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Nonlocal dielectric relaxation in glycerol
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Since its introduction, liquid viscosity and relaxation time τ have been considered intrinsic properties of
a system that is essentially local in nature and therefore independent of system size. Dielectric relaxation
experiments are performed in glycerol, and it is discovered that this is the case at high temperature only. At low
temperature, τ increases with system size and becomes nonlocal. We discuss the origin of this effect in the theory
based on liquid elasticity length, the length over which local relaxation events in a liquid interact via induced
elastic waves. We find good agreement between experiment and theory.
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Viscosity η is the basic property of matter that quantifies
its resistance to flow and was defined by Newton as the
proportionality coefficient between the shear stress and the
velocity gradient. It is commonly used to describe properties
of gases, liquids, and even solids, in which flow is often said
to “creep.”1 Viscosity of liquids perhaps stands out in that
list, in that the theory of liquids in general is much less
developed as compared with other phases of matter, such
as solids or gases. For example, it is stated2 that, unlike
solids and gases, liquids’ most basic property, such as energy,
cannot be calculated in a general form. The stated reason is
that interactions in a liquid are strong and system-specific,
so the energy strongly depends on system type. At the same
time, atomic displacements in a liquid are large. Consequently,
neither weakness of interactions, as in a gas, nor smallness of
atomic displacements, as in a solid, is a small parameter that
can be used to obtain general results.2

Similarly, the temperature dependence of an equally basic
liquid property, viscosity, has remained another major theo-
retical hurdle in condensed matter physics. In particular, the
behavior of η at low temperature is at the heart of the problem
of glass transition.3–6

A property closely related to viscosity is liquid relaxation
time τ . It was phenomenologically introduced by Maxwell
in the viscoelastic theory of liquid flow as η = G∞τ , where
G∞ is the instantaneous shear modulus.7 Frenkel subsequently
identified τ with the average time between two consecutive
atomic jumps in a liquid at one point in space.8 Larger τ cor-
responds to less frequent atomic jumps and larger viscosities.

Notably, in both earlier7–9 and modern3,4,10–13 discussions, it
was assumed that the flow property of a liquid, η or τ , is essen-
tially an intrinsic property governed only by the liquid structure
and interatomic interactions and therefore is necessarily local.
Applied to viscosity, the assertion of locality implies that,
as long as there is enough bulk liquid between two moving
plates so that surface effects can be ignored, viscosity does not
depend on system size. Equally, τ has been considered to be
local and independent of system size.3,4,7–9,11,13 Consequently,
several well-known relationships for η or τ, such as Stokes’
law, the Einstein-Stokes relationship between viscosity and
diffusion, and so on, are derived and discussed in the scenario

in which η and τ are intrinsic and local.8,9,11,13 The same
applies to general Navier-Stokes equations, which are used
to derive and discuss a wide range of results and effects in
liquids.13

In this Brief Report, we perform dielectric relaxation ex-
periments in glycerol and find that τ is independent of system
size at high temperature only, but it increases with system size
at low temperature; i.e., it becomes essentially nonlocal. We
attribute this effect to nonlocal interactions between atomic
jumps in a liquid via induced high-frequency elastic waves.
We find both qualitative and quantitative agreement between
this theory and present experiments.

We first discuss the theoretical rationale for our experi-
ment. We have recently discussed14,15 the origin of several
anomalous and intriguing relaxation laws in liquids that are
at the center of the problem of glass transition, such as
the Vogel-Fulcher-Tammann (VFT) law, stretched-exponential
relaxation, and dynamic crossovers. An important outcome
of this discussion is that relaxation in a liquid necessarily
becomes nonlocal due to interaction between atomic jumps.
The nonlocality originates as follows.

An elementary flow process in a liquid is the jump of an
atom from its surrounding atomic “cage,’ accompanied by
large-scale rearrangement of the cage atoms. We call this
process a local relaxation event (LRE). The duration of a
LRE is comparable to the elementary (Debye) vibration period
τ0 = 0.1 ps. On this short time scale (as well as any other time
scale that is shorter than τ ), the surrounding liquid can be
viewed as an elastic medium.8 Hence, large atomic motion
from an LRE elastically deforms the surrounding liquid,
inducing elastic waves. The wave frequency ω is on the order
of the Debye frequency, because the wavelength is on the order
of interatomic separations. Therefore, ω > 1/τ as long as τ

exceeds τ0, i.e., in the whole range of τ up to τ = 102–103 s
at the glass transition temperature. As discussed by Frenkel,8

waves with frequency ω > 1/τ propagate in a liquid as in a
solid. The waves distort cages around other LRE centers in the
liquid and therefore affect their relaxation.

Hence, we identified the LRE-induced elastic wave as the
physical mechanism mediating interaction in a liquid, and
we proposed14 that this interaction sets the cooperativity of
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relaxation, whose origin has been widely discussed but not
understood from the physical point of view.3–6

The key question concerns the range of this interaction, or
the propagation range of high-frequency elastic waves. As has
been discussed in detail,14 this range is given by

del = cτ, (1)

where c is the speed of sound.
The nontrivial point is that del = cτ increases with τ .

This is directly opposite to the commonly discussed decay
of hydrodynamic waves, whose propagation range varies as
1/τ . The difference is due to the solid-like regime of wave
propagation, ωτ > 1, which is qualitatively different from
the hydrodynamic regime, ωτ < 1 (Ref. 8; see Ref. 14 for
a detailed discussion). We called del the liquid elasticity length
because it defines the range over which two LREs interact with
each other via induced elastic waves. Importantly, del = cτ

increases with lowered temperature because τ increases. We
proposed that this is the key to the emergence of slow
relaxation, the VFT law, and dynamic crossovers.14,15 In this
scenario, the increase of del and the concomitant coopera-
tivity of relaxation increase the activation barriers for LREs
and τ.14

We note that del is different from the solidity length l,
introduced in Ref. 16. In particular, l was derived not as the
propagation range of high-frequency waves in a liquid but as a
distance that the sound wave travels without LREs appearing
anywhere along its path during time l/c. As a result, l is
proportional to τ 1/4 [compare with Eq. (1), where del ∝ τ ],
significantly smaller than del, and limited by hundreds of
nanometers at Tg.

16

As long as del < L, where L is system size, relaxation
effects are not affected by system size. On the other hand,
when del � L at low temperature, one expects to find that
relaxation depends on system size, provided del < dt . Here,
dt , the phonon thermalization length, is the distance (typically
up to several millimeters at room temperature17–19) over which
an induced phonon thermalizes due to anharmonicity, with the
result that the phonon spectrum of the system becomes the
same as in thermal equilibrium. In particular, two important
system size effects are immediately predicted by this theory.
First, the theory predicts that, when del = L, τ crosses over
from the VFT law to more of an Arrhenius dependence,
because at this point further increase of del does not increase
the number of interacting LREs in the system.14 This effect
has been observed experimentally in a large number of glass-
forming liquids.20–22

Second, the theory predicts that, when del � L, τ increases
with L and becomes essentially nonlocal. We note that, in
the above discussion, τ can be considered nonlocal when
del < L as well, as long as del exceeds the distance between
neighboring LREs. However, experimental verification of the
nonlocality of τ is most easily verified by varying L and
demonstrating that τ increases with L. The first demonstration
of this effect in a macroscopic system was done in a
series of Stokes viscosity experiments.23 Recently, a similar
nonlocality of viscosity was found in molecular dynamics
simulations.24 We now discuss the results of our dielectric
relaxation experiment, supporting the prediction of the size
effect.

FIG. 1. (Color online) Schematic experimental setup (inset) and
typical dielectric loss spectra of glycerol measured in the larger
(circles) and smaller (squares) capacitors at T = 233 K.

We have measured τ in glycerol, a commonly stud-
ied glass-forming liquid, using a well-known broadband
(10–108 Hz in the current experiments) dielectric spectroscopy
technique in capacitors of two different sizes. Several im-
portant experimental conditions need to be met in order
to study the size effect. These include ensuring that the
temperature difference between the two capacitors, as well
as the temperature gradients in each system, are minimized.
Next, the liquid in each capacitor should be a closed system
and not connected to a liquid of larger size, as can be the case
in dielectric relaxation experiments. Furthermore, pressure
variations in a closed system related to thermal expansion
should be avoided, because they affect τ .

To meet these requirements, we have designed and built
the test cell shown in the inset in Fig. 1. The cell contained
two switchable capacitors, C1 and C2, both of the same
radius R = 0.75 mm and different heights h1 = 0.2 mm
and h2 = 0.02 mm, respectively. The distance between the
capacitor plates is maintained by flat Teflon spacers. Both
capacitors were cooled simultaneously. Subsequently, their
temperatures were stabilized by a temperature controller with
accuracy better than 0.02 K. Due to efficient thermal coupling
between the capacitors, the temperature gradient through the
test cell was not larger than 0.01 K.

Samples of ultrapure (>99%) glycerol were purchased from
ICN Biomedicals. A high sample purity level was additionally
checked by refractometry. At each temperature, the liquid was
equilibrated during temperature stabilization lasting several
minutes, considerably exceeding the stress relaxation time
in our temperature range. Frequency dependencies of the
impedance of the capacitors Z(F ) were measured by a
QuadTech 7600 precision LCR meter to be below 1 MHz
and by a Hewlett Packard HP4191A reflectometer to be above
1 MHz. Typical dielectric loss spectra at T = 233 K, where
the maximum value of Fm = 1/τ is in the kilohertz range, are
shown in Fig. 1.
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FIG. 2. (Color online) (a) τ in large (upper symbols) and
small (lower symbols) capacitors. The horizontal long-dashed line
corresponds to τ , above which the size effect is predicted to exist.
(b) log(τ1) − log(τ2), where τ1 and τ2 are relaxation times in large
and small capacitors, respectively.

In Fig. 2, we plot τ for both capacitors as a function of
temperature, together with log(τ1) − log(τ2), where τ1 and τ2

are relaxation times in large and small capacitors, respectively.
Figure 2 makes three important points about the predicted size
effect.

First, the size effect is absent at high temperature, 300 K.
According to Fig. 2(a), this temperature corresponds to τ �
10−8 s, and hence del � 0.02 mm (c ≈ 2000 m/s for glycerol).
Therefore, del is just smaller than the smallest dimension of
both capacitors (h2 = 0.02 mm). According to the theoretical
prediction, τ should be the same in both systems, i.e., τ1 = τ2,
in agreement with Fig. 2(b).

Second, we observe that the size effect is present at
low temperature, below 250 K. At 250 K, τ ≈ 10−6 s [see
Fig. 2(a)], giving us del ≈ 2 mm. Therefore, del is larger than the
largest dimension of both capacitors below 250 K. According
to theoretical prediction, τ should be larger in the larger system
in this temperature range: τ1 > τ2. This is in agreement with
the experimental results in Fig. 2(b).

Third, we calculate the magnitude of the size effect from
the theory. According to the theory,14 the activation barrier for

an LRE, U , is

U = U0 + T0

4π

∫
dV

r3
. (2)

The first term in Eq. (2), U0, is the high-temperature intrinsic,
or noncooperative, activation barrier for an LRE, which
depends on the structure and the type of interactions in a liquid
but not on the interaction with other LREs. The second term
describes the effect of an elastic interaction between LREs.
Here, T0 is the VFT temperature, and 1/r3 represents the
decay of elastic stress. The integration is performed over the
volume inside the system boundaries if del � L and inside del if
del < L. We note that, if del < L, U is temperature-dependent,
because it depends on del and therefore on τ , giving us the VFT
law for τ.14 The lower integration limit in Eq. (2) is given by
the size of a local rearranging region d0 (d0 ≈ 10 Å).

Integrating in cylindrical coordinates gives

U = U0 + T0

2
ln

2hR

d0(h + √
h2 + R2)

, (3)

where we have taken into account that d0 � h1,h2,R.
We define the magnitude of the size effect � as � = τ1/τ2,

where τ1 and τ2 are relaxation times in larger and smaller
capacitors, respectively. Using Eq. (3) and ln(τ ) = ln(τ0) +
U/T , where τ0 is the Debye vibration period, we write

ln � = T0

2T
ln

⎛
⎝h1

h2

h2 +
√

h2
2 + R2

h1 +
√

h2
1 + R2

⎞
⎠ . (4)

In the low-temperature range, where the size effect is seen in
Fig. 2(b) (208–253 K), Eq. (4) gives � = 1.7–1.9, where we
have used T0 = 135 K (Ref. 25) and the above values of h1,
h2, and R. The experimental values of � from Fig. 2(b) are in
the range 1.2–1.3. Therefore, the theoretical prediction of the
size effect is in reasonable agreement with the experimental
value, providing, importantly, a correct order of magnitude
of the effect. We observe that τ1 and τ2 themselves vary by
many orders of magnitude in the above temperature range
[see Fig. 2(a)]; hence, a reasonably good agreement of τ1/τ2

between theory and experiment is particularly encouraging.
We note that Eq. (4) predicts the decrease of � with

temperature. Consistent with this trend, there is a decreasing
trend of � in Fig. 2(b), despite the larger error bars at the
boundaries of the low-temperature range, because the errors
in the middle of the range were smaller in our experiments.

We attribute the higher theoretical value of � to the decay
of LRE-induced waves due to anharmonicity.17–19 This decay
is not considered in the theory, and it leads to the reduction of
the wave amplitude within del and therefore the weakening of
the size effect.

We finally note that Tg decreases, compared with the bulk
values, in liquids confined to nanoscale pores as well as in
thin polymer films, implying that τ becomes smaller in these
systems.26 This effect is therefore consistent with our theory.
However, as reviewed in Ref. 26 in detail, it remains unclear
whether this is an intrinsic effect and to what extent the
observed size effects are related to extrinsic factors, such as
the interaction between the liquid and the surface, particularly
important in small systems. Our results, on the other hand,
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are done on essentially macroscopic samples, for which the
above extrinsic effects are expected to be small. Our results
therefore support the existence of a genuine intrinsic size effect
in liquids, in accordance with our recent theory.

In summary, our dielectric relaxation experiments show
that the relaxation time of glycerol increases with system
size at low temperature, implying that τ (and, similarly,
viscosity) becomes nonlocal. We propose that the origin of
this unexpected behavior is the long-range elastic interaction

between LREs, whose range increases with lower temperatures
and extends to system size. The results of our experiments are
in good qualitative and quantitative agreement with theoretical
predictions.
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