
ISSN 1063�7761, Journal of Experimental and Theoretical Physics, 2013, Vol. 117, No. 3, pp. 399–406. © Pleiades Publishing, Inc., 2013.

399

1 1. INTRODUCTION

In the process of friction, when one rough surface
rubs against another, friction forces arise where sur�
faces come into contact. Therefore, there are two
kinds of problems connected with this phenomenon.
The first is, which processes occur at the contact of
two surfaces; and the second, in what way do the ran�
dom forces arising at different points of contact add up
to the total friction force? In this paper, deformations

at the contact points are assumed to be elastic.
2

If the deformation of two contacting surfaces is
elastic, then the surfaces are not changed by friction.
The work of friction forces hence results in radiation of
sound waves. The energy of these sound waves dissi�
pates in the bulk of the rubbing bodies. The power
spent for the radiation of sound is proportional to
acceleration squared. When the relative velocities of
the rubbing bodies are small, a large acceleration,
independent of this velocity, arises only when the con�
tact turns from a metastable state into a stable one. The
aim of this paper is to elucidate the problem of how
metastable sates arise in an elastic medium. Two pos�
sibilities arise in this case: the metastability arises in
each contact separately, or the region of the surface
containing a large number of contacts transfers into a
metastable state.

The problem of reaction of an elastic structure with
randomly arranged defects has been considered previ�
ously in connection with pinning of vortex lines in
superconductors [3–5]. The method developed in
these papers is applicable to the problem of dry fric�
tion.

This paper is arranged as follows. In Sections 2
and 3, the case of individual pinning is considered,

1 The article is published in the original.
2  It is believed [1, 2] that at low pressure, the friction force is

determined mainly by intermolecular forces, while at high pres�
sure, a plastic deformation (ploughing) is more essential.

where a separate contact can be in a metastable state.
In Section 2, the case is studied where the metastabil�
ity is caused by adhesion of contacts caused by inter�
molecular interaction. In Section 3, we examine the
model of thin and long contacts (the “brush” model).
In this case, the metastability arises due to the loss of
stability. Section 4 is devoted to the study of collective
pinning, when the metastability of the surface con�
taining a large number of contacts is in a metastable
state. Details of calculations related to each section are
presented in the appendices.

2. ADHESION

The contact of rubbing surfaces is usually realized
on a small area and the rough points touch one
another. Therefore, a good model of a rough surface is
that of balls randomly scattered on the surface. The
radii of the balls R are assumed to be equal. We first
consider the strictly elastic case, where the forces aris�
ing at the contact of the balls are uniquely defined by
their mutual location and the elastic properties of sol�
ids. These forces are directed normally to the contact
areas of the balls, and therefore have components tan�
gential to the surface, averaged over roughness. The
sum of these forces is equal to the total normal force N.
The directions of tangential forces are determined by
the mutual arrangement of the balls, and the total tan�
gential force is zero, because of the randomness of the
arrangement. Therefore, in the purely elastic case, the
friction force is zero.

A nonzero friction force can arise if, besides the
elastic forces, an adhesion due to molecular interac�
tion of two contacting bodies is taken into account. In
this case, the deformation of two contacting bodies is
a multivalued function of their mutual position, and
therefore the forces are also multivalued functions.
Hence, the forces arising at contacts depend not only
on the current arrangement of two rubbing bodies but
also on the prehistory of the formation of this arrange�
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ment. If the balls are coming into contact, the force is
zero until they touch each other. If the balls are sepa�
rating, they remain in contact and the force is not zero
even when the distance between their centres exceeds
the sum of the radii. Therefore, at a relative shift of the
surfaces, there arises an averaged force, whose direc�
tion is opposite to the shift.

To calculate the friction coefficient, it is convenient
to use the energy consideration. The work of friction
forces calculated per one contact is equal to the energy
required for breaking the balls in contact plus the
energy of the balls in contact that have only once
touched one another. This energy is calculated in
Appendix A (Eq. (30)):

(1)

The friction force depends on the distribution of
heights x of the tops perpendicular to the surface of
sliding. If C1, 2(x) is the number of tops per unit area of
the first (second) body in a unit range of x, then, as one
body shifts along another, the number of contacts per
unit of length is

(2)

where a(h) =  and S is the contact surface area.

Taking into account that the energy  is dissipated at
any contact, we obtain the friction force

(3)

To determine the friction coefficient, the friction
force ffr should be divided by the pressure p; besides,
the value of the vertical shift h of the rubbing bodies
should be determined through the pressure. The
energy dissipated per unit area is

(4)

where �(h) is the energy at a single contact as a func�
tion of the vertical shift h. Calculated in Appendix A,
�(h) is a multivalued function that has a jump at h = 0
and at h = hmin. The energy in (4) includes the work of
forces of normal pressure and the energy jumps. In
order to calculate the pressure p, it is necessary to dif�
ferentiate the continuous part of energy (4) with
respect to h:
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(5)

where Δ� is the energy jump at the transition from the
metastable state and depends on prehistory. If the
pressure increases, then Δ� = �(h = 0). If it decreases,
then Δ� = �(hmin). When the motion proceeds under
a constant pressure, the number of converging con�
tacts is equal to the number of diverging contacts, and
therefore Δ� = (�(hmin) + �(h = 0))/2. Hence, the
pressure p is a multivalued function of h. In any case, a
finite value h ≠ 0 and, consequently, a finite friction
force correspond to zero pressure p = 0. We suppose
that

Then the friction force, by the order of magnitude, is

(6)

At p = 0, the friction force strongly depends on the
concentration of the contacts and their spread in
heights. If there is no spread (ν = –1), then

(7)

If the pressure is sufficiently high,

then the dependences �(h) and a(h) can be deter�
mined without taking adhesion into account:

(8)

As can be seen from Eq. (8), the friction coefficient kfr

is pressure dependent. If the experimental value ν = 2
is assumed, then

3. THE “BRUSH”

In this section, we consider a model in which meta�
stable states of contacts arise when adhesion is not
taken into account. We suppose that the surface of one
of the bodies has noncompressible roughness with the
rounding–off radius R. Another surface resembles a
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brush. It can be viewed as a rigid plate with elastic rods
emerging out of the plate. The length of each rod is l
and the area of its cross section is S. For convenience
of calculation, we assume that l � R.

The successive arrangement of the rods in plates
passing from the left to the right is shown in Fig. la.
This figure shows that at the right slope of the rough�
ness, there are metastable states at which the rod is
bent to the left. When the plate moves along the right
slope, the normal force F is developed. When this force
slightly exceeds the Euler instability threshold FE =
π2EI/4l2 (where I is moment of inertia of the rod cross
section), the rod jumps to the bend on the right
(dashed line in Fig. la). Elastic energies corresponding
to these two positions of the rod are different and this
difference is transferred into heat. The difference of

elastic energies  is calculated in Appendix B. It is
equal to

(9)

The friction coefficient can be found using Eqs. (3)
and (5). For simplicity, we assume that C1, 2(x) =
C1, 2δ(x). As a result, obtain the following expression
for the friction coefficient:

(10)

(11)

It is important in deriving Eqs. (10) and (11) that some
positions of the fixed end of the rod correspond to the
position of a free rod. One of this positions is realized
in motion from left to right, and the other, in motion
from right to left. Quite a different picture is realized at
low pressures (see Fig. 1b), when the normal force
does not exceed the instability threshold FE. In this
case, the elastic forces acting in the contact at sym�
metric points of the roughness have equal and oppo�
sitely directed tangential components. In calculating
the total force, we should average over possible posi�
tions of the fixed end of the rod. Such an averaging
describes both the sum of the forces arising at different
moments of the rod motion and the sum of the forces
acting at the system of randomly arranged rods at rest.
If such an averaging is performed in the situation
shown in Fig. 1b, the resulting force is zero. Therefore,
the friction force does not arise in the “brush” model
at low pressure.
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4. COLLECTIVE PINNING

In this section, we consider contact of two rough
surfaces similar to those considered in Section 2. The
difference is that we here neglect the adhesion.

We assume that there is no metastable states in each
individual contact. The tangential forces fi, acting at
the points of contact can be assumed to be random and
to depend on the position of the contact:

If the mutual influence of contacts is not taken into
consideration, the mean tangential force ffr is

where N the number of contacts. Hence, the friction
force is proportional to the root of the area S, and the

friction coefficient kfr is inversely proportional to :

where L is the linear size of the surface if contact of two
rubbing bodies.

If the mutual influence of contacts is taken into
account, then it turns out that for a sufficiently large sur�
face, the friction coefficient is independent of its area.

To determine the deformation arising due to the
force acting at the points of contact of the rubbing sur�
faces, we must find the Green’s function of the elasticity
theory. This Green’s function depends on the ratio of
compressibilities of the rubbing surfaces. For definite�
ness, we assume that the rubbing bodies have identical
elastic properties (the Young moduli E and the Poisson
coefficients σ). In this case, the Green’s function can be
found in the problem to Section 8 in [6]. The tangential
displacement ui of the ith contact is therefore related to
the forces fj acting at the jth contact as

(12)
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Fig. 1. 
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(13)

Using Eq. (13), we estimate the mean square of dis�

placement  due to the action of the forces applied
at a large number of contacts:

(14)

Here, L is the linear dimension of the area of rubbing
surfaces. Thus, if this area is large, then the collective
action of the forces applied to different contacts results
in a large displacement even if the forces at each indi�
vidual contact are small.

In the same way, we can calculate the mean square
of the relative displacement at points r and r':

It is clear from this equation that the relative displace�
ment of distant points is large, although the solid bod�
ies are rigid. Therefore, a large surface can be divided
into areas of finite dimensions Rc such that relative dis�
placements in one such region are less than or of the
order of the size ρ of a single contact. The relative dis�
placements of different regions are of the order of ρ or
even larger. Each such region makes an independent
contribution to the friction force, which is therefore
proportional to the number of regions and hence to
the total area. The friction coefficient kfr in this case is
the same as for a separate region and inversely propor�
tional to Rc. The correlation length Rc can be esti�
mated as

(15)

Therefore, the correlation length Rc depends expo�
nentially on the pressure p. The exponential is deter�
mined in Appendix C. If the size R of the contact area
of two rubbing bodies is small (R � Rc), then ffr ~ R. In
the opposite limitR � Rc, the contribution of each
region of size Rc is proportional to the correlation
length. Multiplying by the number of such regions, we
obtain the following estimate for the friction coeffi�
cient with exponential precision:

(16)

5. CONCLUSION

The goal of this paper is mainly methodical. We
tried to answer the question of how the irreversible
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energy dissipation can arise in reversible elasticity the�
ory. For all the models considered, there can be only
one answer: “the energy dissipates in transitions from
a metastable state into a stable one.” On the other
hand, none of the proposed mechanisms yields the
Coulomb–Amontons law (the friction force is propor�
tional to normal pressure). Apparently, this means that
while considering the contact of a large number of real
bodies, it is impossible to use the elasticity theory,
because the arising deformations are plastic. Another
inelastic mechanism may be the breaking of parts of
the body when it sticks to another body. This mecha�
nism may be significantly weakened by applying the
appropriate boundary lubrication.

Although inelastic mechanisms are important, the
elastic mechanism of friction also exists. For the
majority of bodies, it seems to produce a small contri�
bution to the friction force. But in the case where the
friction force is determined by the elastic mechanism,
the friction coefficient strongly depends on pressure.
This dependence is different in different cases. In the
model with adhesion, the friction coefficient kfr is
inversely proportional to the pressure p (kfr ~ A/p as
p  0). The coefficient A strongly depends on the
dimensions of the surface roughness. In the “brush”
model, the friction force arises under pressures
exceeding the threshold values determined by the
Euler instability. Besides the rough surfaces, this
model may describe the phenomena occurring with
the boundary lubrication, if the lubricant consists of
long molecules that stick with their ends to one of the
bodies in contact.

The collective pinning should be taken into
account in cases where the friction force is small and
other mechanisms do not lead to friction. In this case,
for the surface of a characteristic size L, the friction
coefficient is proportional to 1/L. If this dimension is
large, the friction coefficient does not depend on L
and depends on pressure exponentially. Equations (15)
and (16) therefore provide the least possible friction
coefficient.

APPENDIX A

Contact Problem in the Elasticity
Theory with for Adhesion

Hertz solved the problem of the contact of two elas�
tic bodies (see [6]). He considered two balls with radii
R1 and R2, with the Young moduli E1 and E2 and the
Poisson coefficients σ1 and σ2. The balls are com�
pressed by the force F. Such a problem turned out to
be equivalent to the problem of the contact of a ball
with the radius

(17)R 1
R1

���� 1
R2

����+
1–

=
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and the effective Young modulus

(18)

with a rigid plane. The size a of the contact area was
chosen such that the stress on its boundaries vanished.
The result is

(19)
where h is the maximum vertical shift.

In the Hertz problem, the elastic deformation
energy E(a, h) can be calculated with the given contact
radius a and vertical deformation h. Adding the work
of external forces to this energy and then minimizing
the sum with respect to a and h, the dependences a(h),
F(h), and E(h) can be determined. In the case where
adhesion is taken into account, the elastic deforma�
tion energy for the given a and h should be calculated
and the work of external forces and the adhesion
energy παa2 should be added to it (α is the surface
energy of adhesion). The total energy E(a, h) deter�
mined in such a way should be minimized with respect
to a, and a(h) and E(h) should be found.

To fulfil this program, we have to solve the follow�
ing equation for the density of forces P(r) at the con�
tact area r < a:

(20)

Equation (20) resembles the electrostatic relation that
connects potential with the charge density. If a and h
are connected by relation (19), then

(21)

In the general case, this solution can be written as a
linear combination of two expressions

Evaluating the integrals (also see [7]) finally gives the
expression

(22)

The elastic force F is given by the integral over the con�
tact area with the integrand P(r):

(23)

The total energy includes the elastic deformation
energy at h = h0 = a2/R, the work of the force F on the
way from h0 to h at a fixed a, and the adhesion energy
παa2:

(24)
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where we introduce the dimensionless variables

(26)

The radius of the contact is determined from the
energy minimum condition:

(27)

If this last equation is solved and its solution x(y) is
substituted in the expression for E(x, y), then we
obtain the y�dependence of the total energy. This
dependence is plotted in Fig. 2. The solid curve shows
the dependence E(y) under load, and the dotted line
shows E(y) under compression. The minimum value
of y compatible with the equilibrium condition corre�
sponds to the breaking�off of the stuck ball:

(28)

At the instant of contact,

(29)

And finally, for the hysteresis energy, we find

(30)

APPENDIX B

We consider the “brush” model in the case where
the normal force F only slightly exceeds the Euler
instability threshold:

(31)
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Fig. 2. Dimensionless energy �(x, y) under the condition
∂�/∂x = 0 as a function of y.



404

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS  Vol. 117  No. 3  2013

LARKIN, KHMELNITSKII

At the top of the roughness, the force is equal to (see
Fig. la)

(32)

The bending of the bar is determined by the angle θ0,
which can be found from the equation

(33)

Expanding the cosines in Eq. (33) in θ, θ0, and β and
the force F in F – FE, we obtain

(34)

The solution θ(β) of Eq. (34) is single–valued if

(35)

At smaller values of β, Eq. (34) has three solutions,
which correspond to a metastable, a stable, and an
unstable state.

In deriving Eqs. (34) and (35), the terms of the
order of Rβ2 were neglected in comparison with h. This
is justified if

(36)

At β = β0, Eq. (34) has two solutions

(37)

The bending energy � is equal to the work of the force F:

(38)

Therefore, the energy jump at the transition from the
metastable state to the stable one is equal to

(39)

APPENDIX C

We here present the procedure that allows replacing
a set of a large number of contacts by a single one.

The forces acting on such enlarged contacts
increase, and large forces give rise to metastable states.
In the metastable states, the derivatives of the force
with respect to coordinates becomes infinite.
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We begin with reproducing Eq. (12):
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Here, ri is the position of a contact point under the
condition that the mutual influence of the contact is
not taken into account, and ui is the deformation
caused by such an influence. We seek the minimum of
the energy

(41)

The force f is linked to the energy � by the usual rela�
tion

(42)

The mutual influence arises because the argument
of the force fi depends on the displacement ui, which is
determined by forces acting at other contacts. The dis�
placement u(ri) can be represented as the sum

(43)
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The first term in the sum (43) is equal to the displace�
ment caused by the influence of the forces acting at
distant contacts with  > R1. The second term
determines the displacement caused by the influence
of the forces acting at the close contacts. If the dis�
placement w determined by Eq. (44) is substituted in
Eq. (41) for the elastic energy �, the latter becomes
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In the process of enlargement, the effect of the
forces acting at more distant contacts is taken into
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we obtain
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If the difference between cut�offs R2 and R1 is very

large, then the displacements  are small and
expression (47) and (48) can be expanded in series

in .

It is convenient to consider not the forces but their
derivatives with respect to displacements,

and so on. To see how the fαβ… transform in passing from
a scale R1 to a scale R2, it is necessary to differentiate

expression (47) with respect to , after its expansion in

. The displacements  themselves and their
derivatives should be determined by Eq. (48). As a result,
in the second order with respect to w, we obtain

(49)

(50)

The mean square fαβ is a quantity convenient for
estimating the effects of mutual influence of the con�
tacts. Because the mean value of an arbitrary quantity
is zero, we obtain

(51)

To determine the variation of the effective charge Γ
in passing from a scale R1 to a scale R2, expression (49)
must be substituted in Eq. (51). Retaining the powers
not exceeding four, taking into account that

(52)

and performing the averaging, obtain the RG equation
for effective charge Γ in the form

(53)

where ν is the number of contacts per unit area.
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Renormalization group equation (53) is valid if
Γln(R2/R1) � 1. The exact expression for the effective
charge ΓR if Eq. (53) is differentiated with respect to lnR2,

(54)

An initial condition for Eq. (54) can be obtained at
R = ρ (where ρ is the size of an individual contact):

(55)

The solution of RG equation (54) with initial condi�
tion (55) has the form

(56)

Expression (56) is valid at R < Rc, where

(57)

Equation (57) solves the problem of the exponential in
Eq. (16), if the dependence of the contact density ν on
pressure is known. For the model of balls without a
scatter in heights, we obtain

(58)

The result in this Appendix mainly repeats those in [8].
The difference in the derivation is that a similar results
was obtain in [8] by summation of a perturbation series,
while the RG procedure is used here.

COMMENTS, MARCH 2013

D. E. Khmelnitskii
Larkin and I were working on dry friction in

Autumn 1978–Winter or 1979. From the very begin�
ning of his work on pinning, Tolya saw the analogy
with friction and spoke about this at numerous occa�
sions. Finally, he suggested that I join him and study
dry friction of two solid bodies. After the paper was
written, we submitted it to JETP. Several days later,
Tolya told me that Evgenii Michailovich Lifshits had
spoken to him and asked to withdraw the paper:

I understand that you wrote a paper on physics.—
E.M. said—But if JETP publishes it, we will be
flooded by articles written by engineers.

So, Tolya, took the paper from the Editorial

office.
3
 At about that time (March 1979), the text

was translated by the staff translator at the Landau
Institute and printed out as a Landau Institute pre�
print. A bit later, Tolya suggested to submit the

3 Seven or eight years later, after JETP E. M. had passed away
and I was appointed Deputy Editor at JETP, Tolya asked me
with a caustic smile whether I would reject the paper on dry
friction if it was submitted at that time.

d
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English text to Physical Review A. We submitted
and received a report, which, as I understand now,
was pretty neutral on the subject matter and men�
tioned our poor English. Still, it sounded a rejection
to us. We were then involved in a very exciting work
with Lev Gorkov on weak localization, and the
paper on dry friction was left behind.

Since the preprint was published and members of
the Landau Institute have spread around the globe,
this work was not completely forgotten. A number of
colleagues requested the preprint from me and it has

been cited in publications about dry friction.
4
 Now,

34 years after it was written, this article can be avail�

able to the broad readership.
5
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