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The spin-glass model with p-spin interactions in the presence of a transverse field is solved in

the limit p oo. The phase diagram is obtained and consists of three phases: a spin-glass phase
and two paramagnetic phases. The paramagnetic phases are distinguished by transverse ordering.
The spin-glass phase is similar to that of the random-energy model.

In recent years there have been several studies of quan-
tum effects in spin glasses. ' 'e In particular, there was
much interest in the Ising infinite-range spin glass in a
transverse field. Besides its theoretical interest, this model
has some possible experimental applications. The mixed
hydrogen-bonded ferroelectric Rbi —,(NH4) HzPO4 has
been reported to display a spin-glass-type phase for some
range of x values. This system can be modeled by an Ising
spin glass in a transverse field, since it contains a mixture
of ferroelectric and antiferroelectric materials. The trans-
verse field "'2 represents the tunneling effect of the proton
between the two minima of the hydrogen bond. On the
theoretical side, this model stands in the middle of some
controversy on the nature of the spin-glass phase: Are
there many coexisting, thermodynamic states separated
by infinitely large energy barriers as in the classical
infinite-range model, or are quantum fluctuations strong
enough, for some values of the parameters, to destroy this
picture due to tunneling effects across barriers?

Thirumalai, Li, and Kirkpatrick claimed, using the
static approximation, that there is a small region in the
spin-glass phase where a replica-symmetric (RS) solution
is stable, unlike the conventional infinite-range model with

no transverse field. On the other hand, Buttner and
Usadel9 showed recently that a full treatment, which does
not utilize the static approximation, predicts that the RS
solution is always unstable in the spin-glass phase. Finally
Ray, Chakrabarti, and Chakrabarti' performed some
Monte Carlo simulations which tend to support stability
of the RS solution, although the size of their sample is
small and the error bars too large to allow any firm con-
clusion. A RS-breaking (RSB) solution has been con-
structed by Parisi'3 for the Ising spin glass (SG} with no
transverse field, but to our knowledge, no one has con-
structed such a solution for the Ising SG in a transverse
field. Physically, RSB is usually associated with the coex-
istence of many thermodynamic states whereas a RS solu-
tion is interpreted as representing a single Gibbs state (up
to a global inversion).

In order to clarify these issues it is always instructive to
I

investigate an exactly solvable model whose properties can
be investigated in some detaiL For the case of the classi-
cal Ising SG, such an exactly solvable model is the so-
called Derrida random-energy model'4 which consists of a
collection of independent random-energy levels. This
model also has been solved, using replicas by Gross and
Mezard. 's It is sometimes referred to as "the simplest
SG"

It is our aim in this paper to generalize this model to the
quantum case and then solve it and obtain a complete
phase diagram. The model we propose is an Ising in-
finite-range model with p-spin interaction and a transverse
field and the limit p ee is considered. The Hamiltonian
is given by

' 1/2~p-1
P(Jt, . . . t, ) J xp!

exp

I' denotes the strength of the transverse field. It is well
known that for I 0 the Hamiltonian describes, in the
limit of p eo, the random-energy model. For I )0 we
also have been able to solve the model described by the
Hamiltonian (I) in the limit p ~. We have used the
static approximation, but argue that this approximation
becomes exact as p ~. We have not constructed a
rigorous proof yet, but we conjecture that this is indeed
the case (see below}.

In order to proceed and calculate the free energy of the
model we use the Suzuki-Trotter formula' ' to cast the
problem into an equivalent classical one and we use the re-
plica trick's to be able to carry out the average over the
random bonds. We find (denoting y=PI )

where the sum (ii . is) runs over all distinct p-plets, N
is the total number of sites, and 8,' and cr,

" are the spin
operators at site i J;,:...; are the random interactions
whose distribution is given by (in the following we set
J I)

Z" dJ;, . . . ; P(J;, . . .;,)Trexp P g g J;, . . . ;,tr;.; . 8,';+y+o';
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where we defined

8= —,
' lncoth(y/M) .

In Eq. (3) the variable k 1, . . . ,M is a label for the Trotter direction and the limit M ~ must be taken.
Integrating out over the bond distribution we obtain

' NNn/2

(4)

with

Z" —sinh
1. 2y
2 M

e~ "~ Tr exp —
2 g [Qgg (cr) I~+8g aj'(k) aj'(k+1)

4 M (ka)s+(k'a') kaj
(5)

Qgg (cr) g—cr (k)aI'(k') .

The spin trace can be performed by constraining Qgg (a) to equal Qgg using a Lagrange-multiplier matrix Egg , On. e gets

H dggg: II~gg:. -"',
(ak) ~(a'k')

Z [Qgg:j~+- Xggg:vg'
P2 1 P2

4 M ka~k'a' 2 M

—ln Tr exp —
2 g Xgga (k)a'(k')+8+a'(k)cr'(k+ I)+ ln —sinh

p2 I r Mn 1 . 2y
ere(k) 2 M kasstk'a' ka 2 2 M

where contributions vanishing in the limit M Oo have been discarded. Denoting

Zkk =Qgg, —
vgk =~gg' «k'

~

we can write G in the form

(7)

(s)

, Q Q [Qgg j~ , Q——Q[Zgk)~+—,Q ZZgkvgk'+ ,—Zg Qgk1gg lnT—rexp&, (r,
p2 p2 ] pi 1 P t t

4 M k, k'awa' M k~k' a 2 M ksslk' a M k&k'a&a'
(io)

g g vgk. a~(k)a~(k')+ —P g g ggga'(k)a'(k') +8+a'(k)cr'(k+1)+ Mnln ——sinh
2 l 2 2y

2 M krak' a 2 M kk'ass'-a' ka 2 2 M

(ii)
The free energy will be given in the thermodynamic limit N oo by the dominant saddle-point solution of G:

pf lim G/n .
n~0

(i2)

In order to evaluate G explicitly we must impose some ansatz on the structure of Qgg and zgg. In the high-
temperature phase it is reasonable to use the RS ansatz

Qgg -Qkk, ~gg -~kk, «a',
Vgk' Vkk' ~ Zgk' Zkk' ~

(i3)

(i4)

In addition, we will also use the static approximation, and later we will give arguments concerning why it seems to be
exact in the large p limit. The static hypothesis or ansatz is that all the order parameters displayed in Eqs. (13) and (14)
are independent of k, k'; i.e., of the values of the Trotter indices. In that case we find

n

lim —G —,
'

P Q)' ——,
'

P Z)'+ —,
'

P Zv —
—,
'

P QA, ——ln Dz) Dz2Trexp hga(k)+8+a(k)a(k+ I)+Ci
n 0 8 n 4 k k

(is)

Wl t,h
dz ()/2), 2Dz= e

42)r

h- = P [z,li+z2(v —Z)'"],

C —'Mln sinh cosh
M M

(is)

One can use the solution of the one-dimensional Ising
model to obtain finally

Pf- 4 P'Q' —'P'z'+ z P'zv z P-'Q1

Dz&ln„Dz22cosh(y +b )'~ .
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The stationary conditions for the free energy are

) -2pQ' '
~

V 2'
„Dz 2 sinh(:-) b/:-

Q „Dzf
Dz2cosh:-4

Dz2[b /:" cosh:-+ y /:"isinh:-]
g „Dz

4 Dz 2cosh~

(20a)

(20b)

(20c)

(20d)

where

( 2+b 2) I/2 (21)

f- (p-»x'1

4T

—Tln dZ2cosh[(1/T)(I + —,
' pg/' 'z2)' 2], (22)

where g is a solution of the equation

In the high-temperature phase we expect no SG ordering,
hence Q 0 and )I, 0 which is a consistent solution of Eq.
(20). In that case

p-1 22' Z

g Dz, cosh[(1/T)(I 2+ —,
' pg/' 'z') ' 2]+, sinh[(1/T)(I 2+ —,

' pg/' 'z') ' 2]
I2+ &pgp

—1 2 (I'+ —,
'

p2& 'z')'"

i4 Dzcosh[(1/T)(I + —'pg/' 'z')' ] (23)

In the limit of large p, there are two possible solutions
for Eq. (23) which give rise to two different high-
temperature phases.

Phase I. For large p, g~ 1. More precisely, a possible
solution of (23) is

and similarly for )I.. After some algebra, the free energy is
found to be

Pf fP [mqfI+(I —m)qf] ——,
'

P g~+ f P2gv

4I T@~1— + (24)p'
Plugging this solution into Eq. (22) and evaluating the in-

tegral using the saddle-point method in the limit p
we obtain

——,
'

p [mq)IXII+(1 —m)q2)I, 2]

lan

Dzfln Dz2 Dz22cosh(b +y )'
m4 4 i4

(29)

fr —T ln2+0—1 1
(2S)

4T
, P,

where only the 0(1/p) correction depends on I . Thus in
this phase the free energy is the same as in the ordinary
random-energy model with I 0.

Phase II. For large p, g~ 0. This arises from another
possible solution of Eq. (23) which is given for large p by

g —tanh —,T I
(26)

I T'
which is always smaller than 1. In this phase the free en-
ergy is given by

1.50

Phase I

f=-T in(2) — I/(4T)

X=
1.00—

Tc

Phase II

-T In(2)-T In[cosh(1"/T) ]

= (T/'I ) tanh (I /T)

q = 0

QL/f, Lg q2, QLa, Lg q», L&L', (2S)

fn —Tln2 —Tlncosh —.r
(27)

T
It is easy to calculate the entropy associated with the free
energy (22) by using the relation S —Bf/BT. One finds
that the free energy f~ given by Eq. (25) is not acceptable
for T & (241n2) ' since in that case the entropy becomes
negative. In order to find a solution in the SG phase we
returned to Eqs. (10) and (11),not assuming RS but us-
ing the static ansatz. We also assumed that for the
saddle-point solutions g and v are independent of a. For
Q„and )I,„we introduced a first stage RSB. This means
that if we put a (L,b) where L I, . . . ,n/m, b

1, . . . ,m we define

0.50—
Phc)se III

f = —JIn (2)
X= q
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FIG. 1. Phase diagram of the model in the I -T plane in the
limit p oo. Phase III is the spin-glass phase and phases I and
II are the paramagnetic phases. Phase II is characterized by
transverse ordering. The special points have values given

by T, 1/(2 Jln2) =0.6006, I 0 v'tn2 =0.832, I' 1/J2
=0.707, and 1, 1n(2+ v%/(241n2) =0.791.
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where

b -pI„(2.„)'~'+z, (2,,-~„)'"+z3(v —&2) '") . (30)

We have found a consistent solution to the stationary con-
ditions by assuming qli (1, q2 1, g 1 (in the large p
limit). Plugging this solution in (29) and noticing that for
large p, X,ii 0, 2,2 —,

'
p, v —,

'
p, and evaluating the in-

tegral by steepest descent as p oo we find

f ——,
' Pm— 1

ln2

and q| 1 0. Using stationarity with respect to m one finds
m P,/P with P, 2An2 and hence

firr v'in2. (32)

Thus the free energy in the SG phase is independent of T
and I, and the entropy vanishes identically. For the case
I 0, it was argued'5 that one-stage RSB is enough to ob-
tain the exact solution in the spin-glass phase, and the
same arguments apply here. We see that at least for large
p, the nature of the SG phase is similar to the classical
model and RS has to be broken. The phase diagram of
the model is depicted in Fig. 1. The transitions between
phases I and II and III and II are first-order transitions.
When crossing the first-order-transition boundary one
chooses the lower free energy among the solutions which
are locally stable —see discussion by Mottishaw'9 for a
similar case. We see that quantum fiuctuations have the
effect of destroying the SG phase for large I rather than
giving rise to a SG solution with no RSB.

One can calculate the amount of transverse ordering by
evaluating —8f/8I . Thus one finds that while phase II is

characterized by transverse order of magnitude
tanh(I /T), in phases I and II there is no transverse order-
ing. Notice that for p 2 it was found that there is
only one high-temperature phase, thus the existence of
two high-temperature phases is a property of large p. A
similar situation happens in the classical model solved in
Ref. 19 of s 0, + 1 spins where two paramagnetic phases
were found for large p, whereas for p 2 only one
paramagnetic phase is known to exist.

Finally, we will comment on the validity of the static
ansatz for the case p ~. In the two paramagnetic
phases we have tried to introduce dependence on the in-
dices k, k' through their difference 6 k —k'. Thus we
have introduced order parameters g~ and v~,

1, . . . ,M, and we have rewritten the free energy in
terms of these variables. We were able to solve the model
for the case where part of gg 1 and the rest are zero, and
we have found that the resulting free energy becomes
higher compared to the isotropic case where all Zg are
zero or all are 1. We did not form a rigorous formal proof
yet but the indication is that the static ansatz is justified
for p oo. To prove this conjecture remains a task for
the future. 2' It will be also possible to calculate correc-
tions to the p ~ limit and thus to find how the phase di-
agram looks for large, but finite p and to find a solution
with RSB in the SG phase that depends on I, unlike the
infinite p case. It will also be very interesting to solve the
model without the use of replicas. These are projects for
future research
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