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PACS. 75.10Nr – Spin glass and other random models.

Abstract. – We report large effects of Parisi replica permutation symmetry breaking (RPSB)
on elementary excitations of fermionic systems with frustrated magnetic interactions. The
electronic density of states is obtained exactly in the zero-temperature limit for (K = 1)-step
RPSB together with exact relations for arbitrary breaking K, which lead to a new fermionic
and dynamical Parisi solution at K =∞. The Ward identity for charge conservation indicates
RPSB effects on the conductivity in metallic quantum spin glasses. This implies that RPSB
is essential for any fermionic system showing spin glass sections within its phase diagram. An
astonishing similarity with a neural network problem is also observed.

We present the first solution to the question whether and in which way Parisi replica
permutation symmetry breaking (RPSB) and the related nonconstant part of the Parisi spin
glass order parameter function q(x) [1]-[3] are displayed in the low-temperature many-body
theory of fermionic systems with frustrated Ising interactions, emphasizing the T = 0 limit
in particular. The Parisi function q(x), defined on the interval 0 ≤ x ≤ 1 is known as the
apparently exact solution of the infinite range classical spin glass. The x-dependence is known
to be comparable with a nontrivial time dependence, induced by Glauber dynamics [2], of the
spin autocorrelation function 〈σ(τx)σ(0)〉 (small x corresponding to large times). As shown
by Parisi, the function q(x) assumes a plateau value within x1 ≤ x ≤ 1 and differs from this
so far conventional single-order parameter picture only within 0 ≤ x ≤ x1 = O(T ), where
it decreases towards zero at x = 0 in the absence of a magnetic field. The RPSB effect
seems to disappear as T → 0. Nevertheless, we find and report here a large O(T 0) effect
to persist in many important physical quantities of the fermionic Ising spin glass, which is a
minimal quantum generalization of the classical Sherrington-Kirkpatrick model. This includes
replica-diagonal fermion Green’s function and fermion density of states, where at any step K
of RPSB the set of different order parameters is seen to determine the quantum-dynamical
behaviour of the fermion propagator and of vertex functions. These effects are complementary
to and not in contradiction with recent replica-symmetric descriptions of T = 0 quantum spin
glass transitions [4]. Parisi RPSB [1] is seen to decide the qualitative and quantitative features
of the low-energy excitation spectrum. While results are presented for an insulating model, the
effect appears to be rather model-independent and should hence be felt in transport properties
of models with additional hopping Hamiltonian for example.

The presence of spin glass phases within phase diagrams of interacting many-fermion
systems such as high-Tc superconductors, heavy-fermion systems, and semiconductors are
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nowadays recognized with increasing attention [5]-[7]. Many of their characteristic properties
cannot be answered by considering these phases as isolated magnetic phenomena, which means
that their common origin, their coexistence and competition with charge-related phenom-
ena, and even far-reaching links into other fields of physics must be understood in terms of
fermionic rather than spin space models. The relationship between conductivity behaviour
and magnetism, mainly antiferromagnetism up to now, has acquired a prominent place in the
conscience of theorists and experimentalists, due to the remarkable progress in the field of
strongly correlated fermion systems during recent years [8], [9].

In this letter we wish to provide results which evidence the fact that fermionic spin glasses
also link closely glassy magnetic order and transport behaviour; further similarities between
the Hubbard model and the fermionic spin glass have been traced back to the particular role
of the Onsager-Brout-Thomas reaction field [2], [8] for all these systems, as can be observed
by comparing Hubbard-CPA [8] with fermionic TAP equations [7].

Spin and charge-excitation spectra of fermionic spin glasses must be evaluated in order to
construct a meaningful many-body theory. This letter focusses on the effect of Parisi replica
permutation symmetry breaking (RPSB) on the single-fermion density of states (DoS), hence
on the fermionic Green’s function, and, by virtue of the Ward identity for charge conservation,
also on vertex functions, thus on the entire ensemble of quantities that provide the basis of
many-body theories for fermionic systems with frustrated interactions.

It is known that replica-diagonal quantities like the linear equilibrium susceptibility χ feel
Parisi symmetry breaking even at T = 0 [1]-[3] despite the fact that the nontrivial part of the
Parisi function only lives on an interval of width T .

The susceptibility had been analysed by Parisi for the standard SK model. He found a
rapid convergence towards the exact result as the number of order parameters increased, this
number being equal to K + 1 in the SK and equal to K + 2 in fermionic models. While the
low-temperature regime of the SK model had not been of particular interest from the point of
view of phase transition theory, it becomes highly important for fermionic spin glasses, since
the T = 0 theory of excitation spectra plays a crucial role and, for the additional reason that
some models exhibit quantum phase transitions along the T = 0 axis. Parisi, nevertheless,
analysed the low-T regime [1] of the classical SK model finding that K step RPSB on one
hand provided increasingly good approximations but failed to completely remove the negative
entropy and the instability problem at low enough temperatures unless K →∞.

In this letter the effect of one-step RPSB (K = 1) on the density of states is presented
in detail, followed then by an analytical relation valid for all K, which allows to determine
the type of excitation spectrum present in the full Parisi solution for the fermionic Ising
spin glass. Despite the fact that the regime of deviation from a replica-symmetric spin glass
order parameter is only of O(T ), we find that it has a large O(T 0) effect on the fermion
density of states, the one-particle, and many-particle Greens functions at T = 0. This density
of states is derived as usual from the imaginary-time (disorder-averaged) fermion Green’s
function [−〈Tτ [a(τ)a†(0)]〉]av, which is one of the decisive quantum-dynamical elements of any
many-body theory of fermionic spin glasses. This illustrates that, unlike the usual picture of a
Parisi solution being just a static order parameter function, the fermionic picture must include
the qualitative extension to dynamical quantities. Those become drastically altered by the
nontrivial part of the Parisi solution which is otherwise invisible at T = 0, hence providing
a quantum-dynamical image of RPSB. We first consider a generalized Parisi solution of the
infinite-range fermionic Ising spin glass model. Its grand canonical Hamiltonian

H = −
∑
ij

Jij σ̂iσ̂j −H
∑
i

σ̂i − µ
∑
i

(n̂i↑ + n̂i↓), σ̂i ≡ n̂i↑ − n̂i↓, n̂iσ ≡ a
†
iσaiσ, (1)
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with fermion operators a, a† and represents a Fock space extension of the SK model. The
magnetic couplings Jij of this insulating model are independent Gaussian variables with zero
mean value. The chemical potential controls the occupation of magnetic and nonmagnetic
states, where the latter ones reduce the freezing temperature, and leads to remarkable effects in
the tricritical phase diagram [10]. We restrict our discussion to half-filling. The fermion Green’s
function can be derived as G = δ

δη̄
δ
δη

lnΞ from the generating functional (the generalization

from K = 1-step RPSB, given here for the sake of simplicity, to arbitrary K is standard)

Ξn(η, η̄) = e−
N
4 β

2J2TrQ2
Parisi

∏∫ ∞
−∞

dz
(αγ )
γ
√

2π
exp

[
−
[
z(αγ)
γ

]2
/2

]∏∫
dψ̄dψ ·

· exp

 n/m∑
α1=1

α1m∑
a=(α1−1)m+1

∑
i,σ,ε

l

(ψ̄a,li,σ [G−1
0 (εl) + σH̃({z(αγ)

γ })]ψa,li,σ + ηa,li,σψ̄
a,l
i,σ − η̄

a,l
i,σψ

a,l
i,σ)

 , (2)

with a bare propagator G0(εl) = (iεl + µ)−1 and a magnetic field H included in the effective

field H̃({z
(αγ)
γ }) = H + J

∑
γ

√
qγ − qγ+1z

(αγ)
γ , where q

0
≡ q̃, q

K+1
= 0. Fermionic fields are

denoted ψ, ψ̄, and η, η̄. Spin (decoupling)-fields zγ , carrying a Parisi block index, explore the
random magnetic order. The Parisi matrix QParisi has the well-known form [1] apart from
the nonvanishing diagonal elements q̃; their presence is required by the fact that (σ̂z)2 =
(n̂↑ − n̂↓)

2 6= 1. The structure of the Parisi matrix is of course responsible for the rather
complicated form of the Lagrangian; despite this complication the fermion fields can be
eliminated in the standard way, which leads to the self-consistent equations given below.
It is known since Parisi’s work [1] that an analytical low-temperature expansion is hard to
obtain even for the standard SK model and its smaller set of self-consistent parameters. First
insight is gained by the one-step RPSB (K = 1). The standard three-parameter set of the SK
model for K = 1, order parameters q1 and q2, and m ≡ m1 ∼ T , is enlarged in the fermionic
space by q̃ − q1 ∼ T , where q̃ := [〈σ(τ)σ(τ ′)〉]av represents a spin correlation, which remains
static unless a fermion hopping mechanism or other noncommuting parts are included in the
Hamiltonian. For the fermionic Ising spin glass the (K = 1)-DoS reads

ρσ(E) =
cosh(βµ) + cosh(βE)√

2π(q̃ − q1)J

e−
1
2β

2J2(q̃−q1)

√
2πq2

×

×

∫ ∞
−∞

dv2e
−
v2
2

2q2

∫∞
−∞ dv1e

−
(v1−v2)2

2(q1−q2)
−

(v1+H+σE)2

2(q̃−q1) Cm−1∫∞
−∞ dv1e

−
(v1−v2)2

2(q1−q2) Cm
, (3)

with C = cosh(βH̃)+ζ, where ζ = cosh(βµ) exp[− 1
2β

2(q̃−q1)] reveals the competition between
the particle “pressure” exerted by the chemical potential µ and the single-valley susceptibility
χ̄ = β(q̃− q1) leading to a crossover at |µ| = 1

2 χ̄ in the T → 0 limit. The ζ-term is a fermionic
feature, absent from the standard SK-model. It is closely related to the fermion filling; this
filling factor behaves discontinuously on the T = 0 axis [10]. For T = 0 we obtain exactly

ρσ(E)=
e
− 1

2a
2(H)(1−q2)−

∆2
E

1−q2
+a(H)∆E−H

2

2q2

π
√

1− q2(H)
Θ(|E| − χ̄)

∫ ∞
−∞

dz
e
− 1

2
z2

1−q2
−(
√
q2

1−q2
σE
|E|∆E−

H√
q2

)z

d(z) + d(−z)
, (4)

d(z) ≡ ea(H)
√
q2z

[
1 + Erf

(
a(H)(1− q2) +

√
q2z√

2(1− q2)

)]
, ∆E ≡ |E| − χ̄, (5)

and a(H) ≡ m′(T = 0). The replica-symmetric solution displays a magnetic hardgap of width
2Eg(H) in the DoS and the system remains half-filled at T = 0 within the finite interval given
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Fig. 1. – Field dependence of dm/dT (top), of the order parameter q2, and of gapwidth parameter w
(bottom) for 1RPSB and zero temperature.

Fig. 2. – density of states at T = 0 as a function of energy and magnetic field for 1-step RPSB.

by |µ| < 1
2Eg(H). For higher values of the chemical potential, hence smaller spin density,

phase separation occurs together with a discontinuous transition into a full or an empty
system [10]. A stable homogeneous saddle-point solution could only be found for the half-filled
case. Thus the following analysis is restricted to this interval of chemical potentials. Its width
is determined self-consistently and seen to decrease to zero as K → 0. The self-consistent
equations for q̃, q1, q2 and the Parisi parameter m [1] simplify in the T = 0 limit becoming

q̃ = q1 = 1, lim
T→0

q̃ − q1
T

= χ̄, q2 =

∫ ∞
−∞

dz
√

2π
e−

(z−H/
√
q2)2

2

[
d(z)− d(−z)

d(z) + d(−z)

]2

, (6)

0 = 1− q2
2 −

4

a

∫ ∞
−∞

dz
√

2π
e−

(H/
√
q2−z)2

2

{
−

1

a
ln

[
1

2
e

1
2a

2t(d(z) + d(−z))

]
+

+[(at+
√
q2z)d(z) + (at−

√
q2z)d(−z) +

√
8t/πe−

1
2a

2t− 1
2 q2z

2/t]/[d(z) + d(−z)]

}
, (7)

where t ≡ q1 − q2. For zero magnetic field one finds q2 = 0.476875, a = limT→0 m
′(T =

0) = 1.36104, and χ̄ = limT→0(q̃ − q1)/T = 0.239449. The H-dependent solutions shown
in fig. 1 are obtained numerically and then used in evaluating eq. (4) for the density of
states. T = 0 results are shown in figs. 2 and 3, while the result at finite low temperature of
fig. 4 illustrates the presence of plateaus of constant slope, each corresponding to Parisi order
parameter separations (here: q̃−q1 and q1−q2). The number of these plateaus of constant slope
increases with the order K of Parisi-RPSB. Hence, the time dependence of the Green’s function
should characteristically depend on the order parameter separations qk − qk−1. If we compare
with the replica-symmetric result a reduction of the gapwidth is observed. Analytically one
finds a gapwidth

Eg(H) = χ̄ = lim
T→0

β(q̃ − q1) (8)

which turns into limT→0(β(q̃ − q(1))) in terms of the Parisi function at K = ∞. Only at
zero RPSB this susceptibility coincides with the equilibrium χ. In fact for 1-step RPSB the
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Fig. 3. – Effect of one-step replica symmetry breaking on the fermionic density of states (DoS) for
magnetic fields H = 0 (curve c: 1RPSB, a: 0RPSB) and H/J = 0.6 (d: 1RPSB, b: 0RPSB).

Fig. 4. – Low- but finite-temperature (T = 0.01J) form of the zero-field DoS in 1-step RPSB.

fermionic Ising spin glass approaches χ = β(q̃− q1) +βm(q1− q2)→ 0.95, the same numerical
value as the one for the SK model. While the 1-step RPSB provides already a much better
approximation than 0-RPSB it is still unstable towards higher RPSB. We have, therefore,
extended given equations to arbitrary K. Apart from the K-invariant relation Eg(H) = χ̄ we
find a second invariant with respect to K-th RPSB, including K =∞, which is given by

lim
|E|↓Eg(H)

ρσ(E) =
1

2
χ̄ =

1

2
Eg(H) . (9)

The invariant ratio 1/2 is seen analytically by comparing the formulae for the gapwidth and
for ρ(|E| = Eg + 0) (both generalized to arbitrary K) in the T → 0 limit. For each given
K, (half) the gapwidth equals the fermionic nonequilibrium susceptibility χ̄, which turns
into χ̄ = β(q̃ − q(1)) differing only by exponentially small terms from the SK model result
χ̄ = β(1− q(1)) ∼ T [2], where q(1) denotes the Parisi function q(x) at x = 1. Consequently
the DoS hardgaps at finite K terminate in a softgap for K → ∞. Note that we did not
have to evaluate the T = 0 Parisi function q(x) in order to reach this conclusion. Assuming
that the relation between gapwidth and χ̄ remains valid (at least in good approximation) for
short-range models, fluctuation effects should harden the gap. This requires further analysis.

A quantity of particular interest in many-body theories is the Ward identity for charge
conservation. It shows that Parisi symmetry breaking, as observed in the density of states,
exists also in vertex functions. The Ward identity for the insulating model can be viewed
as one of a metallic spin glass at momentum transfer k = 0, i.e. iωΛn(k = 0, ε + ω, ε) =
G(ε + ω) − G(ε) (fermion momenta suppressed). Λn is the Fourier transformed three-point

function 〈Tτ [a†i (τ)ai′(τ
′)n̂j(0)]〉 in terms of the fermion operators. Thus the density part Λn

in the Ward identity (a current part Λj emerges for itinerant models and k 6= 0) obeys

lim
ω→0

ω lim
k→0

ΛARn (k, ε+ ω, ε) = 2πiρ(ε, {qr − qr−1}) (10)

and thus shows that the Parisi form of the DoS, depending on all qr − qr−1 or on q(x) for
K = ∞, also enters the vertex function. This will also occur in metallic spin glasses, whence
diffusive modes and conductivity are expected to depend on Parisi symmetry breaking. While
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we have proved the existence of a spin-glass hardgap at any finite K > 0 with

δρ(E) ∼ |E − w(H)|, [|E| & χ̄, K <∞], ρ(E) ∼ |E|x, [K =∞] (11)

the pseudogap solution at K = ∞ has a scaling exponent x, which could eventually become
different from one and remains to be determined. This pseudogap together with x = 1 would
be slightly reminiscent of the exponent found for a superconducting glass unitary nonlinear
sigma model [11]. We remark that the pseudogap solution given for the fermionic spin glass
model refers precisely to µ = 0 whereas the hardgap solutions at finite K happened to be stable
within finite intervals |µ| ≤ χ̄/2 corresponding to half-filling only at T = 0. The regime beyond
half-filling, identified as the domain of phase separation in the replica-symmetric solution [10],
requires further analysis at T = 0 as well as several metallic, Kondo-type, superconducting,
and other model extensions. We hope that the new method of Fourier transformations in
replica space [12] will facilitate further insight into the difficult K =∞ solutions.

We note that an overlap distribution function for data clustering shown in [13] and in-
terpreted as a pseudo T = 0 problem in a classical spin analogy, revealed, apart from the
ratio discussed in eq. (9), a remarkable similarity with the H = 0 density of states. It appears
interesting to explore pseudo T = 0 neural-network problems [14] as potential classical partners
of fermionic spin glasses.

Summarizing our results we proved i) replica permutation symmetry breaking to be most
important in the T = 0 quantum-field theory of the fermionic spin glass, ii) that low-energy
excitations are determined by RPSB and hence the long-time quantum-dynamical behaviour
of the fermion Green’s function carries RPSB fingerprints, which iii) affects higher-order
correlations by means of charge conservation too.
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