r) =poL1+Ps(r) j; (27)

these functions have no singularities and ps(r)~ as
r~ ~. Strictly speaking, in the definition of Ij we
Sheuld replaCe ps(ri, rs) by ps(ri, rs) —po5(r») SinCe g iS

always a function of the relative coordinates of two
distinct atoms. To avoid unnecessary confusion, how-

ever, it is easier to think of g(r) as becoming zero for
sufEciently small r. Similar remarks apply to ps and p4

when they occur in I2, , I~0. If one does not wish to
think of g(r) as being modified near the origin, then the
p's should be understood as containing delta functions
of all coordinate diRerences except those which appear
as arguments of g in the same integral. The probability
in the ground state that atoms are at ri, rs, and rs is

ps(ri, rs, rs)dridrsdrs. The nonsingular part of ps, which
we call p3', is defined by

ps(ri, rs, rs) =ps (ri, rs, rs)+ poPi(r12)~(rss)

+pop i (&is)~ (ris)+ pops (rss) & (ris)+ po& (r12)& (r28) ~ (2g)

I4= po
' Vgi(rsi) Vgi(rsi) ps(1,2,3)drsidrsi,

aJ

Is= po exp(ik. r23) Vgi(ris)'

Ig= 2ipo 'j" ex—p(ik. ris)gi(r32)ps(1, 2,3)«21drsl,

Ilo= po exp(zk' 1'12)gl (rsl)gl(r42)

Xp4(1,2,3,4)drsidrsidr41. (25)

n R. M. Mazo and J. 6. Kirkwood LProc. Natl. Acad. Sci.
41, 204 (1955)g have computed p(r) theoretically by solving an
approximate integral equation.

Vgi(r13)p3(1,2,3)drsidrsi, (25)

I8=2i(pok) ' exp(ik ris)gi(rsi)k

Vgi(rls) ps(1,2,3)drsldrs„
f

Ir = —2po ' exp(ik ris)Vgi(rsi)

'
Vgi (r13)p3(1,2,3)drsidr31,

Is= e'"'P(r)dr=5(k) LSee Eq. (10)],

If any of the interatomic distances becomes less than
2.4 A, then ps'=0. The approximation"

p8 (rl r2 rs)—pl(r12) pl(rls) pl(r28) (29)

has these correct limiting features. Much has been
written about the vahdity of this approximation; for
some, but not all purposes (29) is quite sufhcient. We
shall see that our answer is only slightly sensitive to the
difference between the right and left sides of (29).
Furthermore, we shall be able to estimate the magnitude
and sign of the errors due to (29).

I~, I3, and I4 are independent of k. In the other
integrals it will prove possible to extract most of the
k-dependence rather simply in the roton region, the
remaining complicated terms being very small. This
means that the computation of the entire roton
spectrum will not be much more dificult than the
computation of one point on it. We now discuss the
evaluation of the various integrals.

' This is sometimes called the Kirkwood approximation or the
superposition approximation,

No experimental data for p3' are available. If any of the
mutual distances, say r~2, is large, then

ps (rl r2 r3) popl(F18) pl(r28) ~
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(b) Evaluation of I» I&, and I4

I& can be done exactly. We integrate by parts over
a volume bounded by two concentric surfaces, one
lying inside the radius where p(r) =0 and the other very
far from the origin. The inner surface contributes
nothing, but the integrand gt(r)pi(r) falls off only as
r ', with the result that the outer surface makes a
6nite contribution, which is easily computed to be
—(Ss pp/3) . We eliminate this contribution by rede-
fining g(r) to have a decay factor, say e '", with very
small e, which makes surface terms vanish at infinity.
This procedure is mathematically legitimate, since we
are free to use any wave function we want in the
variational principle, and is in accord with the physical
idea that all the momentum of the backflow should be
contained in a finite volume. It will generally not be
necessary to represent e explicitly; the convergence
factor will be used only to justify certain operations.
After the integration by parts, there remains

Si(k) =S(k) —1—(2or)'ppb(k).

It follows that

(33)

pops(r) = (2') ') e'"'Si(k)de. (34)

and there will be a correction term which will cause I2
to change from 16s.(pp/3 to —8s.pp/3 as k decreases from
eto0.

I2 can also be evaluated in momentum space, using
data for S(k) rather than p(r). In momentum space the
integrals converge best for small k rather than large k.
The results are not very important because (31) is
useful down to k=0; but they do provide a check of
our numerical work and also of the consistency of the
data for p(r) with that for S(k). S(k) was defined by
(10) as the Fourier transform of p(r), where p(r)
includes a delta function at the origin and a constant
term pp at infinity. Therefore S(k) -+ 1 as k ~ oo and
S(k) includes a term (2s)sppb(k). We define

I,= (21r/k) gi(r) Vp, (r)dr

= (8s-/3) f(dpi(r)/dr7dr=8rrpp/3. (30)

Taking the Fourier transform of V'gi(r), we obtain
after the angular integrations

Is = 16spo/3+ (2/s) t Si(ki)ki b(ki/k)dki, (35)

5 x' 1 1—x
b(x) = (1—x')' log

6 2 4x 1+x

numerical integral in (35) was evaluated for
k=0.5, 1.0, 1.5, 2.0 A '. Convergence is good, and the
values are accurate to within a few percent. Never-
theless, (35) does not give accurate values of Is when
k& 1.5 A ', because for large k the cancellation between
the two terms of (35) is almost complete (as it must be
because Is —+0 as k~ oo), and hence a 3% error
in the numerical integral may cause a 30% error
in I2. We take the volume per atom of liquid helium

Is= 16rrpp r ijs(kr)L1+ps(r)7dr
rp

= 16spoP(kro) ji(kro)+F(k)7= 16spoI2a (31)

where rp is any radius inside the region where pi(r) =0
(we take rp ——2.4 A, the radius where pi(r) first becomes
positive7 and

In the last integral, the integrand should really be
e '"(dpi/dr), but if e is small enough the convergence
factor will be unity out to radii where dpi/dr becomes
negligible.

After performing the angular integrations in I2, we
find The

I'(k) = r 'j s(kr)Ps(r)dr.

In order to do integrals like I4 and I5, we need to know
the value of Is, (k) for all k. Using tabulated values for
the spherical Bessel function j,, F(k) was evaluated
by numerical integration for 23 values of k between 0
and 7 A '. Figure 3 gives the results for Is, (k). For
k &1.5 A ', F(k) is negligible compared with (krp)

—'

X ji(krp).
One might expect from (25) that Is ~ —Ii as

k ~ 0. As k approaches zero, F(k) approaches zero and

j,(kro)/krp approaches —', . Comparison of (30) and (31)
thus shows that I2 approaches 2I~ instead of —I~. The
reason for the discrepancy is that (31) is wrong when
k is very small, of the same order of magnitude as e,
in this case we must take account of the term e '" in g,

rRo( a)" A —' +f J (
( (r)-p(parR.41( Ps l

A

O

.100

—.050

I.O KO ~.0 5 e.o V.O

k(A ')

Fin. 3. I&,(k) is the Fourier transform of p(r) times the velocity
distribution in the pattern of backQow around a moving atom. In
the most important region (k &1.3 A '), Iu, (k) would be unchanged
if we took p (r) =0 for r &2 4A and p(r).=ps for r)2.4 A.
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as 45 A'."The following table compares the values of
Is(k) obtained from (31) with those obtained from (35).

k(A-1) 0 0.5 1.0 1.5 2.0

Is (k) (A ') from (31) 0.372 0.322 0.194 0.054 —0.036 0
from (35) 0.372 0.326 0.200 0.050 —0.060 0

The discrepancy at k=2A ' is not serious, for the
reasons just mentioned, and the agreement elsewhere
is sufficiently close for our purposes. The values derived
from (31) are used throughout our work.

I4 presents no problem if Is, (k) is known for all k.
Using (28) and the approximation (29) for ps', and
Fourier analyzing ps(r») with (34) we obtain

-2

I4 Pt (r) (——V'g&(r))'dr+ p, (r) V'gt (r)dr

+(2x) '(ps) ' dkisi(ki) r exp(ski r)
J

Xpi(r)Vft(r)dr . (36)

features of p(r) (i.e., its delta function at the origin,
vanishing for r&2.4 A, and its quick approach to the
asymptotic value ps) and not on the details of its
behavior. The coefficients of A are more sensitive to the
detailed behavior of p(r); it is the detailed behavior
which determines the location of the minimum in the
energy spectrum. The insensitivity of the quadratic
coeRicients to the exact form of p(r) can be similarly
verified in the computations which follow, and will not
be pointed out explicitly.

(c) Approximate Methods

The value of I4 and the size of the various terms which
contribute to it can be understood fairly well in terms
of some simple approximations for integrals involving
the coordinates of three atoms. With the help of these
approximations we can understand the sizes of all the
remaining integrals; if we know that an integral is
small, it will not be necessary to waste time in evalu-
ating it very accurately.

Suppose we want to do an integral of the form

The integral in square brackets is a generalization of
Is to the case where the k in the exponential has a dif-
ferent direction from the k in gt. The angular integra-
tions are easily performed, yielding

I4= 8sps $1+Ps(r) )r 'dr+ (4m ps/3)'
4~O

(in this integral we shall understand ps to include a
delta function on coordinates 2 and 3, but not on any
other pairs). If the positions of 1 and 2 are fixed and 3
is not too close to 2, then ps(1,2,3) can be approximated
very closely by pspt(rst) pt(r»). We write

t

+16pp kt'St (kt) LIs, (kt) j'dki Ps(1 2 3)—PsPi(rs&)P&(rs&). (38)

=0.01190+0.00867—0.00790=0.01267A ' (37)

The value obtained for I4 may be in error because of
uncertainties in the values of p(r) and S(k), and also
because the approximation (29) is not exact. Discussion
of the error due to (29) is postponed until the evaluation
of Is. The uncertainty in ps(r) is unimportant because
the magnitude of J's" ps(r)r 'dr is only 1/10 tha—t of
Jrs" r 'dr. Similarly, 90'%%uo of the contribution to
J'p kPSt(k&)(Is, (k&)$'dkt comes from the region ki
(1.2 A '. In this region Is, (kt) is the same as would
result if we took pt(r) =0 for r(2.4A and pt(r) =ps
for r)2 4A, and .Si(ki) is largely determined by its
value and slope at the origin, both of which are known
theoretically. The important point to be learned from
this discussion is that the values of I4, and of the other
integrals which contribute significantly to the coef-
ficient of 2' in (23), depend mainly on the gross

"The atomic volume of liquid He under its own saturated vapor
pressure at O'K is 46 A', but 45 A' is closer to the value at 2.06'K,
where the structure factor data was taken. Internal inconsistencies
would develop if ps and S(k) were taken at different temperatures.
One might ask where the theory takes account of the external
pressure. The pressure determines the values of p0 and, more
important, S(k). An increase in pressure is expected to sharpen
the maxima and minima of p(r) and S(k).

+3(1,2 3)—popt(r»)pi(rst) j«s= 0. (39)

We believe this equation not to be a relation among
distribution functions in general, but to hold for the
distribution functions for the liquid at absolute zero. We
do not have a rigorous proof, but shall discuss our
reasons for believing it in Appendix B.

If f(r) is a slow-varying function, i.e., f(r) does not
change much when r changes by 2.4 A, then for a fixed
value of ris the value of f(rsi) is almost constant over
the region where the two sides of (38) diRer appreciably.
Using (39), we see that the integral

f(r») res(1,2,3)—poP t(r») P t(r») 3«s

When 3 approaches 2, this is wrong because p3 goes to
zero but pt(rst)pt(rst) keeps a finite value (assuming,
of course, that r21&2.4A; otherwise both expressions
are zero). When 2 and 3 coincide, however, ps exhibits
a delta function and far exceeds popt(rst)pt(rst). The
strength of the delta function is such that if we integrate
the difference between the two sides of (38) over the
positions of 3, the result is exactly zero, i.e.,
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is very close to zero. %e therefore find

~
f(rsi)ps(1, 2 3)«s—popi(rsi) f(rsl) pl(rsi)drs,

and finally,

f(rsl) f(rsl)ps(1, 2,3)drsdrs po
' f(r)pl(r)dr . (40)

Similarly, if f or g is slowly varying,

~' f(rsi) g(rsi) ps(1,2,3)drsdrs

f(r)pi(r)« I I g(r)pi(r)« ~ (41)
&f1

E.

Actually, our criterion for a slowly varying function is
too stringent. The behavior of f(r) for r (2.4 A is of
no importance, since Pl(r) is zero in that range; hence

fmay be singular at the origin. The important question
is, how much does f(rl+rs) differ from f(ri) when ri
and r2 are any two vectors of length 2.4 A? And even if
the difference is large compared with f(rl), (40) is
still good if f(r) is such that the major contribution toff(r)Pl(r)dr comes from r) 3 or 4 A.

Another type of integral which interests us is

f(rsi) g(rsi) k (r„)ps (1,2,3)d rod rs,

where f and g are smooth and k(r) oscillates so rapidly
that it produces almost complete cancellation when
integrated against pl(r). ps is still understood to contain
a delta function on 2 and 3, and on no other pair. In
this case, if 1 and 2 are held 6xed and 3 is allowed to
vary, the oscillation in Is(rss) make the contribution to
the integral small. The major contribution comes when
3 and 2 are tied together by the delta function and we
6nd

f(rsi)g(rsl)k(rss)ps(1, 2 3)drsdrs

=~ok(0) ~f()g( )P ()d (42)

If Vgi(r) is sufIiciently smooth, (40) can be used to
estimate Is. The answer thus obtained is (4rpo/3)2
=0.00867 A, which is the rniddle term of (37); if
Vg~ were very smooth, the first and third terms would
cancel completely. The first term (0.01190A ') is larger
than the third term (—0.00790 A ') because Vgi(r) is
proportional to m' and therefore quite strongly peaked
for small r; hence the delta function more than com-
pensates for the "hole" in ps. The answer given by (40)
is 3 the correct answer.

With the aid of (40)-(42) we can discuss the remain-

ing integrals more intelligently. If Landau's energy
spectrum is even qualitatively correct, then the most
important points to compute are those in the neighbor-
hood of the roton minimum. The phonon spectrum is
guaranteed to be correct; and when the temperature is
high .enought to excite the portion of the spectrum
lying appreciably above the roton minimum, then the
picture of the liquid as a gas of independent excitations
has broken down. Thus, even if we knew the exact
form of the high part of the spectrum, we would not
know how to do the thermodynamics. Furthermore, the
high-momentum end of the spectrum computed with
(20) or (21) is certainly wrong, since the slope dE/dp
exceeds the velocity of sound when k &2.2 A—', when-
ever

~
dE( p) /dp )c, there obviously exist states with

two excitations, one of which is a phonon, which have
total momentum p but energy less than E(p). We shall
therefore compute the energy at several points in the
region 1.6 A—'&k&2.4A ' and also at k=1.2 A ' in
order to estimate the height of the hump between the
phonon and roton regions.

(d) Evaluation of Is and Correction to the
Kirkwood Approximation

Since g~ is smoother than Vg~, I3 is a good candidate
for the approximation (40), which predicts Is ——0
because J'pi(r)gi(r)dr=0. We infer that Is is small;
but it is important to know bozo small, because the
factor k' which multiplies Is in (23) is fairly large. The
exact value of Is [i.e., no approximations beyond (29)j
can be computed by the method used for I4. The result
ls

Is=Isa+Iso

[gl(r) j pl(r)dr+ ' gl(r21)gl(r31)pl(r21)

Xpl (r81)p2 (r28) dr 21dr 81

=po (42r/3) [1+ps(r)jr sdr
Jo

+ (8/3) Si(k)[I8.(k)lsdk '

0

= (1/45) (1.707—1.470) =0.0053A '.

The integral Is, (k) is defined by Eq. (49). The approxi-
mation (40) is based on the idea that Is, and Iso should
cancel each other. Since Is,—I» is only 14/o of
Is„ the idea behond (40) is good, but (40) tells us
nothing about the size of Is because J'gl(r) pl(r) dr=0.

If I3=0.0053 A 4, then in the roton region the term
k'I3 contributes about half of the total coefficient of A'
in (23). Any possibility of serious error in Is ought
therefore to be investigated carefully. The idea that I3
is almost zero is based on the approximation (40),
which in turn is based on the identity (39). Actually,
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the approximate form which we have used for p3 does
not satisfy (39) exactly. Slight departures from (39)
ordinarily would not affect the validity of (40), were it
not for the fact that J'Pi(r)gl(r)dr=0. In this case
the question arises; how much of the failure of I3 to
vanish is real, and how much is due to the fact that the
approximate ps does not satisfy (39)P An exact ex-
pression for Is is

f
I8 0 0053 pg gl (rsl) f1(rs1)Lpi(rsi) pl(rsl) pl(r23)

al

—ps (1,2 3)jdrgldl'31

The identities (39) and (70) imply that

drspi(rgi) pl(r») pl(r23) —ps'(1, 2,3)j

We find

I

PO pl(rls) p2(r23)pg(. 12)dr2

where

I3d (6pg) rsl Ql(r21)pl(r31)pl(r23)

—ps'(1, 2,3)jdrgldrgl.

=0.0053—Is,. (43) Igq= (32rpg) ' r 'Pl(r)I3. (r)dr, (44)

If any one the mutual distances is less than 2.4A or
mere than abOut 4 A, then Pl(rg1) P1(r81)Pl(rgg) —p8'(1r 2,3)
is very close to zero. Consequently, the integrand of I3,
is appreciable only if the three atoms are at the corners
of a triangle, each of whose legs may vary in length
from 2.4 to 4A. Therefore, if the spatial variation of
gl(r) were slow, the replacement of gl(r»)gl(r») by
[gl(r»)$' would not greatly alter the value of I3,. The
resulting integral is then easily evaluated. We can,
however, find an even better approximation to I3, by
taking the angular variation of gl(r) into account.
Since I3, is independent of the direction of k, we can
average the integrand over the directions of k. The
average of (k r12)(k rsl) is -', k'r21 rsl, and in the
important configurations the three atoms almost form
an equilateral triangle; therefore, the average over
these con6gurations of the cosine of the angle between
r» and r» is very close to -,'. Most of the angular
dependence of the integrand is therefore correctly
accounted for if we replace r». r» by g~21~3]. at t»s
stage we note that the radii r2~ and r3~ are almost
equal in the important region, and we take r2~ and r3l

to be the same in the integrand. This approximation
divers from the preceding one through the presence of
the factor —,. We obtain

JOO

where

I3,(rls) =22r pg' drspg(rig)ps(r23) (45a)

(krlg) ' sin(kris)LS1(k) jskgdk. (45b)
0

I8,(r) was computed from (45b) for 19 values of r
between 2.4A and 5.6A. The numerical integrals
converge well, and the results are shown in Fig. 4.
Performing the final numerical integration in (44), we
6nd IS&=0.00040 A 4 and 6nally

I3=0.0049 A—4. (46)

The smallness of the correction to I~ shows that the
slight failure of (39) does not cause a significant error
in I3. This fact was not intuitively obvious, however,
and needed verification. It should be emphasized that
we have gone beyond the Kirkwood approximation. Ke
have written an exact expression I3, for the error due
to the Kirkwood approximation, and we have estimated
I3, quite accurately by an integral I3& which is easily
evaluated. We believe the inaccuracy in the approxi-
mation I8 I3~ to be about 25%, and therefore our
lack of knowledge of p3 causes a residual uncertainty
of 0.0001 A 4 in the value of I3.

By exactly the same method, one can estimate the
error in I4 caused by the Kirkwood approximation. The
answer is 0.0001 A, which is negligible compared with
the value given by (37).

,050

-.ORO

5,0
r ta)

8r (r@)-"sag)r 8J018 pg(ra) ps(r83)
(e) Evaluation of Remaining Integrals

Ig occurs in (24) as a coeKcient of A, rather than 22,
and ought therefore to be treated as accurately as is
possible. In I9, ps includes delta functions on r~2 and
rls. Using (29), and noting that several terms are zero
because g~ is odd, we obtain

Ig= —23.,.. exp(sk r(2)gl(r32)pg(rls)pl(rig)

Fro. 4. Ig, (r) measures the error in the Kirkwood approxima-
tion, and vrould vanish for all r) 2.4 A if the approximation frere
exact. The rapid decrease of Ir, (r) accounts for the high accuracy
of the Kirkwood approximation in this computation.

Xpi(r23)dr21dr31 23 exp(gk'r12)gl(r12)
J

Xp, (r„)dr„. (47}
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lo

0.5

The first integral on the right in (50) can be evaluated
by writing exp(ik r»)=exp(ik r») exp(ik rss) and
using the new integration variables ra~ and r32. The
result is

-0.3 '

I.O s.o ~e.o s.o Bn= 7.0
k(A"&)

J
exp(2)t ' r12)gl(r82) pl(r32) p2(rls)dr21dr31

= (4~i/k)S, (k)Ig. (k). (5&)

In the second integral on the right in (50) we use the
integration variables r» and r», Fourier-analyzing
ps(rls), we obtain

FIG. 5. Ig (k) is the Fourier transform of p(r) times the velocity
potential for the backflow pattern. Like Ig, (k) it is determined in
in the most important region by the gross features of p(r).

First we consider the second integral, since we must
know its value for all k in order to do the first integral.
The integral, like I~, can be performed in coordinate or
momentum space; after the angular integrations are
done, the result in coordinate space is

" exp(iki r)gl(r) pl(r)dr= (kl k/ki'k)42rpoiIg (kl),

exp(i)t r»)gi(rss) pl(rgs) ps(r») ps(rls)drsldr31

= (i~p )-' dk,d8k,S,(k,)S,(~ 4+I, ~)
~0 ~0

XIg (kl) cos8 sin8, (52)

where 8 is the angle between )i and kl. If we let

u= ik+kli = (k'+kP+2kkl cos8) i

where"

the right side of (52) becomes
48

00

Ig, (k) = (2.4k) ' sin(2. 4k)+k 2(r) jl(kr)dr. (49) ', ' ' ' ' ' ' J („, (~ 2.4

As before, the coordinate space formula proves suf-
ficient over the entire range of k. For small k, when the
numerical integral cannot be done accurately, its value
is so small as to be unimportant compared with
(2.4k) ' sin(2. 4k). Figure 5 gives the values of Ig, (k).
As in the case of I2(k), some points were also computed
in momentum space, using data for S(k) rather than
p(r). The results were in good agreement with the
coordinate space computations.

Since Pl(rig) =ps[1+Ps(rig) j, the first integral in (47)
becomes

pg
' exp(ik ' r12)gl(r32) pl( 32)r[1+p2( 12)rjp2( ls)rd 21drslr

=pg t exp(ik rls)gl(rss)pl(rss)ps(rls)drsldrsl

Since
XSl(u) (u' —k' —kls) udu. (53)

(22rpgik') '
J

uS1(u) (u' —k')du
0

OQ
tl 8+21 ~W )Is+u

dklf(kl) g(u)du= dug(u) f(k,)dk„J, " )k-aI( 0

a numerical integral like (53) can be done in several
diGerent ways. We look for the way which converges
fastest, is least sensitive to information which we do
not have [like the value of Sl(u) for large uj, and does
not involve small differences of big terms. For example,
we should avoid dealing with the indefinite integral of
Sl(u)u', since it oscillates badly for large u; hence (53)
is not convenient to use as it stands. Probably the best
form of (53) is

+PO J
eXP(2)r ' r12)gl(r32)Pl(r82)

Xp2(r12)p2(rls)dr21dr'o'1 (50)

~
u+k

X,
~ )u—ai

dklIg, (kl)S1(kl)/kl

'3 Since J'gl(r)pl(r)dr=0, one might expect the right side of
(48) to approach zero as kg becomes small. But Ig, (kg ) approaches
unity for small kg, and consequently the right side of (48)
approaches ~ 00, depending on the angle between k and k~. The
trouble, as before, is resolved by noting that (48) and (49) are
wrong for kl&g (gl should really gave a factor e in it). In the
correct version of (49) the term (2.4k) ' sin(2.4k) is replaced by
zero when k«g,' hence Ig, (kl) goes as klg when kg«g, and the
right side of (49) approaches zero. The "error" in (48) and (49)
has no eGect. on our computations, but is worth mentioning lest
the reader discover it and develop a distrust of the formulas.

)CO ~ u+k

uS1(u)du
Jo aI [u—k[

dklklIg, (kl) S,(k,)

= (2grpgiks)
—'[I»(k) —I„(k)j. (54)

In this form, the inside integral acts as a convergence
factor for the integrand of the outside integral, and the
answer is not sensitive to the values of Sl(u) for large u.
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The inside integral can be tabulated once and for aB
as an indefinite integral; thus, the evaluation of (54)
involves only a single numerical integration for each
value of k.

If (41) were used to estimate Ig(k), the result would
be

Ig (k) —2i e'" 'pl(r) dr gl(r) pl(r) dr =0.

k(A ')

1.2
1.6
1.8
2.0
2.2
2.4

Igh(k)(A 4)

CSee (54)7

—0.019—0.387—0.406—0.364—0.086
0.155

Ig (k) (A «)
Lsee (54)7

0.172
0.089
0.031—0.017—0.048—0.054

I d(k)(A 2)
LSee (55) 7

0.0076—0.0002—0.0035—0.0047—0.0039—0.0020

Ig(k) (A 2)
Lsee (56) 7

0.0444—0.0054—0.0386—0.0518—0.0307—0.0044

TABLE I. Values of numerical integrals involved in Ig(k).

Igq(k) = (2/grpp) pl(r) jl(kr)I8, (r)dr (55)

should be subtracted from (47). Combining Eqs.
(47)—(55), we obtain

As in the case of I3, the question arises: how much of
the failure of Ig(k) to vanish is real, and how much is
due to the failure of our approximate pg to satisfy (39)P

The analysis proceeds exactly as with I3, and we And

that the quantity

Since I5 =0.0119A ', the complete omission of I5~ and
I~, would not cause a serious error in the roton spectrum.
We shall omit these terms while locating the minimum
of the spectrum, and shall reinstate them in the 6nal
computation of A.

Ig is estimated by (41) as zero. As in the case of Ig,
it is important to 6nd out whether I6 is really small
enough to be neglected. To obtain a more accurate
estimate, we write

Ig(k) = (Sgrpp/k)Ig (k)S(k)
+ (grk2)

—'LIg, (k) —Igp(k) 7—I24 (k). (56) where

I6 I6a+I68)

Table I gives values of Ig(k), Igp(k), Ig, (k), and
Ig4 (k) . In the roton region the correction Ige is about
one-tenth as large as Ig (except near k= 2.4 A ', where
Ig is negligible anyway). Since we believe that Igz
estimates, within an accuracy of 25%, the error due to
the Kirkwood approximation, the residual error in I9
due to this source is probably only 2 or 3%

Using (29), we can write Ip as

Ig,= (2i/k) e '"'gl(r)k Vgl(r)P1(r)dr,

I68= (2i/k) exp(ik rig)gl(r21)k

' Vgl(r18) pl(F31)pl(F21)p2(r23)drgldr21.

I,= p, (r) LVg, (r)72dr+
0

e'"'P, (r) V'gl(r) dr

According to the discussion preceding (41), Ip„and I66
will cancel each other almost completely, so I6 is some
fraction (probably about one-fourth) of Ig, . Performing
the angular integrations in I6, we obtain

+ exp(gk' r28) Vgl(r21) ' Vgl(rgl)pl(r21)

X pl(rgl) p2(r23)dr21dr31

=I6.+I66+I6' (57) +8(kr) ' sin(kr)+18(kr) ' cos(kr)

The oscillatory factor exp(ik r23) makes Ig a likely
candidate for (42), which says" Ip Ig, . At the cost of
considerable labor we have computed Ipe+I6. when
k=2A ' and when k=1.2A ', and veriied that it
could indeed have been neglected.

I5 has been evaluated in connection with I4. From
(31) and (25) we obtain

I66 (k) = [SgrppI2. (k) 72.

Ig, (k) can be evaluated by the same methods used for Ig.
The resulting expression is similar in form to (54), and
will not be exhibited here. Laborious computations give

I66(2 A ')+Ig, (2 A ') = —0.0010 A '

I66(1.2 A ')+I6, (1.2 A ') =0.0010 A '.

"Compare (42) with the definition of I6 in (25).

—18(kr) 4sin (kr—)7.

A rough numerical integration gives

Ig, (2 A ')~—0.003 A '.

Hence Ig(2 A ')~—0.001 A ', and kI6~ —0.002A—'
when k= 2 A '. Since kgI8+I4+I6~0.040 A ' near
k= 2 A ', we can neglect kI6 without much error.

Estimation of Ir by (41) gives

Ir—2(—42rpo/3) SgrpoIg—a(k) = 3 (Sgrpo)'Ige(k). (58)

Considerations similar to those used in estimating I6
show that (58) is accurate to better than 0.001 A '.

When k is in the roton region, the major portion of IM
comes from the term h(rig) pg(2, 3,4), which is contained
in p4(1,2,3,4). When r,g/0, the oscillations of e'"'"'
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Iip) Ig'/4Is. (60)

The failure of (59) for small k is most easily seen by
noting that I3 becomes much smaller than the right
side of (60) as k —+0.

For k)1.2A ', the coefficient of A' in (23) is

make the contribution to the integral very small. '~ H
we neglect all of p4 except 3(rts) pg(2, 3,4), we are making
essentially the approximation which was used in I5 and
was shown to be very accurate there. Ke then obtain

(59)

and our evaluation of the integrals in (25) is completed.
The oscillation argument which leads to (59) fails

when k is very small. For any value of k the require-
ment that the normalization integral 8 have no roots
when considered as a polynomial in A leads to the
inequality

estimated well by

k Ig+I4+Is + a(8grpg) Ig (k).

We have omitted Isb, Is„and kI6, and have approxi-
mated I7 by (58). Ig, and kIs have both been shown to
be very small, and are both difhcult to compute;
omission of these terms simplies the computation of the
energy spectrum, and does not significantly change the
location of the minimum. Isb has been omitted for the
sake of consistency, since it is even smaller than I5,.
After locating the minimum, we shall reinstate the
omitted terms in our final computation of A. We esti-
mate Iig by (59).

6. THE IMPROVED ENERGY SPECTRUM

With the omissions and approximations mentioned
in the preceding paragraph, we obtain

E(k) 1+ALIt+Ig3+2't O'Ig+I4+Igg+ s (8grpp)'Igg)

1+aPIg/I, g+ Jf gP'I, /I, gEt(k)

=Eg(k)/Ei(k).

1+2L0.186+1.117Ig,(k)]+&'L0.0246+0.0049kg+0. 108Ig, (k)j
1+A LkIg (k)/S(k) )+A'L0.0049k'/S(k)g

(61)

E(k) is the true lowest energy of a state having
momentum Ak; Ei(k) is the energy computed with the
wave function (5), i.e., Ei(k) =Asks/24NS(k); Eg(k) is the
spectrum we have computed, subject to the omissions
and approximations noted above.

For k=2 A-', (61) becomes

E,(k) 1+0.14M.+0.0406 A'

E,(k) 1—0.08222+0.0156 A'
(62)

The first attractive feature of (62) is that the coef-
6cients of A in the numerator and denominator have
opposite signs, so that the denominator increases while

the numerator decreases. The optimal value of 3 is
—3.5, which is very close to the classical value A, ~

——

—3.6. The minimum value of Eg(2)/Et(2) is 0.659,
corresponding to Eg(2 A ')/»= 12.6'K.

Computation of the coeflicients in (61) and minimi-

zation of the resulting expressions yield the results
given in Table II. We estimate the minimum value of
Eg(k)/» as 12.0'K, corresponding to k=1.85 A—'. H

'~ If the integral

J(r44)= (pg) p4(1,2,3,4)g4(r44)r4(r42)dr3dr4,

were to become large compared with J(0) as r44 grows large, then
the growth of J might offset the oscillations of exp(gh. r44) and
(58) would be wrong. It is easy to see, however, that as 1 and 2
go farther apart, J(r44) approaches LJ'p4(r)g4(r)dr/', which is
zero. Since the factorization of J into a product of two integrals
becomes more nearly exact as r12 increases, it is very plausible
that J decreases with increasing r12 and is largest when 1 and 2
coincide. In the latter case, J is equal to I8.

we estimate Ig, (1.85 A ') and I,(1.85 A ') by the
values of the corresponding integrals at k=2 A ', we
find that the coefficient of 2' in the numerator of (61)
should be diminished by 0.003 A ' when i= i.85 A—'.
This change lowers the energy by 0.5'K and we obtain
the following as the 6nal result of this computation":

pg/h= 1.85 A ', 6/»= 11.5'K. (63)

TABLE II. The energy spectrum Eg(k) computed from (61).~

k(A 1)

1.2
1.6
1.8
2.0
2.2
2.4

A.pt(A')

—3.6
3—3.6—35-3.0—25

E2 {k)/EI (k)

0.569
0.5/6
0.594
0.659
0,730
0.791

E2(k)/. ( K)

14.08
13.44
12.00
12.59
16.86
24.04

E2(k} is essentially the spectrum computed here. Some further sma11
corrections lower the minimum energy to f1.5 K. E1(k) is the spectrum
previously computed with a simpler wave function. Aopq is the optimal
value of the strength of the return Row in the wave function (21), and is
chosen so as to minimize E2(k). The values of Aopt are close to the "classical"
value -3.6 A3 computed from a current conservation argument.

'8 A similar result has been obtained from perturbation theory
by C. G. Kuper, Proc. Roy. Soc. (London) 233, 223 (1955). As
he points out, the perturbation theory is not reliable because of
the large size of the energy change.

It is evident from Table II that Eg(k)/Et(k) passes
through a minimum near k=I.2A '. In any correct
theory Eg(k)/Et(k) must approach unity for very small
k because we cannot lower the energy of a phonon. 3y
studying the behavior of the integrals in (25) for very
small k, we have verified that our spectrum does indeed
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have the correct limiting behavior. "A more direct way
of seeing the result is to look at (21) )or (20)j when k
is very small. The correlation term g(r;;) is significant
only when atoms i and j are fairly close. But in this
case exp(iit. ri) and exp(sk. r;) are almost equal because
k is small, and hence the correlation terms cancel
almost completely because g is odd. Thus, (21) is
almost the same as (5) for small k, and leads to the
same energy.

For high k, E&(k)/E&(k) approaches unity because
the approximation exp/i P g(r, ;)$ 1+t' P g(r;,) fails
badly. Ke noted earlier that if we could compute with
the wave function (20), the interference between terms
with different s wouM vanish when k is large. If Es(k)
is the energy arising from (20), we should find that for
large k,

Es(k)/Ei(k) =0.65,

Fzo. 6. The energy
spectrum of excita-
tions. Curve A is the
spectrum Z2(k} com-
puted from Eq. (61).
Curve 8 is the spec-
'truI11 Eg (0) com-
puted with the sim-
pler wave function
(5). Curve C is the
Landau-type spec-
trum used by de-
Klerk et ul. 4 to Gt the
second sound and
specific heat data.
Curve D is a Landau-
type spectrum with
p0 taken the same as
in A, and p and d,
chosen to fit the
specific heat data.
For small k, all
curves are asymp-
totic to the line

50-

lO-
/ ~ ~~D

I.O 2.0
+AVE NUMBER K ( A -I)

as in the foreign atom problem. It is amusing to con-
jecture on how much Es(k) might lie below Es(k)
when k= j..8 A '. The accuracy of the approximation
exp(i P g) = 1+iP g in the foreign atom problem (see
reference 11) suggests that Es may be 0.5' less.

The energy spectrum Es(k) is shown in Fig. 6 as
curve A. We have also plotted B:E&(k) =h'k'/2tNS(k);
C: de Klerk, Hudson, and Pellam's spectrum fEq.
(4)j; D: spectrum of the form (2), with 6/a=9. 6',
ps/A=1. 85 A ' and p chosen so that p&ps' has the
same value as in C. (The specific heat depends on p
and Ps only through the product li&Ps'. ) From the
curvatures of A, C, and D it is clear that our spectrum
Es(k) predicts too small a value of Ii. In a computation
of this sort, however, it is doubtful that the curvature
has much significance.

Curve A brings out the fact that the "hump" between
the phonon and roton regions is not nearly so high as
one might expect from (1). Consequently, when com-
puting the speci6c heat or normal Quid density at
temperatures high enough to excite rotons, it is probably
also necessary to take into account the deviations of the
phonon spectrum from linearity (and also the devia-
tions of the roton spectrum from pure parabolic be-
havior). Qualitatively, it appears that such corrections
might improve the agreement between the theoretical
spectrum and the speci6c heat and second sound data.

V. DISCUSSION OF ACCURACY

Initially, the major potential sources of error in this
computation were (a) the absence of information about
the true form of ps(1,2,3); (b) absence of information
about p4(1,2,3,4); (c) uncertainties in the data for Si(k)
at large k (see Appendix A).

The uncertainty caused by (a) has, we think, been
minimized. by the introduction of a correction to the
Kirkwood approximation. The errors remaining in I3

"If g(r) falls off sharply at large r, the analysis is simple. In
our case the analysis is complicated by the slowness with which
Is r/r' falls off, but the ultimate result is the desired one.

and I9 after the correction are probably less than three
percent; the resultant error in 5/~ is less than ().3'.

The approximation (59), which gives rise to the
error (b), ought to be about as accurate as the approxi-
mation I~Is„since both approximations are based
on the same oscillation argument. The latter approxi-
mation was found accurate to better than 10% in the
roton region. A ten percent change in I~0 would alter
the value of 6/~ by 0.2'; we regard this number as a
fair estimate of the error caused by (b).

Considerable pains were taken to arrange the nu-
merical work in such a way that the answers are
insensitive to the behavior of Si(k) for large k. The
residual error due to (c) is found mainly in the coef-
ficient of A' in the numerator of (61). This coefficient
may be in error by 5%, and the resulting error in 6/&
might be as much as 0.4'.

We consider the value d/s=11. 5' to be accurate
within 0.6', i.e., the lowest energy computable with the
wave function (21) is between 10.9' and 12.1'.

A wave function which gives a good value of the
energy may, of course, be inaccurate for calculation of
other properties of the system. Gn the other hand this
function was chosen by a physical argument, and
achieved a very considerable increase in the accuracy
of the energy, without in fact using any variable
parameters. It might be argued that some of this
increase should be associated simply with the fact that
we have one extra parameter A to vary. But had we
used the A determined by the physical argument (—3.6)
we would have obtained practically the same energy as
if we let it vary.

For this reason we believe that the wave function
(20) Lor for practical calculations (21)$ not only gives
the energy well but is a reasonably accurate physical
description of the excitations. On the basis of this
optimistic hope, (21) is currently being employed in the
calculation of other properties of helium.
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—271 po= k'[S (k) —13dk. (64)

The relation (64) might serve as a test of the nor-
malization of S(k), were it not for the fact that the
numerical integral gives no sign of converging if we
cut it off at k=6 A '. The left side of (64) is equal to
—0.43 A '. With our normalization, integration of the
right side out to k=6A ' gives +0.44 A ', but the
integrand is still oscillating wildly and there is a chance
of ultimately converging to a correct answer. With
Reekie's normalization, integration of the right side
out to k= 6 A ' gives a positive value much larger than
+0.44 A ', and the contribution from k) 6 A ' will
also be positive unless the successive minima of $(k)
cease to be closer and closer to the asymptotic value
of unity. At any rate, the consistency of the results
which we have obtained by performing the same
integral in coordinate and momentum space convinces
us that our S(k), which is 0.97 times Reekie's, is suffi-
ciently accurate for the present computations.

Most of the curve in Fig. 1 represents data taken at
2.06'K. According to reference 9, there is very little
change in the values of S(k) for k) 0.9 A ' as the tem-
perature decreases from 2.5'K to 1.25'K. Therefore,
in the range k)0.9 A ', it is probably safe to represent
the zero-temperature structure factor S(k) by the data
taken at 2.06'K. For k(0.9 A ', the temperature
dependence of $(k) is more important, and it is neces-
sary to extrapolate $(k) linearly to zero by using (65).
We have done this, using a slope about 20% higher

APPENDIX A. DATA USED FOR S(i't) AND P(r)

The curve for S(k) given in Fig. 1 is essentially that
obtained from x-ray scattering by Reekie and Hut-
chison. '' The proper normalization of the data can,
in principle, be determined from the fact that S(k) ~ 1

as k —+ ~. According to Goldstein and Reekie, ' "limi-
tations inherent in the very low scattering cross section
of liquid helium and the experimental technique have
prevented effective exploration (of the range k) 6 A ')."
Since $(k) is still oscillating strongly at k=6 A ', the
normalization of 5(k) is uncertain by a few percent.
For k&2.5 A ', the percent error in S(k)—1 is large,
and our computations would be totally unreliable if the
integrals had not been set up in such a way as to be
insensitive to the behavior of 5(k) —1 for large k. We
feel that S(k) ought to oscillate about its asymptotic
value, and have therefore taken S(k)=1 at a point
whose ordinate is the average of the values of S(k) at
the minimum near 3.4A ' and the maximum near
4.6 A '. With Reekie's normalization, 5(k) is unity at
an ordinate much nearer to the minima of the oscil-
lations. Our normalization maximizes the cancellation
at large k when we are performing integrals whose
integrand contains $(k) —1 as a factor. Since 5(k) is
the Fourier transform of p(r), we find [see (34)]

than the theoretical value in order to join the experi-
mental data smoothly. The error thus introduced is
small.

Reekie and Hutchison' have computed p(r) for
r &6 A by inverting their data for $(k). The curve for
p(r) which we have given in Fig. 2 is obtained from one
of their graphs" and, as has been previously mentioned,
seems consistent with our curve for S(k). The numerical
inversion of diRraction data is not unambiguous, since
the integrand of the relevant numerical integral is not
small at the cut-off value k=6A '. Furthermore, an
arbitrary cutoff procedure must be used to make p(r)
vanish for r(2.4A. More recently, Goldstein and
Reekie' have employed an IBM 701 calculator to
compute p(r) out to 20 A, using the data of Reekie and
Hutchison. Their article was not published until after
the completion of the present calculation; the authors
state that the results out to 6A "fully confirm" the
results of reference 9. Goldstein and Reekie apply the
integral test (69) to their curves for p(r) and find satis-
factory results. Since the integrands do not become
small until r&13 A, we found it impossible to apply
the test to the curve in Fig. 2.

APPENDIX B. IDENTITIES SATISFIED
BY p(r) AND 8(i't )

To understand the behavior of $(k) for small k, we
note that as long as we are concerned with disturbances
of long wavelength (small k) the liquid can be treated
as a continuous compressible medium. If p(r, t) is the
number density in such a medium and we define the
normal coordinates

qk
—— p(r, t)e'k'dr,

then the energy is

E= s gk mk[gkgk +cok~gkgk

where ~k ——ck and mk ——m/Xk'. Quantum mechanically,
p(r) is replaced by the operator p;8(r —r;) and qk
then goes over into the quantum-mechanical normal
coordinate qk=Q exp(ik r,). $(k) is just 1/E times
the expectation value of qk'. Since the average values
of the potential and kinetic energies are equal for a
harmonic oscillator, it follows that S(k) =(Ek)/mc',
where (Ek) is the average energy of the oscillator repre-
senting sound of wave number k. When T=O, all the
oscillators are in their ground states, and hence (Ek)
= 2$~g ——&peak and

S(k) =hk/2mc (small k). (65)

When T/0, the oscillator representing phonons of
wave number k is no longer necessarily in its ground

' Figure 2 was obtained by dividing the data of reference 8,
Fig. 1, by r~. There are slight discrepancies between the resultant
curve for p(r) and the curve given in reference 9, Fig. 3. Errors of
this magnitude in p(r) would have a negligible eRect on our
results.
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limS(k) =pox Txp,
Q-+0

(67)

where po is the number density and x& the isothermal
compressibility of the liquid. When Ack becomes
greater than ~T, (66) becomes essentially linear in k.
Strictly speaking, however, S(k) starts quadratically
from a nonzero value except when T=O. The possi-
bility of a linear behavior of $(k) for small k, as pre-
dicted by (65) when T=0, has been sometimes
questioned on the basis of (10). From (10) it follows
that

$(k) —1=4~ I [p(r) —ppj(kr) ' sin(kr)r'dr. (68)
4 0+

Since p(r) —po approaches zero for large r, it is argued
that it is legitimate to expand (kr) ' sinkr as 1—(kr)'/6
+ . Integrating term by term, one finds

where
$(k) —1=Ci+C2k'+

t

C,=4x [p(r) —po]r'dr,
J0+

(68a)

C2= —a~ [p(&) po jr'«. —

Hence it appears that S(k) always starts quadratically
in k. The fallacy in the argument lies in the fact that
p(r) may not approach its asymptotic value fast
enough, and the expansion may be meaningless. For
example, if p(r) —

po decreases as r ' for large r, (68)
converges perfectly well but C& and C& are inlnite.
When T=O, p(r) po falls off slowly en—ough to invali-
date the expansion, and (65) is correct; at any finite
temperature p(r) po ultimately falls off—exponentially
and the expansion (68a) is legitimate. One might think
that all the coefficients of (68a) can be determined by
comparison with (66a); this is incorrect because (66)
is wrong for large k. Using (67) and (68), however, we

do obtain the important result

1+4~ [p(r) —pofr'dr =po~Txz,J,+
(69)

and when T=O

1+4m. I [p(r) —ppjr'dr =0. (70)

state, but may be in its eth excited state with prob-
ability proportional to exp( —E„/~T). It follows that
(P= 1/~T)

S(k) = (Ak/2mc) coth-,'Phck (66)

= (Pmc') '+ (PA'/12m) k' — . (66a)

From (66) there follows immediately the famous formula

The result (69) can also be obtained by rather simple
classical arguments. It follows directly from the de6-
nition of p (r) that the left side of (69) is ((1V—X)')A„/X,
where X is the number of atoms in a large subvolume
of the liquid, and the bar denotes "average, "but statis-
tical mechanics shows that ((X—E)')A„/E= po~Txi,
whence (69) follows.

One might think that (70) is a simple consequence
of the definition of p(r). For if an atom is known to be
at r~, the probability that there is an atom at r2 is
p2(ri, r2)/pi(ri). If ri is not near the surface of the
liquid, then pi(ri) =pa, if ri and r2 are both far from
the surface, then p, (ri, r2)=pop(ri2). If we integrate
p2(ri, r~)/pi(ri) over all locations r2, excluding the point
r&, the answer must be exactly X—1.But if we integrate
pi(r) over all positions of r, the answer is exactly E.
Consequently

LP2(ri r2)/pi (ri) —pi (r2) 3«2 = —1 (71)
~ rg~rg

If we take ri far from the surface, pi(ri) can be replaced
by po. Furthermore, the integrand is appreciable only
when r2 is near ri, in which case p~(ri, r2)/pi(ri) —pi(r2)

p(ri2) —
po (there are no complications at the surface

of the liquid since the surface corrections to both terms
of the integrand are identical). Then (71) reduces
exactly to (70).

Something must be wrong with the preceding argu-
ment at finite temperatures, since (70) is false if TWO.
The difficulty lies in the fact that, at finite T, the limit-
ing value of p2(ri, r2)/po for large ri2 is not po, but is
slightly lower by an amount of order 1/E. Since r2 runs
over a volume proportional to X, there is a finite
negative contribution to (71) from the region of very
large ri2 (i.e., the region where p~(ri, r2)/po has reached
its asymptotic value, which is not exactly equal to po).
Since (71) is rigorously true, the integral

4' ~ [p(r) —po)r'dr,
J,.

which represents the contribution to the left side of
(71) from the region where r» is not very large, must
be greater than —1; thus we arrive at (69) instead of
(70).

The slight lowering of the density at in6nity when an
atom is known to be at the origin is not hard to under-
stand, since the localization of one atom decreases by
one the number of atoms eligible to occupy the site at
in6nity. In the classical perfect gas ppKTxz ——1;since the
atoms are independent, the localization of one atom
simply lowers the mean density by 1/V throughout the
rest of the volume. In a real liquid, however, poKTxz —&0

as T —+0. Finally, when T=O, (70) implies that no
influence propagates to infinity, even in order 1/X,
when an atom is localized at the origin. In this case, a
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density excess at the origin is surrounded by a rare-
faction slightly further away, so that no change occurs
in the density at in6nity.

Thus, the simple counting argument used to prove
(70) is actually correct when T=O, because there is no
change in the density far away when we localize an
atom at the origin. For the same reason, we believe
that any identity based on a counting argument
becomes correct when T=O. We therefore believe in
the truth of the identity

~ ragr2, I'y

»(») r»r3)
dr3 ~Po. POP(»2)

(72)

although we cannot give a rigorous proof of it. Equa-
tions (70) and (72) are easily combined to give Eq. (39),
which we have used in our work (one must remember
that, in (39), p3 is defined to include a delta function
on r23).

Equation (39) is easily understood for small or large

values of r12. If r12&2.4A, both sides of (39) are
identically zero for all r3. If 1 and 2 are far apart, then
ps can be written as

PoP1(&31)Pl(&32)+Po ~(r32)

and the right side becomes po2P1(r31). If 3 is far from 2,
then both sides are equal. Hence the only contribution
to the integral comes when 3 is near 2; but then we can
set P1(r31)=po and we are left with

dr32P0 (P1(r32) +&(r32) —Po),

which vanishes as a result of (70).
Even if (39) is not rigorously true for intermediate

values of r», it cannot fail badly; for when r» is greater
than 2.4A, but not very large, then for any fixed
radius r3~ the solid angle in which 3 interferes with 1
is small (less than one-quarter of the total solid angle
available to r23).


