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An apparently overlooked symmetry of the disordered electron problem is derived. It 
yields the well-known Ward-identity connecting the one- and two-particle Green's function. 
This symmetry and the apparent shortrange behaviour of the averaged one-particle Green's 
function are used to conjecture that the critical behaviour near the mobility edge coin- 
cides with that of interacting matrices which have two different eigenvalues of multiplicity 
zero (due to replicas). As a consequence the exponent s of the d.c. conductivity is expected 
to approach 1 for real matrices and 1/2 for complex matrices as the dimensionality of the 
system approaches two from above. In two dimensions no metallic conductivity is expected. 

1. Introduction 

Symmetries play a crucial r61e in critical phenomena. 
They are important to determine the universality class 
and thus the critical behaviour of a system. Apparently 
an internal continuous symmetry of the disordered 
electron problem has gone unnoticed. It will be derived 
from the field theoretic formulation [1, 2] in Sect. 2. 
The energy difference co = z~ - 'z  2 acts as the symmetry 
breaking source and the difference of the Green's 
functions with energies above and below the real axis 
plays the r61e of an order parameter. The Ward- 
identity [3] which connects the zero-momentum two- 
particle Green's function to the one-particle Green's 
function is obtained from this symmetry in the same 
manner as that between the transverse susceptibility 
and the magnetization of an isotropic ferromagnet. 
This symmetry as welt as the apparent short-range 
behaviour of the averaged one-particle Green's func- 
tion are used to conjecture that the mobility edge 
behaviour coincides with the critical behaviour of 
interacting matrices (Sect. 3). These matrices have two 
different eigenvalues corresponding to the averaged 
Green's functions with multiplicities zero due to the 
vanishing number of replicas. 
On the basis of this conjecture we deduce from 
renormalization-group calculations by Br6zin, Hikami, 
and Zinn-Justin [4] that in the limit d-o 2+  the 
exponent s for the d.c. conductivity ad.o. ~ (E-'Ea) s 
approaches 1 for the real matrix ensemble and 1/2 for 
the phase invariant ensemble [5]. The result for the real 
matrix ensemble agrees with that obtained by Opper- 

mann and the present author [5] on the basis of a 
1/n expansion for a system with n orbitals per site. 
The "order parameter", that is, the density of states 
need not vanish at the mobility edge as expected. The 
analogies between a disordered electronic system and a 
ferromagnet with continuous broken symmetry ob- 
served in [5] become obvious here. 

2. Symmetry 

Consider the one-particle tight-binding Hamiltonian 

H =  ~ v,r, lr) (r'] (2.1) 
r r '  

for the system s of an ensemble with a given probability 
distribution of the v's. Then similarly to Nitzan, Freed 
and Cohen [1] and to Aharony and Imry [2] we 
express the averaged one-particle Green's function 

G(r, r', zv)= <r I (zp - H) -1 Ir'> (2.2) 

and the two-particle Green's function 
l ! K ( q ,  rl, za, r2, re, z2) 

= (rll (zl -H)  -1 [r;> <r2l (z2 --H) -1 IF;) (2.3) 

as expectation values 

G(r, r', Zp)= ( S  f*  (r) Sf(r')> (2.4) 
t I K(rl ,  rl, z1, r2, r2, Z2) 

= (S~*(rt) S~(r't) $2"(r2) Sff(r'2)) (2.5) 
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of a system with Hamiltonian 

K =  fl ~, zp ~ Sf*(r) S,P(r)+ Y¢'o((~), (2.6) 
p ra 

exp ( - ' X o  ((~))= exp (fl ~ Vr/(~r') (2.7) 
rr" 

Qr~, = ~ Sap(r) Sap*(r') (2.8) 
pa 

in the limit of mp ~ 0 components SaP. The bar indicates 
the average over the ensemble. The brackets ( . . . )  
indicate the average over the fields S, 

( A )  = Z -1 I-[ (~ d SP(r))A exp ( - ' H )  (2.9) 
par 

Z = I ]  (~ d SP(r)) exp ( - ' Y ) .  (2.10) 
par 

We have chosen phase factors different from those in 
[1, 2]. For real (symmetric) matrices v, S * stands for 

Sa p* (r) = Sap (r) (2.1 1) 

and the path of integration in (2.9, 10) is chosen so 
that Sap(r) equals (1 - i  sign I m z p ) / V 2  times a real 
number. Thus S* has a meaning different from the 
usual one. For complex (hermitian) matrices v, we 
decompose 

Sap(r) = Sap'(r) + i S~"(r) 

Sap* (r) = S f  (r) - ' i  Sap" (r) (2.12) 

and again choose S' and S" to be (1 - ' i  sign Im Zp)/]/2 
times real numbers and 

dS = t dS '  ~ d S ' .  (2.13) 

The constant fl equals 1/2 and 1 for real and complex 
matrices, resp. 
Now replace (2.6) by the more general expression 

X =  y PP' h~, (r, r') S~*(r) S~'(r ')+ ~'~o ((~) (2.14) 
pp" aa" rr' 

Then (2.6) is recovered for 
pp' 

h,~, (r, r') = f i  Z p 6 p p ,  ~aa' 6rr" " (2.15) 

A variation of the sources h yields the expectation 
values as derivatives of the "free energy" 

F =  lnZ  

G (r, r', Zp ) = - ~ F/O h~  (r, r') (2.1 6) 

632F 
K(rl ,  r'a, zl ,  r2 ,  r; ,  Z 2 ) -  12 t 21 

0 h~b (r 2 , r' 2) ra) 63 hb~ (rl, 

632F 

hl~ (r~, r;) t? hb 22 (r2, ri) 

+ G(rl, r;, zl)G(r2, /2 ,  z2). (2.17) 

The Hamiltonian Xo(Q) as well as Y given by (2.6) 
are invariant under orthogonal and unitary global 

transformations of the groups O(ml)x  O(ma) and 
U(m 1 ) x U(m2) ' resp. in the space of replicas. However, 
Y((~) is invariant under the larger group O(m 1 + m2) 
and U(m 1 + m2) of  transformations, 

sap(r)= Y, W' (2.18) 
p ' a '  

The sources h transform like 

h ~ ' ( r , r ' ) =  Z 7~,bq* " q' qq' ~b' hbb'(r, r'). (2.19) 
qq'bb' 

Thus one has 

F (~) = F (h), (2.20) 

provided the transformation is so close to the unit 
transformation that the partition function Z, (2.10) 
still converges. For (2.6) the convergency depends on 
the imaginary part ofz  I and z 2 . The limit zl, 2 = E + i0, 
E real, is the limit of convergency and simultaneously 
the limit in which 7d' has the full continuous 0 (m 1 + m 2) 
and U(mi + m2) symmetry, resp. For z 1 - z 2  4=0 the 
symmetry is broken by the first term on the right hand 
side of (2.6). Thus z 1 - z  2 is the symmetry breaking 
source. 
From the symmetry (2.20) the Ward-identity [3] 

a(r  1,r'i, z l ) - 'G( r l ,  r;, z2) 

= (z 2 -'Zl) ~ K ( r l ,  r, z~, r, r'l, z2) (2.21) 
r 

can be derived. The orthogonal transformation 

~ a~ p' = h a~ p,' + co 3 ~l ( 6 p l h f f" -'3p2 hla,)iP' 
' p l  -}-(,O•a, 1 (3p ,  1 hap 2 - 6p ,  2 h,1 ), (2.22) 

co real and infinitesimal, yields 
2 p '  l p '  l p '  2p '  (h~,, OF~Ohio, - h~, 63 F/~ hla, ) 

p'a'rr" 

+ ~ (h p2 63F/63h~ - ' h ~  eF/63hPl 2) = 0 (2.23) 
parr' 

where all sources h carry the arguments (r, r'). Take 
the derivative of (2.23) with respect to hl 2 (rl, r;) and 
evaluate it for h given by (2.15) 

- OF/~hf2(r~, r'~) +63F/63hll (ra, r[) 

+ fl 63/0h~ 2 (rl, r;) ~, {z2 [63F/63h121 (r, r)+ ~F/63h211 (r, r)] 
r 

-- Z~ [OF/Oh2I (r, r) + ~F/63hl 2 (r, r)]} = 0. (2.24) 

For real matrices v one has 632F/63 h 12 63 h 12 : ~2F/~ h 1 2 ~ h21, 
whereas for complex matrices v, 632F/63h12~h12=O 
holds. Thus with (2.16) and (2.17) one obtains the 
Ward identity (2.21). 

3. Matrix Model and Mobility Edge Behaviour 

The quantities of interest are the expectation values of 
products of the bilinear forms S* S. This suggests to 
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introduce the composite variables 
pp' Q,,, (r, r') = S~'*(r') SP,(r). (3.1) 

Such variables were used by Aharony and Imry [2] 
and by Schuster [6]. These authors, however, intro- 
duced Q only for p different from p'. Here we also keep 
Q for p = p' explicitly to preserve the full symmetry. 
One expects that G(r, r', zv)= (Q~(r ' ,  r)) decays 
rapidly as I r - ' r '  I tends to infinity. On a length scale 
large in comparison to this phase correlation length it 
should be possible to express the problem in terms of 
the local field 

Q ag,' (r)= Qaa" (t', F) (3.2) 

only, as in [2] and [6]. 
Let us consider the eigenvalues of the matrix Q. In the 
symmetry breaking interaction (2.6) one has 

< Q~ff,' (r)) = 6pp, (~aa' G (Zp) (3.3) 

where G(zp) is the diagonal term G(r, r, zp). This sug- 
gests that the main contribution comes from matrices 
with m I eigenvalues close to G(z~) and m2 eigenvalues 
close to G(zz). Let us assume that fluctuations in the 
eigenvalues of Q(r) are irrelevant similarly as the 
fluctuations of the length of the vector in the n-vector- 
model. Then we may assume that Q has ml eigenvalues 
2~ and m 2 eigenvalues 4z. Any local potential with the 
full symmetry O(m 1 + m2) and U(m 1 + me), resp. is a 
function of 21 and /~2 only and thus a constant. The 
most simple interaction for Q defined in the continuous 
real space is 

20  = ½fi/( ~ d d r tr (VQ (r) V Q (r)) (3.4) 

with some coupling constant/£.  There are no other 
interactions proportional V 2 with the desired sym- 
metry. We conjecture that the critical behaviour at 
the mobility edge can be described by the Hamiltonian 
(3.4). A symmetry breaking term similar to (2.6) has 
to be added 

-1 S Q. g(r) + 2 .  (3.5) 
pa 

where ~ is the volume per lattice site r. The matrices Q 
are given by 

where the group of transformations Tdepends on the 
symmetry of the interactions (2.1) of the ensemble. 
Here we have given two possibilities, orthogonal 
transformations for real matrices and unitary ma- 
trices for complex matrices. The physical relevance of 
other groups has to be investigated. 
Since Q has the eigenvalues 21 and 22, only, it obeys 

(Q -'21) (Q -'42) = 0 (3.7) 

which yields for small Q12, Q21 and Qll ~ 21 

Qll = ½(21 + he) + [(½(21 - 22)) e _Q12 Q21]  (3.8) 

and similarly for Q22. An expansion in powers of 
Q12 Q21 yields 

11 <Qaa> =21(~ab ('~1 22) -1 2 <Qla2 21 - - Qcb ) + . . . .  (3.9) 
c 

Since the summation runs over m 2 = 0 indices c one 
obtains exactly 

(QI~> = 213oh. (3.10) 

Thus the eigenvalues 2 v are determined by the one- 
particle Green's function 

2p = G(zp). (3.11) 

This shows that for smooth 2 as a function of energy 
there is no critical behaviour of G at the mobility edge 
as expected. Similarly the two-particle Green's function 
K(zl ' zl ) = (Qll  Qla) does not show any critical be- 
haviour. 
For small elongations of the "transverse" components 
Q12 and Qzl the "longitudinal" components Qll and 
Q22 can be expressed in terms of the Qlz and Q21 
according to (3.8). Then 2 o can be expressed in terms 
of the transverse components only. The situation is 
similar to the nonlinear a-model where the longitudinal 
component can be expressed in terms of the transverse 
components. In both cases a term for the invariant 
measure appears after elimination of the longitudinal 
components which is independent of the coupling/£. 
The conjecture is supported by observations made on 
the local gauge invariant models with n orbitals per 
site for which a 1In expansion has been derived 
diagrammatically in [-5]. For this model a Lagrangian L 
can be constructed which generates the diagrams of [5] 
(this and the following statements on this model will 
be published elsewhere). The fields of this Lagrangian 
are matrices Q (r) with components Q~,' (r) but without 
the restriction (3.7). After elimination of the "massive" 
components Qpp one obtains a Lagrangian 2 with 
contributions of order n, n °, n -1, etc. The leading 
contribution (of order n) vanishes for small momenta 
of the Q like q2. The contributions of order q2 have 
exactly the form (3.4) with Qpp replaced by (3.8) and 

/£ (21 - 42) 2 = - n R  2 a-  2 (1 - E 2 Eo 2) (3.12) 

(for notation on the right-hand side of this equation 
see [5]) where the over-all minus sign is due to the 
imaginary difference 21 - 4 2  . 
Introducing a "temperature" t by 

(U 1 ~zd/eF (d/2)t)-i =/((),1 -),2) 2 (3.13) 

the estimate [-5] for the mobility edge of the real matrix 
ensemble yields 
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tc = - ( d  - 2 ) / 2  + O (d - ' 2 )  2 . (3.14) 

This is in agreement  with the non-trivial zero o f  the 
W-function calculated by Br6zin, Hikami,  and Zinn- 
Justin [-4] for the model  (3.4) with o r thogona l  T, 

W(t) = (d - 2) t + 2 t 2 + O (t4), (3.15) 

who obtain tc = - (d - 2 ) / 2  + O (d - 2 )  3 . 
According to [7] the exponent  s of  the d.c. conductivi ty 
is given by 

s = ( d -  2)v = ( d - 2 ) / y  (3.16) 

where y is the critical exponent  o f  the relevant per turba-  
tion 

y = - W ' ( t c )  (3.17) 

which yields 

s =  1 + O ( d - 2 )  2 (3.18) 

again in agreement  with the estimate s = 1 + O(d - ' 2 )  
in [5]. 
For  uni tary T Br6zin, Hikami,  and Zinn-Just in [4] 
obtain 

W(t) = (d - 2 ) t  - ' 2 t  3 + O(t4).  (3.19) 

Thus for the phase invariant  ensemble one expects the 
mobil i ty edge for  

t c = - ( d / 2  - ' 1 )  ~ + O(d - ' 2 )  (3.20) 

and 

s = ½ + O(d - ' 2 )  ~* (3.21) 

slightly above d = 2  dimensions. The Lagrangian 
2 ( Q  12) ment ioned above shows the symmetry  prop-  
erties as a funct ion o f  the fields h. 

The stability o f  these fixed points needs, further in- 
vestigation. Since t C -- 0 for d = 2 no metallic conduc-  
tivity for  these systems is expected in two dimensions 
in agreement  with G6tze,  Prelovgek and W61fle [8] 
and Abrahams,  Anderson,  Licciardello and Rama-  
krishnan [9]. 
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Br6zin, Cyrano de Dominicis, Leo Kadanoff, Reinhold Oppermann, 
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S. Hikami and J. Zinn-Justin for making their results for the 
W-function available prior to publication. This work has been 
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Mathematical Models) of the Deutsche Forschungsgemeinschaft. 
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