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We consider a model of N species of electrons in a random potential interacting via a short-range

repulsive interaction. We study the N = 00 limit and the 1/N expansion to the leading order in 1/N.
After renormalizing the theory, we find that there are three coupling constants in this problem: (i) a

coupling constant with the dimensions of the resistivity, (ii) the coupling for electron-electron

scattering, and (iii) the coupling strength between diffusive modes and density fluctuations. The
renormalization-group equations are presented. In 2+m dimensions the Anderson fixed point of the

noninteracting theory is shown to belong to a line of unstable fixed points. A new ("interacting")

fixed point is found. At the transition we find that, to leading order in 1/N, (a) the exponent v of
the localization length is the same as in the noninteracting theory, (b) the dc conductivity vanishes at

the mobility edge with an exponent s =—„,(c) the density of states at the Fermi surface vanishes at

the mobility edge with an exponent 5= —,~, (d) the mean free time r at the Fermi surface vanishes at

the mobility edge with an exponent g= —„,(e) the Fermi velocity diverges at the mobility edge with

an exponent p= », and (f) the diffusive modes acquire wave-function renormalization and the

anomalous dimension g is (to leading order) equal to e/34.

I. INTRODUCTION

The physics of disordered metals is a difficult problem
that has attracted great attention in the past years. The
problem of localization of states in a noninteracting elec-

tronic system was first studied by Anderson. ' Using scal-

ing ideas, it has been realized by Abrahams et al. that a
two-dimensional dirty "conductor" cannot sustain a static
conductivity no matter how weak the disorder is. Thus
the lower critical dimension for localization is 2. This re-

sult follows from the infrared (logarithmic) divergent na-

ture of the maximally crossed graphs of Langer and Neal

in two dimensions.
Altshuler et al. have recently found that an electron's

correlation effects can also lead to logarithmic divergen-
cies in physical quantities in two dimensions. In particu-
lar, they considered a subset of diagrams, not of the
Langer and Neal form, which also lead to logarithmically
divergent contributions to the conductivity. Furthermore,
Altshuler et al. calculated corrections to the density of
states and found a logarithmically divergent contribution
at the Fermi surface.

A scaling study in three dimensions which combines
both localization and correlation effects has been per-
formed by McMillan. He suggests the existence of a non-
trivial "interacting" fixed point which governs the critical
behavior of a system with long-range (Coulomb) forces.
He argues that interaction effects are relevant near the
Anderson fixed point and hence the pure Anderson transi-
tion would not be observable. He further finds a vanish-

ing of the density of states (at the Fermi surface) at the
transition point and incomplete screening.

The purpose of this paper is to perform a systematic
renormalization-group (RG) study of the critical behavior
of an interacting disordered electron gas. We consider the
somewhat simpler problem of short-range interactions.
(The problem of long-range interactions will be the subject
of a future publication. ) In order to have a
renormalization-group approach, a consistent perturbative
scheme is needed. In previous studies, like in the work of
Langer and Neal, the logarithmically divergent terms
were found to be of the order of 1/(kF I) (I being the mean
free path and kF the Fermi momentum).

An alternative approach to the localization problem
(noninteracting) has been considered by Wegner. He
studied an Anderson model with N orbitals per site in the
limit N~ 00. Oppermann and Wegner considered the
1/N expansion of this model. They found that at N = 0e

the system is just a weakly disordered metal and no local-
ized states are found. To the order 1/N the equivalent of
the cross-ladder graphs of Langer and Neal are generated.
The 1/N expansion thus organizes the contributions by
their degree of infrared divergence.

In this paper we generalize this model to include in-
teractions and perform a 1/N expansion. Oppermann
has considered a similar model. The advantages of the
1/N expansion are the following.

(i) It gets the right limits at N = 0o. It reproduces the
results of the Hartree approximation (for the one-particle
Green's functions) and the random-phase approximation
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(c) The coupling constant z between diffusive modes and
density fluctuations,
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where p is the bare density of states at the Fermi surface
(at N = co), D is the "diffusion constant" (i.e., the coeffi-
cient of q in the diffusive propagator), A,o is the inverse
interaction range, and g++, g+, g +, and g are the
coupling constants. In the unperturbed theory the cou-

pling constants (1.2) and (1.3} coincide. Fluctuation ef-
fix:ts reveal their distinct physical role.

Dimensionally, x scales like E, ' (e=d —2) while y
and z are dimensionless in all dimensions, where E, is a
bandwidth cutoff. The logarithmic infrared divergencies
in d =2 can be traced back to the dimensionless character
of x in d =2. The dimensionless nature of y and z pro-
duces, as we will see below, marginal instability of the An-
derson fixed point in some direction.

We briefly summarize here the main results of this pa-
per:

(i) In 2+e dimensions the phase diagram has, at least,
two phases: (a) a disordered interacting metallic phase
and (b) an interacting insulating phase. In two dimensions

(RPA) (for the two-particle Green's function) in the zero-
disorder limit. Also, as shown by Wegner, it reduces to
the coherent-potential approximation (CPA} in the nonin-

teracting limit. The one-particle Green's functions are
damped and the mean free path is finite.

(ii) When interactions are present, the 1/N expansion
also organizes the diagrams by their degree of infrared

divergence, thus providing a natural expansion parameter.
A further advantage of this model is that conservation
laws and the Ward identities that follow from them are
automatically satisfied order by order in 1/N.

The 1/N expansion is found to have infrared-divergent
contributions to every order in 1/N. The theory has to be
renormalized in order to control these divergencies. We
find that, in addition to the renormalization of the dif-
fusion constant, it is also necessary to renormalize (a) the

Fermi fields, (b) the mean free time, (c) the Fermi velocity,
and (d) the "wave function" of the diffusive modes. Using
the renormalization group an invariant theory is built and
a 2+ a expansion is obtained.

In this system there is a set of three parameters which
determine the critical behavior:

(a) A parameter x,

X = 1 (1.1)
2m.pD

proportional to the inverse of the coefficient of q in the
diffusive propagator. While x has dimensions of resis-
tance, it is not the macroscopic resistance. In fact, the
macroscopic resistance is not coupled to a local operator
in the interacting theory.

(b) The coupling constant y between electrons (or holes)
and the density fluctuations,

II. THE MODEL AND ITS N = 00 LIMIT

A. The model

We consider a model system of a disordered electron gas
with N species of electrons interacting via short-range, in-
stantaneous repulsive interactions. The Hamiltonian is (in
d-space dimensions)

P

H= fdx 1t~(x) V P~(x )
2m

~p(x)+ g~(x)Pp(x)
N

+ f d~x f d~y g P (x)ggy)U(x —y)fgy)f (x),

~,P= 1, . . . , N (2.1)

only the insulating phase is present and the system is
asymptotically free at short distances.

(ii) The Anderson fixed point is shown to belong to a
line of unstable fixed points. A new "interacting" fixed
point is found.

(iii) The exponent v of the localization length is found
to be the equal to 1/e (to order 1/N) as in the noninteract-
ing theory.

(iv} The exponent s of the dc conductivity is —,', .
(v) The density of states at the Fermi surface is found to

vanish, at the mobility edge, with an exponent 5= » . The
density of states near the Fermi surface at the mobility
edge is found to behave like

~

E/E'
~

with 8=@/17.
(vi) The mean free time r acquires singular behavior

near the edge. We find that r, at the edge and near the
Fermi surface, vanishes like ~E/E'

~

with A, =7e/34
Near the mobility edge, at the Fermi surface, we find that
~ vanishes with an exponent g= —„.

(vii) The (Fermi) velocity, at the Fermi surface, diverges
as the mobility edge is crossed with an exponent p= —,',

while the velocity near the Fermi surface diverges at the
edge like

~

E/E" ~, where cr = „e. —
(viii} The diffusive modes acquire a nontrivial

anomalous dimension exponent i}=e/34. In terms of rl
the diffusive modes behave, at zero momentum, like

Ks '(cg))- iso/co
~

"Ks '(cu') .

(ix) An energy scale Eo is found to exist in the insulat-

ing phase. We argue that this scale controls the crossover
from critical-to-localized behavior. For d y 2, Ep diverges
near the transition with an exponent equal to 2/e. In two
dimensions Ep diverges with an essential singularity as
dictated by asymptotic freedom.

The paper is organized as follows. In Sec. II we present
the model and solve its N = oo limit. The 1/N expansion
is developed in Sec. III. In Sec. IV the theory is renormal-
ized. The renormalization-group equations are derived in
Sec. V where we present the phase diagram and the scaling
properties of the system are found. Section VI is devoted
to the conclusions.
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FIG. l. Ia) Elementary impurity scattering process. (b) Ele-

mentary electron-electron interaction.

(repeated indices are summed). In formula {2.1) g (x)
stands for the electronic Fermi field and a labels the

species. The local random potential f II(x) is a random

Gaussian variable with

(f p(x)f,p{x'))=5'dI(x —x')M(5~~5pp+5 p5p ),
(2.2)

(f.,(x))=0.
Note that, a factor of 1/v N has been pulled out in order

to make the N —+oo limit finite. This will be discussed

below. The interaction coupling constant is given by g
(note the factor of 1/N} and the short-range potential

U(x) is equal to

d

(2m. ) p +Ao

where Q ' is the range of the interaction. The Green's
functions of this system can be calculated in a double ex-

pansion in powers of the coupling constant g and the
width of the distribution M. We are interested in averages
of Green's functions. They are obtained by averaging each
Feynman graph independently. ~'

The basic processes are shown in Figs. 1(a) and 1(b).
The electrons may scatter elastically off the impurities
[Fig. 1(a)] or off each other [Fig. 1(b)]. Impurity averag-
ing leads to an effective scattering between electrons
shown in Figs. 2(a} and 2(b). Note that these two process-
es have in principle different strengths. However, in this
model the scattering matrix elements fbi( x) are taken to
be real and the Hermiticity of the Hamiltonian implies

FIG. 3. Typical low-order contributions to the one-particle
Green's function.

tllat botll proccsscs have thc same wclgllt M/N For a.
more general case see the work of Wegner, Opperrnann

and %egner, and Oppermann.
A typical set of low-order diagrams for the one-particle

Green's function is shown in Figs. 3(a)—3(f). Diagrams
3(a) and 3(b) are the standard low-order self-energy correc-
tion to the one-particle Green's function. Figures 3(c) and
3(d) show two corrections to the self-energy in which both
disorder and interactions are present.

B. The X~ 00 limit

Let us consider first the graphs without interaction in-
sertions and in particular let us focus on their N depen-
dence. As discussed by Wegner, graph 3(d) is of the order
of (M/N)N: M, since there is—an internal sum over the
index a. In contrast, diagram 3(e) has no internal sum
since the indices a and P must be equal because
60~{x,y)=GO(x, y)5 ~. This diagram 3(e} is of the order
of M/N. Diagram 3(f) is of the order of (M/N} .

The "rainbow graph" (Fig. 4), however, which contains
k crosses, is of the order of (M/N) N =M . Thus at
N = ao the one-particle Green's functions, in the nonin-

teracting case, contain all possible rainbows. In the oppo-
site limit, f~~(x)=0 (no disorder), the N = no limit is
equivalent to the Hartree approximation to the one-
particle Green's functions. Every internal loop (in the ab-
sence of disorder) carries a factor of N and energy interac-
tion line a factor of (g/N)U(x, y). Thus at N = oo the

FIG. 2. Two processes involved in impurity averaging. FIG. 4. Rainbow graph.
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FIG. 5. Self-energy &„.
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FIG. 7. Integral equation (2.9).

only surviving graphs are those with an arbitrary number
of tadpole insertions.

l. One par-ticle Green's function

Let us consider now the general case g&0, M&0. At
N = oo the average one-particle Green's function, in the
noninteracting limit, satisfies the Dyson equation,

G (x,y}=Go(x,y)+M f dz Go(x ~,z)G (z,z)G „(z,y),

(2.4)

5X=MgnU(0)p„(EF) f de[G+„(e,co)] . (2.8)

The integral is equal to zero since both poles are on the
same side of the cut in the complex plane. If this pro-
cedure is not adopted, then Fig. 6 does give a real contri-
bution. But this can again be absorbed by a shift in the
chemical potential. Thus by redefining the chemical po-
tential, the total one-particle Green's function g„of the
interacting system is equal to that of the noninteracting
system G„,Eq. (2.5).

where we have dropped the species indices since the aver-
age G's are diagonal. In Fourier space (2.4) leads to a
one-particle Green's function equal to '

2. Two particle-Green 's functions:
the diffusive mode K~tttt~ (Ref. 6)

G „(p,co) =co—Ep(p)+)tc+i
—1 . Sgnco

2v

where the mean free time r is given by

—=2m p(EF )M,
1

(2.5)

At N = oo the only contributions to the diffusive modes
[Fig. 2(a)] are those of the noninteracting theory. The
two-particle Green's function E "~p obeys the equation
(Fig. 7}

K =—+M f G„(k+p,co+Q)G„(k,Q) K,
k

g „'(p, co) =G „'(p, co) -&„(p, co), (2.6)

where the contribution to self-energy X„(p, co} is shown in

Fig. 5. This self-energy is a real constant and so its effect
is just to shift the chemical potential.

A priori there are other contributions to the self-energy
like the graph shown in Fig. 6. However, their contribu-
tion is zero if the standard procedure9" of approximating
momentum integrations by energy integrations times the
density of states at the Fermi surface p„(EF) is used. For
example, the graph in Fig. 6 implies

5X= f G+„(p q, co)G+(—p qc—o)M,gnU(0}, (2.7)
q

where G+ is the Green's function above the cut (co &0)
and n is the average particle density. The standard pro-
cedure approximates this as

p(EF) being the density of states at the Fermi surface in
the N = Oo limit. In Eq. (2.5), p, the chemical potential,
has already absorbed an infinite shift.

Using this Green's function, which we denote hereafter
with a thin line, we can derive a Dyson equation for the
one-particle Green s function g„(p,co) in the interacting
case at N = 00. The Dyson equation is Kapp (p, Q)=

N ' (2.10a)

K~tttt (p, Q)= (2.10b)Nr Dp i ~Q~

where E+-+-indicates that both electronic lines are on the
same side of the cut and E+-+ indicates that they are on
opposite sides of the cut. In Eq. (2.10b) D is the diffusion
constant, which to this order is equal to

2
VF7D=
d

(2.11)

(vF is the Fermi velocity). The pole at small p and Q in
(2.10b) reflects the diffusive behavior of the system at
N= oc. The conductivity is related to the diffusion con-
stant by the Einstein relation

dn0.= D
Bp

(2.12)

(we have set e /%=1). In this system dn/dp=p (EF).
Thus there is no localization (near EF) at N = oo.

(2.9)

where we have dropped the indices. Thus at N = oo it
reduces to the ladder approximation. The solution to Eq.
(2.9) is

\ I

FIG. 6. A contribution to the real part of the self-energy.

3. The vertex function I'

The interaction vertex I obeys the Dyson equation (Fig.
8),
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u~
l'i .

a~
FIG. 9. Effective interaction at N = ~.

FIG. 8. Vertex function I at N = oo.

r

I =1+M G„k+q co+0 G„k,A I
k

(2.13)

where 5n is the impurity-averaged change in density due
to a potential disturbance 5P. The retarded density corre-
lation function H is related to the time-ordered polariza-
tion II by'2

The solution to (2.13) is

I++=&,

I aa
r(Dq' i

l

Q—
l

)

(2.14a)

(2.14b)

ReH=ReH,

ImH =(sgnco)imH . (2.22)

For a static potential 5P is equivalent to a change in the
chemical potential 5p, = —5P, hence'

4. Effectiue interaction

The effective interaction potential at N = DD, U„(p, to),
is found to satisfy the RPA. The Dyson equation is (Fig.
9)

„(p,Oo ) = U(p, to)+gU(p, to)II „(p,to)U„(p, co),

(2.15)

where the polarization bubble is

(2.23)

2

U„(p,co) =—
i 1+ (A, /Ao —1)

go t to
(2.24)

II(p 0 0)=-
Op

For finite N, Bn/Bp no longer equals p„but the differ-
ence is finite and nonsingular. In the next section we will

see that indeed the 1/N correction to H(p~0, 0) is non-

divergent. Nevertheless, there will be important correc-
tions to U(p, co) to order 1/N. Let us expand U„ in the
limit Dp « lto l; we have

dn d'q
H„(p,co)= —i J J d G„(p+q, to+Q)

(2tr)
The coefficient of Dp /i

l
to l, which will henceforth be

called v, is equal to ~ /~o —1, at N = co. This will no
longer be true for finite N.

Thus at N = oo we find a weakly disordered metal. The
quasiparticles have a finite lifetime r, the two-particle
Green s functions exhibit diffusive behavior, and the sys-

tem conducts. The electrons interact via the bare g/ko po-
tential in the dynamic limit (p~0) and via the "screened"

g/A, potential in the static limit (co—+0). There is no tran-

sition at N = 0o between metallic and insulating behavior,

a result already found by Wegner in the noninteracting

theory.
We will use this N = 0o limit as the starting point for an

expansion around a metallic phase. Technically, this will

be done in the following sections by means of a 1/N ex-

pansion. It should be noted that this 1/N expansion, as in

the noninteracting case, is of a very different nature from
the 1/N expansion in 0(N) symmetric ferromagnets. In
that case there is a transition at N = oo and its character
changes smoothly, in a calculable way, for large N. This
is not the case here. The theory is finite at N = oo and
divergencies appear at finite N. Thus a renormalization
procedure will be needed. As a matter of fact, the 1/N ex-

pansion for the model we are studying is close in spirit to
the loop expansion around the broken-symmetry phase in

ferromagnets. '

XG (q, Q)I (p, co+Q, Q) .

(2.16)

The result is

~2
H„(p, )= —p„(E )

Dp' —t
I
~

I

The effective interaction at N = Do is then

(2.17)

( )
U(p, to)

1 —gII „(p, co) U( p, co)
(2.18)

For p, co small we find

2

U„(p,co) =
Dp —i(t(,0/l, ) leo l

(2.19)

with A, equal to

(2.20)A, =A,o+gp „(EF) .

III. THE 1/X EXPANSION

In the preceding section we discussed the properties of
the model in the limit N~ oo. It was shown that so far as

In the limit p ~0 (to finite) we recover the unperturbed re-

sult U„(p,co)-lo . In the opposite limit (to~0, p fin-
ite) we get U (p, co)-A,

In fact, this relation between the two limits (i.e.,
A. =Ao+g„C„) is expected to hold even for finite N To.
see this, we note that it is really —H(p~O, co=0) that
enters in Eq. (2.20). From linear response,

5n (p, co) =H(p, to)5$(p, co), (2.21)



28 LOCALIZATION AND INTERACTIONS IN A DISORDERED. . . 2995

//I

V/////

(b)

~O p~O-
I

I i

FIG. 11. Another way of drawing Fig. 10(a).

I I
r

(c)

FIG. 10. 1/N contributions to the one-particle Green's func-
tion.

N = oo the system is just a weakly disordered metal. In
this section we perform a 1/N expansion for the Green's
functions. We are going to see that the 1/N corrections
alter in a rather profound way the physics of this problem.
Since in the N = 00 limit the system is a weakly disordered
metal, the 1/N expansion is a natural tool to investigate
the stability of this state.

A. One-particle Green's function

In Fig. 10 we present all the contributions to the one-
particle Green's function to order 1/N. The shaded boxes
and triangles of Fig. 10 represent the N = oo two-particle
Green's function of Fig. 7 and the N = ao vertex of Fig. 8,
respectively. The wavy lines are the full N = (x) effective
interaction U„. A more direct way of drawing Fig. 10(a)
is shown in Fig. 11 [there is an analogous representation
of Fig. 10(b)].

From the graphs shown in Fig. 10 only 10(c) and 10(d)
are infrared divergent in two dimensions. Hence the con-
tributions of 10(a) and 10(b) will be dropped.

Diagram 10(c) has a contribution equal to, for e & 0,

5X =~[6„(p,e)]J, J [I „(k,Q)]'G„(p —k, e —Q)U„(k,Q),
(2n. )'

(3.1}

where I'„(k,Q} is given in Eqs. (2.14a) (e—Q &0}and (2.14b} (e—Q &0). This graph has been calculated by Altshuler

et al. who found a logarithmic infrared divergence when e Q&0. By ke—eping all divergent contributions, one finds in

Fig. 10(c)

ln( k'/A, o)
5Xi —— G" (p, e)

N& 8' D A,o/A, —1

—ln
E

ig Ec [G —(p e)] p „e e
NX2 8 D 2mD m

(3.2)

where the ellipsis indicates finite terms and where we have introduced a bandwidth cutoff E, . In (3.2) G+ (G") is the
N = oo, retarded (advanced) one-particle Green's function.

Graph 10(d) gives a contribution to the one-particle Green's function equal to (e & 0)

d2
5X2——M f [G+(p,e)] 5Xi .

(2ir)

An explicit calculation yields [Fig. 10(d)]

(3.3}

g ln(A, /A, o)
ln8' D NA. r (A,o/A. ) —1

E'

E
3gp 1 e

min
NA, 8m' pD Ec

(3.4)

We can summarize results (3.2) and (3.4) by writing the bare one-particle irreducible two-point function Gs (p, e) as

Gs '(p, e)=G„'(p,e) —X(p, e) .

The result is

(3.5)

Gs (p, e)= e 1— 1 1

mN 2mpD

—[«P) V]

pg+ 1n(A, /1(,0) 5 pg+
(X'Iz', )—1 4

pg+ ln(A, /A, o)

mN 2mpD &02 (gi/go~) —1 E,

pg+ in(A, /A, o)1— ln
2r nN 2mpD &02 (g2/goz) —1 E,

(3.6)
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/////I,
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(0)

I ~/I/////3 1
//II'
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1 r////////// J

(c)

FIG. 12. 1/N noninteracting contributions to K+
I

(c)

++ ++

//I „/Ii

where we have set p=p„(EF) and we have introduced a
coupling constant g+ for the processes between electrons
with positive and negative frequencies. At this level

g++ ——g+ ——g. But as we are going to show below, these
two coupling constants renormalize differently. We are
only anticipating this result.

A glance at Eq. (3.6) reveals the presence of an
infrared-divergent renormalization of the mean free time

In fact, Eq. (3.6) suggests that, at the fixed point, r
should go to zero. This result is new and is a consequence
of diagram 10(d). Notice that this diagram could have
been dropped in a naive expansion (it contains "more dis-
order") even though it has the same degree of infrared
divergence as diagram 10(c}. It is an important property
of the 1/N expansion that all diagrams with the same de
gree of infrared diuergence appear in the same order in
1/N. This property holds for all the operators that we
have studied to low orders in 1/N. We conjecture that
this may be a property of this expansion to all orders in
1/N. In this sense the 1/N expansion is consistent.

The vanishing of ~, and hence of the mean free path,
implies that the two-point function decays, in real space,
over a distance comparable with the cutoff. Thus the
memory of the phase of the one-body wave functions is
lost on a distance of the order of the lattice spacing.
Wegner, in his original paper on the ¹ rbital model, in-

troduced a model which had this property built in as a
consequence of a local gauge invariance. Interaction ef-
fects force this property on us instead. The vanishing of
the mean free path can be understood on physical grounds
if we recall that each impurity, even if it is pointlike at the
bare level, acquires an "electronic cloud" arising from
correlation effects. The average distance a dressed elec-
tron has to travel between two impurity scatterings is,
hence, reduced. Equation (3.6) says that this distance has
to go to zero at the fixed point.

FIG. 13. Interaction contributions to the diffusive mode.
Four extra graphs are obtained by exchanging the top and bot-
tom lines.

B. Two-particle Green's function E+pp

X Dq ln
2~ 2~pD DP (3.7)

where we have introduced a high momentum transfer cut-
off A. Dimensionally we can use either DA or the band-
width cutoff E, . Both schemes differ only by finite con-
tributions.

Next we have to consider the effects due to both in-

teractions and disorder. They are presented in the dia-

grams of Fig. 13. Their total contribution is

1 M 1

N Nr(Dq 2 iQ) D—q iQ—
where X is given by

(3.&)

The Feynman diagrams that contribute, to order 1/N,
to the two-particle Green's function K+ttti (i.e., the dif-
fusive mode} are depicted in Fig. 12.

Diagrams 12(a)—12(c) represent the 1/N contribution of
the noninteracting sector of the theory and correspond to
the insertion of maximally crossed ladders, in the language
of Abrahams et al. Within the present context these dia-
grams were considered by Opperm ann and Wegner.
Their contribution to E~plj is

1 M 1

N Nr(Dq —iQ} Dq &Q—

pg++ ln(A, /A, o)+ 2 2 ( —Dq —i Q)ln
2~ 2~pD Ao (A, Ik,o) —1 DA

X= 1 Pg+ 1n(A. /)(, o)
~
e

~ ~
e+Q

~

2 2 (Dq i Q) ln +—ln
4~ 2~pD a,' (a'Ia', ) —1 E,

+ 2
(e+Q)ln —eln

i 1 pR+— E'+ 0 E'

4n 2npD C C

pg++
( Q) 1

&+Q
4~ 2~pD P Ee Ee DA

1 1 pg++ 1 li, ln(~ /~0)
d 1

~Q~

~ 2~pD Aii (A2/Ao) —1 Ao (A. IAO —1) DA
(3.9)
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c+Q
+

+

(a) (b)

FIG. 14. A contribution which does not conserve the energy
of each line separately.

The last three terms in (3.9) have been computed in the
limit Dq &&0, the dynamic regime.

The contribution of Eq. (3.7) is of course the same one

that lead Abrahams et al. to their P function. It has been

argued by a number of authors, notably by Wegner, '

Khmelnitzkii, ' Houghton et al. ,
' McKane and Stone, '

and Hikami, ' that, in the noninteracting case, it is only

necessary to renormalize the diffusion constant and that
there is no wave-function renormalization of the diffusive

mode K+ . The form of Eq. (3.9) clearly shows that this
result is not valid when interactions are present.

All the graphs shown in Figs. 12 and 13 have the prop-
erty that the energy of each electronic line is separately
conserved. This is a property that cannot be maintained
in an interacting theory. In fact there are contributions to
K+ that violate this property. One such graph is shown
in Fig. 14. These graphs change the nature of the scatter-

ing process. To order 1/N they can be ignored in E+
To next order in 1/N one would have to worry about re-

normalizing these new terms. We will not consider this
problem here. It is important to note, however, that even

I

(c)

FIG. 15. 1//N corrections to the I + vertex.

though graph 14 is not important in E+ (to order 1/N}
it is important in the vertex functions.

C. Vertex corrections

At N = oo we showed that two vertex functions, namely
I ++ and I +, appear naturally. The coupling was, how-

ever, identical for both processes. This property of the
N =co theory is already lost at the level of the 1/N
corrections.

1. The I + vertex

The (infrared-divergent) 1/N corrections to the I +

vertex are shown in Fig. 15. The bare I + vertex is, om-
itting the diffusive factor,

')/pg+

A.
2

Pg++
11+ ln

N 2~PD A.
2 DA2

—1 1 p
k2

+ Qg++g+ ln Q+ (e+ II ) 1— 0

2~N 2~PD A,
2 ++ +

Ago

+ln 0—e
A,

2
(3.10)

where e+ 0, & 0 and e & 0. The diagrams 15(a)—15(d) have
been evaluated in the limit of zero momentum transfer.
Notice that when writing (3.10) we have assumed a nor-
malization of I"+ which included the coupling constant

g+ . The diffusive factor, omitted in (3.10), renormalizes
like the diffusive mode K+

There are, of course, other diagrams which correspond
to building up the diffusive mode. The graphs we consid-
er are "one-particle irreducible" in the diffusive mode. In
a physical sense I + represents the coupling between the
diffusive mode and the "plasma oscillation" represented
by the wavy line.

2. The I ++ vertex

The 1/N corrections to the I ++ vertex can be computed in a similar fashion. The divergent contributions are shown

in Fig. 16. The total bare I ++ vertex, to order 1/N, is

)/Pg ++
i2

2 1 Pg+ »(~ /~o) 3 1 p — 0 Pg++
mN 2mpD $0~ g2/&02 —I 2mN2mpD g~ +.+ + E, g2 i'm ' (3.11)
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(a)

+
I

+
(c)

/

(e)

I

I

(1)

+

I

/ / /
I / g /

(g)

+

+
I

I

I

(b)

+

inant. Equation (3.11) in fact implies that the particle-
particle channel acquires a diffusive component. This re-
sult, which is a fluctuation effect, should be contrasted
with the one-particle theory in which the particle-particle
channel is always nondiffusive. This is closely connected
with the smoothness of the one-particle Green's function
in the noninteracting theory.

This, however, is not the end of the story. For the
theory to be renormalizable we must have a finite number
of relevant operators. Thus it becomes necessary to know
if more operators do not arise in higher orders in the 1/N
expansion.

We cannot answer this question within the framework
of this one-loop (i.e., 1/N) calculation. However, if one
assumes that the singularities in the electron self-energy
are of the form (Q/E, Pln'i(Q/E, ) and if one recalls the
Ward identity,

k 0 k 0
k I p+ —,co+ —;p——,co——2' 2

' 2' 2

=G p+ —,co+ ——G p ——,co ——k 0 i k 0
2' 2 2' 2

(3.13)

(m)

FIG. 16. 1/N corrections to the I ++ vertex. There are three
other graphs which are obtained by exchanging the top and bot-

tom lines in (a), (b), and (c).

(using the notation of Ref. 19), then one can readily con-
clude that the vertex function I ++ will always be of the
form C+A/iQ (in the zero momentum transfer limit)
with logarithmic renormalizations of the constants C and
A. Of course it remains to be shown that the electron
self-energy does have that singularity structure. A calcu-
lation to higher orders in 1/N becomes necessary. We will
not elaborate more about this here.

D. 1/N corrections to the effective potential

where

pg+ 1 in(A. /i(. o)

4~N Po 2mpD (Ai/Ao) 1 E

(3.12)

There are divergent contributions to the polarization
operator II, and hence to the potential, to order 1/N. The
relevant diagrams are obtained by closing the external legs
in the two-particle Green's function.

In the static limit (Dq »Q) the corrections to IIs are

Equation (3.11) is quite important. It says that in addition
to a coupling-constant renormalization, implied by the
brackets, the 1/N corrections have changed the nature of
the vertex: 1/Q term has been generated. The coefficient
A is finite. In the small-Q limit this term becomes dom-

I

iQ 1 1
ln

D 2 2mN 2mpD E,
(3.14)

where p = p„(EF).
In the dynamic limit (Dq « Q) the corrections have the

form

l
5mD ——P

Dq

1 1 Pg+ — 0 1 1 Pg++ 0
ln ln

2nN 2irpD g2 E, 2nrN 2mpD g E,

1 1 Q 1 1 Pg+»(~ /~o) Q 3 1 Pg++ 1n(A, '/A, ,')ln ln ln2nN2mpD E, '2mN 2irpD &02 (g2/&2O) 1 E, 2' 2irpD $02 (g2/goi) —1 E,
1n(A, /Ao)

nN 2npD $0
++

g2/A, —1 E,

1 1 Pg++
mN 2mpD

In(A, /A, o)1—
1 —A,o/A,

A, /Ao —1
ln—0

C

(3.15)
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Please note that 5II~O both if 0—+0 (q fixed) or q-0 (0
fixed). This result is a consequence of particle-number
conservation.

8 R
ReGR —

UF .
I p I =pF

(4.3c)

IV. RENORMALIZATION

In the preceding section we presented all the infrared-
divergent contributions that, in two dimensions, appear in
all physically relevant operators. In this section we will
construct a renormalization scheme that, to order 1/N,
will control the divergencies in all these operators.

In principle, in order to renormalize the theory we have
to define the coupling constants, Green's functions, etc. ,
for some value of momenta and frequency, i.e., we have to
choose the renormalization point. We choose to renormal-
ize the theory in the dy™r~g™(Dq« ~co ~) where
there is no screening. We are going to show below that
this procedure is consistent since a "screening parameter"
v can be introduced and it is irrelevant at the critical fixed
point.

In the noninteracting theories it has been shown'
that it is only necessary to renormalize the diffusion con-
stant (or rather a quantity proportional to its inverse) to
render the theory finite. However, the results of Sec. III
clearly show that this is not enough when interactions are
present.

Two more coupling constants need to be renormalized
as well as the incan free time ~, the Fermi velocity vF, and
the screening parameter v. Wave-function renormaliza-
tions of the one-particle Green's function and of the dif-
fusive mode are also necessary. To the leading order in
1/N this is all we need. It remains to be proved that this
procedure is consistent in higher orders in 1/N. We will
return to this point below.

A. Renormahzation of the fermion propagator

The one-particle Green's function requires a wave-
function renormalization Z~ of the Fermi field g, together
with a renormalization of the Fermi velocity vF and of the
mean free time r Specifica. lly, we define the renormal-
ized, and hence finite, electron propagator to be

The renormalized and bare values of the mean free time
and Fermi velocity are related through the renormaliza-
tion constants,

TR —TZgZQ
—1

R
UF =UFZ~ Zy .

(4.4a)

(4.4b)

The renonnalization of the mean free time is a conse-
quence of diagram 10(d).

By making explicit use of Eq. (3.6) one finds the follow-
ing expressions:

1 ln(1+v) 5 1 co
Zg ——1+ xz ln

mN v 4 1+v E,

(4.5a)

1 ln(1+v) coZ, = l+ xz ln
2 N E,

(4.5b)

1 ln(1+v) coZ„=l — xz ln"F (4.5c)

where we have introduced the (bare) parameters,

1

2m.pD
'

pg+-
z

Ap

Pg++
3' =

AQ

and

(4.6a)

(4.6b)

(4.6c)

v=
2

—1 .
A.Q

(4.6d)

Dimensionally, x scales like L (or co' ' ). Similarly
one can see that y and z are dimensionless in all dimen-
sions.

1G„'(p,~) =co E„(p)+pa—+
2%R

(4.1) B. Renormalization of the diffusive mode K+

Introducing the wave-function renormalization Z~ and
the renormalization constant Z, and Z„ for the mean free

UF

time and Fermi velocity, respectively, we can write

GR '( p, co) =ZgGs '( p, co) . (4.2)

Equations (4.1) and (4.2) imply the renormalization condi-
tions

It was mentioned at the beginning of this section that in
the noninteracting theory a renormalization of the dif-
fusion constant is enough to render the theory finite. In
fact it has been shown by the same authors, ' ' ' that in
the noninteracting theory there is no wave-function renor-
malization of the diffusive mode E+ . We have argued
in Scc. III B that this is no longer true when interactions
are taken into account.

Define a renormalized diffusive mode ER+

—1 l
ImGR ~=p

I v I=PF 27 R
(4.3a)

M 1
R

NTR DRq2 —iQ
(4.7)

ReGR ——1,
Bco

I p I =pF

Equation (4.7) is equivalent to the assumption that the me-
tallic phase is stable. Equation (4.7) implies the set of re-
normalization conditions,
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M 8 (~+ )
ZR BQ

(4.8a)

(4.8b)

This parameter DR should not be confused, however,
with the renormalized diffusion constant even though they
have the same dimension. The renormalized diffusion
constant, which is linked with the renormalized conduc-
tivity via the Einstein relation, is extracted from a
response function. When doing so one finds that there are
contributions not only from momenta and frequencies
such that ru/(Dq ) »1 but from other regimes too T.hese

I

contributions are sufficient to make our diffusion parame-
ter DR different from the diffusion constant. The same
comment applies for the dimensionless "resistance" x de-
fined below.

Two renormalization constants, ZD and Z~, are neces-
sary to make I( + finite:

E+ =Z ~ 'E+
R ~Q B (4.9a)

XR XZ yZ~Zg ZD Ec (4.9b)

where x is the dimensionless "resistance" and e=d —2.
The renormalization constants, to leading order in 1/N,
are given by

2 ln(1+ v} 1 xz xy ln(1+ v}
Z =1+ xz + +

mN v mN 1+v 2mN v

1 xy 0
4mN 1+v E,

(4.10a}

x xy ln(1+ v) xy 1+v xz ln(1+ v) fl
ln 1+v ~ ln

v 2m% v E,
(4.10b)

C. Renormalization of the vertices I ++ and I +

The vertices I ++ and I + can be made finite, to lead-

ing order in 1/N, by means of a multiplicative renormali-
zation of the coupling constants (pg++ )/Xo and

(pg+ )/A, o as follows:

2 —1
ya =yZ+y

—1 —2
zR ——zZ, Z~

i D
vR vZ v

DR
(4.13}

(4.11a) where Z„ is found to be, to leading order in I /N,

x 1 ln(1+ v) 3 ln(1+ v)+ XZ + Xy
2mN 2+N v 2' v

(4.11b)
v

The difference in the renormalization prescription for y
and z originates in the different physical character of both
coupling constants. While g++ measures the strength of
particle-particle (or hole-hole) scattering, the coupling con-
stant g+ measures the strength of the coupling between
the diffusive mode K+ and the density fluctuations.

Z„and Z, are equal to

1 ~ ln(1+v)
x yz

v

1 xz 1 xy
2mN 1+v 2' 1+v+

v+1
ln( 1+v) ln

0
v c

+ 1 xy 1—
nN v

We choose to renormalize the theory in the dynamic re-

gime (Dq «0). The renormalized and bare values of v

are related by

4 In(1+ v} 3 xv yz 0
Zy ——1+ xz + ln

-N ~ -N1+- '
E,

(4.12a)

(4.14)

V. RENORMALIZATION-GROUP EQUATIONS
AND SCALING

Z, =1+ +x yz
2 xy ~ ln(1+v) 0

ln
mN 1+v

'
E,

(4.12b)

D. Renormalization of the effective interaction

The divergencies found in II and hence in U (cf. Sec.
III D) can be absorbed by means of a multiplicative renor-
malization of the (dimensionless) "screening" parameter v.
In Sec. II we have shown that a multiplicative renormali-
zation of the polarization operator H, as suggested by
McMillan, is not possible since it is forbidden by conser-
vation laws.

The renormalization procedure developed in Sec. IV as-
sumes the stability of the metallic phase. In order to
check the validity of this assumption one must resort to
the renormalization group.

The renormalization-group procedure that we use re-
lates different bare theories at different values of the cut-
off keeping the renormalized theory fixed. This is a stan-
dard procedure that has been considerably discussed in the
literature' and we shall not elaborate on it.

A. Renormalization-group equations

From Eqs. (4.9b), (4.11a), (4.11b), and (4.13}we can ex-
tract the P functions,
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with similar definitions for p„, p„and p„. The subscript
R means that renormalized quantities are kept fixed as the

I

cutoff E, is changed. Please note that by dimensional

analysis it is always possible to change from a scheme
with a bandwidth cutoff E, to another one with momen-

tum transfer cutoff A.
The p functions are equal to

v+ 1 In(1+v)
ln co+1) +CX XP X+ +

2 2m% m'X v

ln(1+ v) 5 xyz 3 xyvyz
v 2~N (1+v) mN (1+v)

2
p~ = xyz

xyz 2 2xz 5 l 2 —ln(1+ v)+ +—ln(1+v) + -xzv'yz
&N (1+v) ~N 4(1+v) v mX V

xz 1

4nN (1+v} ' (5.2a)

(5.2b)

—3 ln(1+v)
mN 4(1+v)

5 In(1+ v) 1

4(1+v) 2v

1+v
I 1 ~ ln(1+v)
In 1+v —x yz

v V
(5.21)

These renormalization-group equations have to be solved
with the initial condition,

B. Solution of the renormalization-group equations (d p 2)

Pg
3'o =Zo =&o=

Ao
(S.3)

In order to solve the equations it is convenient to per-
form a change of variables. We define u and m as

Q =XZ, LU =X@' .

EX X XP XZ+ +
2 2m% 4m% 4~% '

XPZ 3

2m% mX
xy~yz,

(5.4a)

(5.4b)

The renormalization-group equations (5.2a)—(5.21) are
rather formidable. We will not attempt to solve them in
their full complexity. Instead we consider the somewhat
simpler limit of v small, an assumption that will be shown
to be consistent.

In the small-v limit, the renormalization-group equa-
tions take the following forms:

That this set of variables (i.e., x, u, and io) is na«r» can
be seen from the perturbative expressions of Sec. III.

The p functions, to order e, are

(5.7a)
2~% 4~% 4~%

e xu 9uto 17u 2

2 4mN 2nN 4nN nN

v u 9
(5.4c} p„= x ——+—io —v uio

mE 4 4
(5.71)

(5.41)

In addition to a renormalization of x, y, z, and v it is also
necessary to tenormalize the diffusion time r and the Fer-
nu velocity vp [cf. Eqs. (4Aa) and (4.4b}].

They obey the renormalization-group equations,

with the initial condition uo ——too. Thus if v is small the
RG equation for v decouples from the other three vari-
ables.

When u =m =v=0 these equations reduce to

p„=——x+
2 2m%

'

and

~ InzuF 8 InZp

8 InE, 8 lnE,
(5.Sb)

equation of the noninteg rating
15—19

We now look for the fixed points of (5.'7). They ate
(d & 2) as follows.

(i} Trt Ulai fixed point. x =u = io =0. It ls stable
(ii) Critical fixed point x' =to" =0., u' =(2mNe) j17.
The linearized RG equations are
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7t NG&

f fixed points

w

FIG. 17. RG flow in the basal plane u =0.

2~NB f 17
(C t

x u=w(plane)

x

Anderson)

p„=—u'+
2

p~: i7 ex +

(5.9a)

(5.9b)

p„=— v+
34

(5.9c)

(5.9d)

FIG. 18. Renormalization-group flows. The critical surface,

the initial u =w plane, the separatrix, and the Anderson and

critical fixed points are shown.

where x'=x, w'=w, and u'=u*+u. Thus it has one
relevant eigenvalue (+e/2) and two irrelevant ones.
Hence it is, in fact, a critical fixed point. In addition, the
departure from v=O is irreleuant as shown in (5.9d).

(iii) A line of unstable fixed points. It lies in the u =0
plane and ranges from the Anderson fixed point x' =m.Xe
and w' =0 to a fixed point at x =0, w* =2mNE.

The equation of this line is

NmNe=x+ —.
2

(5.10)

On the basal plane, u =0, the trajectories are straight
lines,

u) =kx, (5.1 1)

as can be found by inspection. The flow is shown in Fig.
17.

At the Anderson fixed point (w =O,x'=mNe) the cou-
pling constant u is marginally relevant,

17u

4 1V
(5.12)

P„=2( 1 c)eu +— (5.13)

where
i
c

i
& I and c =1 when w =0, and c = —1 when

x =0.
(iv) The line of fixed points of (iii) is unobservable with

the exception of the Anderson fixed point. The reason is
that the full flow of (5.7a)—(5.7d) is not physically
relevant but only that part which is accessible from the in-
itial condition,

QO=NO . (5.14)

There is a critical surface that stands on the line of un-
stable critical points and flows into the critical fixed point
of (iii).

The flow is shown in Fig. 18. The intersection of the

Everywhere else on the line of fixed points, the coupling
constant u is relevant,

plane u =w (the initial condition) with the critical surface

(i.e., the set of points that flow into the critical fixed

point) defines the separatrix which locates the phase tran-

sition. All points inside the separatrix (i.e., under the crit-
ical surface) flow into the trivial fixed point. They belong

to the metallic phase. All points outside the separatrix
(i.e., above the critical surface) flow in infinity. They thus

belong to the insulating (localized) phase of the theory.
(v) The "screening parameter" v is found to be irrelevant

at the critical fixed point,

E
v 34

(5.15)

Thus the assumption of v being small is consistent.

C. Exponent for the localization length (d & 2)

In Sec. V B we showed that, to order e, there is a critical
fixed point that controls the long-distance properties of
the theory. This fixed point was shown to have
two irreleuant directions [cf. Eqs. (5.9b) and (5.9c)] and a
releuant one [Eq. (5.9a)] with an eigenvalue equal to e/2.
This is precisely the same eigenvalue found in the nonin-
teracting theory at the Anderson fixed point (w =u =0,
x'=AN@) and it is consistent with Wegner's scaling argu-
ments. To leading order in e this result is then expected.
It is known, however, that in the noninteracting theory,
the two-loop contribution vanishes' and (perhaps) there
are no further corrections to the eigenvalue. It would then
be very interesting to perform a calculation of the RG
equations to the next order (i.e., 1/N ) and see if there is a
nonvanishing contribution to the eigenvalue due to in-
teraction effects. Since the eigenvalue is the same as in
the noninteracting theory, the localization length exponent
v (not to be confused with the screening parameter)
remains equal to 1/e.
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D. dc conductivity

The dc conductivity can be calculated using linear-
response theory. The Einstein relation, valid also when in-

tersections are present, reads

where the anomalous dimension y is given by (FP desig-
nates fixed point)

(5.23)

(5.16) Thus

Q

2N 17
(5.24}

Solving this equation, we get a connection between o(co) at
two values of the cutoff, E, and AE, (A. & 1), as follows:

crs(co, A,E, )A=as(co, E, ) . (5.25)

However,

CO

os(co, A,E, ) =o.s ,E, — (5.26)

Thus,

(5.27)os(co,E, }=A. 'os ,E, —
A.

' '

Choosing A, =co/co' & 1, with co' some fixed frequency, we
find

(5.28)os(co,E, ) = os(co*,E, ) .
1+v ln(1+ v)

1 1
os(co) =o „+o„

Nm v

Bn—0- D,
BJM

where D is the diffusion constant and n the particle densi-

ty. In the theory that we are presenting in this paper there
is a parameter, the coefficient of q in the diffusive mode,
which we have called D, stressing the fact that D, scales
like the diffusion constant. This parameter, however,
coincides with the actual diffusion constant, calculated
from linear-response theory, only in the noninteracting
case. When interactions are on, the diffusive mode
Ir'+ (q, co) is a nontrivial function of Dq /co. When one
renormalizes the theory one is forced to choose a renor-
malization point which in fact is a choice of the ratio
(Dq )/co In .this paper we have chosen to work in the
dynamical regime (Dq )/co «1 [as opposed to the static
regime (Dq )/co » I]. In the linear-response-theory calcu-
lation of D, and hence of o, all the regimes contribute
This is why, while our coefficient D and hence the cou-
pling constant x are local quantities, the actual diffusion
constant D is not. Indeed, a linear-response calculation of
cr, to leading order in 1/N, yields the result

ln(1+ v) x
1

co+ xz+
V 2mN E,

This equation implies that the conductivity, at the mobili-
ty edge, vanishes as a function of co with an exponent s
equal to y',

(5.17)

In the limit of small screening parameter, v~0, we find

crs(co, E, ) =const co',

where

(5.29)

1 CO

o(co) =o „+cr„(xz+x)ln"
2mN E,

(5.18)

E'

S Xo 17

We define the renormalized conductivity o R to be

&R &BZcr (5.19)

1 67—:1 — (u +x)ln
2~N

(5.20)

In the course of renormalization physical, i.e., renormal-
ized, quantities remain fixed. Thus we have

where Z, the renormalization constant for the conduc-
tivity, is equal to

Z =1— (xz+x}ln1 CO

2mN

to leading order in e.
We can also compute the behavior of the dc conductivi-

ty as the mobility edge is approached. The Callan-
Symanzik equation is

B BE, —P„ +y ere
——0, (5.30)

where we have kept the relevant operator u only. By solv-
ing this equation we get

B B y (u'}
od, (u) =aq, (uo)exp — du'

"0 P„(u')

O' R =0. (5.21) X4 lnE, +
II

(5.31)

E +y OB —0
B' BE,

(5.22)

This condition yields a Callan-Symanzik-type equation at
the fixed point

od, (b ) =const
~

b,
~

', (5.32)

where 4 is a dimensionless function and uo is the initial
iteration point. The singular part of 0.&, is then equal to
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where

and the exponent t is

ap„
Bu ge

Q 2
=VS

2~N e
(5.33)

where

5=ev= —.2
17

These results agree with the work of Altshuler et al. who
first suggested that, at the mobility edge, the density of
states may vanish as the Fermi surface is approached.

F. Scaling behavior of the mean free time
and the Fermi velocity

Explicitly we get t = —,'7 .

E. Scaling properties of the density of states
at the Fermi surface

The (renormalized) density of states NR (E), at energy E,
is related to the (renormalized) one-particle Green's func-
tion through the standard formula,

NR (E)=—Im GR ( r, r;E) . (5.34)

In Sec. IV A we saw that in order to control the infrared
divergencies that appear in the one-particle Green's func-

tion, to order 1/N, it is necessary to renormalize the wave

function as well as the Fermi velocity and the mean free
time. These local quantities acquire a scale dependence in

the process of renormalization. The density of states

NR(E) is not a local quantity. As a matter of fact, there

are contributions to NR(E) from energy scales both small
and large compared with 1/~. Thus a renormalization
prescription of the type presented in Sec. IV A, where we

set all energies to be either at the Fermi surface or much
closer to it than 1/s, is not appropriate for renormalizing
the density of states. The situation is very similar to what

we discussed in the preceding section concerning the con-
ductivity.

An explicit computation of the density of states, to or-
der 1/N, yields the result

Ne(to) =N„( o) c1+ xz
1 ln( 1+v) co

1n
2mN v Ec

Equations (5.5a) and (5.5b) govern the scaling properties
of the (bare) mean free time r and Fermi velocity vF. The
solution of (5.5a) and (5.5b) yields the cutoff dependence
in ~ and v~. A calculation in the same spirit of what was
done for the density of states and the conductivity yields
the following results:

(i) Scaling of r. At the fixed point the (frequency-
dependent) mean free time is found to vanish like

'
A.

r(E,E, ) = r(E', E, ),E' (5.40)

with an exponent A, , to order e, equal to

A, =P,'(u')= —,', e . (5.41)

r(ER ) —const
~

6
~

&,

where the exponent g, to order e, is

(5.42)

(5.43)

(ii) Scaling of the Fermi velocity The (.frequency-
dependent) Fermi velocity is found to diverge like

vr(E', E,), (5.44)vF(E, E~ )—

where the exponent o. is found, to order e, to be

The mean free time at the Fermi surface is also found to
vanish as the mobility edge is crossed,

(5.35)

NR(to)=ZtvN~(to) ~ (5.36)

The renormalized and bare density of states are connected
through

vr(Ep)-const
~

b,
~

where, to order e, p is found to be

(5.45)

The Fermi velocity, at the Fermi surface, diverges as the
velocity edge is crossed like

where the renormalization constant Zz is equal to
5P=OV= (5.46)

(5.37)

NR(co) =const toe, (5.38)

with 6 =e/17. The density of states at the Fermi surface
vanishes, as the mobility edge is crossed, like

NR(Er, h)=const
~

t)
~

(5.39)

Since Z~ and Z~ coincide at the nontrivial fixed point, to
this order on 1/N, the exponents are the same.

Hence, at the mobility edge, the density of states near
the Fermi surface vanishes like

The vanishing of the mean free time and the divergence of
the Fermi velocity signal the breakdown of the Landau
theory of the Fermi liquid near the transition.

G. The exponent g

We have already noted that the triviality of the
anomalous dimension exponent g in the noninteracting
theory no longer holds when interactions are considered.
We now substantiate our claim with an explicit calculation
of g.
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The renormalization of the diffusive mode K+ has

been given in Eq. (4.9a). Define an effective renormaliza-

tion constant Zz by

ters. In terms of F, Ep is

Eo E——,F(x,u, w) . (5.54)

Zg ——Z,ZgZg

and an anomalous dimension yz,

(5.47) The function F obeys the RG equation

1 —P„—P„—P~ F =0 .
B B B

}u
~

Bw
(5.55)

B
yg ———E, lnZ

C

At criticality yIt assumes its fixed-point value,

(5.48)
By solving (5.49) along the relevant trajectory we find that
this scale vanishes near the phase transition like

Q E

4N 34
(5.49)

E, —y~ X~ =0.—1

'BE, (5.50)

Thus, the diffusive mode, at zero momentum, scales like
'1—g

Ks '(E*)E
E4

(5.51)Ks (E)-

at the transition. The exponent i) is given by Eq. (5.43}.

H. The insulating phase

So far we have considered the behavior of the system ei-

ther in the metallic state or at criticality. In the localized
phase the situation is more complicated.

First of all, our methods do not allow the study of the
system for strong disorder and strong interactions. We
can only see a runaway behavior. If we assume that phys-
ics is smooth between the fixed point of order e and the
limiting behavior for ( , xwu) —+ ao then we can use the re-

norrnalization group to match. However, this requires a
knowledge of the properties of the phase (or phases) that
may exist in this limit.

The physics in the strong-coupling —strong-disorder
limit was first considered by Efros and Shklovskii and
more recently by Davies, Lee, and Rice. They both
study the case of Coulomb (i.e., long-range) interactions
although the results are qualitatively the same for short-
range interactions. The insulating phase can be defined
properly only if the system is placed on a lattice. In this
case both groups of authors ' find that the density of
states is

which defines the exponent ri.
At the fixed point the bare diffusive mode obeys the

renormalization-group equation

Eo-const
~

b,
~

(5.56)

2~N
Ep —const exp

Qp
(5.57)

for d =2+@. This result is consistent with the localiza-
tion length diverging like

~

b,
~

What is the meaning of this scale? If we place the sys-
tem on a lattice then the "insulating phase" is character-
ized by a reduced Hamiltonian in which the kinetic energy
term is deleted. Davies, Lee, and Rice have shown that,
for N =1, the Hamiltonian reduces to that of the classical
Ising antiferromagnet, in our case with nearest-neighbor
interactions, in a random magnetic field. General argu-
ments of the type devised by Emery allows one to in-

corporate quantum fluctuations within degenerate pertur-
bation theory. The effective Hamiltonian is then a quan-
tum XXZ antiferromagnet in a quenched random magnet-
ic field pointing in the Z direction. Very little is known
about the properties of such systems. But qualitatively
one expects to find two insulating phases: (a) an "Ander-
son insulator" without a gap but with all states localized
and (b) a "deformed Wigner crystal, " or charged-density
wave (the analog of the antiferromagnet phase}, which has
a gap in the single-particle spectrum. In both cases an en-

ergy scale exists and by scaling must behave like (5.56).
From what it is known of magnets in random fields one

may expect that, at least in the classical limit and for space
dimensions up to a lower critical dimension d„which
could be two or three, the antiferromagnetic phase
might be absent. Clearly these issues require a more de-
tailed study and are not well understood.

In two-space dimensions the metallic phase is absent.
The RG trajectories run away to the strong-
coupling —strong-disorder limit. The system is an insula-
tor and the localization length is finite. For weak cou-
pling and weak disorder the localization length diverges
and the energy scale vanishes with an essential singularity

N(E)-exp

' 1/2
p

(5.52)

VI. CONCLUSION

BE,
E, =0.' BE,

(5.53)

Define a (dimensionless) function F of the scaling parame-

in three dimensions while the behavior in two dimensions
is somewhat unclear. In any event an energy scale Ep
seems to exist below which the density of states drops
dramatically to zero. This scale can be found by means of
the renormalization group since it obeys

We have shown in this paper that a systematic expan-
sion around a weakly disordered metallic phase can be
done by means of the 1/N expansion. This expansion has
to be renormalized since divergencies are present at every
order in 1/N. We have not attempted here to prove renor-
malizability, i.e., the existence of only a finite number of
relevant operators and renormalization constants. We ar-

gue, however, that if the one-particle Green's function has
singularities only of the form (0/E, /1 (Qn/ )E, then the
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%ard 1dcntltlcs do 1IDply thc cxlstcncc of JUst 8 f1nltc
number of relevant operators .This point does need to be
checked further by means of a two-loop (i.e., 1/ltd ) calcu-
lation.

The rcnorIDalization-group equations presented herc,
and the phase diagram that derives from it, do seem to
have all thc right physical properties. To 1IDpIovc ovc1
this calculation it is important to have a better control on
the interacting fixed point by considering more realistic
interactions. This will make possible a better understand-
ing of the nature of the insulating phase. Also the role of
long-range interactions, which are techmcally more diffi-
cult although physically more relevant, has to be con-
sidered. We will return to these probleIDs in another com-
m un1cation.¹teadded. After this work was completed we received
a copy of unpublished work by G. Great and P. A. Lee,
where they propose a scaling theory for a disordered in-

teracting electron gas based on a second-order calculation
of the conductivity, density of states, and spin susceptibili-

ty. Their approach, based on linear-response theory,
differs from ours and so do the results. We also became
aware of unpublished works by A. M. Finkelstein, who
proposes a similar theory in the presence of a magnetic
field. The connection between both papers and our work
is currently under study. A preliminary report of this
work was presented elsewhere.
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